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Preface

Almost every month some book or television programme describes exciting
developments in cosmology or fundamental physics. Many tell us that we are
on the verge of finding the explanation for the Big Bang or the ultimate Theory
of Everything. These will explain all physics in one fundamental set of math-
ematical equations. It is easy to be swept along by the obvious enthusiasm of
the participants, particularly when they are making real progress in pushing
back the boundaries of knowledge. Unfortunately, most of their brilliant new
ideas are doomed to be forgotten, if only because they cannot all be right.

Consider the currently fashionable idea that our universe is just one of
many unobservable, parallel universes, all equally real. How can one hope to
describe the inner structures of such universes, each with its own values of
the ‘fundamental’ constants? Many may be dull and featureless, but others
are presumably as fascinating and complex as our own. However much some
physicists declare the reality of these other universes, in practice their main
function is to support the mathematical models of the day, or to ‘explain’ certain
properties of our own universe.

My goal in this book is not to adjudicate on the correctness of such new and
speculative theories. We will instead consider the development of science in a
historical context, in order to find out how such questions have been resolved
in the past, and to explain why many long established ‘facts’ have turned out
not to be so certain. My conclusion is surprising, particularly coming from
a mathematician. In spite of the fact that highly mathematical theories often
provide very accurate predictions, we should not, on that account, think that
such theories are true or that Nature is governed by mathematics. In fact the
scientific theories most likely to be around in a thousand years’ time are those
which are the least mathematical—for example evolution, plate tectonics, and
the existence of atoms.

The entire book is effectively an extended defence of the above statements.
In the course of the discussion I risk the displeasure of many of my colleagues
by explaining the feebleness of mathematical Platonism as a philosophy. I also
provide psychological and historical support for the claim that mathematics is
a human creation. Its success in explaining nature is a result of the fact that we
developed much of it for precisely that purpose. Even the numbers which we
use in counting become no more than formal symbols, invented by us, as soon
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as they are as big as 101000 (1 followed by a thousand zeros). Pretending that
we can count from 1 up to such a number ‘in principle’ is a fantasy, and will
always remain so. Moreover, it is not necessary to believe this in order to be
interested in pure mathematics.

Whatever some over-enthusiastic physicists might claim, there is much
which is beyond our grasp, and which will probably remain so. Subjective
(first person) consciousness is one such issue. Understanding the true nature of
quantum particles is another, in spite of the proven success of the mathematical
aspects of quantum theory. Contingency, or historical accident, has obviously
had a major influence on geology and biology, but some physicists think that
it is even involved in the form of the laws of physics. Whether or not this is
true, scientists are right to believe that, with enough effort, they can push the
boundaries of their subjects far beyond their present limits.

An unusual feature of the book is that I try to explain why philosophical
issues are important in science by means of simple examples. This is not the
style followed by academic philosophers, but it makes the issues easier to
understand, particularly in a popular context. In addition, discussions about the
status of money, zombies, or rainbows are more fun than dry logical arguments
about ontology.

I am painfully aware that the scope of the book is far wider than anybody’s
expertise could span in this age of specialists. The attempt is worth making,
because arguments informed by only one branch of science are inevitably dis-
torted by that fact. I do not claim to have found the final answer to all of the
deep questions in the philosophy of science, but hope that readers who have not
previously thought much about these will see why they are important.

People vary enormously in their liking of mathematics. Many switch off as
soon as they see it, and editors of popular books advise their authors to reduce
it to the absolute minimum. I have gone as far as I can in this direction, and
reassure the allergic reader that any difficult passages can be skimmed over.
They are present to ensure that interested readers do not feel cheated by being
told conclusions without any evidence in their support.

I wish to acknowledge invaluable advice, or sometimes just stimula-
tion, which I have received from many friends and colleagues, in particular
Martin Berry, Alan Cook, Richard Davies, Donald Gillies, Nicholas Green,
Andreas Hinz, Hubert Kalf, Mike Lambrou, Peter Palmer, Roger Penrose,
David Robinson, Peter Saunders, Ray Streater, John Taylor and Phil Whitfield.
I do not, however, burden them with the responsibility of agreeing with any-
thing I say here. I also thank my family for providing an atmosphere in which
a task such as this could be contemplated; I know that the time which I have
devoted to it has put me in great debt to them.
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1
Perception and Language

1.1 Preamble

Most of the time most people relate to the world in a pretty straightforward
way. We assume that entities which appear to exist actually do so, and expect
scientists to provide us with steadily more detailed descriptions of their under-
lying structures. We try not to worry about the fact that fundamental theories are
highly mathematical, and hence incomprehensible to almost everyone. Some,
such as the Oxford chemist Peter Atkins, find the prospect of ultimately explain-
ing the whole of reality in mathematical terms exhilarating, while others fear
or reject it because of its impersonal character.

There are a few puzzles associated with this scientific picture of reality. One
is the nature of subjective consciousness, which used to be called the human
soul, and which some philosophers now regard as an illusion. Another is the
status of mathematics: why should the ultimate explanation of reality be in
terms of equations?

Roger Penrose has addressed these fundamental questions in his books The
Emperor’s New Mind and Shadows of the Mind, published in 1989 and 1994
respectively. Roger is an outstanding mathematical physicist, but I think that
his approach to these issues is quite wrong, and in this book I propose an
entirely different way of looking at them. Readers will probably be relieved
to hear that they are not going to be asked to wade through page after page of
detailed mathematics or logic. Although it contains some mathematical results
as illustrations, this book does not involve any deep technical arguments.

One of Penrose’s principal ideas is that Gödel’s theorems, discussed on
page 111, prove that human beings can understand results which are beyond
the capacity of any computer. He believes that they also provide a route by
means of which one can understand the mathematical mind, and by extension
the nature of consciousness. This is pretty optimistic, to say the least. Penrose
makes strong statements about the limitations of computers, but ignores the
obvious fact that the human mind also has limits.

Mathematics provides one of the last refuges of Platonism, discussed in
some detail on pages 27 and 37. I will argue that this philosophy is entirely
unhelpful in understanding either mathematics or its relationship with the
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outside world. The high degree of abstractness of the subject is shared by
chess, philosophy, and music, and does not require any special explanation.
I thus reject the Platonistic position of a sizeable fraction of my colleagues,
including some of the most eminent. On the other hand, the ideas presented
here are entirely in line with modern experimental psychology and the history
of mathematics itself.

Re-establishing the links between mathematics, science, and other human
concerns involves a rejection of the ‘easy’ reductionist option, which leaves
subjective consciousness out in the cold. This book does not provide the solution
to every problem about the nature of reality, but presents a series of arguments
suggesting that we must stop looking in directions which leave us out of the
picture. Platonism, in which mathematics exists in some ideal world unrelated to
human society, is a typical example of this. Since the time of Descartes, Western
science has developed along a route which has been immensely successful for
those aspects of reality in which human issues are of little relevance. Its very
success has encouraged scientists to avert their gaze from those aspects of reality
which their methods say little about. Some have even convinced themselves that
there are no such aspects.

In this chapter we consider the evidence that almost everything relating
to human knowledge is more problematical that we normally admit. We start
with a review of recent work in experimental psychology, because it is surely
necessary to understand our physical nature if we are to understand the nature
of our thoughts. This chapter is absolutely mainstream psychology. I cannot
make quite the same claim about Chapter 2, because most deep questions in
philosophy remain controversial. From Chapter 3 onwards we will cover a wide
range of sciences, indeed any area in which there is controversy about the bases
for claims of objective knowledge.

The first half of this chapter describes the wide variety of methods which
have been used to investigate the differences between what we think we see and
reality itself. Not only have these investigations provided a consistent descrip-
tion of the world, but they even explain why our unaided senses paint a distorted,
indeed different, picture. Particularly important in this respect has been the
development of brain scanning machines, which are beginning to give detailed
information about what is happening as our brains struggle to interpret sensory
data. This is one of the most exciting current fields of scientific research.

As a society we are progressively re-adjusting our world-view in the direc-
tion indicated by our instruments and intellects. To give just one example: we
commonly talk about a ‘fluid’ called electricity which can flow through solid
copper wires but not through the open air; this fluid can be stored in batter-
ies, even though a full battery looks the same and is no heavier than an empty
one.1 We accept such bizarre propositions in spite of a complete lack of dir-
ect sensory evidence because they provide consistent explanations of observed
phenomena, such as the fact that a light bulb becomes bright when we turn
a switch. For the first time in history large parts of our lives depend upon
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machines and ideas which would appear magical or incomprehensible to our
ancestors.

In the second half of the chapter we discuss the relationship between
language and reality, which turns out to be a much harder task.

1.2 Light and Vision

Introduction

The view that our senses provide us with direct and straightforward information
about the outside world was promulgated by Aristotle, St. Thomas Aquinas,
and then by the sixteenth century scholastic philosophers. The first person to
criticize it systematically was Descartes, whose philosophical and scientific
ideas will be discussed in more detail in Chapter 2. In Le Monde, 1632 he
wrote:

In proposing to treat here of light, the first thing I want to make clear to you
is that there can be a difference between our sensation of light . . . and what is
in the objects that produces that sensation in us . . . For, even though everyone
is commonly persuaded that the ideas that are the objects of our thought are
wholly like the objects from which they proceed, I see no reasoning that assures
us that this is the case.

Newton later provided positive reasons, described below, for distinguishing
between colours and our sensations of them, and these have been reinforced by
all recent psychological research. Our present understanding of brain function
has involved many different lines of investigation. One is the study of optical
illusions, which provide hints about the brain mechanisms involved in ‘nor-
mal’ vision. Secondly, psychologists study the abnormal thought processes of
people who have suffered specific brain damage; this helps them to discover
which regions of the brain are involved in different types of processing. There
has been extensive analysis of the biochemistry and structure of individual
nerve cells, and of the anatomy of the retina and the rest of the brain. Another
rapidly developing field of psychological research depends upon the use of brain
scanning machines: these can identify which parts of the brain are most active
when people are asked to carry out various mental tasks. Research in each of
these fields forces us to the conclusion that the unconscious part of our brain
constructs the reality in which we live; evolution has seen to it that these men-
tal constructions lead to appropriate behaviour in most normal circumstances.
Donald Hoffman gives a clear statement of this conclusion from the point of
view of an experimental psychologist in Visual Intelligence: How We Create
What We See. He explains why it is possible for us all to agree about the nature of
the world and nevertheless for us to be fundamentally wrong in the way we see it.

Subjective pictures are not just part of picture perception. They are part of
ordinary everyday seeing. And that should come as no surprise. You construct
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every figure you see. So, in this sense, every figure you see is subjective. . . .
But then why do we all see the same thing? Is the consensus magic? No. We
have consensus because we all have the same rules of construction.

According to Hoffman the rules of construction are built into the anatomy of
our brains, and cannot be modified by the exercise of rational thought. Lest you
think that this is just Hoffman’s personal view, let me quote a corresponding
passage from Francis Crick’s The Astonishing Hypothesis.

What you see is not what is really there; it is what your brain believes is there. In
many cases this will indeed correspond well with characteristics of the visual
world before you, but in some cases your ‘beliefs’ may be wrong. Seeing
is an active constructive process. You brain makes the best interpretation
it can according to its previous experience and the limited and ambiguous
information provided by your eyes.

These ideas seem rather disturbing, but would have been regarded as absolutely
orthodox Taoist philosophy in tenth century China. The book Hua Shu of this
period describes a kind of subjective realism, in which the external world is real,
but our knowledge of it is deeply affected by the way in which it is perceived,
so that we cannot seize its full reality. Like Hoffman and Crick, the (supposed)
author T’an Ch’iao even refers to optical illusions and human inattention to press
the view that we pick out certain elements of reality to form our world-picture.2

The ideas above provide strong warnings against believing that something
is true simply because it matches our intuition well. We can gain objective
knowledge about the underlying reality, but this depends upon learning to accept
the verdict of our instruments rather than of our unaided senses. We have chosen
this path because such a wide variety of different methods of scientific investiga-
tion have led to a consistent picture. Indeed they even explain why the evidence
of our own senses is not a reliable guide to the nature of reality.

The Perception of Colour

The study of optical phenomena was slow to develop historically because of the
great difficulty of disentangling the physical, physiological, and psychological
aspects of the subject. It provides a very clear example of the immense gap
between our perceptions and the physical reality which lies behind them.

Although the Pythagoreans maintained that light travelled from the eye to
the object, Lucretius got much closer to the truth in The Nature of the Universe:

No matter how suddenly or at what time you set any object in front of a mirror,
an image appears. From this you may infer that the surfaces of objects emit
a ceaseless stream of flimsy tissues and filmy shapes. Therefore a great many
films are generated in a brief space of time, so that their origins may rightly
be described as instantaneous. Just as a great many particles of light must
be emitted in a brief space of time by the sun to keep the world continually
filled with it, so objects in general must correspondingly send off a great
many images in a great many ways from every surface and in all directions
simultaneously.
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Lucretius also argued that the colours of objects were not intrinsic to them,
since the sea could have a variety of appearances according to the way that its
component atoms were churning around inside it. In spite of the startling accur-
acy of these ideas for the time, they cannot be classified as science: Lucretius
could propose no quantitative tests of his ideas, which were, eventually, just
speculation.

The scientific investigation of light and colour started in the seventeenth
century, with major investigations by Robert Hooke, Christiaan Huygens, and
Isaac Newton. Newton used prisms to split white light into its component col-
ours, and then recombined the components back into white light; this led him to
understand that white light was not pure, as seems naively obvious, but a mix-
ture. He understood the cause of chromatic aberration in the lenses of refracting
telescopes, and designed and built the first reflecting telescope in 1669. His
paper Theory of Light and Colours, published in 1672, attracted great attention
and also started a feud between him and Hooke. They differed sharply about
whether light should be regarded as corpuscular or wave-like, a debate which
was to continue until the twentieth century, when quantum mechanics allowed
it to be both.

We now know that light comes in a continuous range of wavelengths, and
that our eyes are only sensitive to a very narrow band of these. Our colour
discrimination depends upon our having three kinds of receptor, called R, G,
and B cones, in our retinas, each of which is most sensitive to a particular range
of wavelengths. These receptors cannot possibly distinguish between all the
wavelengths in visible light, so what we see is a great simplification of what
is in the light itself. Objects are not red, green, or blue in themselves: our
impressions are created by neural processing of the very limited information
provided by our retinas.

People actually have one of two types of R cones, which are genetically
inherited. These produce slight differences in perception between individuals,
which may be important when matching colours. The variation is caused by a
single amino acid change in the relevant protein, and provides a rare instance
in which we know the precise causal chain from a change at the molecular level
to a difference between the subjective worlds two people may inhabit.3 This
provides a partial answer to the philosophical question of how we can know that
two normal people have the same subjective colour experiences: they need not.

This is not merely an abstract problem. I myself have had regular dis-
agreements over many years with my wife about the nature of colours on the
borderline between green and blue. We cannot even agree whether this is a
difference of naming or of perception. Maybe our colour receptors are indeed
slightly different, and we have been taught to name colours by parents who had
the same types of receptor as ourselves.

These small differences pale into insignificance once one compares our
visual experiences with those of other species. It is known that many birds and
insects are sensitive to ultraviolet light. Ultraviolet photographs of some flowers
reveal patterns, invisible to us, which are important to insects seeking nectar.
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On the other hand most mammals have only two kinds of colour receptor. Our
very similar R and G cones appear to have evolved from an earlier single type
recently, possibly to improve our ability to discriminate between fruits.4 In the
most common form of colour blindness, affecting very roughly 5% of males,
either the R or the G cones are missing, so the person cannot distinguish red
from green. We regard such people as having a disability, but by the standards
of most mammals they are normal. On the other hand pigeons have six or more
different types of colour receptor, and might regard all humans as having only
partial colour vision! We conclude that the same light falling on the eyes of dif-
ferent species must produce very different subjective colour impressions in their
brains.

Returning to human beings, it is known that quite different combinations of
wavelengths may produce the same subjective impression. Whether the names
of colours are simply cultural constructs or have a physiological basis is again a
matter of active debate. The comparative study of a large number of languages
shows that although they may have different numbers of named colours these
are classified into a coherent hierarchy. Namely if any colour in the box below
appears in a language then all of the colours on previous lines also appear.

This suggests that there is a physiological basis for the existence of colour
names, even if there is no external physical basis. Unfortunately, even this con-
clusion has recently been thrown into doubt by a study of the Burinmo tribe
in Papua New Guinea. The colour names of this tribe are radically different
from the below list and their ability to distinguish colours is positively correl-
ated to their colour language. These observations do not support the idea that
colour categories could be universal.5 In biology almost everything is more
complicated than initial analyses suggest!

white, black
red

green, yellow
blue

brown
purple, pink, etc.

Interpretation and Illusion

There are many other differences between our perceptions and the reality behind
them. When light falls on a retinal receptor, it emits pulses which are then
processed in stages, first in the retina and then in the brain. Each level of
processing involves further interpretation and selection, all of which happens
before we become conscious of the scene before us. In most cases we are
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unaware that these processes are going on, but it is possible to set up situations
in which we can see that our lower level interpretations are quite incorrect.
Understanding the way in which images are processed is a research field of
great complexity, and my goal here is simply to draw attention to the variety of
mechanisms involved, and a few of the ways in which they can fail. When this
happens we experience an optical illusion.

A simple example, much exploited by Bridget Riley and other artists in the
Op Art movement of the 1960s, involves a property of our peripheral vision.
The phenomenon can be seen by moving your head towards and away from
figure 1.1, while concentrating on the spot in the centre. The strong sense that
the rings are rotating, in opposite directions, depends upon the fact that the peri-
pheral part of our retina is primarily concerned with the detection of movement.
The neural circuits involved are designed, for obvious evolutionary reasons, to
‘fail-safe’: it does not matter too much if a non-existent movement is reported,
but might be fatal if an actual movement is missed, even once. Even when we
recognize that the effect is illusory, we cannot prevent it happening, because the
neural processing happens below the level at which we have conscious control.

Judging the brightness of a part of a picture is not a simple matter. In
figure 1.2, drawn by Ted Adelson, the two squares labelled A and B are exactly
the same shade of grey. This may be checked by covering up everything in the
picture except these two squares. The reason for the illusion is that your visual
system is not interested in the true luminosity of the squares. One part interprets
the picture as being of a three-dimensional object, and passes this conclusion to

Fig. 1.1 Rotating Rings
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Fig. 1.2 Checker-shadow Illusion
Reproduced by permission of Edward H. Adelson, Department of Brain and Cognitive
Science, MIT

another part, which compensates for what it considers to be the likely variations
of lighting. By the time you become conscious of the picture, these adjustments
are simply a part of what you see.

The extent to which ‘seeing’ depends upon active brain processes became
very clear to me on a recent holiday in Madeira. Standing on the edge of a
shallow pool one sunny day, a companion remarked on the number of small
fish in it. Although I looked hard through the constantly varying pattern of
surface ripples I could not see any. My companion explained carefully what
I should look for and within a minute or so my brain reprogrammed itself, and
hundreds of the fish became clearly visible. Indeed I could hardly understand
how I had not been able to see them before.

This is not an isolated example. So-called ‘primitive’ peoples learn to recog-
nize myriads of subtle features of their environments which urban travellers are
completely unaware of. These may be vital for avoiding dangers as well as
for finding sources of food. Figure 1.3 ‘Random Points’ shows how powerful
the mechanisms involved are. As soon as you are told that there is one ‘extra’
point in the figure, you can identify it as one out of two possibilities without
consciously looking at most of them. This feat can only be achieved so quickly
because your visual system processes the whole picture simultaneously. In
computer terms it is a massively parallel system. Fortunately such tasks do not
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Fig. 1.3 Random Points

need to be carried out using our rational faculties, which would be much less
competent at such tasks!

Let us turn to the way in which we construct three-dimensionality from what
we see. Following the re-discovery and elucidation of the laws of perspective
by Brunelleschi and Alberti in the first half of the fifteenth century, Hogarth
was one of the first painters to produce pictures with deliberately impossible
perspectives. In fact it is embarrassingly easy to follow the laws of perspective
rigorously, while producing impossible objects, as figure 1.4 shows.

Fig. 1.4 Part of a Fence
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Similar ideas underlie several of the paintings of M. C. Escher, such as
Ascending and Descending, 1960, in which a chain of monks climb a staircase
which apparently returns to its starting point, even though every step is upwards.
Escher cleverly incorporated enough distractions into the picture that it does not
appear particularly strange to the eye. These illusions are possible because our
visual system has to make guesses based on incomplete information. It is a fact
that if an object exists then a drawing of it will follow the laws of perspective.
However, our visual system follows an incorrect rule: that if a drawing follows
the laws of perspective then a corresponding object exists, or could exist.

It is worth mentioning that the issue of interpretation is one of the barriers to
developing the ability to draw faces: untrained people draw their interpretation
and not what they see, with the result that they can draw a face more accurately
if it is presented upside down.

Vivid evidence of the brain’s construction of images is provided by autoste-
reograms, one of which is shown in figure 1.5. At first sight a random collection
of dots, if you focus on a point behind the image, after a period of up to a minute
a three-dimensional picture of an oval with a square hole should emerge.6 The
effect depends upon the fact that we have two eyes, which can be persuaded
to look at different parts of the autostereogram. The following experiment is
well worth trying. Get a small piece of card and hold it close to your face and
slightly to the side of one eye while you look at the autostereogram. Now move
the card slowly until it partly covers one pupil. The result is that the part of the
picture which is only seen by one eye returns to its random appearance while
the part still visible to both eyes retains the three-dimensional image. Neverthe-
less both parts are equally clear. This is a particularly effective way of isolating
the part of the visual system which constructs three-dimensional effects. The
information needed to construct the three-dimensional picture is of course in
the autostereogram, but the picture itself is not.

When we look at the world our brains decide that some objects are stationary
in spite of the fact that as we look at different parts of them, the image on our
retina is continually changing. Unless we are almost asleep, our brain factors
such changes out before the mental image reaches our consciousness, informing
us only of its current conclusions about which of the objects seen are stationary
and which moving. Our ‘mental world’ is quite distinct from the constantly
moving image on our retinas. The compensation mechanism is very specific
and fails if one closes or covers one eye and presses the other eyelid gently from
the side. Presumably the reason for this is that there has been no need for our
brains to take into account the possibility of visual changes caused by pressing
eyelids!

The above are a tiny fraction of the interesting ideas in this rapidly develop-
ing field. We have not listed the thirty-five specific rules of visual interpretation
which Hoffman describes. These control what we think we see, which may
or may not be correct in particular circumstances. We should not be surprised
about this: natural selection worked to ensure that in the kind of circumstances



Fig. 1.5 Oval with Square Hole
Drawn using Randot vl.1 software written by Geoffrey Hausheer
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we evolved in, our responses to visual stimuli normally promote our sur-
vival. It did not work to ensure that in the very specific situations dreamed
up by psychologists the interpretations should bear any relationship with the
truth.

The fact that we recognize something as an illusion created by fallible brain
machinery does not enable us to banish the mistaken impression. Of course,
given our intellect, we can often compensate for the mistake in a way which
other animals almost surely cannot. But Hoffman points out that the situation is
worse than this. Certain aspects of our visual interpretation are so deep-seated
that we can hardly conceive that our mental constructions of the objects are quite
distinct from the objects as they really are. It is necessarily difficult to expand
on this idea, but he describes the analogy of computer games with multiple
human players. The people involved have the feeling that they are carrying out
actions in a virtual landscape, and it is clear that the interactions between the
players have an objective aspect: different players agree about the progress and
outcome of the game. On the other hand, what is actually happening can only be
explained in terms of a collection of electrical currents flowing through circuits
inside several computers. So the mental experience is caused by an artificial
system whose nature is entirely unperceived by the participant.

It could be argued that the fact that we have rules of interpretation and that
we may be led into error in some contrived situations has no philosophical
importance: in all normal situations, if we have a subjective impression of a
table in front of us, that is because there is a table in front of us, and this is
what constitutes seeing the table. On the other hand, one does not need to be a
philosopher to appreciate that we are only aware of the surface appearance of
the table, and occasionally of its weight. The manufacturers of rosewood tables
exploit this by restricting the rosewood to a thin surface veneer. If our sense
organs enabled us to ‘see’ the interior of tables, this cost-saving device would
fail utterly.

There are quite ordinary situations in which what we see has an obviously
uneasy relationship with what is there, the most obvious being when we look
at a mirror. The image we see seems to be behind the glass, but we interpret
it as being a reflection. Our ability to make this interpretation is shared by
very few other mammals, even though their eyes have similar structures to our
own. Even we occasionally find it hard to relate to this image: when I was
younger I made frequent efforts to cut my hair in a mirror, but never really
mastered the skill. A person who could not recognize himself in a mirror would
be abnormal by our standards, but would be no worse off than most animals.
We, in turn, would be regarded as grossly mentally deficient by an alien which
could cut its hair in a mirror without effort, which recognized faces upside
down as easily as if they were the right way up, or which could ‘see’ the
route through a complicated maze drawn on paper without conscious effort.
What seems straightforward and obvious is, in fact, highly species-dependent.
It depends entirely upon what unconscious processes your brain is capable of
carrying out.
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It might nevertheless be said that in the above case one sees an image ‘of
oneself’ in the mirror, and it is related in an objective fashion to how one
actually is, so one does indeed see oneself. Now imagine a future world in
which all public advertisements make use of holograms, and in which television
newscasters are computer simulations of people who are long dead or never
existed. Using technology which almost exists today we may be surrounded
by images which are not based upon any real object. We would be seeing
something, but it would not be what it seems to be, nor would anyone think that
there should exist any objects relating to what they see in everyday life.

Some of the above examples might seem to be frivolous, but when we get to
the discussion of quantum theory we will confront the possibility that our brains
may not be capable of constructing any comprehensive visual model of what is
going on. The quantum world is really and objectively there, but it is so remote
from the world in which we have evolved that we may never be able to construct
an intuitive model of it. Almost every physicist agrees that the real nature of
quantum particles remains beyond our imagination, and most probably agree
that the only comprehensive model we will ever have of quantum theory will
be a purely mathematical one.

Disorders of the Brain

The last section concentrated on the normal properties of the visual system, but
there are many perceptual abnormalities (agnosias) which result from damage
to particular parts of the brain. These further demonstrate the extent to which our
view of the world depends upon interpretation within the brain. One of these,
called cinematic vision, occurs when a person with perfectly clear eyesight is
unable to recognize motion. The person afflicted sees a series of still views of
objects, so that a car approaching is seen first as a small vehicle in the distance
and then suddenly as a much larger one close up. Similarly a sufferer trying to
pour a cup of tea may first see a static tube joining the teapot to the cup, and
then suddenly a large pool of tea covering the table.

In blindsight a person is not consciously aware of objects in a certain part
of the field of vision, even though their eyes are perfectly normal. When asked
to guess what is present, and where it is, they are frequently correct, to their
own surprise. Very recently brain scanners have provided evidence that images
on the ‘blind’ side of the field of vision are processed differently from those on
the normal side; the method of processing presumably bypasses whatever
brings the perceptions to the consciousness of the person. These fascinating
discoveries have the potential of providing deep new insights into the nature
of the ‘consciousness mechanism’ in the brain, and are the subject of active
research.

The term recognition agnosia refers to the inability to recognize an object
by sight even when it can be recognized easily by touch, or the inability to
recognize the faces of close friends and family even though their voices evoke
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normal responses, or the inability/refusal to recognize that one side of the body
actually belongs to the sufferer. In 1985 Oliver Sacks described a patient who
was a talented musician and able to engage normally in conversations in spite
of the fact that he was unable to recognize most common objects visually.
Particularly strange was that he seemed to accept his failure to recognize, say, a
rose or a glove visually as entirely unremarkable, when he could give accurate
descriptions of their parts and colours. This kind of mental loss is much more
disruptive of normal life than would be the loss of vision, since it involves the
partial disintegration of the personality.

Hirstein and Ramachandran have recently made an in depth study of a man
who developed Capgras syndrome following a head injury.7 Tests showed that
he had no obvious deficits in higher functions and no evidence of dementia, in
spite of the fact that he believed that close family members were impostors who
looked exactly like the genuine people. Indeed he suffered the same problem
with respect to himself. He recognized mirror images as being of himself, but
would refer to photographs as being of another person who looked exactly
similar; he sometimes even referred to himself as not being the genuine person.
The best explanation of this syndrome at present is that there are two separate
circuits involved in relating to close relatives, one dealing with recognition and
the other creating an appropriate emotional response. If the circuit producing
the emotional response does not function then it may be impossible for the
unfortunate person to believe that the relative is who they seem to be. The
fact that this may even apply to the person’s response to himself raises a deep
philosophical question about the nature of our self-consciousness. It appears
that even this is not a unitary entity, but involves the correct interaction of a
variety of independent modules. A provocative way of putting it is that our sense
of self is created by the modules in our brains in order to help it to function.

Turning to mathematics, it has become clear that the ability to distinguish
between very small numbers, those below about 4 or 5, does not involve count-
ing but depends upon a specific module, probably in the left inferior parietal
lobe. In The Mathematical Brain Brian Butterworth emphasizes that reasoning
about even very small numbers involves a specific mechanism. People whose
number module is damaged, either from birth or because of a stroke, may have
perfectly normal intelligence apart from the fact that they have serious deficien-
cies in any situations which involve even very small numbers. Some cannot see
without counting that a group of three objects is bigger than a group of two sim-
ilar objects. By timing how long they take to do simple comparison tasks, it has
been discovered that they may find it as hard to distinguish between the pair 9,
2 as between the pair 9, 8. Such people either cannot cope with numbers bigger
than 5 by formal counting, because they do not understand what counting means
in its application to the real world, or they count very slowly and painfully and
only up to rather small numbers. This problem is now a recognized disability
called dyscalculia, and is sometimes associated with dyslexia.

We like to believe that many of the skills mentioned in the paragraphs above
are matters of general intelligence, but they are not, and this must undermine
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the classical view of consciousness and rationality as unified entities. If we act
rationally in some situation this is because each of the modules in our brain
behaves appropriately in that situation. This being so, one can imagine our
distant descendants possessing extra modules in their brains whose function we
are incapable of comprehending, and which enable them to understand matters
entirely beyond our mental grasp. Our invention of language and subsequently
of science have enabled us to progress far beyond what our unaided minds
can grasp, and have led us into territories which we could never have entered
without their support, but there are still limits to our mental capacities. Some
indications of the extent of these will be presented in later chapters.

The World of a Bat

It is well known that the vision of frogs is dramatically different from ours.
They do not see static objects, and can only react to motion. As a result, if
surrounded by recently killed insects they will starve, but as soon as one flies
across their field of vision they can react appropriately. In this section, however,
we will discuss bats, because their quite different type of perception cannot be
so easily dismissed as just an inferior version of our own.

When we consider the perception of bats below, we will be referring to
their echo location system, and not their vision. Because bats emit high pitched
series of clicks and are aware of the time delay and pitch of the echoes, they
have precise information about the distance and rate of movement of obstacles
or prey. This has some quite important implications for their perception of the
world. The first is that distant objects must appear much darker, or dimmer,
to them than closer objects, because the intensity of the echo from an object
decreases very rapidly with its distance. For humans the apparent brightness of
an object stays the same as it moves away, and only its size decreases. More
importantly it is likely that a (hypothetical intelligent) bat would not consider
that a picture of an object has any similarity to the object itself. Since its
radar builds in distance information, a picture must appear to a bat to be a flat
pigmented rectangle, quite unlike the three-dimensional object which it seems
to resemble in our minds. We appreciate flat pictures because our vision is
essentially two-dimensional, but the bat would be correct in maintaining that
there is no physical similarity.

We cannot really know what subjective impressions bats experience, but
the following thought experiment may help. Let us try to imagine what vision
would be like in a world in which green light moved through the air much more
slowly than red light. When viewing a static object the time delay for the arrival
of green light compared with red would make no difference to our perceptions.
Now suppose the object starts to move to the right. The red image emanating
from the object at any moment reaches our eyes slightly earlier than the green
image produced at the same moment—correspondingly, at any moment we see
a red image which was produced at a slightly later time than that at which
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Fig. 1.6 Colour Fringes

the green image was produced. The result is that the object acquires a red
fringe on its right side and a green fringe on its left side, as in figure 1.6—in
which the colour fringes are replaced by hatching. Since we could already see
how fast the object was moving, we could use this effect to draw conclusions
about its distance: the further away it was the thicker the fringes would be. Let
us now imagine that a module in our brains could interpret the colour fringes
before they reached the conscious mind. Then we might have an enhanced three-
dimensional perception of objects, but only if they were moving across the field
of view. Finally suppose that the object is moving straight towards us. Then its
boundaries are expanding on all sides, so it will be completely surrounded by
a red fringe, and once again we might be able to perceive its rate of approach
to us particularly clearly while it remains moving. These extra senses would be
extremely valuable in a society which is so heavily dependent on cars.

Suppose instead that the S (blue) colour receptors in our retina responded
not to the colour of light but to the distance of the object being viewed, while
everything else about our colour vision was unchanged. Then we would look
around and see objects with various shades and combinations of colours as at
present. However, we would know that the more blue an object was the closer it
was. This would provide a much enhanced sense of depth. It might be possible
to implement this idea using modern computer processing and virtual reality
displays, and it might even be useful to people such as pilots of aircraft. Perhaps
this idea has already been patented!

What Do We See?

In the early days of research on vision, it was believed that the image fall-
ing on the retina was mapped with some modifications onto a part of the
brain, where our mind became conscious of it. This led to the joke about a
homunculus inside the brain ‘looking’ at the image laid out somewhere there.
As a result of years of experimentation we now have a very different pic-
ture. The image falling on the retina is torn into fragments, so that edges,
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colours, motion, and particular shapes such as mouths and eyes are all ana-
lysed separately. There are even specialized neural circuits which detect only
edges with particular orientations. At the end of this process a new and quite
different ‘image’ is constructed, which we commonly suppose to be a ‘true’
representation of the original three-dimensional object. If any of the separate
modules which process different aspects of the original image is damaged by
a stroke, or functions incorrectly because the image is highly unnatural, then
we get at best an optical illusion and at worst a completely incomprehensible
result.

According to experimental psychologists, our subjective impression is never
of the object as it is. It is a construction which enables us to behave appropriately
in almost all ordinary circumstances. Evolution has ensured that our construc-
tions give us a useful picture of reality, one which generally helps us to survive.
These experimental findings should encourage us to re-examine the way in
which we relate to our everyday surroundings. People rarely think about the
extent to which we are obsessed by the surfaces of objects. Objects are three-
dimensional and most of their material is inside them, not on their surface. How
many of us ever think in a tactile as opposed to an intellectual manner about
the thousands of kilometres of ground underneath us? The existence of these
things is known rationally, but our senses do not inform us about them, so we
ignore them. Presumably cows have no concept that there might be anything
underneath the earth and grass they stand on, even though their vision is quite
similar to our own. On the other hand those of us who live in the countryside
often contemplate the stars in the night sky, which are far more remote, simply
because our senses do inform us about their existence.

To the extent that we have a correct or true view of reality it is a res-
ult of the use of our intellects rather than simply because of the evidence of
our senses. Over many centuries we have learned that the Sun is stationary
although it seems to move, and the Earth rotates although it appears to be sta-
tionary. We have learned that a table is almost entirely composed of discrete
atomic nuclei and electrons separated by empty space, although it appears to
be solid and continuous. We have come to accept that TV programmes can
travel through empty space to our sets even though our senses provide no direct
evidence of this. We devote enormous technological resources to the avoidance
of infections by invisible particles called bacteria and viruses. These facts, and
many others, show how heavily our interpretation of reality depends upon the
technical knowledge accumulated by the society we are born into.

The idea that our instruments provide a truer picture of reality than our
senses arose in the seventeenth century. It was a key ingredient in the scientific
revolution, to be discussed in Chapter 6. Robert Hooke expressed it as follows
in Micrographia, published in 1665:

The next care to be taken, in respect of the Senses, is a supplying of their
infirmities with Instruments, and, as it were, the adding of artificial Organs
to the natural; this in one of them has been of late years accomplisht with
prodigious benefit to all sorts of useful knowledge, by the invention of Optical
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Glasses . . . It seems not improbable, but that by these helps the subtilty of the
composition of Bodies, the structure of their parts, the various texture of their
matter, the instruments and manner of their inward motions, and all the other
possible appearances of things, may come to be more fully discovered; all
which the ancient Peripateticks were content to comprehend in two general
and (unless further explain’d) useless words of ‘Matter’ and ‘Form’.

The main change since Hooke wrote those words is that he thought primarily in
terms of augmentations of existing senses, whereas modern instruments provide
us with ‘senses’ quite unlike any which we naturally possess.

Our new reliance upon instruments is not as straightforward as it appears.
They do not tell us anything about reality until we interpret the readings we
obtain from them in the light of some theory of how they work. We are convinced
that this is not a circular process by the huge variety of independent sources of
confirmation of the picture which we have built up over centuries of scientific
investigation. I shall have more to say about this in Chapter 10.

1.3 Language

Physiological Aspects of Language

The visual system of humans is amazingly sophisticated, but it is not radically
different from that of other mammals. Many experts consider that the best bet
is that our specifically human intelligence is related to our use of language.

Although language is clearly very important, it is easy to be carried away
by this line of argument. In a different context the philosopher Bryan Magee
has argued persuasively that many of our high level judgements and skills have
no verbal component at all.8 Playing a violin, discriminating between wines,
judging whether someone is trustworthy, admiring a painting, deciding whether
two colours clash—all of these activities can occupy our full attention without
being in any way verbal. Magee writes that even when one is struggling to write
down one’s thoughts, one has to know what one wants to say before one chooses
the words which express it best. Writers frequently revise sentences again and
again, a nonsensical situation if one believes that their deepest thoughts are
already verbal in form. Clearly there is more to being human than possessing
language, but language has the advantage among our skills of being easy to
investigate. With due apologies, I will therefore concentrate on what is known
about it, while hoping that eventually scientists will move on to the consideration
of our other peculiar skills.

It is well known that the structure of adult human throats is substantially
different from that of all other mammals, and that this enables us to produce
a much wider range of sounds than, for example, chimpanzees. Like most
mammals, human babies have a relatively high larynx which connects to the
nasal cavity when swallowing, so that babies can breathe at the same time as
suckling. The position of children’s larynxes drops by the age of seven, and
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has the unfortunate consequence of making us uniquely susceptible to choking
on food. This design fault results in a significant number of deaths every year
and could not exist unless there was an important compensating advantage. It
is clearly a genetic adaptation enabling us to communicate by speech more effi-
ciently. It would be strange if the changes in our vocal apparatus were our only
adaptations to the use of language, and there is in fact plenty of evidence for
the existence of a specific inborn language ability. There is an inherited disease,
called Specific Language Impairment, which does not involve impairment, of
the general intelligence. Conversely people with Williams’ syndrome, associ-
ated with a defect on chromosome 11, are very fluent conversationalists with
large vocabularies, but their IQ is typically around 50.

There have been a few well documented cases of children who have not
had the opportunity to start learning to speak until an advanced age. If they
start before the age of about six, they are usually able to catch up the missing
ground and develop normal speech skills. If they start learning to speak after that
age the task becomes steadily harder and the eventual skill acquired becomes
progressively lower. More compelling, because of the numbers involved, are
surveys of the acquisition of English by Korean and Chinese children who have
immigrated into the USA at various ages. If they arrive by the age of six, then
their eventual language skills are indistinguishable from those of people born
in the USA; for those who arrive at a later age the eventual ability in speaking
English depends upon the age of arrival.9

This is related to the existence of critical periods for the acquisition of a
number of skills, and is explained in terms of neural systems degenerating
or being rewired if they are not used at the ‘expected’ stage of development.
Thus kittens brought up in a limited environment with no vertical lines are later
unable to distinguish them: the relevant part of their visual cortex is redeployed
if it is not stimulated during the critical period. The ability of human adults
to discriminate sounds is strongly dependent upon their own language: many
Europeans simply cannot hear the differences between different Chinese names
because they are not sufficiently sensitive to pitch. Similarly the difficulty which
Japanese have in distinguishing between the sounds ‘l’ and ‘r’ is based upon
changes in the physical circuits in their brains; this occurs in response to the
range of sounds they hear around them from a very early age.

Another type of evidence for specific language skills is the astonishing rate
at which words are learned in the early years. Tests of USA high school gradu-
ates show that on average they know the meaning of about 45,000 words, or
up to 60,000 if one includes proper names. This implies that they have learned
about nine words per day since birth, most of which are acquired without any
apparent effort. Indeed in the first few years of life the rate of learning is even
higher. Contrast this with children’s difficulties in learning to read. Here pro-
gress depends upon formal education programmes, which require considerable
perseverance on the part of both teachers and children. Although almost nobody
fails to learn to talk, the number of people who are illiterate is very substantial,
in most cases because of inadequate teaching. The implication is that we have
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evolved neural circuits which make spoken language easy to acquire, but that
this has not happened for writing in the six thousand years since the first written
language appeared.

The language instinct of humans is genetic in origin. This does not mean
that there are genes for particular grammatical constructions, nor does it imply
that there must be a deep ‘Universal Grammar’ as Chomsky once used to argue.
Genes code for the production of proteins, and the route from proteins to specific
language skills is bound to be complicated and indirect. The fact that a ‘faulty’
gene may lead to a particular failure in grammar production does not imply that
the gene is responsible for that feature: the failure of a resistor may stop a TV
working, but that does not mean that the resistor is more responsible for the
picture than several hundred other components.

There is much evidence that the use of language enables us to memorize
events much more precisely, because the stimulation associated with the use
of language facilitates a further spurt of brain development. There have been
extended attempts to teach chimpanzees the use of language by bringing them
up in human family environments. Since they do not have the vocal apparatus
for speech, they have been taught using American sign language. It has proved
possible to teach chimpanzees up to a few hundred words in their first five
years of life, a tiny fraction of what human children achieve.10 The comparative
abilities of human children and chimpanzees are rather similar until the point
at which language develops in the children, somewhere between their first and
second birthdays, after which our mental development accelerates away from
that of chimpanzees. A related point is that we have very few memories of the
period before we learn the use of language. It is obvious that our use of language
does not merely enable us to communicate, but that it also profoundly affects
the way we perceive the outside world.

Recent experimental evidence confirms that the environment in which
animals live changes the physiology of their brains. Post-mortem examina-
tions show that rats raised in an enriched environment have thicker cerebral
cortexes with more nerve fibres than other rats. Until recently it was thought
that brain structure is largely fixed by adulthood, but there is now evidence
that when middle-aged rats are placed in an such an environment, their brains
grow substantially. The following two examples provide recent evidence for the
effects of learning on the wiring of neurons in human adults. It appears from a
variety of recent experiments on both humans and monkeys that certain types
of repetitive strain injury suffered by typists and musicians are not caused by
damage to the tendons. It appears that the abnormal use of the affected digits
eventually leads to the brain rewiring the relevant circuits in a manner which
prevents them working properly. The abnormal neural connections have been
observed directly, and in some cases appropriate retraining can reverse the
problem by causing the brain to re-rewire the neurons back to a more normal
pattern.

London taxi drivers are required to pass very demanding examinations relat-
ing to street layout and navigation: acquiring the necessary skills may take a few



Perception and Language 21

years. It has recently been discovered that their right posterior hippocampuses
enlarge slightly but progressively the longer they do their jobs. The fact that this
change is progressive demonstrates that it is related to the actual acquisition of
the spatial skills. It provides good evidence that the brain retains substantial
plasticity into adulthood.11

The extra stimulation we receive from the use of language almost certainly
leads to the formation of extra synaptic connections in early childhood. This in
effect makes us into a different animal from what we would be in the absence
of such stimuli. We can easily imagine a feedback cycle operating between
the development of society and of the human brain. When the adults of a tribe
develop skills which aid its survival, their young learn those skills more rapidly
because of their greater brain plasticity, and this makes it easier for them to
develop new skills of a similar type. The size of this effect would depend on
the degree to which the structure of the brain is set at birth. We know that for
primates and particularly humans this is very low by comparison with other
animals. As pre-human and prehistoric societies became more complex the
most successful individuals might be the ones whose brains were the least
fixed at birth, because they would be the most able to learn the skills which
their culture required. They would survive to breed more frequently and pass on
their superior ability to learn to their offspring. This would enable another round
of development of the complexity of the social group. Eventually, this process
leads to a genetic change in the species by purely Darwinian mechanisms.

The above already shows dangers of developing into a ‘Just So’ story, and we
will not pursue it further. Many hypotheses have been put forward concerning
the reasons for the initial development of language, but it is difficult to test
them scientifically. One idea depicts human intellectual development as the
progressive growth of ever more sophisticated strategies for the purpose of
deceiving and gaining advantages over neighbours. Even the date at which the
human throat developed in its present form is unknown, because it is composed
of soft tissues which are not preserved after death. We do know that sophisticated
stone technology and cave painting existed about forty thousand years ago,
when homo sapiens was already well established, but much of what is written
in this field has a rather slender factual basis.

What are the implication of these ideas for our mathematical abilities? It
is probable that we did not need the ability to count to more than a dozen or
so until the last ten thousand years. Current research indicates that the ability
to distinguish numbers up to about 4 depends upon circuits which act at a pre-
conscious level.12 It appears that formal computational arithmetic uses circuits
in the brain which are also involved in generating associations between words.
In contrast numerical estimation shows no dependence on language and relies
primarily on visio-spatial networks of the left and right parietal lobes. Together
these results suggest that human estimation skills, which are shared with animals
and already present in pre-verbal infants, have a long evolutionary history. On
the other hand our development of advanced mathematics could only have arisen
within a culture possessing a formal system of education.
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It is evident that we do not have sense organs which enable us to perceive
the meaning of large numbers such as 127928006054345 or to gaze directly at
some abstract mathematical world. Our reason is not a kind of a sense organ:
the knowledge which we obtain using it depends heavily upon the culture and
period in which we live. People become good at mathematics for the same
reason that they become good at swimming or music, by devoting their energies
to developing the relevant skills over a sufficiently long period. They become
truly outstanding by being obsessively interested over a period of ten years or
longer.

Ramanujan was just such a person. One of the most extraordinary math-
ematical geniuses of the twentieth century, he was born in India in 1887. As
a child he displayed ability in a wide variety of subjects, but from the age of
fifteen started to devote himself to mathematics to the exclusion of all other
interests. By conventional standards his knowledge was extremely limited, but
he developed insights into number theory which led Hardy to invite him to
Cambridge, England in 1914. Before his death in 1920 from a protracted illness
he had written down enough unproved new results to keep other mathematicians
in work for several decades. His best parallel in more recent times may be Paul
Erdos, a Hungarian who literally lived for mathematics, abandoning any semb-
lance of a normal life as he wandered from country to country seeking problems
to test his wits on.

Of course mathematicians are not merely people who are good at arithmetic.
There is little likelihood that we could have evolved any specifically mathem-
atical genes over the last few thousand years, but the following facts hint at
one of the possible sources of mathematical ability. Many mathematicians have
particularly strong spatial imaginations, in common with architects, artists, and
brain surgeons, and this might well have had advantages for hunter-gatherers
travelling large distances every year. Spatial ability seems to be somewhat cor-
related with left-handedness, which is in other ways (increased susceptibility to
auto-immune diseases and decreased life span) an evolutionary disadvantage.
Left-handedness is also partially inherited and may be an example of a bal-
anced polymorphism.13 Mathematical ability may be a result of combining the
functions of the basic number module, spatial visualization skills, and general
reasoning powers, reinforced by appropriate education from an early age. The
extent of this ability is perhaps surprising, just as the development of a trunk
in the elephant is surprising; but ultimately there are no deep philosophical
conclusions to be drawn from the ability of a very small proportion of people to
do advanced mathematics. It is a contingent reality. If it were not so we would
no doubt devote our considerable energies to puzzling over some other issue.

Social Aspects of Language

Vision provides information about the immediate environment, but the great
majority of speech involves remote events or social interactions. The purpose
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of this section is to demonstrate that the understanding of even simple sentences
involves enormous prior knowledge. It is also relevant to arguments against
scientific reductionism, discussed in more detail in Chapter 9. Consider the
following sentence, entirely typical of those which make up our everyday
conversation.

Joanna is happy because her daughter, Catherine, has done well in her A level
examinations.

The implication that Joanna is the mother of Catherine is not as straightforward
as it appears. Society has already divided motherhood into three different types,
legal, genetic, and womb motherhood, and it is already possible for a child to
have a different mother of each type. It may soon be possible for a child to
have a womb mother and a clone father, but no genetic mother. What will have
become of the concept of motherhood in another hundred years is anyone’s
guess. What is certain is that Aldous Huxley’s Brave New World can no longer
be regarded as science fantasy.

From the two names and the reference to A levels we may reasonably guess
that Joanna is British. This is not the same as saying that she has a British
passport, since the passport might have been obtained by a bribe. Nor does
it mean that her ancestors were British. The peculiar nature of this concept
is illustrated by a shameful episode in 1968, when the British Government
introduced the concept of patriality in order to reduce the number of East African
Asians who could enter the UK using their British passports. Effectively the
Government decided to split the concept of British nationality into two for
political reasons.

The concept of examination is very important in our society, but it is indeed a
concept, not a physical event. British schoolchildren prepare for examinations
by undergoing mock versions, which are done under more or less identical
physical conditions to the true examinations. The main difference between the
true and mock examinations lies in the beliefs of the pupils and others about
their significance.

We have seen that the simplest of sentences can combine concepts of a very
abstract character. A few of these are objectively physical, but most refer to
complex social institutions. Let us now look at the sentence as a whole. This
might have related to a real occasion or be from a novel, but because of the
context of this book you read it in quite a different way: the issue of concern
was the interpretation of everyday sentences. We conclude that the significance
of a sentence may be entirely altered by the context in which it was written. In
fact many people believe that language evolved to facilitate social interactions
rather than to communicate information about the outside world.

There is good support for this in today’s world. One of the reasons why
(British and probably all other) politicians are so annoying is that we, their
audience, keep hoping that they might answer the questions which they are
asked. They are playing a completely different game, namely using the interview
or speech to persuade people to vote for them. They have achieved positions of



24 Language

power precisely because of their ability to deflect difficult questions, and to turn
people’s attention to issues which will show them in a better light. Scientists
(and many others) tend to think that questions should be answered honestly,
and languish in obscurity because we do not have the skill to use words to such
advantage.

Objects, Concepts, and Existence

Although much of our daily use of language is heavily linked to our social
structures, we also use it to analyse the world around us. The goal of this
section is to establish that language frequently does not truly reflect reality;
this problem is not capable of resolution because the number of words we can
remember is far more limited than the variety of phenomena we wish to describe.
For example, it is obvious that colours merge into each other continuously: there
is no point in the passage from red to yellow through various shades of orange
at which one can point to a physical or psychological boundary. Nevertheless
we use discrete colour words. While the number of these can be increased, the
boundaries between them are bound to remain artificial.

Consider next an example much loved by philosophers ‘no bachelor is mar-
ried’, relying on the dictionary definition of a bachelor as an unmarried man.
On logical grounds this seems impeccable. The problem is that, in English at
least, dictionaries do not define the meanings of words: they only summarize
how they are used in the real world.14 This use changes over time. Thus none
of the following accords well with the normal use of the word bachelor, in spite
of the dictionary: a man living with a long term partner but not married to her;
a recently widowed man; a forty year-old man who has been in prison since the
age of fifteen. On the other hand a man who is permanently separated from his
wife might well be called a bachelor. The phrase ‘bachelor girl’ suggests that at
present the word bachelor has more to do with a life-style than with being male
and unmarried. Of course this may change again. The Oxford English Diction-
ary has caught up with the fact that independence is now a key requirement
in its definition of bachelor girls, but not for bachelor men. Even the nuances
involved in the use of the word ‘girl’ are fraught with difficulties: university
staff need to be careful about using it when referring to women students, even
though only a small proportion would be offended.

With the dangers of over-simplification in mind, we now turn to the word
‘existence’. Issues related to this word are at the core of many of the problems of
philosophy.15 The most elementary type of existence is that of material objects,
such as the Eiffel Tower. Many other objects are not accessible to us, simply
because of the passage of time, and their past existence has to be inferred
from documentary evidence. Going beyond that, I believe that my ancestor one
thousand generations ago in the female line had a navel, even though I have no
direct evidence for the existence of the ancestor, let alone of her navel. In this
case my belief is based upon the acceptance of certain regularities in nature;
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this belief is not shared by those who consider that the world was created in
4004 bc.

Existence problems are closely related to questions about truth. As soon as
one admits even the remotest possibility that some everyday fact might be false,
one is admitting that one does not know that it is true, but only believes that
it is so. Possibly we, as finite beings, have no access to final knowledge, and
have to content ourselves with the statement that certain statements have such
overwhelming evidence in their support that it makes no sense to regard belief
in them as provisional. There have been endless debates about the relationship
between truth, belief, and evidence which we must pass over here. Let me only
add that one is already taking a realist philosophical position by assuming that
beliefs about the past are either true or false.

I must confess to finding abstract discussions of such problems unreward-
ing, and prefer to consider particular examples which illustrate the difficulties
which any general theory has to face. So let us discuss the nature of black holes,
studied by Stephen Hawking and Roger Penrose between 1965–70. Their devel-
opment of the earlier, non-relativistic theory of black holes depended upon the
general theory of relativity, and led to the following conclusions. If a star is
sufficiently massive (a few times the mass of the Sun) then it eventually turns
into a supernova. The remnant after the supernova explosion may still be so
massive that any light or other radiation which it emits is unable to escape bey-
ond what is called its event horizon. In the theory the remnant, called a black
hole, is invisible, but it may still have gravitational effects on other nearby bod-
ies. There is steadily increasing evidence, many would say virtual certainty, that
such objects do exist. A well documented example, Cygnus X-1, is the invisible
component of a binary X-ray system in the constellation Cygnus; among many
other candidates are V404 Cygni and Nova Scorpii 1994. In the last few years
astronomers have found exciting evidence that most and perhaps all galaxies
have supermassive black holes at their centres. The one at the centre of our own
galaxy has just been identified as Sagittarius A*.

In spite of the accumulating evidence confirming theoretical predictions
about the properties of black holes, the physics of the interior of black holes
is not understood. General relativity tells us that there are singularities at their
centres, but the physics of space-time near the singularities may only be explic-
able using quantum theory. If we believe in general relativity, we can never
obtain any direct or indirect evidence about what is happening inside them. So
we are expected to believe in the existence of something which is in principle
unknowable—almost a religious injunction, except that it is made by obviously
serious scientists.16

Although rainbows look like material objects, a little reflection shows that
this cannot be true. Different people standing a few metres apart might agree
that they are looking at the same rainbow, but disagree about where it meets
the ground. Someone who appears (to someone else) to be standing ‘in’ a
rainbow would not experience any peculiar visual effects. The simple fact is that
rainbows are neither material objects nor concepts: the raindrops which cause
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our ‘rainbow sensation’ do not have any intrinsic properties to distinguish them
from other neighbouring raindrops. They are only distinguished in terms of
their spatial relationship with both the sun and ourselves as observers. Physics
explains the phenomenon perfectly, but the structure of our language does not
provide an obvious category into which they fall.

We turn next to concepts. Jerry Fodor17 suggests that a concept should be
defined as a list of ‘features’ stored in memory, that specifies relevant properties
of the things the concept applies to. Fodor’s definition does not necessitate the
existence of any things to which the concepts apply, and it places concepts
firmly within the realms of space and time. Thus, in spite of the fact that we
believe that unicorns do not and never did exist, we have a reasonably clear idea
of what they would be like. The concept is associated with definite features,
and if someone uses the word without respecting those features, they would
be using it incorrectly. In heraldry, art and sculpture lions and unicorns have
exactly the same status; the important issue is whether the concept is clear, not
whether the animals exist.

I was very embarrassed many years ago to discover that there was a suburb
of South-West London called Surbiton. It had been mentioned frequently in
newspapers as representing a certain type of middle class suburban political
attitude, and I had concluded from the over-appropriate name that it was an
invention. When I discovered during a rather confusing conversation that it
actually existed, I was interested to realize that I did not need to change any
of my other beliefs about its characteristics! Much later I realized that my ori-
ginal attitude towards Surbiton had been closer to the truth than I had thought.
Many people living there no doubt regarded its newspaper image as a carica-
ture. Its existence was irrelevant: if there had been no Surbiton, newspaper
columnists would have chosen some other place to represent these particular
attitudes.

There is a category of entities which are neither physical nor mental, but
which exist as a part of our collective culture. The philosopher Karl Popper has
argued that one should accept that something such a Roman law exists, because
it has observable effects on the world of physical objects: people might end
up in prison because it exists when they would be executed if some other legal
system existed. On the other hand it is also clear that Roman law is a human
construct—five thousand years ago it did not exist. In this respect justice is
rather a more difficult notion. Some would say that it could not predate human
society and is a biologically innate concept, while others might believe that
it emanates from God and has always existed. Another example of an entity
which exists by social convention is money, to be discussed in Chapter 9 in an
argument against scientific reductionism.

Yet another type of existence is that of skills, such as producing an axe by
knapping a stone, or playing a piano. Their existence can be proved beyond
challenge by the person showing that they can perform the relevant task. A
person can prove that they understand the skill in conversation, but they can
only prove that they possess it by demonstration. The philosopher John Lucas
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has suggested that much of mathematics depends on the development of such
skills rather than on the existence of abstract theorems.18

The peculiar relationship between time and existence is provided by the
game Eternity, in which 209 irregular shaped pieces are assembled in a jigsaw-
like fashion on a specially designed board. In 1999 the inventor of the game,
Christopher Monckton, offered a prize of a million pounds to the first person
who put the entire jigsaw together correctly. The game became very popular
and, to Monckton’s great discomfort, the prize was claimed in September 2000
by two Cambridge mathematicians, Alex Selby and Oliver Riordan. So one
can have no doubt that a solution exists: it has made two people much richer
and another much poorer. On the other hand its solution presumably could not
have existed before the game was invented, so its existence has to be regarded
as time-dependent. If one believes that the solution came into existence as the
game was invented, should one symmetrically believe that the solution will
disappear if all memories of the game are one day lost to humanity? And if
some historian comes across a description of the game in some library, does
the solution then come back into existence immediately or only when someone
rediscovers it? If it is the same solution, where was it in the intervening period?
Are these real questions or are they just about how we choose to use the
word ‘exist’? We leave the question at this point, because the philosophical
literature on such matters is vast, and does not appear to have led to a clear
conclusion.

Numbers as Social Constructs

There are two extreme views about the nature of numbers, and many others
in between. One, called mathematical Platonism, declares that numbers
exist independently in some objective sense, and that mathematicians are
engaged in uncovering the properties which they already have. The other
declares that numbers are concepts of the same type as all others in our language,
invented by us, and endowed with properties which we can then investig-
ate or modify as we see fit. The issue is not about whether numbers exist,
but whether they do so independently of society or as social constructions
(concepts).

The Platonic position seems to be supported by the following argument,
discussed at length by Benacerraf and others.19 We are not permitted to use
the word truth in mathematics differently from the way we use it in all other
contexts. Therefore the statement that there are three primes between 45 and
60 must be true because it refers to entities which do indeed have the properties
stated. We can examine these entities (the numbers between 45 and 60) one at
a time, and confirm that exactly three of them are indeed primes.

As with all philosophical arguments, there are counter-arguments. State-
ments in ordinary language are extremely varied. Thus:

There are six types of outcome to a game of chess.



28 Language

is a perfectly normal sentence, whose truth is certainly not based upon examin-
ing all possible games of chess and dividing them into exactly six groups
according to their outcome. If there is any reference it is to the concept of
an ending.

In other cases an apparently simple statement becomes steadily more
obscure the longer one thinks about what exactly is being referred to. Consider
the sentence:

There are five vowels in the English language.

The objects being referred to here are vowels. But what exactly are vowels?
Since we consider that ‘y’ is sometimes a vowel and sometimes a consonant, it
follows that being a vowel depends upon context rather than shape. It has some
relationship with pronunciation, but in English one cannot decide what vowel
is being used from the pronunciation. Every letter may appear in many fonts
and sizes, so letters are certainly not copies of material objects. Once again we
are referring to abstract objects, which have changed over time and even now
vary from one language to another.

The above examples indicate that the possibility of making statements about
abstract entities does not imply that those objects exist independently of society.
According to the philosopher Karl Popper, numbers are also simply a social
construction.

The infinite sequence of natural numbers, 0, 1, 2, 3, 4, 5, 6, and so on, is
a human invention, a product of the human mind. As such it may be said
not to be autonomous, but to depend on World 2 thought processes. But now
take the even numbers, or the prime numbers. These are not invented by us,
but discovered or found. We discover that the sequence of natural numbers
consists of even numbers and odd numbers and, whatever we may think about
it, no thought process can alter this fact of World 3. The sequence of natural
numbers is a result of our learning to count—that is, it is an invention within
the human language. But it has its unalterable inner laws or restrictions or
regularities which are the unintended consequences of the man-made sequence
of natural numbers; that is, the unintended consequences of some product of
the human mind.20

In What is Mathematics, Really? Reuben Hersh writes in similar terms, but
with the advantage of actually knowing about mathematics from the inside.

Mathematics is human. It’s part of and fits into human culture. Mathematical
knowledge isn’t infallible. Like science, mathematics can advance by mak-
ing mistakes, correcting and recorrecting them. (This fallibilism is brilliantly
argued in Lakatos’s Proofs and Refutations.) . . . Mathematical objects are a
distinct variety of social-historic objects. They’re a special part of culture.
Literature, religion and banking are also special parts of culture. Each is
radically different from the others.

Let me present an example which is relevant to the question of whether
mathematical ideas and mathematical theorems are invented or discovered.21

Perfect numbers are defined as numbers which are equal to the sum of their
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factors, including 1 but not including the numbers themselves. So for example

6 = 3 + 2 + 1

is perfect. The next three perfect numbers, 28, 496, and 8128, were all known
to the Greeks, and a number of interesting theorems about them are known.
In a similar spirit let us call a number neat if its number of factors, including
1 but not including the number, is a factor of the number. Thus 15 has the
factors 1, 3, and 5, and the number of these factors, namely 3, divides 15,
so 15 is neat. On the other hand 125 has three factors, 1, 5, and 25, and 3
is not a factor of 125 so 125 is not neat. It is easy to prove that every prime
number is neat and that a product of five distinct primes is neat if and only
if one of those primes is 31. A product of six distinct primes cannot be neat
but a product of seven can. If p is a prime then the number pn is neat if and
only if n is a power of p. Other theorems about neat numbers could no doubt
be proved if one were interested, and one could make conjectures about the
asymptotic density of the neat numbers in the set of all numbers. Did the class
(i.e. collection) of all neat numbers exist before I invented it, specifically in
order to write this paragraph? I would contend not; mathematics could well do
without the concept and it would probably never have been invented but for
my wish to demonstrate how easy it is to produce definitions and theorems. On
the other hand once I invented the class and then discovered the theorem about
products of five distinct primes, its truth was not a matter of opinion. It can be
tested experimentally on a computer, and proved using standard mathematical
methods.22

This is entirely in accord with other contexts in which we use the word
invent. When the Wright brothers invented the aeroplane, it was nevertheless
an objective fact that it could fly. Nobody has invented a matter transporter of
the type familiar to Star Trek fans because inventing something, as opposed to
imagining it, necessitates that it works. Similarly in mathematics one cannot
invent a concept if that concept is self-contradictory. An attempt to develop a
theory of pentagons for which the sum of the internal angles is an odd number
of degrees leads to only one theorem: no such pentagons exist. Mathematics is
relatively objective in the sense that it does not often allow for varying opinions,
but that by no means forces one to the conclusion that it must be about entities
which pre-exist their first consideration by human beings. Whether or not a
particular idea, be it primes or neat numbers, is ever invented, depends upon
cultural issues and also on whether the idea is simple enough for our brains to
understand. It may also be a matter of mere chance.

On the other hand declaring that numbers are ‘merely’ social constructions
leaves some quite serious problems to be resolved. Few people would dispute
that diplodocus had four legs, long before human beings evolved the ability
to count them. Some people argue from this that numbers must have existed
before we invented them. One may respond that what actually existed was the
diplodocus with its various parts, some of which we choose to call legs in spite
of the fact that the front ones are anatomically quite different from the rear ones.
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Only after we have developed a sufficiently sophisticated language is it possible
for us to formulate a sentence involving the number ‘four’. We are then correct
to say ‘diplodocus had four legs’ because this provides a good match between
what we see and the concepts which we have constructed.

It has been put to me that if an alien civilization were found to have been
counting before the human race evolved, that would prove that numbers exist
independently of ourselves. While this is true, it is not terribly profound. If
an alien civilization were found to have used diagrams (or bottles), this would
prove that diagrams (resp. bottles) existed before we independently thought
of them. The possibility that two totally independent civilizations might have
some practices in common has no deep implications.

It is an interesting fact that although the use of diagrams has enabled us
to organize our knowledge in a way not easily achievable otherwise, nobody
appears to claim that they have some deep philosophical status. Yet diagrams
dominate science almost as much as do numbers. In The Origin of Species,
Charles Darwin did not use any mathematics but he did include a diagram,
which he discussed for several pages; this was of a schematic tree showing
the evolution of species from one or a few ancestors. The task of filling in
the details of this tree has dominated evolutionary studies ever since. William
Smith published the first geological map of Great Britain in 1815 after many
years travelling and classifying the fossils which he found embedded in rocks.
This map transformed geology into a true science and set the scene for all future
work in the field. Mendeleyev’s periodic table, which classifies the chemical
elements into types, still appears on the walls of almost every university chem-
istry department. A more recent example is the use of flow charts to explain the
interactions between parts of complex projects or organizations. All of these
can be described using words alone, but at the cost of becoming more or less
impossible to understand. We use diagrams because they present information
in a manner which our type of brain can easily assimilate.

It has been suggested that the situation with numbers is quite different:
it is claimed to be self-evident that alien civilizations must necessarily use
numbers in the same way as we do, and this proves that numbers have an
existence independent of any civilization. This is evidently pure conjecture. It
is amazing that people are so confident that intelligent aliens will be essentially
similar to ourselves, apart from superficial differences such as having two heads,
tentacles, etc. On this planet we contemplate highly organized insect colonies
and know that we will never be able to communicate with them. There have
been arguments about whether dolphins have equivalent intelligence to our
own, or even higher intelligence which we cannot recognize because of that
very fact. How much less can we assert what undiscovered alien civilizations
must be like, when we do not even have any evidence that any such civilizations
exist?

Finally, it is claimed that the utility of mathematics in the understanding of
the physical world is so striking that this proves that it cannot just be a social
construction. Hersh answers this with the blunt assertion that our mathematical
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ideas in general match our world for the same reason that our lungs match
Earth’s atmosphere. One should add the caveat here that in the former case
one must be referring to cultural evolution, whereas in the latter biological
evolution was the driving force. But the point remains that most mathematics
has grown from attempts to describe properties of the external world,23 so it
is not a coincidence that the two match. Indeed after more than two thousand
years of development of the subject, it would be amazing if they did not.

Over the next chapters we will see evidence that mathematics is not quite as
powerful as people would have us believe, and that some of its power only exists
‘in principle’. In other words there are many phenomena (such as the weather)
which no amount of mathematics will in fact predict in detail. Mathematics
is indeed our best tool for understanding several branches of science, and it is
extraordinarily good, but it will not enable us to resolve every problem we are
interested in.
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2
Theories of the Mind

2.1 Preamble

This chapter is largely devoted to discussions of the beliefs of Plato and
Descartes. Why, you may ask, do we need to spend time discussing the views
of two long dead philosophers? The answer is that their systems still exert a
profound influence, in spite of their obvious faults. They have become so much
a part of our culture that we rarely pause to examine them. Only by doing so
have we any hope of breaking free of the constraints which they impose on our
thinking.

What I have to say may appear negative, in the sense that I am pointing
out major flaws in belief systems without proposing a detailed alternative.
My defence is that it is better to acknowledge that we are not even close
to an understanding of the true nature of the world, than to comfort oneself
clinging to beliefs which stand no chance of being correct. Admitting this is
hard, particularly for those who have devoted their lives to the search for final
knowledge.

We start with a discussion of Plato, because many mathematicians declare
themselves to be Platonists. For most this is just the simplest way of avoid-
ing serious thought: they subscribe to almost none of Plato’s beliefs and have
worked out no neo-Platonist position. A few are more serious in their Platonism,
and among these one must mention Roger Penrose and Kurt Gödel. I do not
agree with anything they say (about this subject), but at least they are suffi-
ciently honest to have formulated views with which one can argue. We will see
some of the difficulties associated with their position.

We then turn to Descartes’ argument that mind/soul and body/matter are
entirely different types of entity. Although this has had an enormous influence
on the development of science, nobody in the seventeenth century could explain
how two entirely different types of entity could interact with each other, and
subsequent philosophers have done no better. Of course many explanations
were proposed, including the idea that God has arranged that thoughts and bod-
ily actions would be synchronized, although there was no causal relationship
between them. But nobody has devised an explanation which commands general
assent. The successes of Western science have all concerned the behaviour
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of matter, and some scientists and philosophers believe that the independent
existence of the mind/soul is an illusion. On the other hand the general popula-
tion remain committed to mind-body dualism, which fits in well with religious
belief provided one does not examine it too carefully. We consider a num-
ber of examples which show how confused the various current views are, and
demonstrate how badly a new post-Cartesian approach to these problems is
needed.

In the final section of the chapter we will turn to the current debate about
the problem of the existence of consciousness. I explain why current computers
should not be regarded as conscious, and that we ourselves are conscious of
only a small proportion of the activity in our brains. The fact that some of
the deepest forms of processing are not conscious suggests that our thinking
is not ultimately fully rational or under our control. The precise mechanisms
which correspond to conscious experiences may well be found within the next
few decades, but this does not necessarily mean that we will ever be able to
duplicate consciousness in machines.

2.2 Mind-Body Dualism

Plato

The influence of Plato as the founder of systematic philosophy has been
immense, in spite of the fact that many of his arguments have been disputed
or even rejected since his time. When discussing his writings, we face the
problem that his views developed and even changed during his life. In the late
work Parmenides he criticizes his own theory of Forms in a dialogue between
Parmenides and Socrates, and it is often not clear what the conclusion of the
discussion is. He even uses arguments which appear to be incompatible in a
single book. The account below is therefore a selection from his views, and
almost any of the statements made could be the subject of prolonged debate.

Plato frequently put words into the mouths of Socrates and others, and we
often cannot tell to what extent these represented his own ideas or beliefs. The
real Socrates lived in Athens in the fifth century bc, and was considerably older
than Plato. He wrote nothing of his own, and is mentioned by several other
Greek writers, but Plato is the main source of information about him. He was a
considerable public figure, who was eventually condemned to death in 399 bc,
ostensibly for ‘corruption of the young’ and ‘neglect of the gods’. The actual
reason was his close association with Critias and Alcibiades, who were on the
‘wrong’ side in the political ferment of that period. Plato’s story of Socrates’
refusal to accept a lesser punishment, or to attempt to escape, is probably true.
He died at his own hand by drinking poison, convinced of the immortality of
his soul.

One of Plato’s central ideas was the theory of Forms (the Greek word eidos
is also translated as Ideas or Essences). These are ideal versions of qualities
possessed by material objects to a limited and imperfect extent. They are not
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concepts but ideal objects possessing the properties to which they refer in the
most perfect manner. Thus the lines and circles which we can draw are neces-
sarily imperfect, but are approximations to the Forms of a Line and a Circle.
Similar considerations apply to Beauty, Justice, and Equality. The Forms have
a real, objective existence outside our minds, and our knowledge of them is
acquired partly by recollection from an earlier existence, but also by disreg-
arding the imperfect material world and withdrawing into contemplation. The
role of the philosopher is to study the Forms, which alone are worthy of his
attention because only they are permanent, perfect, and ultimately real.

Plato’s principal use of the theory of Forms was in discussions of ethics and
politics. In the Republic he repeatedly refers to the Forms for Justice, Beauty,
and Equality:

Having established these principles, I shall return to our friend who denies
that there is any abstract Beauty or any eternally unchanging Form of Beauty,
but believes in the existence of many beautiful things, who loves visible beauty
but cannot bear to be told that Beauty is really one, and Justice one, and so
on,—I shall return to him and ask him, ‘Is there any of these many beautiful
objects of yours which may not also seem ugly? or of your just and righteous
acts that may not appear unjust and unrighteous?’. . . Those then, who are able
to see visible beauty—or justice or the like—in their many manifestations, but
are incapable, even with another’s help, of reaching absolute Beauty, may be
said to believe but cannot be said to know what they believe.

In mathematics abstract argument led the Greeks, and later ourselves, to an
enormous flowering of knowledge, so it is understandable why Plato came to
regard it as the highest type of thought. However, the development of experi-
mental science was held back for hundreds of years by the view that the direct
investigation of nature was not a suitable occupation for educated people. In
the mathematical and ethical contexts Plato’s theory has considerable plausib-
ility. However, in later works Plato did not restrict the theory in this way. The
following dialogue between Socrates and Glaucon in the Republic, Theory of
Art reveals a much stronger claim about the scope of his theory.

‘And what about the carpenter? Didn’t you agree that what he produces is not
the essential Form of Bed, the ultimate reality, but a particular bed?’
‘I did.’
‘If so, then what he makes is not the ultimate reality, but something which
resembles that reality. And anyone who says that the products of the carpenter
or any other craftsman are ultimate realities can hardly be telling the truth,
can he?’
‘No one familiar with the sort of arguments we’re using could suppose so.’
‘So we shan’t be surprised if the bed the carpenter makes lacks the precision
of reality.’
‘No.’
· · ·
‘And I suppose that God knew it, and as he wanted to be the real creator of a
real Bed, and not just a carpenter making a particular bed, decided to make
the ultimate reality unique.’
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Fig. 2.1 The Carpenter’s Bed

Here the process of reification is particularly clear. Plato passes from particular
beds to the concept of a Bed, and then declares that there should be an ideal
object corresponding to this concept. Since he is determined that this ideal object
does not simply reside in our minds or our society, it must have been made by
God. Plato himself was not completely happy with applying his theory of forms
to material and manufactured objects, or so it appears from Parmenides, but it
is not clear that he abandoned it.

Figure 2.1 is one of thousands of different designs for a bed, none of which
can be the one made by God, but all of which are supposed to be pale reflections
of the ultimate reality. I, for one, cannot imagine what the one true Bed could
possibly be like, but Plato argues above that this merely proves that I do not
really know what beds are.

The unconvincing passage about the Bed should be compared with Plato’s
story about the cave in the Republic. Here he likens non-philosophers to men
imprisoned in a cave since childhood, and tied down so that they can face away
from the light, so that they only see shadows of the true Reality cast onto the
wall in front of them. Perhaps Plato was thinking about the problems which we
discussed in the last chapter, but if so his response to them was quite different.
He advocated withdrawal from the world of the senses, whereas we resort to
scientific instruments to interpret it.

Another important component of Plato’s philosophy is the pre-existence
of the soul, discussed at length by Socrates in Phaedo. His argument runs as
follows. We recognize that two objects are more or less equal by comparing their
relationship with the Form Equality. Being parts of our material body, our senses
are not capable of perceiving the Form Equality, but without an appreciation of
it we could not start to make sense of the world. Therefore our understanding of
it must be present at birth, and must be a memory from an earlier non-material
existence. The same applies to other knowledge, which, truly speaking, is
recollection from this earlier existence aided by the use of the intellect (in other
places in Phaedo Plato seems to suggest that during abstract thought the soul
can partially separate itself from the body and enter the immortal and unvarying
world of Forms). From the fact that the soul pre-exists the body, we see that it
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is not mortal, following which a lengthy argument leads Plato to the conclusion
that it is imperishable and necessarily survives death. Plato’s negative view of
the possibility of acquiring real knowledge in this world is made very clear
in the following words of Socrates in Phaedo:

Because, if we can know nothing purely in the body’s company, then one of
two things must be true: either knowledge is nowhere to be gained, or else
it is for the dead; since then, but no sooner, will the soul be alone by itself
apart from the body. And therefore while we live, it would seem that we shall
be closest to knowledge in this way—if we consort with the body as little as
possible, and do not commune with it, except in so far as we must, but remain
pure from it, until God himself shall release us.

Plato’s attempts to provide unassailable foundations for ethics and mathematics
have been criticized from many different points of view, of which we can only
select a few. The first is of a linguistic nature. Both English and Greek allow
one to form abstract nouns from adjectives with great ease, but one should
not suppose that by using this construction one must have identified an entity
which exists independently of the language. On the contrary, an abstract noun
corresponds to a concept, which might well not be associated with any type of
object.1 We saw several examples in the last chapter, such as Roman law and
the ability to play a piano, whose meaning is highly culture-dependent.

A second problem concerns the uniqueness of Plato’s Forms. It is certainly
clear that there is only one concept of a bed, even though the boundaries of this
concept are not well-defined. However, the claim that every Form is necessarily
unique leads immediately to paradoxes, as pointed out by Bertrand Russell. The
Form of a Triangle is a perfect triangle, so it must have three perfect edges, which
are straight lines. So it seems that even God has to make three copies of the
Form of a Line in order to produce the Form of a Triangle. We will discuss this
in greater depth below.

Mathematical Platonism

Many mathematicians consider themselves to be mathematical Platonists in
the sense described on page 27, even though they do not believe in the pre-
existence of the soul, and cannot explain how one might ‘see’ mathematical
Forms. Among the most famous of these are Kurt Gödel and Roger Penrose,
both of whom made major breakthroughs in their chosen fields. I will say
something about the mathematical considerations which (in my view incor-
rectly) led them to embrace Platonism on page 111, but let us consider their
philosophical conclusions in their own right first. We start with Gödel. He
believed that numbers and even infinite sets exist in themselves, and that any
statement about them must be objectively true or false whether or not we know
which is the case. He also believed that mathematical entities could be directly
perceived:

But, despite their remoteness from sense experience, we do have something
like a perception of the objects of set theory, as is seen from the fact that the
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axioms force themselves upon us as being true. I don’t see any reason why
we should have less confidence in this kind of perception, i.e. in mathematical
intuition, than in sense perception.

This argument is undermined by the evidence, described at some length in
Chapter 1, which establishes that our sense perceptions do not give us a reli-
able picture of the outside world. Gödel’s beliefs are regarded as bizarre by
many mathematicians and philosophers, in spite of his fame. Here is a typical
comment, of Chihara:

Gödel’s appeal to mathematical perceptions to justify his belief in sets is
strikingly similar to the appeal to mystical experiences that some philosophers
have made to justify their belief in God. Mathematics begins to look like a
kind of theology. It is not surprising that other approaches to the problem of
existence in mathematics have been tried.2

Roger Penrose is even more explicit about his Platonism. The following is taken
from The Emperor’s New Mind:

When mathematicians communicate, this is made possible by each one having
a direct route to truth, the consciousness of each being in a position to per-
ceive mathematical truths directly, through this process of ‘seeing’. . . Since
each can make contact with Plato’s world directly, they can more readily
communicate with each other than one might have expected . . . This is very
much in accordance with Plato’s own idea that (say mathematical) discovery
is just a form of remembering! Indeed, I have often been struck by the simil-
arity between just not being able to remember someone’s name, and just not
being able to find the right mathematical concept. In each case, the sought-for
concept is, in a sense, already present in the mind, though this is a less usual
form of words in the case of an undiscovered mathematical idea.

Penrose, like Gödel, seems to regard introspection as a reliable way of gaining
insights into the working of the mind. Unfortunately we have seen that twentieth
century psychological research does not support this optimism. Our impression
that we have a simple and direct awareness of the world and of our own thought
processes are both illusions. By way of contrast Einstein rejected the idea that
the nature of reality could be deduced by the application of human reason
alone:

At this point an enigma presents itself which in all ages has agitated enquiring
minds. How can it be that mathematics, being after all a product of human
thought which is independent of experience, is so admirably appropriate to
the objects of reality? Is human reason, then, without experience, merely by
taking thought, able to fathom the properties of real things?

In my opinion the answer to this question is briefly, this: as far as the propos-
itions of mathematics refer to reality, they are not certain; and as far as they
are certain, they do not refer to reality.3

He continues by contrasting the Euclidean model of reality with his own quite
different theory of relativity.
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The most important contributor to the foundations of set theory since 1950
is probably Paul Cohen. In 1971 he came down decisively against Platonism
(or Realism as he called it) in favour of a version of formalism. He summed
up his conclusions about the possibility of certain knowledge in set theory as
follows:

I am aware that there would be few operational distinctions between my view
and the Realist position. Nevertheless, I feel impelled to resist the great esthetic
temptation to avoid all circumlocutions and to accept set theory as an existing
reality . . . This is our fate, to live with doubts, to pursue a subject whose
absoluteness we are not certain of, in short to realize that the only ‘true’
science is itself of the same mortal, perhaps empirical, nature as all other
human undertakings.4

Penrose’s degree of commitment to Platonism is unusual, but a less explicit
form of mathematical Platonism is quite common among mathematicians. On
the other hand most mathematicians are painfully aware that their sudden flashes
of insight are sometimes wrong, and that it is essential to check them carefully
for consistency with other results in the field. Proving theorems frequently
involves a high level of geometrical insight, but Penrose’s idea that the sought-
for concept is already present in the mind is simply wrong in many cases. If
an article in a journal provides a crucial idea or technique for a theorem which
you prove, it would be strange to claim that the idea of the proof was already
present in your mind. It is also difficult to see what would be meant by saying
that the concepts needed for the proof of Fermat’s last theorem were already
in Andrew Wiles’ mind before he started trying to prove it. The fact is that
theorems and/or their proofs are sometimes wrong in spite of months or years
of effort on the part of their authors (e.g. Wiles’ first announcement of the proof
of Fermat’s last theorem). This contradicts Penrose’s idea that mathematicians
have a direct perception of the truth. Einstein’s failure to come to terms with
quantum theory is another example, but in the sphere of physics rather than
mathematics. The possibility of serious error also explains why mathematics
journals have careful refereeing systems. If the only issue was whether the
results of research papers were sufficiently important to be worth publishing,
the refereeing process would be far less painful.

Penrose has replied to the above criticism by stating that it misrepresents
his position.5 He fully accepts that individual mathematicians frequently make
errors, and goes on to say that he was concerned mainly with the ideal of what
can indeed be perceived in principle by mathematical understanding and insight.
He explains that he has been arguing that his ideal notion of human mathematical
understanding is something beyond computation. Here, I am afraid, he begins to
lose me. He uses the words ‘ideal’ and ‘in principle’ so frequently that I cannot
relate his claims to anything I recognize in the activities of real mathematicians.

It cannot be denied that mathematical Platonism is superficially attractive
as a means of explaining our intuition about natural numbers. Unfortunately the
attractiveness of an idea is no guarantee of its correctness. In Chapter 3 we will
see that the theory of numbers was created by society in a series of historical
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stages, and that we only really have a direct intuition for those at the lower end of
the range. Our concept of number has been extended by the introduction of zero
and negative numbers, and then real and finally complex numbers. Such changes
might be explained as the result of our gaining ever clearer views of the Platonic
Form of Number, but they are equally easily interpreted as the result of our
changing and developing the concept of number in ways which we find useful
or convenient. What mathematicians cannot do is accept the demise of Plato’s
philosophical system, and then continue to refer to it as if it were still valid.

A key issue for Platonists is the belief that any mathematical statement is
true or false before anybody has determined this. Believing this, however, is not
mandatory for mathematicians. Whether or not they are Platonists, everybody
agrees that if a person has a genuine proof of some statement, it is not plausible
that someone else will correctly prove the opposite. Issues relating to logical
consistency do not only arise in mathematics. It uses such ideas more than most
other fields, but they arise everywhere. For example, it is not possible that a
chess player with white pieces can force a win and that the player with black
pieces can do the same. Nor is it possible that I have a sibling but my sibling
does not. A genuine mathematical contradiction involving the whole numbers
would show that arithmetic is inconsistent. This is indeed (just about) logically
possible, but it is not worth losing sleep over. If such a contradiction were to
be discovered within arithmetic, it would not be a disaster, but a wonderful
opportunity to look for a better theory. The experience of three thousand years
shows that any such inconsistency must be very subtle, and it would not be
likely to have any consequences in ordinary life.

So far I have only quoted mathematicians’ views for or against Platonism.
There is also a vast philosophical literature defending and criticizing Platonism
in mathematics. In Platonism and Anti-Platonism Mark Balaguer argues as
follows.6 Human beings exist within space-time. If there exist mathematical
objects then they exist outside space-time (this is what eternal means). Therefore
if there exist mathematical objects, human beings could not attain knowledge
of them. Balaguer then discusses at length each of the steps in this argument,
concluding that only his own form of Full-blooded Platonism meets all the
objections. Unfortunately FBP (which he is describing, not advocating) is suf-
ficiently different from what most Platonists mean by Platonism, that it may
seem that he has abandoned Platonism altogether. This impression is heightened
by the fact that he finally concludes that there is no way of separating FBP from
a version of anti-Platonism called fictionalism:

It’s not just that we currently lack a cogent argument that settles the dispute
over (the existence of) mathematical objects. It’s that we could never have such
an argument . . . Now I am going to motivate the metaphysical conclusion by
arguing that the sentence—there exist abstract objects; that is there are objects
that exist outside of space-time (or more precisely, that do not exist in space-
time)—does not have any truth condition . . . But this is just to say that we
don’t know what non-spatiotemporal existence amounts to, or what it might
consist in, or what it might be like.
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So in the end, the issue appears to revolve around the meaning or ‘existence’
or ‘being’; if one adopts too simple a view of this concept, it may corrupt all of
one’s subsequent thought processes. We conclude with a comment of Michael
Dummett, which again serves to illustrate how difficult it is to resolve such
problems:

We do not make the objects but must accept them as we find them (this corres-
ponds to the proof imposing itself upon us); but they were not already there for
our statements to be true or false of before we carried out the investigations
which brought them into being. (This is of course only intended as a picture,
but its point is to break what seems to me the false dichotomy between the
Platonist and the constructivist pictures which surreptitiously dominates our
thinking about the philosophy of mathematics.)7

The Rotation of Triangles

The fact that Platonic Forms are eternal by definition prevents human beings
manipulating them within our experienced time. On the other hand mathem-
aticians frequently moving their mental images around as they please. In this
section we discuss an example which illustrates the difficulties which certain
types of Platonist can encounter.

Let us consider two triangles, one inside the other. The bigger triangle has
edge lengths 7, 8, 9, while the smaller one has edge lengths 3, 4, 5. We consider
the problem

Can the smaller triangle be rotated continuously through 360◦ while staying
entirely inside the bigger one?

It may be seen from figure 2.2 that the answer is not obvious.8

While this appears at first sight to be a problem in Euclidean geometry,
this is only true with qualifications. Euclidean geometry as described by a
formal system of axioms has no notion of time. According to Plato geometry
studies the properties of eternal Forms, and he dismisses the use of operational
language with disdain in the Republic. On the other hand if one reads Euclid one
finds many references to the drawing of construction lines for the purpose of
providing proofs; see page 102. In his construction of spirals Archimedes refers
explicitly to the passage of time and uniform rotational motion. Put briefly even
the Greek geometers were not Platonists.

The problem described involves two triangles with different sizes and
shapes. These may be idealized triangles, but they are certainly different ones.
In this problem Platonists must concede that there is not a single Form of a
triangle but at least two. Indeed there must be a different Form of a triangle
for every possible size and shape. This is in conflict with Plato’s insistence that
there is only one Form of anything, in his discussion of beds. In this problem one
is forced to concede either that the Forms of triangles may move relative to each
other as time passes, or that the triangles which the mathematician is imagining
are not the ideal Forms, but some other triangles which only exist in his/her
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Fig. 2.2 Two Triangles

head. Plato himself struggled to find a coherent version of his theory of Forms,
particularly in Parmenides, and never decided whether mathematical objects
should be regarded as Forms or as a third class between Forms and material
objects. Certainly he rejected the identification of Forms with thoughts.

Suppose that two people are asked to solve the problem at the same time.
They are sure to start with the triangles in slightly different initial positions,
and to rotate them in different ways, possibly in opposite directions, completing
the task after a different period of time. So they cannot be imagining the same
Platonic Forms, even if we concede that Forms are capable of moving as time
passes. One could imagine that the entire population of the Earth was solving
this problem at the same time. All of them could have the inner triangle mov-
ing in a slightly different manner. The obvious conclusion to be drawn from
this scenario is that everybody is imagining a different pair of triangles. Every
individual has access to a different abstract universe, populated with triangles
which are capable of being moved under his/her volition. But this bears no
relationship with Platonism, which supposes that Forms of triangles are inde-
pendently existing motionless, ideal objects. From words he put into the mouth
of Parmenides, it is clear that the later Plato was well aware of and troubled by
this dilemma.

There is a way in which Platonists can try to escape from the dilemma. It
depends upon declaring that the ‘true’ problem has nothing to do with time; the
fact that we think of it that way is a consequence of our defective understanding
of the Platonic reality. There are several ways of eliminating any direct refer-
ence to time. The most obvious is to introduce a third space variable, turning
the original question into a problem in three-dimensional Euclidean geometry.
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Specifically it asks whether there exists a solid body which satisfies certain
rather strange conditions and which also can be fitted inside a cylindrical tube.

There is no doubt that any solution to the problem can be formulated in
such terms. However, I consider it perverse to declare that the problem as
stated, which involves moving things around on the plane, is somehow a mis-
understanding of the ‘true’ problem. This feeling is reinforced by the fact that
I cannot imagine solving the problem except in the original formulation, by
trying to rotate the triangle in my own subjective time. A formalization elimin-
ating time would not simplify or clarify the solution in any respect, and would
serve only to satisfy the requirements of those who demand formality.

Most mathematicians find no difficulties with the problem as originally
posed. It is theoretically possible that a non-constructive proof could exist, but
it is hard to imagine what it would be like. Anybody solving the problem does
so by devising a process for turning the smaller triangle through 360◦ within the
larger one, and the process itself constitutes the solution. On the other hand the
problem could be proved insoluble by finding a logical barrier to the existence
of such a process. Indeed this example may be typical. J. R. Lucas has said,
‘Mathematical knowledge is very largely knowledge how to do things, rather
than knowledge that such and such is the case. Claims to know how to do
something are vindicated by actually doing it.’9

Mathematical truth is a very slippery concept. This is not to say that it does
not exist, but rather that we cannot be absolutely sure we have found it simply
because we have an apparently logical proof. People make mistakes, particu-
larly when checking a single lengthy argument repeatedly. Our knowledge of the
truth of a mathematical statement depends upon making judgements based upon
appropriate evidence. This evidence includes proofs of the type presented in
text books, but may also involve numerical calculations, already solved special
cases, geometrical pictures, consistency with one’s intuition about the field, par-
allels with other fields, wholly unexpected consequences which can be verified,
etc. Mathematicians try to increase their knowledge, but this knowledge is based
more upon the variety of independent sources of confirmation than upon logic.

Descartes and Dualism

René Descartes (1596–1650) was one of the most important philosophical
figures in Europe in the second millennium. His lasting reputation would be
assured by his seminal improvements of algebra and its application to the solu-
tion of problems in arithmetic and geometry. However, he transformed many
areas of philosophy in a number of books which became steadily more influ-
ential after his death. This book is not the place to celebrate his achievements,
since our primary purpose is to focus on unresolved problems. Therefore we
will only consider the part of his metaphysics which relates to the division
between mind and body. This is widely considered to be less than compelling,
in spite of its subsequent influence on the development of science.



44 Mind-Body Dualism

Descartes’ famous aphorism ‘cogito ergo sum’ (I think therefore I am)
and the philosophical system which he built upon it have been analysed in
great detail by many scholars.10 Its precise meaning was discussed at length
by Descartes himself, and it appears that he did not consider it to be a logical
deduction omitting the implied statement ‘everything which thinks must exist’,
which would properly need to be supported by evidence. Rather he considered
his thinking, his existence, and the logical connection between them all to
be equally apparent to his intuition. More important is the fact that he could
entertain as a logical possibility that the existence of the external world and
even of his own body were illusions created by a deceitful spirit, whereas he
could not do so with respect to his mind. Thus he came to the conclusion that
mind (or soul) and body must be entirely different types of entity.

Descartes’ task was then to construct an entire system of belief using rational
argument starting from his ‘cogito’. He recognized that reliable knowledge of
the nature of the external world was extremely hard to prove, and was forced
to invoke God for this purpose:

I had only to consider, for each of the things of which I found some idea within
me whether it was or was not a perfection to possess the item in question, in
order to be certain that none of the items which involved some imperfection
were present in him, while all the others were indeed present in him . . . When
we reflect on the idea of God which we were born with, we see . . . finally that
he possesses within him everything in which we can clearly recognize some
perfection that is infinite or unlimited by any imperfection.

The first and weakest component of Descartes’ argument is that non-existence
is an imperfection, and hence existence must be among the attributes possessed
by God. This is close to the so-called ontological argument of St. Anselm,
which had already been rejected by St. Thomas Aquinas in the late thirteenth
century in Summa Theologica I q2. Aquinas is quite clear that the formation of
concepts has nothing to do with existence in the Platonic or any other sense:

Yet granted that everyone understands that by this name God is signified
something than which nothing greater can be thought, nevertheless, it does
not therefore follow that he understands that what the name signifies exists
actually, but only that it exists mentally. Nor can it be argued that it actually
exists, unless it be admitted that there actually exists something than which
nothing greater can be thought; and this precisely is not admitted by those
who hold that God does not exist.

The second component of Descartes’ argument is that God, being perfect, can-
not also be deceitful. Therefore if a person has a sufficiently clear perception of
some aspect of the material world, he can be confident that God would not let
him be entirely misled by his senses. This leads on to his study of the nature of
the world and of scientific knowledge, in which he adopts a mechanistic point
of view. This was much more radical in the historical context than it might seem
now. He claimed that most functions of the body did not involve the intervention
of the soul, including even:

the retention or stamping of those ideas in the memory, the internal movement
of the appetites or passions, and finally the external movements of the limbs
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which aptly follow both the actions and objects presented to the senses and
also the passions and impressions found in the memory.

The behaviour of animals was entirely governed by such mechanistic processes,
but Descartes did allow the human mind a limited role in acts to which we pay
conscious attention:

Since reason is a universal instrument which can be used in all kinds of situ-
ations, whereas [physical] organs need some particular disposition for each
particular action, it is morally impossible for a machine to have enough dif-
ferent organs to make it act in all the contingencies of life in the way which
our reason makes us act.

‘Moral certainty’, he later explained, means certainty beyond reasonable
doubt rather than absolute proof. The scientific philosophy of Descartes is
wholly materialistic. He explained scientific phenomena by creating mechan-
ical models to show how particles of matter interact at a scale of size which
we cannot perceive directly. He countered scholastic criticisms of his approach
by saying that no scientific theory could possibly be established with the same
degree of certainty as theorems in geometry:

And if one wishes to call demonstrations only the proofs of geometers, one must
say that Archimedes never demonstrated anything in mechanics, nor Vitello in
optics, nor Ptolemy in astronomy, and so on; this, however, is not what is said.
For one is satisfied, in these matters, if the authors—having assumed various
things which are not manifestly contrary to experience—write consistently and
without making logical mistakes, even if their assumptions are not exactly true
. . . But as regards those who wish to say that they do not believe what I wrote,
because I deduced it from a number of assumptions which I did not prove, they
do not know what they are asking for, nor what they ought to ask for.

He also emphasized the need for experimentation to distinguish between
different explanations of phenomena:

I must also admit that the power of nature is so ample and so vast, and these
principles so simple and so general, that I notice hardly any particular effect
of which I do not know at once that it can be deduced from the principles in
many different ways; and my greatest difficulty is usually to discover in which
of these ways it depends on them. I know of no other means to discover this
than by seeking further observations whose outcomes vary according to which
of these ways provides the correct explanation.

I come now to the criticism of Descartes’ philosophical system. His meta-
physics has many logical flaws, which are enumerated in detail in Cottingham’s
anthology.11 Even if one accepts his argument for the existence of God, only
God’s lack of deceit allows Descartes to be sure that his sufficiently clear beliefs
guarantee correct knowledge of the material world. History shows that this is not
a reliable route to knowledge. For example, possibly convinced that his own
coordinate geometry was a true description of the external world, Descartes
believed that he could prove by pure thought that matter must be infinitely
divisible. We now accept an atomic theory of matter, and realize that one
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of his mistakes in this respect lay in assuming that the smallest fragments
of matter must have the same character as gross matter. In fact subdivid-
ing atoms into smaller fragments of the same type is not just impossible but
inconceivable within the conceptual framework of quantum theory. Within the
pages of this book we provide many other examples of beliefs which are abso-
lutely clear to certain groups (or at certain times) but which are equally clearly
false to others. History has demonstrated time and again that Descartes’ cri-
terion of ‘sufficient clarity’ is so demanding that one can rarely know that
it has been met. We now believe that knowledge of the material world can
only be gained by testing repeatedly against experimental evidence, and that
this process often leads to our having to abandon our native intuition about
‘how things must be’. If he exists, God is far more subtle than Descartes
imagined.

Descartes’ radical separation of mind from body was extremely convenient
for the development of the physical sciences, because it enabled scientists to
defer indefinitely the study of minds and to declare improper any scientific
reference to final causes. It came to be believed all animal motion and eventually
even human behaviour were to be described in terms of the mechanical and
chemical laws governing the movement of the relevant bodily parts. Even late
in the twentieth century anyone who dared to diverge from this approach risked
being ridiculed by ‘true’ scientists. Eventually the behaviourist B. F. Skinner
took this idea to such extremes that a retreat was inevitable. Jane Goodall’s
famous study of chimpanzees in Tanzania showed that refusing to accept the
relevance of goals and social relationships simply prevented one understanding
their behaviour.

It is possible to argue that the development of such ideas in the seven-
teenth century was historically inevitable because of the advance of physical
science, but Descartes was the one who articulated the ideas first. In spite of
the enormous impact of Cartesianism on the development of physical science,
many philosophers regard it as responsible for some of our worst confusions
about the nature of the world. I will pursue this issue further in Chapter 9.

Dualism in Society

Debates about whether humans or animals are conscious, have free will or have
souls frequently lead nowhere, because those involved in the discussion do not
realize that those to whom they are talking understand the terms differently. One
of the most important analyses is due to David Hume. His first book, A Treatise
of Human Nature, was published in 1739, and is regarded as his most important
work, in spite of the fact that at the time it was almost completely ignored. He
eventually rewrote a part of it as An Enquiry concerning Human Understanding
in 1748, but this was hardly more successful at first. The Enquiry contained a
chapter on miracles which made clear his lack of respect for religious orthodoxy,
and in 1761 all of his books were placed on the Roman Catholic Index.
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In the Treatise Hume demonstrated the possibility of discussing the nature
of the will in a non-dualist framework. One of his main goals was to show that
the common notion of free will put together two quite different ideas. He used
the term ‘will’ to refer to our ability to knowingly give rise to any new motion
of our body, or new perception of our mind. The word ‘knowingly’ is crucial to
eliminate situations in which one is compelled to act as one does, or acts in the
ignorance of the consequence of one’s actions, or is afflicted by a serious mental
incapacity (madness). He emphasized that our entire social system assumes that
acts of the will are influenced by consequences to the person involved. Hume
contrasted the above idea with the notion of liberty, which he considered to be
either absurd or unintelligible. He argued that the possibility of making choices
unconstrained by rational considerations or by passions, that is randomly, is not
something to be valued. Indeed he regarded it as entirely destructive of all laws
both divine and human. Thus while we can easily imagine choosing randomly
to eat one piece of fruit rather than another, this says little about the human
condition. On the other hand a person who made an important moral decision
in a deliberately random manner in order to demonstrate their free will would
correctly be regarded as suffering from an abnormal personality.

In spite of the force of Hume’s arguments, they have had little influence on
ordinary people, who still talk and think about free will in a dualistic manner and
believe that the mind/soul is radically different from the body/matter. From the
religious point of view this has the advantage of allowing the soul to continue in
existence when the body has been completely consumed after death. But even
the non-religious may well feel that their own subjective consciousness cannot
be described in the same terms as the material world. The problems are that it
seems to be impossible to say what precisely the soul is while preserving both
its total distinction from the body and also its ability to interact with the body.
In this section we explore a few of the religious approaches to this issue, all
of which have serious deficiencies. Of course the same is true of non-religious
approaches: if an approach without serious deficiencies had been discovered
the problem would no longer be so contentious!

There is an important strand of Christian thinking which rejects dualism
while retaining a belief in the afterlife. In I Corinthians Ch. 15, Paul rather
enigmatically supports the idea that the soul is resurrected within a new but
ideal body:

So also is the resurrection of the dead. It is sown in corruption; it is raised in
incorruption . . . It is sown a natural body; it is raised a spiritual body. If there is
a natural body, there is also a spiritual body . . . Now I say, brethren, that flesh
and blood cannot inherit the Kingdom of God; neither doth corruption inherit
incorruption . . . But when this corruptible shall have put on incorruption, and
this mortal shall have put on immortality, then shall come to pass the saying
that is written Death is swallowed up in victory.

In the Gospel of St Matthew Ch. 13, v. 36–50 it is suggested that everyone will
rise from their graves on the Day of Judgement, a notion which has been much
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elaborated in religious literature and art since then. Similarly the Nicene Creed
of 325 ad refers to the resurrection of the body.

Unfortunately naive dualism is still alive, indeed thriving, and various cults
have embraced it with disastrous results, one of the best documented being
Heaven’s Gate. In March 1997 a group of 37 adults committed consensual
mass suicide in a mansion in San Diego, in the stated belief that they were
embarking on a transfer of their minds to an extraterrestrial spaceship which was
approaching the Earth behind the comet Hale–Bopp. The cult members were
regarded as ordinary, non-threatening people by those who knew them; they
ran a Web page design business and also used the Web heavily to publicize their
views. It is clear that they were absolutely convinced that the mass of humanity
were deluded about the true nature of the world, and that they themselves
were going on to a higher stage of life in androgynous extraterrestrial bodies.
According to the Exit Press Release of the cult itself:

The Kingdom of God, the Level above Human, is a physical world, where they
inhabit physical bodies. However, those bodies are merely containers, suits of
clothes—the true identity (of the individual) is the soul or mind/spirit residing
in that ‘vehicle’. The body is merely a tool for that individual’s use—when it
wears out, he is issued with a new one.

The beliefs of the cult were a mixture of science fiction, mysticism, and an
extreme unorthodox version of Christianity. The important point here is that
their final act is incomprehensible except within a dualistic philosophy in which
the mind is believed to have a separate existence from the body.

In Beyond Science the theoretical physicist/Anglican priest John
Polkinghorne has proposed abandoning the idea of an independently exist-
ing soul but within a Christian context. He instead describes the soul as the
information-bearing pattern of the body, which dissolves at death with the
decay of the body. He regards it as a perfectly coherent hope that the pattern
will be remembered by God and recreated by him in some new environment of
his choosing in his ultimate act of resurrection. There are two difficulties with
this idea. The first is that it assumes that the mind remains active and clear up
to the point of death. In the case of Alzheimer’s victims, when is one supposed
to take the pattern? If this is done before the onset of the disease then many
valid experiences will be lost, but if it is taken at the point of death, almost no
pattern will still exist. If the pattern is supposed to refer to the sum total of all
life experiences, then it cannot be reincarnated in a body, because bodies have
a location in time. The second problem is that the recreation of a person from
their pattern (however that term is interpreted) cannot be regarded as the same
person. If there is no physical continuity between the original and the copy, then
the copy is just that. If the words ‘information bearing pattern’ and ‘remember’
have their normal meanings then one has to admit that God could make two or
more such copies if he chose to do so; since it is not possible that both would
be the original person, neither can be.
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What can we learn from these examples? Mind-body dualism has been
rejected by almost all current psychologists and philosophers on the grounds
that the idea explains nothing. On the other hand many people continue to adopt
a dualistic view of the world, while being deeply disturbed that groups such
as Heaven’s Gate or the Spanish Inquisition might actually act on that belief.
The search for personal immortality is clearly a deep aspect of the human
psyche, although no coherent accounts of how it could be the case have yet
been produced. But the strengths of people’s beliefs have not often depended
on rational argument, and this one does not seem likely to be abandoned soon.

2.3 Varieties of Consciousness

We have seen that both Plato and Descartes were dualists: they believed that
the soul/mind could be separated from the body/matter. Plato rejected the study
of imperfect matter as worthless by comparison with his Forms, and believed
that mathematical ideas had a real, independent existence which the soul could
appreciate directly. Descartes had trouble explaining how minds could have
reliable knowledge of the material world, and had to invoke God’s help in
achieving this. His philosophy of science swept all before it, but consigned the
mind to an ever smaller role in the scheme of things. It now appears that many
philosophers have adopted a purely materialist view in which mind is a function
of or process in the brain; they regard belief in the soul as being no more than
a remnant of a long outmoded system of thought.

The current debate concerns not the existence of souls but the nature of
consciousness, and we will concentrate on this issue henceforth. A recent sur-
vey of some current attitudes towards the mind-body problem reveals strongly
expressed disagreements on almost every issue. Current positions range from
the denial of the reality of consciousness (eliminative materialism) to the
statement that the solution is obvious and the suggestion that the solution is
straightforward but we as humans are physiologically incapable of understand-
ing it. An amusing comment on all this was made by the philosopher John
Searle:

Seen in perspective, the last fifty years of the philosophy of mind, as well as
cognitive science and certain branches of psychology, present a very curious
spectacle. The most striking feature is how much of mainstream philosophy of
mind of the past fifty years seems obviously false. I believe there is no other
area of contemporary analytic philosophy where so much is said that is so
implausible.12

It is tempting to define consciousness as the ability of an entity to interact
with its environment. Approaching the problem this way leads one into serious
problems. While it is clear that humans and dogs are conscious, we may have
legitimate doubts about ants and viruses, and few would want to allow baromet-
ers even a limited degree of consciousness. Taken literally, the definition leads
us to endow everything, even atoms, with a very slight degree of consciousness,
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and to measure the degree of consciousness of an entity in terms of the com-
plexity of its interactions with the environment. We are then forced to accept
that computers are conscious, their ‘environment’ consisting of their input and
output devices. This definition has the merit of simplicity and definiteness, but
it trivializes many important issues relating to consciousness.

A key issue is the distinction between consciousness in the third person
sense: what makes other people behave as they do, and consciousness in the
first person sense: what is the fundamental nature of my subjective impressions?
There seems to be an underlying dualism in the way we think about conscious-
ness, just as there is for souls, with the difference that it is harder to deny the
existence of subjective consciousness.

The difficulties of distinguishing between the two types of consciousness is
demonstrated by the existence of visual illusions. We know of their existence
because we experience them subjectively. On the other hand different people
experience the same illusions when show the same pictures, so they also have
an objective aspect. The illusions do not exist in the pictures themselves, but
are produced inside our heads. We may eventually be able to explain them
physically in terms of modules in our brains and unconscious processing, but
this will not remove the subjective experiences.

In the remainder of this chapter we will only discuss the aspect of conscious-
ness amenable to scientific study: third person consciousness. A variety of ideas
about the nature of first person consciousness will be described in Chapter 9.

Can Computers Be Conscious?

The first goal of this section is to demonstrate that current computers are not
conscious under any reasonable interpretation of the word. Then we will move
into more difficult territory, with the aim of clarifying the debate rather than
resolving it.

It is well recognized that computers can perform certain tasks such as the
evaluation of extremely complicated numerical expressions vastly more rapidly
and reliably than human beings. For certain types of algebraic mathematics
computer software such as Mathematica and Maple can also out-perform us
by a huge margin. However, mathematicians are not on the verge of becom-
ing redundant! The same software packages are completely lost when faced
with a problem such as proving that nn+1 > (n + 1)n for all n ≥ 3. The proofs
of inequalities are notorious for requiring ingenuity, sometimes to an extreme
degree. Nobody has yet found a means of reducing problems involving them
to routine procedures which a machine could implement. I am not claiming
that computers will never be able to attack such problems, but only that pro-
grams such as Mathematica and Maple are simply expert systems, provided
with a set of rules by mathematicians. They are helpless in situations in which
mathematicians have not been able to develop systematic procedures, even for
their own use.13
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An example of an expert system is the computer Deep Blue, the last in a
series of chess-playing computers designed by IBM over a period of years. In
May 1997 it played a series of six games against the world champion Gary
Kasparov, acknowledged to be the greatest (human) grandmaster of all time,
and beat him by 3 1

2 games to 2 1
2 . Deep Blue’s method of playing chess was

quite different from that of a human player. It examined an enormous number
of possible lines of play, using a scoring system to decide which to pursue
to greater depth, and eventually choosing the optimal strategy according to
rules formulated by its programmers. Its chess-playing skill came partly from
its ability to examine 200 million chess positions per second, and partly from
the rules programmed into it about what kind of positions to aim for and avoid.
Human players, on the other hand, use an intuitive method to decide which lines
of play to examine, and do not consider more than a few hundred positions in
detail. I am not aware that anyone involved in the design of Deep Blue ever
proposed that it was conscious or engaged in genuine thought.

The fact that Deep Blue could beat Kasparov is not really as important an
issue as some people seem to think. Ten years before Deep Blue’s victory chess-
playing programs could already beat all but a tiny fraction of the human race.
Why people should feel that their own superiority is assured if one extremely
unusual individual can out-perform a computer has always been a mystery to
me. The real issue is whether the processes the computer uses can be classified
as conscious thinking, and in this particular case the answer is surely no.

It is interesting to consider how a human being does a computation in arith-
metic. During the process we do not think about the meaning of what we are
doing, but simply turn ourselves into automata, processing the data according
to rules which we were taught as children. Our consciousness remains, not
thinking about the meaning of the rules, but monitoring our successful imple-
mentation of them and checking that our attention does not wander. There are
no analogous processes in a computer, since its attention cannot wander—it has
literally nothing else it could be thinking about—and its level of concentration
cannot vary.

Some readers may remember that the first version of the Pentium chip
in the mid 1990s made occasional errors in simple arithmetic, and had to be
redesigned to eliminate these. One could of course point out that humans make
vastly more errors when they perform such calculations, and that we are in
addition far slower. However, unlike the Pentium, we are capable of retraining
ourselves if such a systematic error in our method of calculation is pointed out to
us. This highly publicized accident demonstrates vividly that a computer chip
is performing arithmetic mindlessly. The quality of its performance depends
entirely upon its designers’ care rather than on its own abilities to think through
problems.

On the other hand, one can compare a pocket calculator with a mobile
telephone. In spite of the fact that each can do things quite beyond the capacities
of the other, they are about the same size, both have keyboards, both have LED
displays and both have computer chips inside. Their different capacities result
from different internal organizations of their components, and the ability of the
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mobile telephone to transmit and receive messages. So it may be with human
beings. The internal architecture of our brains is totally different from that of
computers, and we have the advantage that enormous amounts of information
flood into our brains through our sense organs constantly. In some respects we
out-perform computers and in others they out-perform us. That does not prevent
both computers and ourselves being finite computing machines. Whether this
is, in fact, the case is another matter. The best way of determining the answer
is to try to understand how we think and copy it on a suitable machine.

A similar issue arises in comparing us with eagles. As far as flying is
concerned they win hands (or wings) down, but when using screwdrivers we
outperform them almost as dramatically. That does not imply that there is some
deep difference in our cellular structure, just that it is organized differently. A
moment’s thought about the differences between animals shows how import-
ant the organization of cells/genes is to the properties of the final creature. We
are said to have over 98% of our genes in common with chimpanzees,14 but
even this small difference has led to remarkable differences in our intellectual
capacities. We should therefore keep an open mind about the possibility that rad-
ically different hardware or software could change our view about the potential
capacities of computers to think in the sense we normally use this word.

Gödel and Penrose

Kurt Gödel’s importance in the foundations of mathematics, discussed in
Chapter 5, is so great that it compels us to listen to his comments on the
differences between human thought and that of computers. Since his views on
some key issues were diametrically opposed to those of Alan Turing, almost
equally important in this field, we cannot however simply defer to his author-
ity. When one looks at what he has written, much of it seems curiously out of
tune with the current views of both philosophers and scientists, who often have
good reasons for not understanding what he is trying to say. At the very least
his views are unfashionable, but the grounds for rejecting them should be stated
explicitly. Hao Wang has reported on a number of discussions with Gödel in
the early 1970s, paraphrasing his views as follows:

Even if the brain cannot store an infinite amount of information, the spirit may
be able to. The brain is a computing machine . . . connected with a spirit. If the
brain is taken as physical and as a digital computer, from quantum mechanics
there are then only a finite number of states. Only by connecting it to a spirit
might it work in some other way . . . The mind, in its use, is not static but
constantly developing . . . Although at each stage of the mind’s development
the number of its possible states is finite, there is no reason why this number
should not converge to infinity in the course of development.15

Wang tried to disentangle the utterances Gödel was inclined to make into the
defensible and those which are essentially mystical. The first two sentences
of the quotation embrace dualistic thought in a way which is rare in other
philosophical writings of the twentieth century. The meaning of the last sentence



Theories of the Mind 53

is extremely unclear. While nobody would argue with the mind being an open-
ended learning system, it obviously cannot literally acquire an infinite amount of
knowledge. The fact that a person might in principle acquire an infinite amount
of knowledge if he/she were to keep on learning for an infinite length of time
has no consequences in the real world. If Gödel simply means that during an
actual finite life span a person might keep on learning new facts, ideas, and
techniques, then his use of the word ‘infinity’ can only serve to confuse.

At earlier periods in his life Gödel expressed quite different views; for
example in his 1951 Gibbs lecture he stated:

On the basis of what has been proved so far, it remains possible that there
may exist (and even be empirically discoverable) a theorem-proving machine
which in fact is equivalent to mathematical intuition, but cannot be proved to
be so, nor even be proved to yield only correct theorems of finitary number
theory.

Here we have Gödel accepting that human mathematical abilities may be
capable of being matched by a machine. The only problem is that neither
the machine nor the mathematician would then be using provably correct
algorithms. In contrast to this, let me quote from an article of Penrose published
in 1995:

Are we, as mathematicians, really acting in accordance with an unconscious
unknowable algorithm? One inference from such a proposal would be that the
reasons we offer for believing our mathematical results are not the true reasons
for such belief. Mathematics would depend upon some unknown calculational
activity of which we were never aware. Although this is possible, it seems to
me unlikely as the real explanation for mathematical conviction. We have to
ask ourselves how this unconscious unknowable algorithm, of value only for
doing sophisticated mathematics, could have arisen by a process of natural
selection.16

My colleague Larry Landau has recently given a careful response to this highly
controversial argument.17 Brains work by trying to create patterns (i.e. mental
models) which match what they learn from the outside world or from introspec-
tion. This process is almost entirely unconscious and cannot be categorized
as logically sound or unsound, because it is just the operation of a physical
mechanism. The procedures which we use consciously when doing mathem-
atics are entirely different from the mechanisms which control the functioning
of our brains. If our conscious thought processes are occasionally or even
systematically unsound, this has no implications concerning the mechanisms
used by our brains to produce these thoughts. There is even an aphorism which
fits this situation: do not blame the messenger for the message.

One of the popular approaches to artificial intelligence uses the theory of
neural networks. Scientists in this field try to model our brains by constructing
machines which learn by experience. In a very narrow sense their operation is
algorithmic, in that the machines are electronic computers running programs.
On the other hand the machines teach themselves how to recognize individual
patterns. Often they get the wrong answer, but as time passes the frequency



54 Varieties of Consciousness

of mistakes decreases. The performance of such machines is far below what
we achieve, but the machines are far simpler than our brains, so this is not
surprising. Such machines function in a way which Penrose above considers
to be unlikely as a model for our own thinking, but many others consider the
analogy very convincing.

This idea about how the brain works provides an answer to Penrose’s ques-
tion about how our mathematical ability could have evolved. Pattern recognition
is the primary ability of our brains, and the development of this ability over
millions of years is what has made us what we are. The co-option of this ability
for mathematical purposes did not need any further evolution, but depended
upon the social environment becoming suitable for such activities. No special
algorithms for doing mathematics exist, and no guarantees of correctness of the
insights obtained are available.

Discussion

Over the last decade the introduction of a variety of scanning machines has led
to a revolution in the understanding of consciousness. These machines allow
researchers to watch the activity in different parts of people’s brains as they
are set various tasks. This is one of the most exciting current areas of scientific
research, but that does not mean that it is near to solving the main problems.
The human brain is incredibly complicated, and ideas are in a constant state of
flux, with the eventual conclusions by no means clear, even in outline. I am not
the person to review progress in this highly technical field, and will only try to
describe certain issues which the final theory will have to explain. Even this is
a daunting task.

In scientific publications consciousness almost always refers to the third
person or ‘objective’ sense of the word, that is to some unknown aspect of the
neural mechanisms people and animals use when they direct their attention to a
matter requiring decision making. How might we decide whether an animal is
conscious in this sense? The first possibility is that we observe their behaviour,
and agree to call them conscious if this is sufficiently close to our own. Let us
look at it in more detail.

There have been vigorous arguments among biologists about whether com-
plicated goal-directed behaviour among higher mammals is reliable evidence
for their consciousness. Indeed the admission of consciousness into animal
research is quite a recent phenomenon. Injury-avoidance behaviour is often
based on reflexes, and it is not completely obvious that the inner sensation of
pain must be attached to it. Even in our own case pain is often felt only after
the limb has been moved away. Again, many birds build sophisticated nests
entirely instinctively, and may or may not be conscious of what they are doing.
At the other end of the animal kingdom octopuses and squid have entirely differ-
ent brain anatomies from ourselves and our common ancestor probably had no
brains at all. Nevertheless they are capable of learning and memorizing facts for
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months. If they are to be included in the realm of conscious beings, this indicates
that consciousness does not depend upon a particular type of brain anatomy.

Recent investigations of the behaviour of bees when choosing a new home
are particularly interesting as a test of what we mean by consciousness.18 A
swarm of bees often rests in a tree after leaving its original hive, while a small
number of scout bees look for possible new homes. The studies show that the
decision process does not depend upon any of the scouts visiting more than one
site. On this return each scout signals some characteristic of a site to the swarm
by a special dance. No bee has enough brain capacity to assess the relative
merits of the sites, and the decision is taken by a group process which does not
require any member of the swarm to be aware of the whole range of possible
new sites. Nor does it require the scouts or any other individual bees to take a
final decision on behalf of the swarm. To call the swarm conscious as a swarm
would be rash indeed when we have no detailed understanding of consciousness
even for humans, let alone for other organisms.

On the other hand it seems impossible to describe the behaviour of such a
swarm without referring to goals. The above paragraph uses the words ‘choos-
ing’, ‘look for’, and ‘decision’. Perhaps we need to use such teleological
language for what are actually purely instinctive responses, because this is
the only way we can relate to the physical behaviour of swarms. This problem
recurs throughout the biological sciences.

Returning to human beings, the distinction between conscious and uncon-
scious behaviour is a real one. When we learn to drive a car, we are initially
highly conscious of every action needed. By the time we become experienced
drivers the mechanical aspects of driving have moved to the periphery of our
attention and it is possible to conduct a conversation at the same time as driv-
ing. Very occasionally our attention may slip entirely and we may experience
the sudden shock of realizing that we have no memory of the last traffic lights
which we passed. This indicates that behaviour in humans becomes conscious
not because it is complex, but when it involves unfamiliar or deliberate choices.

Consider next the process of breathing. Mostly it is not under our conscious
control, and even if we run to catch a bus we do not make a conscious choice
to increase the rate and depth of our breathing. However, it is possible for us
to take over conscious control of our lungs for short periods, and there can be
no doubt that when we do this something different is happening in our brain
than when we breathe unconsciously. Although it is impossible for us to tell by
observing animals in the field whether they are able to control their breathing
consciously, it is clear from our own case that this is a real question, and not
one about the use of words.

A further proof that consciousness cannot be identified with behaviour
comes by considering those unfortunate people who suffer total paralysis, while
retaining their mental faculties. On fortunately rare occasions this happens dur-
ing surgical operations, when patients are mistakenly given the usual muscle
relaxants but without sufficient anaesthetics.19 The unfortunate patients are in
no doubt that their induced paralysis is totally different from anaesthesia.
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We have already discussed the phenomenon of blindsight, which illustrates
well the difference between consciousness and the ability to process informa-
tion. There is, however, absolutely straightforward evidence that much of our
thinking is unconscious and inaccessible. This is the process of remembering
facts which are not near the front of one’s mind. Many readers will remember
occasions on which they wanted to remember the name of someone they had
not seen for several years, or to recall a word in some foreign language which
they once knew. It is possible to spend several seconds, or, as you get older,
even minutes, trying to remember the required word, and then for it to pop into
your mind without warning. There is something going on in one’s brain, and it
is quite sophisticated since it involves the meanings of words. Nevertheless we
have no idea how our minds are obtaining the required information, nor where
they got it from when it arrives.

One cannot simply dismiss unconscious thought as referring to low level
processes. Creative thinking involves unconscious processes which are capable
of solving problems which our conscious minds cannot. When thinking about
an intractable problem it is common for mathematicians (and others!) to spend
months trying all the routine procedures, and then put the problem aside.
Frequently a completely new idea comes to them suddenly, in a flash of
insight similar to that which supposedly came to Archimedes in his bath.
As a typical example of this process consider Hamilton’s account of his
discovery/construction of quaternions20 in 1843, following fifteen years of
unsuccessful attempts:

On the 6th day of October, which happened to be a Monday, and Council day
of the Royal Irish Academy, I was walking to attend and preside, and your
mother was walking with me along the Royal Canal; and although she talked
with me now and then, yet an undercurrent of thought was going on in my
mind, which gave at last a result, whereof it is not too much to say that I felt at
once the importance. An electric current seemed to close; and a spark flashed
forth . . .

In Science and Method, 1908 Henri Poincaré wrote in almost identical terms
about flashes of insight he obtained during his study of the theory of Fuchsian
functions. He also mentioned that these flashes were not invariably correct, as
did Jacques Hadamard in The Psychology of Invention in the Mathematical
Field, 1945. In some way prolonged and unsuccessful attempts to solve a
problem stimulate one’s unconscious mind to search for new and fruitful lines
of attack. When something seems (to the unconscious mind) to have a high
probability of leading to the solution, it forces the idea to the mathematician’s
conscious attention. The criteria used by the unconscious mind are certainly
not trustworthy, and the ideas so obtained have to be checked in detail. On the
other hand the phenomenon often achieves results which conscious, rational
thought cannot.

For the above reasons, I take it as established that the distinction between
conscious and unconscious thought is a matter of fact: we do not just attach the
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label consciousness to all sufficiently high level processes in our brains out of
convention. Consciousness does not imply the ability to perform actions, and
does not arise in many types of sophisticated brain activity. There is a specific
brain mechanism whose activation causes conscious awareness. We do not yet
know what this mechanism is or how it interacts with other parts of the brain,
but it is likely that this will be elucidated over the next twenty years.

We now come to a further difficulty. Human beings have a higher type
of consciousness than any other animals. Only humans and the great apes can
recognize that the images they see in mirrors are of themselves and that unusual
features such as marks seen on their foreheads might be removed. Only in their
fourth year do children start to recognize the possibility of false beliefs in
themselves and others, to remember individual events for long periods and to
be able to make complex plans for the future. There is an enormous research
literature on the ways in which our thought processes differ from those of
all other animals, and the stages at which our special abilities develop during
childhood.

Episodic memory, the ability to transfer individual thoughts to and sub-
sequently from memory, is generally agreed to be of vital importance for higher
level consciousness. One possibility is that higher level consciousness arises
within a yet to be located physical module in the brain which deals with this abil-
ity. A person is conscious when this module is acting normally, while dreaming
might correspond to a different mode of action of the module. The routine exer-
cise of skills such as riding bicycles, walking, driving, etc. does not pass through
it, but when something unexpected happens the decisions made are routed by the
module into memory, from which they can then influence subsequent behaviour.

Some support for the above idea may be found in the recent research
literature. Eichenbaum states:

The hippocampus is crucial for memory and in humans for ‘declarative
memory’, our ability to record personal experiences and weave these episodic
memories into our knowledge of the world around us.21

If only matters were so simple! In a recent article John Taylor pointed out the
problems with all current proposals for the seat of consciousness, and eventually
came down in favour of the inferior parietal lobes.22 We are evidently still far
from being able to identify the hypothetical module, and it remains possible that
consciousness cannot be localized in this manner. It may correspond to some
characteristic wave of activity sweeping through the entire brain. Whatever the
situation, suppose brain scientists succeed in identifying a neural mechanism
(a module or mode of activity) which corresponds perfectly to our own subject-
ive experience of consciousness: when it operates we are conscious and when
it is disabled by brain damage or anaesthetics we are not. From the point of
view of the physiologist this would be a satisfactory solution of the problem of
consciousness.

Suppose next that we can design a machine which has suitably rich inputs
from and outputs to the external world and which contains a hardware or
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software implementation of the neural mechanisms in our own brains. Would it
then be conscious in the proper subjective sense? Or would it merely be simu-
lating consciousness? Perhaps this is incapable of being decided in an absolute
sense, but we would be forced to treat such machines as conscious. The point
is that the reasons for believing them to be conscious would be as good as
the reasons for believing other people to be conscious. The only ‘reason’ for
believing them not to be conscious would be the fact that they were built in a
factory rather than grown inside someone’s womb.

The development of machine consciousness may fail purely because of the
difficulty of the project. The neural network approach asserts that a brain is
essentially a set of neurons, and that we can duplicate that function of the brain
without worrying about other aspects. This leads to two problems. The first is
that there are many key aspects of brain function which are not neural, depending
upon complex chemical messengers such as endorphins and neuropeptides. The
second is that neurons can grow new connections in response to external stimuli
and internal injuries. The way in which they ‘know’ where to grow is under
genetic control in a general sense, because everything is, but it also depends
heavily on other factors which we hardly understand at all.

Whether it may one day be possible to produce a neural analogue of the
brain depends upon the nature of its organization. A human brain has about
1011 neurons, each possessing around ten thousand synapses, far more than any
electronic machine at the present time. There is no evidence that it is possible
to copy the activity of the brain in some device which is radically smaller. As
soon as one looks at animals whose brains are ten times smaller than ours, one
sees that all of our advanced skills have disappeared. Even chimpanzees, which
have brains with about one-quarter of our number of neurons, cannot begin to
match our mental achievements. It is of course possible that the organization
of our brains is so inefficient that one could achieve as much with a very much
smaller number of efficiently arranged components. If this is the case it is worth
asking why we have not evolved such a more efficient brain, since its energy
requirements impose a very heavy burden upon us: although it weighs less than
two kilos, about 20% of our energy is devoted to keeping it running. This figure
is so large that there must have been a very large evolutionary incentive for our
brains to become more efficient.

The main hope of success of the research programme depends on the brain
being massively redundant, so that a much smaller and simpler system may
still capture its essential features. We do not know whether this is so, but
the effort of finding out will surely teach us an enormous amount. The inter-
action between neuro-anatomists and those involved in the design of neural
networks promises to bring understanding and possible treatment of mental
disorder whether or not it leads to a proper model of consciousness. One should
not underestimate the magnitude of the task. Our thinking appears to be con-
trolled by intuitive judgements about whether the procedures we are adopting
are appropriate to the goals which we set ourselves, rather than by logical
computation. We do not understand how to design a computer program which
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could copy this behaviour, even with the recent advances in neural network
theory. To declare that all will become clear with a few more years’ research
is to make a declaration of faith rather than a sober assessment of the current
position.

Let us again suppose that there is a specific brain mechanism which is
involved in conscious behaviour in humans. This mechanism must be linked to
a large number of modules relating to motor functions and acquired skills. There
is now experimental evidence that the precise forms and even locations of these
modules vary from person to person, and these will influence the expression
of the consciousness mechanism. As we learn more about people’s brains and
how they develop, the notion of consciousness (in the third person sense) will
become much more precise and complicated. Whether this will also solve the
problem of subjective consciousness is a matter of debate, as we will see in
Chapter 9.
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3
Arithmetic

Introduction

Much of modern science depends on the heavy use of mathematics, justly known
as the Queen of the Sciences. Let me list just a few of its many achievements.
Euclid’s geometry was for two millennia the paradigm of rigorous and precise
thought in all other sciences. The introduction of the Indo-Arabic system of
counting and the logarithm tables of Napier and Briggs early in the seventeenth
century were vital for the development of navigation, science and engineering.
Newton was forced to present his law of gravitation in purely mathematical
terms: he tried and failed to find a physical mechanism which would explain
the inverse square law. Darwin’s epochal theory of evolution was entirely non-
mathematical, but the recent development of genetics and molecular biology
have been heavily dependent on the use of mathematical techniques. The two
technological revolutions of the twentieth century, quantum theory and com-
puters, have both been highly mathematical from their inception. Indeed the
two pioneers in the invention of computers in the 1940s, Alan Turing and John
von Neumann, were both mathematicians of truly exceptional ability.

The success of mathematics in so many spheres is a great puzzle. Why
is the world so amenable to being described in mathematical terms? Albert
Einstein described this as the great puzzle of the universe, joking that ‘God is a
mathematician’, and many distinguished scientists have echoed this sentiment.
Both mathematicians and philosophers have believed at various times that our
insights into Euclidean geometry, Newtonian mechanics, and set theory/logic
are exempt from the general limitations on human knowledge. Unfortunately
each has eventually been proven not to have any such status; we will see how
this happened later on. In this chapter I explain why our concept of number
is also not nearly as simple as most people consider. A long historical process
has resulted in the creation of a powerful structure which we now use with
confidence. But this must not blind us to the fact that the properties of numbers
which we regard as self-evident were not always so.

For a mathematician to cast doubt on the independent existence of numbers
might seem bizarre. Read on, and I will try to persuade you that this is actually
irrelevant to the pursuit of mathematics. What we actually depend upon is
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a set of rules for producing theorems, together with informal procedures for
generating intuitions about those rules. It would be psychologically convenient
if the rules concerned were properties of some external set of entities. Many
mathematicians behave as if this were the case. But it is not necessary. The
meanings of road signs are entirely conventional, but they nevertheless explain
a lot about the flow of traffic. Nobody suggests as a result that green→go and
red→stop are fundamental laws of nature. In both cases one can simply accept
that if these are the rules, then those are the consequences.

You might also ask, if some mathematicians believe that numbers do not
exist independently of ourselves, why do they bother to pursue the study of
their properties? The answer is the same as might be given by musicians and
artists. The process of creation, and of appreciation, gives enormous pleasure
to those involved in it, and if others also find it worthwhile, so much the better.

Whole Numbers

For the purposes of this discussion we will divide numbers (natural numbers,
positive integers) into four types according to the following rules:

one to ten thousand—small
ten thousand to one trillion—medium
one trillion to 10100—large
much bigger than that—huge

Here a trillion is a million million and 10100 is 1 followed by 100 zeros. I do
not insist on the exact boundaries between these ranges, and would accept,
for example, that the small numbers might include everything up to a million.
However, there are real differences between the four ranges, which I need to
describe in order to set the scene for the arguments below. The above separation
of numbers into different types is similar to the division of colours according
to their various names: the fact that the categories overlap and that people may
disagree about the borderlines does not make the distinction a worthless one.

I will not plunge straight into asking what numbers really are, since this
might rapidly become either a technical discussion in logic or a philosophical
debate1. Perhaps examining the history of counting systems will prove a more
enlightening way into the subject.

Small Numbers

These are numbers which one uses in ordinary life to count objects. For example
ten thousand represents the number of points in a square of 100 × 100 points.
It is also the number of steps which one takes in a walk of two to three hours.
Our present notation for counting in this range functions so smoothly that we
can easily forget the history behind its development.
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In Roman times the numbers 5, 50, and 500 were represented by different
symbols, namely V, L, and D. Instead of having separate symbols for each
number from 1 to 9, they used combinations of a smaller number of symbols.
Since this system is now almost entirely confined to monuments recording births
and deaths of famous people, I summarize its structure. The symbols used in
what we call the Roman system are

I = 1 V = 5 X = 10 L = 50 C = 100 D = 500 M = 1000.

The integers from 1 to 10 are represented by the successive expressions

I II III IV V VI VII VIII IX X

those from 10 to 100 in multiples of 10 by

X XX XXX XL L LX LXX LXXX XC C

and those from 100 to 1000 in multiples of 100 by

C CC CCC CD D DC DCC DCCC CM M.

Thus the date 1485 is represented by MCDLXXXV, the fact that C is before
D indicating that the C should be subtracted rather than added. The final year
of the last millennium is MCMXCIX; a simpler but less systematic notation
is MIM.

The system described above is only one of a number of variations on a
common theme. In medieval times a wide range of notations was used. One
convention put a line over numbers to indicate that they were thousands, so that
IVCLII would represent 4152. Another was to separate groups with different
orders of magnitude by dots, so that II.DCCC.XIIII would stand for 2814. The
Romans themselves used the symbol ©| to represent 1000, and the right hand
half of this, D, came to represent a half of a thousand, namely 500.

The tomb of Galileo Galilei in Basilica di S. Croce in Florence records
his year of death as CI C.I C.C.XXXXI. This is somewhat puzzling, since he
died in 1642, not 1641, by our calendar. The explanation is that in Florence
at that time the year started on 25 March, and Galileo died in January. This is
only one of several problems one has to confront when converting dates to our
present calendar; another is that historians often do not indicate whether they
have carried out the conversion or not, leading to further scope for confusion!

The task of multiplying two Roman-style numbers is not an easy one.
Consider the following apparently very different formulae, which use the
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seventeenth century multiplication sign.

IV × IX = XXXV I

XL × IX = CCCLX

IV × XC = CCCLX

XL × XC = MMMDC

IV × CM = MMMDC

CD × IX = MMMDC

From our point of view these all reduce to 4 × 9 = 36, with zeros attached
in various places. In the Greek and Roman worlds people had to learn a new
set of tables for each order of magnitude; the procedures were sufficiently
complicated that whole books such as Heron’s Metrica were devoted to what
we now regard as routine arithmetic. An alternative was to turn to the use of
abacuses, which were certainly well known in classical Greece, and may well
be of Babylonian origin. Archimedes devoted his book The Sand-Reckoner to
the description of a very complicated system for representing extremely large
numbers.

The far better Hindu-Arabic system of counting was committed to writing by
Al-Khwarizmi between 780–850 ad. It is, however, certainly much older than
that. It came into use gradually in Europe between 1000 ad and 1500 ad, and
was eventually to sweep everything else away. Its superiority relied ultimately
upon the Hindu invention of a symbol for zero. The importance of this is that
one can distinguish between 56 and 506 or 5006 by the presence of the zeros,
and so does not need to have different symbols for the digits depending on
whether they represent ones, tens, hundreds, etc. We now take all of this for
granted, but the systematic use of zero was a long drawn out process, whose
impact may be as great as that of any other single idea in mathematics.

Medium Numbers

The number one trillion is so big that it is not possible for one to reach it by
counting. To prove this I describe a way in which one cannot get seriously rich.
Suppose you could persuade someone to give you every dollar bill which you
could mark a cross on. You settle down to marking one bill per second and
decide to work a ten hour day. After one day you have earned $36,000 and after
a working month of 25 days you have accumulated $900,000. At the end of
your first year you have approximately $10 million. At this rate you would take
100,000 years to reach a trillion dollars. Even if you could speed the process
up a hundred times you will still get nowhere near a trillion dollars in your life-
time. The only way to accumulate this sort of money is to emulate Bill Gates
or become the dictator of a very wealthy country.

There are, however, ways in which one can make the number easier to
imagine. A one kilogram bag of sugar contains about one million grains, each
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about one millimetre across. To acquire one trillion grains of sugar one therefore
needs a million bags, which occupy about a thousand cubic metres. This would
fill all of the space in two or three of the semi-detached houses of the London
street in which I live.

In spite of their enormity, such numbers are important in our modern world,
since several national economies have GNPs of this order. This was not always
the case—when I was a boy a British billion was what we now call a trillion,
and the conflict with USA usage hardly mattered because numbers of this size
almost never arose. Perhaps one reason for their recent importance is that our
computers can count up to these numbers even if we cannot.

Large Numbers

When we turn to scientific problems, we routinely find it necessary to go far bey-
ond the limitations of medium numbers. Examples are the number of hydrogen
atoms in a kilogram and the number of neutrinos emitted by a supernova. Hindu
mathematicians had words representing some very large numbers, but until the
sixteenth century there was no systematic notation for writing them down.

The invention of the power notation opened up the possibility of describing
very large numbers in a compact notation. We write 10m to stand for the number
which we would otherwise write as 1 followed by m zeros, and 3.4 × 1054 to
stand for 34 followed by 53 zeros. One must not be misled by the simplicity
of this notation. 1054 is not just a bit bigger than 1051—it has three extra zeros
and is a thousand times bigger!

A few examples of the power of this notation is in order. One of the notable
astronomical events in recent years was the observation of a supernova explod-
ing in 1987. In truth it exploded 166,000 years ago, but for all of the time since
then the light informing us of that fact has been making its way towards us. Its
distance in kilometres is

(3 × 105) × 60 × 60 × 24 × 365.25 × 166000 = 1.6 × 1018.

The size of a measured number clearly depends upon the physical units chosen,
light-years or kilometres in the above example. When we talk about large num-
bers below, we refer to whole numbers, all of the digits of which are significant,
not to measured quantities, for which only the first few digits are likely to be
accurate. The distinction between the three categories of number is easy to
grasp visually. One can write down a typical randomly chosen number in each
of the first three categories as follows:

1528 is small,
4852060365 is medium,
56457853125600322565752345019385012884720337503463 is large.
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We have a completely unambiguous way of representing large numbers, and
can distinguish between any two of them. We also have ways of adding and
multiplying two large numbers, by a scaled up version of the rules we are
taught in our primary schools. In other words we can manipulate large numbers
satisfactorily, although they do not retain the same practical relationship with
counting as small numbers do.

What Do Large Numbers Represent?

It is now time to discuss the relationship between counting and the natural
world. I claim that large numbers are only used to measure quantities. More
precisely there are no situations in the real world in which large numbers refer
to counted objects.

Let us start with the number of people in the world at the instant when the
second millennium ended. This was about 8 billion, so it is a medium number in
my system of classification. Nevertheless even this number is difficult to define
precisely, let alone evaluate. People are born and die over a period which may
last from a few seconds up to several hours. There is no way of specifying either
of these processes sufficiently precisely for us to be able to define a moment at
which they might be considered to happen. It follows that the number of people
in the world at any moment has no precise value.

Another example is the number of trees in a wood. Here the problem is
what constitutes a tree. In addition to well-established trees several decades
old, there will be saplings at all stages of growth, down to seeds which have
only just started germinating. The point at which one decides whether or not
to include something as a tree may affect the total by a factor of two or more.
Of course one may make an arbitrary decision, such as requiring the height of
a tree to be at least one metre, but this will still leave marginal cases. Even
if it happens not to, there is no particular merit in using this way of defining
tree-hood.

With genuinely large numbers the situation is far worse. Let us think about
the number of atoms in a cat. One can estimate this by weighing the cat and
estimating the proportions of atoms of the different chemical elements, but this
is not counting. If we insist on an exact answer and the cat had a meal a few
hours ago, do we regard the meal as a part of it, or when does it become a part?
The cat breathes in and out, leading to a constant flow of oxygen and carbon
dioxide atoms in and out of its lungs. At what exact stage are these regarded as
becoming or no longer being a part of the cat? Clearly these questions have no
answers, and the number of atoms in the cat has no exact meaning.

This problem cannot be avoided in any real situation involving large num-
bers. In an attempt to find a physical example which involves a precisely defined
large number, let us consider the atom-counting problem for air sealed inside
a metal box. In this case the number of atoms is not well-defined because of
the process of diffusion of gas through the walls of the box. How far into the
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walls of the box should an oxygen atom diffuse before it is regarded as a part of
the walls rather than a part of the gas? Of course, one can imagine a perfectly
impermeable box with a definite number of atoms inside it, but this then turns
into a discussion of idealized objects rather than actual ones.

The conclusion from considering examples of this type is that large numbers
never refer to counting procedures; they arise when one makes measurements
and then infers approximate values for the numbers. The situation with huge
numbers, defined below, is much worse. Scientists have no use for numbers of
this next order of magnitude, which are only of abstract interest.

Addition

The notion of addition is more complicated than we normally think. There are
in fact two distinct concepts, which overlap to a substantial extent.

Suppose we are asked to convince a sceptic that 4 + 2 = 6. We would
probably say that 4 stands for four tokens | | | | as a matter of definition, that
2 stands for two tokens | | and that addition stands for putting these groups of
tokens together thus creating | | | | | |, which is six tokens. A similar argument
could be used to justify the sum 13 + 180 = 193, but now we would have to
give rules for the interpretation of the composite symbol 13 as | | | | | | | | | | | | |
with similar but very lengthy interpretations of 180 and 193 as strings or blocks
of tokens.

This is not, however, the way in which anyone solves such a problem. We
learn tables for the sums of the numbers from 1 to 9 and also quite complicated
rules for adding together composite numbers (those with more than one digit).
Most people make the step between the two procedures for addition so success-
fully that they forget that there is a real distinction. However, when one sees
the difficulties a young child has learning the rules of arithmetic, it is obvious
how major a step it is.

To develop the point, suppose we wish to add the number

314159265358979323846264338327950288419716939937510

to itself. The rule-based approach to addition can be applied without any trouble.
(At least in principle. It might need several attempts to be sure you have the
right answer.) The problem is that it is very hard to argue that this is still an
abbreviation of a calculation with tokens, which cannot possibly be carried out.
It is all very well to say that it can be carried out in principle, but what does this
actually mean if it cannot be carried out in the real world? Edward Nelson and
others have advocated the idea that the addition of very large numbers means
no more than the application of certain rules. This is an ‘extreme formalist
position’ in the sense that it depends upon viewing the arithmetic of very large
numbers as a game played with strings of digits rather than an investigation
of the properties of independently existing entities. The rules are not arbitrary:
they developed out of the idea of putting tokens together in groups of ten and
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then groups of a hundred, and so on. But eventually the system of rules took
over until for large enough numbers that is all that is left. The tokens have
disappeared from the scene, since we cannot imagine huge numbers of them
with any precision.

To summarize, when adding small numbers we can use tokens or rules, and
observe that the two procedures always give the same answer. This fact is not
surprising because the rules were selected on the basis of having this property.
However for large numbers one can only use the rules. In the shift from small to
large numbers a subtle shift of meaning has occurred, so that for large numbers
the only way of testing a claimed addition is to repeat the use of the rules. The
rules are exactly what computers use to manipulate numbers. We like to feel
that we are superior to them because we understand what the manipulations
really mean, but our sense of superiority consists in being able to check that the
two methods of addition are consistent for small numbers.

Multiplication

In Shadows of the Mind Roger Penrose claimed that we can see that

79797000222 × 50000123555 = 50000123555 × 79797000222

without performing the two multiplications, as follows. Each side of the
equation represents the number of dots in a rectangle whose sides have the
appropriate lengths. Since the one rectangle is obtained by rotating the other
through 90◦ they must contain the same number of points. Penrose states that

we merely need to ‘blur’ in our minds the actual numbers of rows and columns
that are being used, and the equality becomes obvious.

Notice that the matter only becomes ‘obvious’ by blurring the numbers. This
is necessary since the numbers are so large that they cannot be represented by
rows of dots in any real sense. One can argue that the process involved is not
one of perception but one of analogy with examples such as 6 × 8 = 8 × 6, for
which Penrose’s argument is indeed justified. The analogy depends upon the
belief that 6 and 79797000222 are the same type of entity, when historically
the latter was obtained by a long process of abstraction from the former.

The fact that the product of two numbers does not depend upon the order
in which they are multiplied is called the commutativity identity. Symbolically
it is the statement that

x × y = y × x

for all numbers x and y. Its truth is clear provided the numbers are small
enough for us to be able to draw the rectangles of dots. The question then
becomes whether we can extend the notion of multiplication to much larger
numbers in such a way that the identity remains valid. It may be shown that
this is achieved by using the familiar rules for multiplication for large numbers.
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Fig. 3.1 Multiplication Using Rectangles

It may also be proved using Peano’s postulates for huge numbers (discussed
below). Having found an extension of the notion of multiplication which retains
its most desirable properties, eventually we decide that the extension defines
what is meant by multiplication, and forget the origins of the subject.

There is another reason for doubting Penrose’s explanation of why we
believe the commutativity law. In order to explain this I need to refer to entities
called complex numbers. In the sixteenth century Cardan and Viète showed
that certain calculations in arithmetic could be carried out more easily by intro-
ducing nonsensical expressions such as

√−5, ignoring the fact that negative
numbers do not have square roots. It was repeatedly observed that if one used
square roots of negative numbers in the middle of a calculation but the final
answer did not involve them, then the answer was always correct! It was later
realized that all of the paradoxes of this subject could be reduced to justifying
the use of the imaginary number

i = √−1.

In 1770 Euler wrote in Algebra:

Since all possible numbers that can be imagined are either greater than or
less than or equal to zero, it is evident that the roots of negative numbers
cannot be counted among all possible numbers. So we are obliged to say that
there are impossible numbers. Hence we have had to come to terms with such
numbers, that are impossible by their very nature and which, by habit, we call
imaginary because they only exist in the imagination.

Clearly he did not subscribe to the belief that complex numbers existed in some
Platonic realm.

The first stage in the demystification of complex numbers was taken by
Argand and Gauss around 1800 when they chose to represent the complex
number x + iy (already assumed to exist in some sense) by the point in the
plane with horizontal and vertical coordinates (x, y). The paradoxical square
root of minus one was then represented by the point with coordinates (0,1).
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Fig. 3.2 The Complex Number Plane

In 1833 Hamilton approached complex numbers the other way around. He
defined a complex number to be a point on the plane, and then defined the
addition and multiplication of such points by certain algebraic formulae. Fol-
lowing this he was able to prove that addition and multiplication had all of
the properties we normally expect of them with the additional feature that
i = (0, 1) satisfies i2 = −1. So within this context −1 does indeed have a square
root!

Hamilton’s work was revolutionary because it forced mathematicians to
come to terms with the fact that truth and meaning depend on the context.
Within the context of ordinary (real) numbers −1 does not have a square root,
but if the meaning of the word number is extended appropriately it may do so.
The same trick is used in ordinary speech. Throughout human history it was
agreed that humans would like to fly but could not. Now we talk about flying
from country to country as if this is perfectly normal. Of course we have not
changed, but we have redefined the word ‘fly’ so that it can include sitting inside
an elaborately constructed metal box. As a result of extending the meaning of
the word something impossible becomes possible.

It is extremely hard for us to put ourselves in the frame of mind of Euler
and others, who could not believe in complex numbers but could not abandon
them either, because of their extraordinary usefulness. Psychologically the
acceptance of complex numbers came when mathematicians saw that they
could construct complex numbers using ideas about which they were already
confident. This was a revolution in mathematics, which involved abandoning
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the long-standing belief that mathematics was the science of magnitude and
quantity.2 It opened up the possibility of changing or extending the meaning of
other terms used in mathematics, and of creating new fields of study simply by
declaring what the primary objects were and how they were to be manipulated.
In this respect mathematics is now a game played according to formal rules,
just like chess or bridge.

The system of complex numbers is enormously useful, and mathematicians
now feel as comfortable with them as they do with ordinary numbers. The
important point for us is that the multiplication of complex numbers is commut-
ative. The only reason for the truth of the commutativity identity z×w = w×z

for complex numbers is that one can evaluate both sides of the equation using the
definition of multiplication and see that it is indeed true. Hamilton’s subsequent
invention of quaternions in 1843 was an even more revolutionary idea. These
were also an extension of the concept of number, but in this case allowing the
possibility that z×w �= w × z. The technicalities need not concern us, the cru-
cial point being that nobody previously had thought that the commutativity of
multiplication was among the things a mathematician might consider giving
up. Hamilton’s conceptual breakthrough led to Cayley’s systematic devel-
opment of matrix theory in 1858 and Clifford’s introduction of his Clifford
algebras in 1878; in both of these the commutativity of multiplication was
abandoned.

The importance of these ideas can hardly be exaggerated. If one had to
identify the two most important topics in a mathematics degree programme, they
would have to be calculus and matrix theory. Noncommutative multiplication
underlies the whole of quantum theory and is at the core of some of the most
exciting current research in both mathematics and physics.

We conclude: the fact that multiplication of ordinary and complex numbers
are commutative has to be proved, and this is possible as soon as one has written
down precise definitions of the two types of number and of multiplication.
The fact that the multiplication of quaternions or matrices is not commutative
is equally a matter of proof. Reference to the rotation of rectangles may be
used to persuade children that the commutativity property is true for small
numbers, but it does not provide a proper (non-computational) proof for all
numbers.

Inaccessible and Huge Numbers

There are known to be infinitely many numbers. The argument for this is
simple—there cannot be a biggest number, since if one reached it by counting,
then by continuing to count one finds larger numbers. For numbers radically
bigger than 10100, however, we have no systematic method of doing compu-
tations. By radically bigger I do not mean 101000, even though it is certainly
vastly bigger than 10100. Nor do I mean

213,466,917 − 1
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which has just established a new record as the largest known prime. This number
has just over four million digits, and would fill a very large book if printed out
in the usual decimal notation. Incidentally the proof that this number is indeed
a prime took 30,000 years of computer processing time.

By huge I mean a number such as 1010100
, which has 10100 digits. The task

of writing down the digits of a typical ‘randomly chosen’ number with 10100

digits in the usual arabic notation is beyond the capacity of any conceivable
computer—it would take all of the atoms in the Universe even if one could
store a trillion digits on each atom. Nor can one carry out arithmetic with such
numbers: the problem

88888 + 99999 = ?

just sits there mocking our impotence.
A lot is known about prime numbers both theoretically and computationally.

To illustrate the latter aspect, there are exactly 9592 primes with five or fewer
digits, the smallest being 2 and the largest being 99991. In order to illustrate the
failure of systematic computation for huge numbers, let us define P to be the
number of primes which have fewer than a trillion digits. Quite a lot is known
about the distribution of prime numbers, and the prime number theorem allows
one to evaluate P quite accurately. On the other hand everything we know about
prime numbers suggests that the question

Is P an even number?

will never be answered. A Platonist would regard this as having an entirely
straightforward meaning, but this does not help him or her one iota to deter-
mine the answer. In fact a Platonist is no more likely to solve this problem
than a mathematician who regards proving things about huge numbers as a
formal game.

I frequently hear mathematicians saying that questions such as the above
pose no problem ‘in principle’. This phrase makes me quite angry. It might
mean ‘I know it is not actually possible but would like to close my mind to
this fact and pretend that I could do it if I really wanted to’. Another possible
meaning is ‘I do not regard the difficulty of carrying out a task as an interesting
issue’. Either interpretation leaves the speaker cut off from the mainstream of
human activities. The second amounts to a rejection of all matters associated
with numerical computation, a subject which contains many challenging and
fascinating problems.

Even if one has a formula for a particular huge number one may not be
able to answer completely elementary questions about it. Consider the famous
Fibonacci sequence

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . .
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The rule for generating this sequence is that each term is the sum of the previous
two. Letting fn denote the nth term one may compute

f100 = 354224848179261915075

f1000 = 434665576 . . . 6849228875

f10000 = 336447648 . . . 947336875.

The number f1000 has 209 digits while f10000 has 2090 digits! Now let us now
consider fn for n = 1010100

. From a naive point of view there appears to be no
difficulty in knowing what we mean by this number: one just keeps on adding
for an extremely long time, using an amount of paper which steadily increases
as the numbers get bigger. Unfortunately in practice there appears to be no way
of determining even the first digit of this number. The exact definition and the
known analytic formula for fn are equally powerless to help us, because the
numbers involved have so many digits.

Some numbers, such as 1010100
, are perfectly simple to write down in spite

of being huge. The following argument shows that most are completely inac-
cessible. One may classify the complexity of a number in terms of its shortest
description. Thus

314159265358979323846264338327950288419716939937510

is lengthy when written down as above, but has a much simpler description as
the integer part of π × 1050. Defining the complexity of a number in terms of
its shortest possible description is fraught with problems if expressed so briefly,
because of phrases such as

The smallest number whose definition requires at least a million symbols.

Such a number cannot exist, since the above phrase defines it in 73 symbols
including spaces. The accepted way out of this self-reference paradox is to
replace it by the phrase

The smallest number whose definition using the programming language X

requires at least a million symbols.

Here X could be Java, C++, some extension of these which permits strings of
digits of arbitrary length to represent numbers, or any other high level program-
ming language. The number defined depends on the programming language
used, but for our purposes the important issue is that one does not get trapped
by the illogicalities of natural language. Using this definition of complexity we
see that 1010100

is very simple, since it requires only 13 symbols when written
in the form 10ˆ{10ˆ{100}}, which C++ is able to understand.
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Some truly enormous numbers can be written down within the above
constraints. For example we can put

a = 9
b = 9a

c = 9b

d = 9c

without beginning to approach the self-imposed constraints on size.
Standard high level programming languages allow one to go far beyond this

by means of the definition

n:=1;
for r from 1 to 100 do
n:=nn+ 1;
end;
N:=n;

For those who do not feel at ease with computer programs, it describes a pro-
cedure for generating numbers starting from 2. The next number is 22 + 1 = 5.
The third is 55 +1 = 3126. The fourth number in the list, namely 31263126 +1,
is still just small enough to be calculated by current PCs: it has 10,926 digits and
can be printed out on about ten pages of A4 paper. The fifth number is too large
for any computer constructible in this universe to evaluate (in the usual decimal
notation). Only an insignificant fraction of the digits in the answer could be
stored even if one allocated a trillion digits to every atom in the universe. The
hundredth number in the list, which we call N , is mind-bogglingly big, and
little else can probably be said about it.

Writing down the shortest description of a number is quite different from
representing it by a string of digits. In spite of this, the following technical
argument shows that using shortest descriptions does not materially alter how
many numbers can be written down explicitly. We consider a programming
language which uses a hundred types of symbol, including letters, numbers,
punctuation marks, spaces, and line breaks. Suppose we consider numbers
whose definition can be given by a program involving no more than a thousand
such symbols. The total number of ‘programs’ which we can write down by
just putting down symbols in an arbitrary order is vast, but it can be evaluated
by using a coding procedure. We first list the hundred symbols in some order,
putting the numbers from 01 to 99 and finally 00 underneath them. The list
might start with:

q w e r t y u i o

01 02 03 04 05 06 07 08 09

p a s d f g h j k

10 11 12 13 14 15 16 17 18
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Then we replace each symbol in the program with the number underneath it. So
‘queasy’ would be replaced by 010703111206. The result is to replace every
program by a number with at most 2000 digits, so the total number of such
programs is 102000. Actually almost all of them are gibberish, so the number
of grammatical, or meaningful, programs is very much smaller. Programs do
indeed allow one to write down a few numbers which are ridiculously large,
but they do not provide a systematic way of writing down all such numbers.

The conclusion is that whether we define numbers by strings of digits, or
by descriptions in a chosen programming language, there is little difference in
how many numbers we can effectively express. Neither approach overcomes the
basic information theoretic problem that there are limits on how many different
numbers we can hope to write down explicitly, and therefore to what we can
actually compute.

Peano’s Postulates

In everyday life we constantly rely upon the idea that if two events have regularly
been associated, they will continue to be so. Thus we ‘know’ that if we bring
our hands together sharply, we will hear a clapping noise. We believe this not
because we know anything about the physics of sound production, but simply
on the basis of experience. In Chapter 9 I will discuss Hume’s criticisms of
this type of induction, but here I wish to consider what is called mathematical
induction.

This is not the very dangerous idea that you are justified in believing a
statement such as

For every positive number n the expression n2 + n + 41 is prime.

simply by testing it for more and more values of n until its repeated validity
persuades you of its general truth. The first few values of the above ‘Euler
polynomial’ are

43, 47, 53, 61, 71, 83, 97, 113, 131, 151, 173, 197, 223, . . .

which are certainly all prime numbers. After testing several more terms one
might easily come to the conclusion that the claim is true. Actually it is false,
the smallest value of n for which the expression is not prime being n = 40.

In order to prove statements about all numbers, of whatever size, mathem-
aticians use abstract arguments based on Peano’s postulates for the integers.

Peano wrote down his postulates (or axioms) in 1889. They are

0 is a number.
For every number n there is a next number, which we call its successor.
No two numbers have the same successor.
0 is not the successor of any number.
If a statement is true for 0 and, whenever it is true for n it is always also true
for the successor of n, then it is true for all numbers.
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The critical axiom above is the last, called the principle of mathematical
induction. It is usually written in the more technical and compressed form

If P(0), and P(n) implies P(n + 1), then P(n) for all n.

Here P(n) stands for a proposition (statement) such as

(n + 1)2 = n2 + 2n + 1

or
Either n is even or n + 1 is even.

The principle of induction is not a recipe which solves all problems about
numbers effortlessly, but it is the first thing to try.

A present-day Platonist might say that the truth of Peano’s postulates can
be seen by direct intuition. In Science and Hypothesis, 1902 Henri Poincaré
adopted the Kantian view that ‘mathematical induction is imposed on us,
because it is only an affirmation of a property of the mind itself’. These argu-
ments were not accepted by Bertrand Russell and other logicians early in the
twentieth century who tried to construct the theory of numbers from the more
certain and fundamental ideas of set theory. If one looks at the historical record,
Russell’s caution about the ‘obviousness’ of induction is certainly justified. The
Greeks did not use it, although it is possible to detect hints of such ideas in a
few isolated texts.3 Its first explicit use in mathematical proofs is often ascribed
to Maurolico in the sixteenth century. Even today, many mathematics students
who have been taught the principle are reluctant to use it, preferring to rely
upon direct algebraic proofs of identities if they can.

Alternatively we may regard Peano’s postulates as a system of axioms like
any other. That is they are a list of rules from which interesting theorems may
be proved. These theorems agree with what we know for small and medium
numbers because we can see that those satisfy the stated postulates—except
that the obviousness of the last one becomes less clear as the numbers increase,
and lose their obvious connection with counting. If the historical record is a
guide, Peano’s axioms are less obvious than those of Euclidean geometry. They
may be seen as a part of a formal system of arithmetic. For an entertaining
account of the complexities involved in setting up such a formal system see
Gödel, Escher, Bach: An Eternal Golden Braid by Douglas Hofstadter.

Paul Bernays considered that ‘elementary intuition’ faded out as numbers
become larger:

Arithmetic, which forms the large frame in which the geometrical and physical
disciplines are incorporated, does not simply consist in the elementary intuit-
ive treatment of the numbers, but rather it has itself the character of a theory
in that it takes as a basis the idea of the totality of numbers as a system of
things as well as of the idea of totality of the sets of numbers. This systematic
arithmetic fulfils its task in the best way possible, and there is no reason to
object to its procedure, as long as we are clear about the fact that we do not
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take the point of view of elementary intuitiveness but that of thought formation,
that is, that point of view Hilbert calls the axiomatic point of view . . . However,
the problem of the infinite returns. For by taking a thought formation as the
point of departure for arithmetic we have introduced something problematic.
An intellectual approach, however plausible and natural from the systematic
point of view, still does not contain in itself the guarantee of its consistent real-
izability. By grasping the idea of the infinite totality of numbers and the sets
of numbers, it is still not out of the question that this idea could lead to a con-
tradiction in its consequences. Thus it remains to investigate the question of
freedom of contradiction, of the ‘consistency’ of the system of arithmetic.4

Even if we adopt the first position (naive realism), we have to admit that for
huge numbers, Peano’s postulates provide the only route to our knowledge of
them—the only way of convincing a sceptic that a claim about huge numbers
is true makes use of Peano’s postulates or something which follow from them.
The following example illustrates the issues involved.

The statement that 8 is a factor of 9n − 1 means that if one divides 9n − 1
by 8 then there is no remainder, or equivalently that

9n − 1 = 8 × s

for some number s. A geometrical proof of this statement for n = 2 can be
extracted from Figure 3.3. A geometric proof is also possible for n = 3 by
decomposing a 9 × 9 × 9 cube in a similar fashion.

For n = 4 one may check that

94 − 1 = 8 × (1 + 9 + 92 + 93)

8 × 8 8

8 1

Fig. 3.3 Decomposition of a 9 × 9 Square
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by explicitly evaluating both sides. This correctly suggests the general formula

9n − 1 = 8 × (1 + 9 + 92 + · · · + 9n−1)

for all numbers n. However, this expression cannot be checked directly for
n = 10100 because the number of additions involved would take impossibly
long. Also the formula involves the mysterious . . . which invites one to imagine
doing something, and should not be a part of rigorous mathematics. A more
formal expression would be

9n − 1 = 8 ×
n−1∑

r=0

9r

in which the summation symbol
∑

is given a formal meaning by means of
the Principle of Induction. So eventually one has to believe that the use of this
Principle is permissible in order to prove that 8 is a factor of 9n − 1 for all n.

One now comes to the philosophical divide. A Platonist believes that the
Principle of Induction is a true statement about independently existing objects.
The alternative view is that mathematicians are investigating the properties of
systems which we ourselves construct, what Bernays called thought formations.
Motivated by our intuition of small numbers, we decide to include the Principle
of Induction among the rules which we use to prove theorems. Theorems cor-
rectly proved within such a system are true, because truth is always understood
as relative to some agreement about the context.

In this view mathematics is not like exploring a country which existed long
before the explorer was born. It is more like building a city, with its unlimited
potential for muddle, error, and growth. We lay the foundations of each building
as well as we can, but accept the possibility of collapse. If a building does fall
down, we rebuild it, learning from our errors. We also examine other buildings
to see if they have the same design faults. Gradually the city becomes more
impressive and better adapted to our needs, but it always remains our creation.

There still remains something to be said about Peano’s Principle. If one is
not willing to declare that its truth is self-evident, how can one justify its use for
large numbers, the ones which scientists have a real use for? In linguistic terms,
if we define large numbers by the strings of digits used to manipulate them (their
syntax), then we have removed the only reason for believing Peano’s postulate,
which is based on the meaning of number (their semantics). This seems a fatal
blow to formalists who would argue that large numbers are no more than long
strings of digits. Fortunately one can prove Peano’s Principle for large number
strings in a few lines using only conventional logic. This resolves the objection.5

Infinity

If one can entertain doubts about the meaning of very large finite numbers, then
it seems that we have no hope of understanding the infinite. My intention here is
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to persuade you that there are many different meanings to ‘infinity’, written as
∞, all of which are of value in the appropriate context. Each of them captures
some aspect of our intuitive ideas about the infinite, which, as finite beings, we
cannot perceive directly. In Chapter 5 we will discuss whether infinite objects
actually ‘exist’, and what this might mean.

The obvious way of dealing with infinity is to write down rules for manip-
ulating it, such as ∞ × ∞ = ∞ and 1 + ∞ = ∞ and 1/∞ = 0. One quickly
finds that great caution is needed in manipulating such algebraic expressions.
Otherwise one may obtain nonsensical results such as

0 = ∞ − ∞ = (1 + ∞) − ∞ = 1 + (∞ − ∞) = 1 + 0 = 1

or

1 = ∞
∞ = 2 × ∞

∞ = 2.

Nevertheless infinity is used in this manner by all analysts, who learn to avoid
the pitfalls involved.

There is a different way of introducing infinity, which is quite close to the
modes of thought in the subject called non-standard analysis. Namely one intro-
duces a symbol ∞ and agrees to manipulate expressions involving it according
to the usual rules of algebra. In this context ∞×∞ is not merely different from
∞, but vastly (indeed infinitely) bigger. Similarly 1/∞ is not equal to 0 but it
is an unmeasurably small number, called an infinitesimal. Finally ∞ is bigger
than every positive integer, but ∞ + 1 is bigger than ∞. It can be shown that if
one follows certain simple rules there is no inconsistency in this system, which
does capture some of the properties which we think infinity should have. Note,
however, that the two notions of infinity above are different and incompatible
with each other. Which we decide to use depends upon what we want to do.

The symbol ∞ also appears as a shorthand for statements which avoid
its use. Thus writing that something converges to 0 as n tends to infinity is
just another way of writing that it gets smaller and smaller without ceasing.
The corresponding formal expression

lim
n→∞ an = 0

means neither more nor less than

∀ε > 0.∃Nε.n ≥ Nε → |an| ≤ ε.

One need not understand either of these formulae to see that the infinity in the
first has miraculously disappeared in the second, being replaced by the logical
symbols ∃, ∀, →. The credit for providing this rigorous ‘infinity free’ definition
of limit goes to Cauchy in Cours d’Analyse, published in 1821. The symbol
∞ is considered to have no meaning in isolation from the context in which it
appears. Analysts agree that this type of use of the symbol does not involve any
commitment to the existence of infinity itself.
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The above notions of infinity provide more precise versions of previously
rather vague intuitions. Since there are several intuitions one ends up with
several different infinities. The above is typical of how mathematicians think:
we start from vague pictures or ideas, about infinity in this case, which we
try to encapsulate by rules, and then we discover that those rules persuade us
to modify our mental images. We engage in a dialogue between our mental
images and our ability to justify them via equations. As we understand what we
are investigating more clearly, the pictures become sharper and the equations
more elaborate. Only at the end of the process does anything like a formal set
of axioms followed by logical proofs appear. Eventually we come to behave as
if the ideas which we have reached after much struggle already existed before
we formulated them. Perhaps later generations do not realize that other ideas
were pursued and abandoned, not because they were wrong but because they
were less fruitful.

Discussion

The division of numbers into small, medium, large, and huge was a device used
to focus attention on the fact that successive stages of generalization involve
losses as well as gains. At one extreme numbers really do refer to counting,
but at the other the relationship with counting only exists in our imagination.6

The most abstract, and recent, concept of number depends upon formal rules
of logic and Peano’s property. By distinguishing between these four different
types of number I seem to be violating the principle of Ockham’s razor:

non sunt multiplicanda entia praeter necessitatem

i.e. entities are not to be multiplied beyond necessity. The following are some
positive reasons for distinguishing between the types of number. The fact that
computers can manipulate large numbers with great efficiency, but are pretty
hopeless beyond that, suggests fairly strongly that huge numbers are genuinely
different from large ones. In algorithmic mathematics the size of the numbers
involved in a procedure is one of the primary issues, and the appearance of huge
numbers indicates that the procedure is not of practical use. Abstract existence
proofs often provide little information about the properties of the entity proved
to exist; often they do little more than motivate one to seek to find more direct
computational methods of approach which provide more information about the
solutions.

A version of the following paradox was known as the ‘Sorites’ in the
Hellenistic period, but in the form below it is due to Wang.7 It states

The number 1 is small.
If n is small then n + 1 is small.
Therefore, by induction, all numbers are small.

It is as clear to philosophers as to others that the conclusion of this argument is
incorrect, so the only issue can be to explain where the error lies. You may ask
why anyone should bother about such a trivial issue. The answer is that there
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may be other arguments which are incorrect for the same reason, even though
in these other cases it may not be at all obvious that an error has been made.
The same applies to the exhaustive enquiries held after a crash of a commercial
airliner. They cannot save the life of anyone who died, but, if the reason for the
crash is discovered, it may be possible to prevent it happening again.

Michael Dummett has discussed this paradox at length and raised doubts
about whether one can apply the normal laws of logic to vague properties such
as smallness.8 There are in fact (at least) two ways of resolving such problems,
both of which would be perfectly acceptable to any mathematician, if not to
philosophers. The simplest is to simply declare numbers less than a million
(say) to be small and others to be big. Dummett mentions this possibility but
declares it to be a priori absurd; he ignores the fact that this is precisely the
way in which the law distinguishes between children and adults, another vague
issue. An alternative is to attach an index s(n) of smallness to every number,
by a formula such as

s(n) = 106

n + 106
.

Using this formula, numbers which we think of as small get a smallness index

close to 1, while very large numbers get an index close to 0. The particular
formula above assigns the smallness index 0 ·5 to the number one million, so if
one uses this formula one would regard a million as being intermediate between
small and large. We could then say that the common notion of smallness merely
attaches the adjective to all numbers for which the speaker considers the index to
be close enough to 1, but all precise discussions should use the index. Either of
these proposals immediately dissolve the paradox. There is even a mathematical
discipline which studies concepts which do not have precise borderlines, called
fuzzy set theory.

The status of the Peano property is different for numbers of each size. For
‘counting’ numbers its truth is simply a matter of observation. For numbers
defined as strings of digits I have shown how to prove it in a recent publication.
For huge or formal numbers it is an abstract axiom. Each of the three ways
of looking at numbers has its own interest, and one learns valuable lessons
by finding out which problems can be solved within each of the systems. We
should distinguish between the features of the external world which lead one to
some idea (counting in the present context), and the mathematical system we
have invented to extend that initial idea (formal arithmetic). Historically it is
clear that our present idea of number is far removed from that of our ancestors,
and that we may never have a good way of handling most huge numbers.

The belief that individual numbers exist as objects independent of ourselves
is far from being accepted by philosophers. Paul Benacerraf has examined in
detail a number of different ideas about what numbers might be if they do exist,
coming to the conclusion:

Therefore numbers are not objects at all, because in giving the properties (that
is, necessary and sufficient) of numbers you merely characterize an abstract
structure—and the distinction lies in the fact that the ‘elements’ of the structure
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have no properties other than those relating them to other ‘elements’ of the
same structure. . . . Arithmetic is therefore the science that elaborates the
abstract structure that all progressions have in common merely in virtue of
being progressions. It is not a science concerned with particular objects—the
numbers.9

Let me give a brief flavour of his argument. The number ‘three’ may be rep-
resented by the symbols III or 3. One may construct the number using the
supposedly more fundamental ideas of set theory in at least two different ways.
All of these methods of expressing numbers yield the formula 4+1 = 5, some-
times as a theorem and sometimes as a definition of 5 or of +. Similarly with
other rules of arithmetic. There seems to be no way of persuading a sceptic that
any of these expressions for the number is more fundamental than any other.
Benacerraf concludes that ‘three’ cannot be any of the expressions, and that
one can use any progression of symbols or words to develop an idea of number.

Let us nevertheless concede for the moment that small or ‘counting’ num-
bers exist in some sense, on the grounds that we can point to many different
collections of (say) ten objects, and see that they have something in common.
The idea that the Number System as a whole is a social construct seems to lead
one into fundamental difficulties. I will examine these one at a time.

If one is prepared to admit that 3 exists independently of human society
then by adding 1 to it one must believe that 4 exists independently. Continuing
in this way seems to force the eventual conclusion that 1010100

exists independ-
ently. But as a matter of fact it is not physically possible to continue repeating
the argument in the manner stated until one reaches the number 1010100

. We
must not be misled by the convention under which mathematicians pretend that
this is possible ‘in principle’.

If one does not believe that huge numbers exist independently then how
can they have objective properties? The answer to this question is similar to
that for chess. Constructed entities do indeed have properties, and while some
of these may just be conventions, others may not be under our control. We
decide on rules which we will obey in chess, and then we play according to
the rules. Our agreement about the truth of theorems is of the same type as
the agreement of people in the chess world about the correctness of a solution
to a chess problem. One difference between mathematics and chess-players
is that mathematicians are constantly altering the rules to see if we can find
more interesting games. However, mathematicians may only change the rules
within certain conventionally prescribed limits or they are deemed no longer to
be doing mathematics. For example they cannot make the rules depend upon
whether or not it is a religious holiday. Nor can they make the rules depend
upon the geographical location of the practitioner, as can lawyers.

Pure mathematicians reject issues relating to religion, race, nationality,
gender, and even views about the structure of the world as valid bases for argu-
ments, so it is not entirely surprising that they have been able to achieve a
considerable consensus on the very rarified world remaining. Once one pro-
gresses sufficiently far in the creation of any social structure, whether it be
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mathematics or law, it takes on a life of its own, dictating what can and cannot
be done. Every now and again controversies arise even in mathematics, but they
may be examined for years or even decades before a consensus emerges. Even
then the issues involved may be raised again if it appears worthwhile to do so;
as time passes the task becomes ever greater because of the accumulated work
based on the dominant tradition.

There is a final question. If one does not believe that many of the entities
in mathematics have an independent existence, how does one account for the
extraordinary success of mathematics in explaining the world? There cannot
be a simple answer to this question, to which we will return in the concluding
section of the book. One part of the answer is that we understand the universe
to the extent that we can predict its behaviour. Our ‘extraordinary success’ is
only extraordinary by standards which we ourselves have set. We need to keep
reminding ourselves that there exist chaotic phenomena which we will never be
able to predict whether or not we use mathematical methods. Our own existence,
both as a species and individually, depends upon historical contingencies whose
details could not possibly be explained mathematically. While new scientific
theories will certainly be developed, we do not expect these to be able to bypass
the above problems. Quantum theory indicates that at a small enough scale
prediction is fundamentally impossible, except in a probabilistic sense. We will
see some of the evidence which justifies these claims in later chapters.

Notes and References

[1] A similar division was described by Paul Bernays [Bernays 1998], in an
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4
How Hard can Problems Get?

HEALTH WARNING
The next two chapters contain some genuine mathematics. If you are
allergic to this, hold your breath and pass as quickly as possible through
the affected areas.

Introduction

The stock portrait of a pure mathematician is of a thin, introverted person, who
is socially inept and likes to sit alone contemplating unfathomable mysteries.
There is more than a grain of truth in this image. On the other hand I know
mathematicians who are continuous balls of energy. A few have acquired the
status of prophets in their own lifetimes, and are regularly surrounded by rings
of disciples. Some have long term goals towards which they direct their energies
for years on end. Yet others spend their lives hacking through a jungle, hoping
to find something of interest if only they persist for long enough.

The one thing which unites all these different people is incurable optimism.
Not that this is obvious! Gödel proved that there are mathematical problems
which are insoluble by normal methods of argument, but all mathematicians are
sure that their own particular concern does not fall within this category. Indeed
they have immense faith that if they persist long enough they will surely make
some progress in resolving the issue to which they are devoting their energies.

Roger Penrose based his popular books on the argument that while Gödel’s
theorem constrains computing machines, human beings can transcend its limita-
tions. Put briefly they can ‘see’ the truth without the need for chains of logical
argument. To explain this he postulates that microtubules in neurons allow the
influence of quantum effects on conscious thought. I do not have the expertise
to judge whether microtubules and consciousness have some deep connection,
and am happy to leave time to judge that issue. I am, however, less happy
with Penrose’s belief that human beings have potentially unlimited powers of
insight. Indeed it strikes me as astonishing, since all of our other bodily organs
have obvious limits on their capacities. However, what different people do or
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do not find incredible is of less significance than what we discover when we
look at the evidence.

In this chapter I describe a few of the outstanding mathematical discoveries
which have taken place during the last half century. They were not selected
randomly: each of them says something about how far human mathematical
powers extend. This, rather than their mathematical content, is also what
I concentrate on when discussing them. Together they suggest that we are
already quite close to our biological limits as far as the difficulty of proven
theorems is concerned. This should not be taken as indicating that mathematics
is coming to an end. New fields are constantly opening up, and these always start
with ideas which are much more easily grasped than those of longer established
fields. It is likely that interesting new mathematics will continue to appear for
as long as anyone can imagine, because we will constantly discover new types
of problem. This, however, is quite a different issue.

When mathematicians talk about hard problems, we may mean one of sev-
eral things. The first relates to problems which are hard in the mundane sense
that great ability and effort are needed to find the solutions. The second sense
is more technical and will be explained in the section on algorithms. There are
finally statements which are undecidable within a particular formal system in
the sense of Gödel; we will not discuss Gödel’s work extensively since much
(possibly too much) has already been written about the subject.

The remainder of this chapter may be omitted without serious loss. The
topics which I have chosen are completely independent, and you are free to
read any or all as you wish. (There is no examination ahead!)

Before considering very hard problems let us look at one of intermediate
difficulty. Pure mathematics and in particular arithmetic are often said to be a
priori in the sense that the truths of theorems do not depend upon any empirical
facts about the world. It is sometimes said that even God could not stop the
identity 32 + 42 = 52 from being true! In 1966 Lander and Parkin discovered
the identity

275 + 845 + 1105 + 1335 = 1445

by a computer search,1 thus disproving an old conjecture of Euler that the
equation

a5 + b5 + c5 + d5 = e5

has no solutions such that a, b, c, d , e are all positive whole numbers. The solu-
bility of this equation is an example of an a priori fact. On the other hand it has
a definite empirical tinge, in the sense that the solution was only discovered by
a computer, and verifying that it is indeed a solution would involve about six
pages of hand calculations. I know of no proof of solubility which provides the
type of understanding a mathematician always seeks, and there is no obvious
reason why a simpler proof should exist.
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Fig. 4.1 The Welsh Local Authorities

The Four Colour Problem

The four colour problem concerns the number of colours needed to cover a
large plane area divided up into regions (a map) in such a way that no two
neighbouring regions have the same colour. The conjecture is (or rather was)
that four colours suffice for any conceivable map.

The problem was formulated by Guthrie in 1852, and over the next hundred
years a number of incorrect proofs of the conjecture were found. In 1976 Appel
and Haken used a combination of clever mathematical ideas with lengthy com-
puter calculations to provide a genuine proof. There were some blemishes in
their first published solution, but these were later corrected.

Their method could not involve an enumeration of all possible cases, since
there are infinitely many maps. They devised an ingenious procedure to reduce
the problem to one which could be solved in a finite length of time. Unfortu-
nately they were not able to solve it by hand because the finite problem still
involved too many cases, and they had to use 1200 hours of computer time
to complete the proof. In spite of subsequent simplifications of the method,



88 Goldbach’s Conjecture

the original proof was never fully checked by other mathematicians. Recently
an independent but related proof needing considerably less computer time has
been completed by Robertson, Sanders, Seymour, and Thomas. It therefore
seems almost certain that the theorem is true, but its proof is still not fully
comprehensible.

It is only fair to say that many mathematicians reacted rather negatively to
this proof of the four colour theorem. In their view the issue was not whether
the theorem was true, but why it was true (if indeed it was). The computer
here acts as an oracle: it tells you the answer, but it is beyond your powers to
check its calculations. If mathematics is about understanding, that is human
understanding, then no satisfactory solution of the problem has yet been found.

Tymoczko put it differently: the proof of the four colour theorem marks a
fundamental philosophical shift in mathematics. It makes the truth of at least one
theorem an empirical matter, in the sense that we have to rely on evidence from
outside our own heads to complete the argument.2 What of the future? One pos-
sibility is that more and more problems will be discovered whose solution can
only be obtained by an extensive computer-based search. Many mathematicians
fervently hope that this will not happen, but it is entirely plausible.

Goldbach’s Conjecture

This famous conjecture, proposed by Goldbach in a letter to Euler in 1742, states
that every even number greater than 4 is the sum of two odd primes. Its truth is
still unknown, although a large number of similar conjectures have now been
proved. The conjecture has been confirmed for all numbers up to 1014, which
would be sufficient evidence of its truth for anyone except a mathematician. It
has also been proved that it is asymptotically true in the sense that if one lists the
exceptions (assuming that there are some), they become less and less frequent
as one progresses.3

It may turn out that Goldbach’s conjecture is similar to the four colour
theorem, and that a proof will depend upon a large computer search. Zeilberger
even describes the possibility that mathematics might develop into a fully
empirical science.

I can envisage a paper of c.2100 that reads: We can show in a certain pre-
cise sense that the Goldbach conjecture is true with probability larger than
0.99999 and that its complete proof could be determined with a budget of $10
billion.4

There is, however, a worse possibility. Suppose that Goldbach’s conjecture is
false and that

1324110300685 (a million further digits) 75692837093348572

is the smallest number which cannot be represented in such a way. Suppose also
that the shortest way of proving the falsity is by a brute force search. In such a
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case it is unlikely that the human race will ever discover that the conjecture is
false, even if we are allowed to make full use of computers as powerful as we
will ever have.

Fermat’s Last Theorem

Fermat’s last theorem (FLT) is the proposition that it is impossible to find
positive integers a, b, c and an integer m ≥ 3 such that

am + bm = cm.

In 1637 Fermat wrote a marginal note in a book claiming that he had found a
proof that his equation was insoluble. Nobody now takes his claim seriously,
although there is no reason to doubt his sincerity. An enormous amount of work
on the problem eventually led to the result that if Fermat’s equation does have
a solution with m ≥ 3 then m ≥ 1000000.

Many editors of mathematical journals received papers claiming to have
found proofs of FLT. The one which sticks in my memory came from someone
who claimed that the problem was mis-stated. Fermat was supposed to have
claimed that there did not exist positive numbers a, b, c such that am +bm = cm

for all m ≥ 3. There are three problems with this theory. Firstly it is wrong.
Secondly this new version is entirely trivial. Thirdly no mathematician cared
what Fermat had written, or even whether he had ever existed. The point is
rather that what is called FLT is a very interesting and deep problem whether
or not it was devised by Fermat! Mathematicians use names as labels, and
regularly attribute theorems to people who would not have understood even the
statements, let alone the proofs.

Fermat’s problem is not simply an isolated puzzle, of interest only to number
theorists. It is part of a subject called the arithmetic of elliptic curves, which has
ramifications throughout mathematics. Indeed elliptic curves provide the best
current algorithms for factoring large integers, a matter of enormous practical
importance in modern cryptography.

In June 1993 Andrew Wiles, a British mathematician working in Princeton,
New Jersey, came out of a period of about seven years of near monastic seclu-
sion to give a lecture course on elliptic curves at the Isaac Newton Institute
in Cambridge, England. At the end of this he announced that he had solved
Fermat’s problem! The news appeared in newspapers all over the world, mak-
ing him an instant celebrity, a unique achievement for a pure mathematician.
Wiles acknowledged a serious error in the proof in December 1993, but with
the help of Richard Taylor he patched this up within a year and the result was
solid. This is one of the hardest mathematical problems solved up to the present
date. The proof is beyond the intellectual grasp of most of the human race, and
would take about ten years for a particularly gifted 18 year old to understand.

This problem took over three hundred years from its initial formulation to its
solution, during which period many partial results and insights were obtained.
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When the time was ripe it needed about seven years out of the life of one of
the most outstanding mathematicians of the twentieth century to obtain the
solution. But at least the result could be grasped in its entirety by a single
person of sufficient ability and dedication. Our next example is far worse in this
respect.

Finite Simple Groups

A group is a mathematical object containing a number of points (elements) in
which multiplication and division are defined, but not addition. Groups are of
major importance in mathematics for the description of symmetries, or rota-
tions, of objects. There are 60 rotations of the dodecahedron below (Figure 4.2)
which take it back to exactly the same position, including five around the axis
shown. Other polyhedra, even those in higher space dimensions, have their own
symmetry groups.

Mathematicians have long wanted a complete list of symmetry groups.
Among these are some which are regarded as the most fundamental, or
‘simple’, because they cannot be reduced in size in a certain technical sense.
In 1972 David Gorenstein laid out a sixteen point programme for the clas-
sification of finite simple groups, and by the end of the decade a worldwide

Fig. 4.2 Rotation of a Dodecahedron
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collaboration under his leadership had led to the solution of the problem.
The final list can be written down in a few lines, and contains a small num-
ber of exceptional, or sporadic, groups, the biggest of which is called the
Monster. This can be regarded as the rotation group of a polyhedron, but
in 196883 dimensions rather than the usual three dimensions of physical
space!

cyclic groups of prime order
alternating groups on at least five letters

groups of Lie type
26 exceptional groups.

Although the list is short, the complete proof was thousands of pages long,
and some crucial aspects were never completed (a mathematician’s way of
saying that there were serious mistakes in some of the papers). A new project to
write out a simplified proof is likely to involve twelve volumes and more than
3000 pages of print.

We have described a theorem whose proof only exists by the collective
agreement of a community of scholars. In 1980 none of them understood the
entire structure, and each had to trust that the others had done their respective
parts thoroughly. Since then the amount and variety of confirming evidence
makes it essentially certain that the basic results in the theory are correct, even
if individual parts of the proof are faulty. Mathematics has certainly changed
since the time of the classical Greeks!

A Practically Insoluble Problem

What lessons can we learn from these examples? It is already the case that under-
standing the proofs of some theorems takes much of the working lives of the
most mathematically able human beings. Extrapolating from these examples,
there is no reason to believe that all theorems which are provable ‘in prin-
ciple’ are actually within the grasp of sufficiently clever humans. We next give
examples of (admittedly not very interesting) statements which are unlikely
ever to be proved or disproved.

The first uses the number π , most easily defined as equal to the circumfer-
ence of a circle of diameter 1. The problem depends upon being able to compute
the digits of π successively, but this is in principle straightforward, and the first
hundred billion digits have indeed been computed. The first five hundred are
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given below.

π ∼ 3.14159265358979323846264338327950288419716939937510
58209749445923078164062862089986280348253421170679
82148086513282306647093844609550582231725359408128
48111745028410270193852110555964462294895493038196
44288109756659334461284756482337867831652712019091
45648566923460348610454326648213393607260249141273
72458700660631558817488152092096282925409171536436
78925903600113305305488204665213841469519415116094
33057270365759591953092186117381932611793105118548
07446237996274956735188575272489122793818301194912

We will call a number n untypical if the nth digit of π and the 999 digits follow-
ing that are all sevens.5 To find out whether a particular number is untypical one
carries out a routine calculation which is bound to yield a positive or negative
answer within a known length of time.

In spite of the above, the simplest questions about such numbers cannot be
answered at present, and may well never be answerable. It is not even known
whether there are any untypical numbers. Here are arguments in favour of
the two extreme possibilities. If one computes the first one hundred billion
digits of π one finds that no number smaller than 1011 is untypical. Thus (non-
mathematical) induction suggests that there are no untypical numbers. On the
other hand, the digits of π satisfy every test for randomness which has been
applied to them, and if the digits were indeed random then it could be proved
that a sequence of a thousand sevens must occur somewhere in the sequence
of digits. It is an interesting fact that many mathematicians prefer the second
argument to the first, in spite of the fact that logically it is even more shaky.
It uses non-mathematical induction in that it refers to a finite number of other
tests of randomness which imply nothing about the question at hand. Secondly
the digits of π are certainly not random: they can be computed by a completely
determined procedure in which randomness plays no part.

I cannot refrain from commenting that in my first draft of the above para-
graphs I referred to the chain 0123456789 instead of the chain of a thousand
sevens. Unfortunately I did not know that it had been proved by Kanada and
Takahashi in 1997 that this chain does occur in π . The 0 in its first occurrence
is the 17,387,594,880th digit of the decimal expansion of π . There has been
great progress in methods of computing the digits of π over the last ten years.
However, such developments cannot possibly enable us to decide whether the
decimal expansion of π contains a sequence of a thousand consecutive 7s. To
demonstrate this, let me make three assumptions. The first is that computational
and theoretical progress may one day be so great that it becomes possible to
determine a trillion coefficients of the decimal expansion of π every second,
with no reduction in speed as one passes along the list of coefficients, however
far one has to go. The second is that the only method of proving the existence
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of the required sequence is by a brute force search. The third is that the first
occurrence of the sequence is more or less where it would be for a completely
random sequence of digits.

Under these assumptions, none of which is proved of course, we can estim-
ate how long it would take to find the first occurrence of the sequence. I will
make no attempt at rigour, and the conclusion can only be regarded as an
extremely rough approximation. If we break the expansion of π up into blocks
of length 1000, then the chance that a particular block consists entirely of 7s is
1 in 101000, so one would expect to have to consider something like 101000

blocks in order to find its first occurrence; of course the sequence may not
occupy a single block neatly, but this problem may be taken into account. We
need not compute every digit of π , but must compute at least one in every block
of 1000, because if we leave any block unexamined we may have missed the
sequence. Under our standing assumptions we then find that we probably have
to compute of order 101000−3 digits and this will take us about 10985 seconds.
This is vastly longer than the age of the universe, so we had better hope that
one of the above assumptions is wrong (if we hope to find the sequence).

A Platonic mathematician would say that either there exists an untypical
number or there does not. This view is certainly psychologically comfortable,
but it is not necessary to accept it in order to be a mathematician. Intuitionists
would only say that such a number existed if they knew one or had a finite
procedure which would definitely find one. They would only say that there
was no such number if they could derive a contradiction from its existence. If
neither was (currently) the case, they would remain silent. They would say that
to do otherwise would be to adopt a purely philosophical position which would
not increase human knowledge. We will discuss this in more detail in the next
chapter.

Warning To make a claim that a mathematical problem will never be solved
is perhaps foolhardy. The eminent mathematician Littlewood once wrote that
‘the legend that every cipher is breakable is of course absurd, though wide-
spread among people who should know better’. He proceeded to describe an
‘unbreakable’ code based upon a public coding procedure, a public book of log
tables and a private key word of five digits. Fifty years later his code could be
broken by standard desktop computer in a few minutes! I hope and believe that
I am on safer ground than he was. If I am wrong either computation or mathem-
atics will have advanced beyond the wildest dreams of current mathematicians.

Algorithms

In this section we will discuss some problems which are hard in the sense of
computational complexity. Some of these are completely soluble by carrying
out a systematic search through all possibilities. However, this method of
approach is often completely unrealistic not only for present-day computers
but for any computers which could ever be designed. The examples all relate to
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the behaviour of certain types of algorithm. To make sure that we start from a
common position, let me describe an algorithm as a procedure which is applied
repeatedly and systematically to an input of a given type. This description is
rather forbidding and we start with a simple but famous example.

The Collatz algorithm has as input a single number n. It carries out the
following procedures:

If n is even replace n by n/2.
If n �= 1 is odd replace n by 3n + 1.

If n = 1 then stop and print YES.

If we start with n = 9 then the Collatz algorithm successively yields the values

9, 28, 14, 7, 22, 11, 34, 17, 52, 26,
13, 40, 20, 10, 5, 16, 8, 4, 2, 1

so the sequence stops after 19 steps and prints YES.
All algorithms of interest to us have a stopping condition, and when it is

satisfied they print an output, which in this case can only be the word YES.
For other algorithms there may be several possible different outputs.

An algorithmic solution to a certain kind of problem is an algorithm which
is guaranteed to provide the solution to all problems of the specified type. The
Collatz problem is whether the Collatz algorithm stops after a finite number
of steps, whatever value of n you start from. Surprisingly the answer to this
problem is not known, although the algorithm does stop for all n up to 1012. It
might seem that one can settle this problem simply by running the algorithm
and waiting, and indeed this is true for those values of n for which the algorithm
does indeed stop. However, if there exists a value of n for which the sequence
is infinite, then this cannot be discovered by use of the algorithm. The fact that
it has not stopped after 1012 steps says nothing about what might happen after
more steps. No solution to the Collatz problem is known, and it is not likely
that the situation will change soon.

There are problems which are algorithmically undecidable: there is no sys-
tematic way of solving all the problems of the specified type. This is a very
strong statement, much stronger than saying that no algorithm has yet been dis-
covered. It only makes sense if one is absolutely precise about what counts as
an algorithm, but this has been done in a way which commands general assent.
It can then be proved absolutely rigorously that algorithmically undecidable
problems exist. We will not discuss this issue further, since it is very technical
and has been treated in great detail in several other places.

Let us return to the simplest type of algorithmic problem, one for which it is
quite clear that it can be solved in a finite length of time just by testing each one
of a large but finite number of potential solutions. Algorithms for such problems
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are divided into two types, which we will call Fast and Slow.6 All useful
algorithms are Fast, but some Fast algorithms are not fast enough to be useful.

The speed of an algorithm depends upon how one decides to measure the size
of the input and also how one defines steps/operations. For most purposes one
regards multiplications and additions of large numbers as single operations,
and just asks how many are performed. However the amount of time spent
transporting data to and from the memory of the computer is also important and
one might include such acts as operations.

If we ask for the number of multiplications needed to compute 2n, that is
2 times itself n times, it seems obvious that the answer is n. However, there is
a much better method which involves radically fewer multiplications. Namely
we write

2 × 2 = 4
4 × 4 = 16

16 × 16 = 256
256 × 256 = 65536

65536 × 65536 = 4294967296

which yields 232 in just 5 multiplications. One can actually compute 2n for
general n using far fewer than n multiplications.7

Given that a problem may be solved in various different ways, it is
obviously desirable to find the most efficient possible way. A problem is said
to be (computationally) hard if the number of operations needed to solve it
increases extremely rapidly as the size of the problem increases, for all possible
algorithms. This is clearly difficult to know. It may be that every algorithm
currently known for solving a particular problem is Slow, and that nobody
believes that a faster algorithm can be found, but that is different from proving
that no Fast algorithm can ever be found.

There is one respect in which the idea of thinking of a multiplication as
a single operation is misleading. Suppose we have two numbers, one with m

digits and the other with n digits. If m and n are large enough then a normal
processor cannot multiply them in one step, and they have to be treated as long
strings of digits. One possibility is to multiply them using a computer analogue
of primary school long multiplication. The number of multiplications and addi-
tions of digits is of order m×n. So every algorithm involving sufficiently large
numbers is actually much slower than our previous discussion indicated.

The above analysis of algorithms suggests that the only issue in the design of
algorithms is to minimize the number of elementary arithmetic operations. This
is far from being the case. In all early computers and many current computers
there is only one processor, so arithmetic operations do indeed have to be
carried out one at a time. However, parallel computers have many processors,
so one can carry out multiple operations simultaneously provided one can find
an appropriate way of organizing the computation and managing the flow of
information between processors.
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Suppose one wants to add 512 different numbers (e.g. salaries). The obvious
way of doing this takes 511 clock cycles (computers run on a very precise
schedule of one operation per clock cycle). If, however, one has an unlimited
number of processors, one can add the numbers in pairs in the first clock cycle
leaving only 256 numbers to add. In the second clock cycle one can then add the
remaining 256 in pairs. Continuing this way the task is finished in 9 clock cycles.

There are many problems in implementing this idea. Firstly most of the
processors spend most of their time doing nothing, which is very wasteful.
Secondly all of the data has to be moved to the appropriate processors before
the computation can start, whereas in the normal algorithm one only needs
to bring one item at a time. Thirdly it might not be possible to parallelize
some problems at all. Nevertheless the size of many computations in physics
is now so large that enormous efforts are being made to find ways of solving
the communication and other design problems associated with building large
parallel machines. From a purely theoretical point of view the difficulty of an
algorithm is now seen to depend on the computer architecture as much as on
the problem itself.

How to Handle Hard Problems

Sometimes a problem is extremely hard to solve in the sense that the only
known algorithms for solving it are very slow. Two methods for sidestepping
this problem have been devised. The first is that one may ask not for the best
solution but merely for a good enough solution. Here is an example.

Define n! to be the result of multiplying all the integers 1, 2, 3, 4, . . . ,
(n−1), n together. To evaluate this we need to perform n multiplications. On
the other hand Stirling’s formula provides an extremely good approximation
to n! which may be computed far more rapidly.8 It enables one to obtain

1000! ∼ 4.0238726 × 102567

with only 10 operations if one regards taking a power as a single operation,
or about 30 operations if we use the method already described for computing
powers. The following table shows that Stirling’s formula is extraordinarily
good even for very small numbers:

n 1 2 3 4 5 6
n! 1 2 6 24 120 720

Stirling 1.002 2.001 6.001 24.001 120.003 720.009

This illustrates the general fact that if one is prepared to compromise a little on
the accuracy or quality of a solution, a problem may become radically easier.

The second method of evading intractable problems is probabilistic. The
most famous case of this is finding whether a very large (e.g. hundred-digit)
number is a prime. One cannot simply divide the number by all smaller numbers
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in turn and see if the remainder ever vanishes. The task would take the lifetime
of the Universe even for a single thousand-digit prime. In 1980 Michael Rabin
devised a probabilistic procedure which solves this problem rapidly but with
an extremely small chance of giving the wrong answer. This is now used in
commercial encryption systems which transfer money between banks and over
the internet. I will not (indeed could not!) describe the procedure, but refer
to page 178, where a different and much simpler probabilistic algorithm is
described. It marks another step in the transformation of mathematics into an
empirical science.

In the last few weeks a Fast (deterministic polynomial) procedure for decid-
ing whether a given number is a prime, without using probability ideas, has been
announced by Agrawal et al.9 The simplicity of this algorithm came as a shock
to the community, but it appears to be correct. Such discoveries, and the pos-
sible new vistas they open up, are among the things which make it such a joy to
be a mathematician. Fortunately (or unfortunately depending on your political
views) it does not affect the security of the RSA encryption algorithm. Nor, in
practice, is it faster than the existing probabilistic algorithms, but who can tell
what future developments might bring?

Notes and References

[1] Hollingdale 1989, p. 148

[2] Tymoczko 1998

[3] Technically the statement is that if m(n) is the number of exceptions less
than n then limn→∞ m(n)/n = 0.

[4] Zeilberger 1993

[5] I have taken the idea for this example from Gale 1989, but it goes back to
Brouwer in the 1920s.

[6] We say that an algorithm is Fast, or polynomial, if for every problem of size
n the algorithm solves the problem in at most cnk steps, for some constants
c, k which do not depend on n. Both c and k may be of importance for
problems of medium size but for very large problems the value of k is
usually more significant.

[7] The actual number of multiplications needed is the smallest number greater
than or equal to log2(n).

[8] This formula, namely

n! ∼ (2π)1/2nn+1/2e−n+ 1
12n

is usually attributed to the eighteenth century Scottish mathematician
James Stirling. It was actually discovered by de Moivre, who used it for
applications in probability theory.

[9] Agrawal et al. 2002
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5
Pure Mathematics

5.1 Introduction

The goal of this chapter is to demolish the myth that mathematics is uniquely
free of controversy, and therefore a guaranteed source of objective and eternal
knowledge. To be sure, attitudes in the subject generally change very slowly.
At any moment there seems to be an overwhelming consensus, provided one
excludes a few mavericks. However, this consensus has changed several times
over the last two hundred years.

Among the debates within the subject one of the most important concerned
its foundations. This was most active in the period between 1900 and 1940.
It led to an enormous amount of interesting work in logic and set theory, but
not to the intended goal. Indeed the foundations were seen to be in a more
unsatisfactory state at the end of the period than they had appeared to be at the
start. We describe how this came to pass.

I believe that we are now in the early stages of yet another, computer-based,
revolution. Some of my colleagues may disagree, but when one of the lines of
investigation into the Riemann hypothesis in number theory involves examining
the statistics of millions of numerically computed zeros, something has surely
changed. We will discuss this further near the end of the chapter.

Mathematicians themselves rarely have any regard for the historical con-
text of their subject. They attach names to theorems as mere labels, without any
interest in whether the people named could even have understood the statements
of ‘their’ theorems. Each generation of students is provided with a more stream-
lined version of the subject, in which the concepts are presented as if no other
route was possible. The order in which topics are presented in a lecture course
may jump backwards and forwards hundreds of years when compared with the
order in which they were discovered, but this is almost never mentioned.

Of course this is defensible: mathematics is a different subject from the
history of mathematics. But the result is to leave most mathematics students
ignorant of the process by which new mathematics is created. I hope that what
follows will help a little to correct this imbalance.
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5.2 Origins

The origins of mathematics are shrouded in mystery. One of our earliest sources
of information comes from the discovery of hundreds of thousands of clay
tablets bearing cuneiform text in Mesopotamia. A few hundred contain material
of mathematical interest. From them we glean many interesting but isolated facts
about the knowledge of the Babylonians as early as 2000 bc. Among these are
their creation of tables of squares and cubes of the numbers up to 30 and their
ability to solve quadratic equations. They explained their general procedures
using particular numerical examples, since they had no algebraic notation in
the modern sense. One of the tablets, dating from about 1600 bc, contains the
extremely good approximation

1 + 24
60 + 51

602 + 10
603 ∼ 1.4142130

(in our notation) to the square root of 2. The tablet called Plimpton 322, dating
from before 1600 bc, shows that they had a method for generating Pythagorean
triples such as

32 + 42 = 52

and
1192 + 1202 = 1692

long before the time of Pythagoras. Such triples were familiar in China and
India at a very early date, and there is some evidence for a common origin of
this and other mathematical knowledge.

For many people mathematics means formulating general propositions and
proving them by logical arguments from some agreed starting point. In this
sense mathematics started in classical Greece, as did so many other aspects of
our civilization. After that glorious but brief period centuries were to pass before
the subject changed substantially. From about 800 ad Arabic mathematicians
started a major development of algebra, arithmetic, trigonometry, and many
other areas of mathematics. These percolated slowly through to Europe, and
were often described as European inventions until quite recently. During the
seventeenth century the focus of development shifted decisively to Europe,
where it stayed until some time in the twentieth century. This section describes
the historical development of geometry, and the changing philosophical beliefs
about its status over the last two hundred years. Later sections discuss logic,
set theory and the real number system from a similar point of view.

Greek Mathematics

The main codification of the Greeks’ work in geometry was due to Euclid around
300 bc, but Archimedes’ importance as an original thinker was certainly much
greater. Euclid’s Elements appeared in thirteen books, with two later additions
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by other authors. These were preserved during the European dark ages by the
Arabs; the first translation available in Europe was that of Adelard in 1120.

The achievement of the Greeks in geometry was revolutionary. They trans-
formed the subject into the first fully rigorous mathematical discipline based
upon precisely stated assumptions (called axioms), and proceeded to build a
massive intellectual structure using rigorous logical arguments. The method of
proof which Euclid used was regarded as the model for all subsequent math-
ematics for almost two thousand years. Indeed Euclid was still taught in some
schools in England in the mid-twentieth century.

We have already encountered the mysterious number π . In the ancient world
this was often approximated by 3 or 22/7. Among Archimedes’ claims to fame
is the first serious attempt to evaluate it accurately. By putting a regular polygon
with 96 sides inside the circle, and a similar one outside, he was able to prove
rigorously that

223
71 < π < 22

7 ,

a result which in decimal notation becomes 3.1408 < π < 3.1429. In the
third century ad the Chinese mathematician Liu Hui used a polygon with 3072
sides to obtain the more accurate value π ∼ 3.14159, in our notation. I invite
readers to obtain a similar approximation to π themselves using hexagons, as
in figure 5.1. The experience and the result will surely convince them of the
ability of the mathematicians of these ancient times.

It is important to understand what the Greek mathematicians did not do,
and why they could not do it. They were greatly hampered by the absence

Fig. 5.1 Approximating π Using Hexagons
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of a suitable notation for performing numerical calculations. Hindu mathem-
aticians were far ahead of them in this respect. Also algebra, a word of Arabic
origin, simply did not exist at that time. In spite of this, Archimedes got closer
than anyone else for almost two thousand years to inventing the calculus. He
obtained the formula for calculating the area of a sphere by combining several
ingenious geometrical constructions. These involved subdividing it into circu-
lar strips, summing the areas and using a limiting procedure. This method had
been invented by Eudoxus slightly earlier. In our terms it involved being able
to sum the series

sin(x) + sin(2x) + · · · + sin(nx)

while both describing this equation and proving it by purely geometrical
methods!1

Greek mathematicians also had a more or less complete understanding of
procedures for solving quadratic equations. Lacking the algebraic notation to
write down the answer, they had to use words instead of formulae to explain
how to go about extracting the solution. They grappled seriously with cubic
equations and understood without proof that this could not be done using ruler
and compass constructions. They devised a number of machines involving slid-
ing pieces of slotted wood (cissoids, conchoids, etc.), which enabled them to
solve particular cubic equations. Of course some questions, for example the
insolubility of general polynomial equations of fifth degree, were beyond their
grasp; even the language for posing these problems did not exist.

It is worth emphasizing that Euclid’s approach to geometry did not conform
to the Platonic standard. Proposition 11 of Book 11 of Elements, for example,
starts as follows:

To draw a straight line perpendicular to a given plane from a given elevated
point

Let A be the given elevated point, and the plane of reference the given plane. It
is required to draw from the point A a straight line perpendicular to the plane
of reference.

Draw any straight line bc at random in the plane of reference, and draw ad
from the point A perpendicular to bc.

Then if ad is also perpendicular to the plane of reference, then that which is
proposed is done. But if not, draw DE from the point D at right angles to bc
and in the plane of reference, draw AF from A perpendicular to DE, etc.

Note that the problem is not to prove the existence or uniqueness of such a line,
but to describe a sequence of procedures which produce the line, and then to
justify it. Euclid’s geometry was constrained by his decision to use only ruler
and compass constructions. The formulation of the problem and its solution
presuppose the existence of a person who does the drawing. Each sentence
could have been rewritten to avoid any reference to drawing, as Plato would
have demanded, but Euclid did not choose to write in such an artificial style.
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The Invention of Algebra

The algebraic notation which we are now taught in school was invented between
about 1590 and 1640 in a series of stages, principally by Viète and Descartes,
but with several others contributing. Around 1500 Chuquet had written

. 7 . 2
p̄ . 6 . 1 . m̄ 3

to stand for 7x2 +6x −3. The omission of any symbol for the variable x clearly
would have made it difficult to contemplate equations involving several vari-
ables. A crucial advance was made by Viète in the 1590s, when he introduced
the idea of representing variables by single letters. In his notation

B3 in A quad − D plano in A + A cubo aequator Z solido

stood for 3BA2 − DA + A3 = Z. Note the words plano, solido, used to
signify when a variable is intended to represent area or volume. Descartes’
vital contribution was to remove these words and also the requirement that
equations should satisfy any corresponding homogeneity condition. Essentially
he invented our modern algebraic notation, with the extraordinary power and
flexibility it provided.

Viète, Fermat, and Descartes all applied these algebraic methods to the
study of geometric problems. In La Géométrie, published in 1637, Descartes
systematically assigned letters to the lengths of the edges of geometric figures,
and then transferred geometric information from the figures into a collection
of algebraic equations. By manipulating these equations he obtained the solu-
tion of Pappus’ locus problem, one of the most famous geometrical problems
bequeathed by antiquity. These mathematicians also used their algebraic tools
to describe plane curves in terms of what we now call the Cartesian coordinates
of points on the curves. These ideas now provide the very language in which
mathematics is done.

The Axiomatic Revolution

In spite of Descartes’ revolutionary approach to solving geometrical problems,
the status of geometry did not change. The basic axioms of Euclid were regarded
as being irreducible true statements about the properties of perfect lines, points,
and circles in an idealized world. Euclid recognized that one of his axioms,
called the parallel postulate, was more complicated than the others. In the
fourth century ad Proclus proposed the version

Given a line and a point not on the line it is possible to draw exactly one line
through the given point parallel to the line

which mathematicians now call Playfair’s axiom with their usual disregard for
historical accuracy. We will say that two straight lines are parallel if they do
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not cross—other definitions are possible, but one has to be absolutely precise
before trying to prove anything! Many unsuccessful efforts were made over two
thousand years to prove this axiom or replace it by something more natural.
Some mathematicians did indeed devise ‘proofs’, but all such attempts were
shown to have flaws.

At the end of the eighteenth century Immanuel Kant described Euclidean
geometry as being both a priori (not dependent on external experience) and
synthetic (not deducible by unaided logic). He considered that humans have
an intrinsic ability to understand geometrical relationships, and this informs
our interpretation of the physical world. The fact that we have no choice but to
interpret the world in (Euclidean) geometrical terms does not imply that space
and time exist in the world itself.

Although Kant is one of the fundamental figures in philosophy, his descrip-
tion of the philosophical status of Euclidean geometry was comprehensively
demolished in the nineteenth century. The change of attitude started with work
of Bolyai, Lobachevskii, and Gauss. They independently developed the subject
now known as hyperbolic geometry. The crucial innovation was that Euclid’s
parallel axiom was not true in this new geometry. The familiar theorem of
Euclidean geometry that the sum of the angles of a triangle is always 180◦ is
replaced by one in which the sum is less than 180◦. It was proved that the bigger
the triangle the greater the discrepancy in the sum of the angles. Hyperbolic
geometry was not merely an aberration with no proper geometrical content.
It could be readily interpreted as the appropriate geometry if one is on a cer-
tain type of surface, just as spherical geometry was the geometry needed for
calculations of distances and angles on the surface of the Earth.

Gauss, by far the most famous of the three, wrote in 1817 that:

I am becoming more and more convinced that the necessity of our geometry
cannot be proved, at least not by human reason. Perhaps in another life we will
be able to attain insight into the nature of space which is now unattainable.
Until then we must place geometry not in the same class with arithmetic, which
is purely a priori, but with mechanics.

Gauss spent a substantial part of his life directing a geodetic survey of the
kingdom of Hannover, inventing an instrument called a heliotrope to make
the results considerably more accurate than had previously been possible. (His
involvement was commemorated on the German ten mark note, which portrayed
him on one side and his heliotrope on the other.) It might be conjectured that
he used this as an opportunity to look for deviations of space from a non-
Euclidean structure, but this is not plausible: the extreme accuracy of Newton’s
theory as applied to the planets already implied that any deviations would be
far smaller than geodetic measurements could detect. He never published his
work on non-Euclidean geometry, partly because of the lack of evidence of its
physical relevance, and partly because of a fear of ridicule for adopting such
an unfashionable attitude.
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Fig. 5.2 A Curved Surface

In the 1850s Riemann, then a young man, took geometry still further from
the familiar Euclidean world. He envisaged geometries of arbitrary space
dimensions, and with the curvature of space varying smoothly from point to
point. He showed that one could study the geometry of any manifold (curved
surface or even curved space), and the analogues of lines, planes, triangles and
spheres within it. The idea of proving Euclid’s parallel axiom was seen to be a
chimera, and it was instead understood as the property which distinguished flat
space from a huge variety of other equally interesting geometries.

I occasionally get letters from people who object to such ways of evading
the parallel axiom as mere sophistry. The latest arrived last week! The authors
typically argue that of course one can make anything false by changing the
meaning of the words involved, but the issue is whether the parallel axiom is
true for actual straight lines, and it obviously is. There are two answers to this.
One is that since Euclid mathematicians have been interested in proofs at least
as much as in truth, and ‘elementary’ proofs of this particular property have
never survived careful scrutiny.

The other problem is easier to explain now than it was in the nineteenth
century. What exactly is a straight line? The idea seems elementary, but there is
an obvious circularity in defining it as the kind of line which can be drawn using
a straight ruler. Nor can one define it as the path of a light ray, since we now
know that light rays are bent by passing through intense gravitational fields.
A straight line cannot be identified physically as the shortest route between
two points: at cosmological distances the phenomenon of gravitational lensing
shows that there may be several different shortest routes between two points. All
other attempts to give a definition of straightness turn out, upon examination,
to depend upon assumed regularities of the real world. Since Einstein we know
that these regularities are only approximate.

The fact that the parallel axiom may not be true in the real world is eas-
ily understood by assuming that the universe is not in fact infinite in extent,
but merely so large that we have no hope of seeing its boundary (indicated
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Fig. 5.3 Two Parallel Lines

by a dashed line in the figure). In this case if one turns the ‘parallel’ line
(the thinner one in the figure) about the given point extremely slightly, then
it will not intersect the other line, because they would have to meet so far
away that the universe would not extend that far. This fact would have no
impact in normal situations, where lines are either parallel or cross reason-
ably close to the place of interest, but the parallel axiom would actually be
false.

As soon as one accepts that the concept of an infinite straight line only makes
sense in an idealized mathematical world, one comes up against the problem that
there are several different ways of making the idealization, and none has an obvi-
ous claim to being the right one. Such considerations gradually led mathem-
aticians away from the idea that geometry was the study of physical space. When
David Hilbert wrote Grundlagen der Geometrie in 1899, he regarded geometry
as a purely axiomatic subject, to be developed by the application of nothing
beyond pure logic starting from precisely stated axioms. They had become rules
of the game, just like the rules of chess, so it made no sense to ask if they were



Pure Mathematics 107

true. Hilbert also proved that Euclid’s axioms were consistent, in the sense that
any contradiction derived from them would imply the inconsistency of ordinary
arithmetic.

Riemann’s approach to geometry turned out to be of crucial importance for
Einstein, since it provided exactly the tools he needed to develop his special and
general theories of relativity. After Einstein the survival of Euclidean geometry
relied upon the fact that we are normally interested only in objects moving
at speeds much less than the speed of light in gravitational fields which are
fairly weak.

Unfortunately the new reliance on axiom systems caused many pure math-
ematicians to isolate themselves from other scientists, and to elevate the formal
aspect of the subject to a status which it had never previously had. It took Gödel
to show the ultimate limits of this approach in 1931, and the development of
computers late in the twentieth century to bring some pure mathematicians back
to a more empirical way of looking at the relationship between mathematics
and the external world.

Projective Geometry

Projective geometry provides an excellent case study of the relationship between
axiom systems and their interpretation. The subject studies those properties of
straight lines and points which do not involve any mention of the sizes of angles
or lengths of lines. It goes back to classical times, one of the most famous
theorems, due to Pappus of Alexandria in the fourth century ad, being stated
as follows (all lines are assumed to be straight):

Let L and M be any two lines (the two thicker ones in figure 5.4). Let a, b, c
be three points on L and let d , e, f be three points on M . Join these points
by lines as shown in the diagram and consider the three points p, q, r . Then
these points must also lie on a line (labelled N in the diagram and drawn with
dashes).

Projective geometry is of great importance in the mathematics of perspective. It
was developed by the Florentine architect Brunelleschi during the Renaissance,
but its axiomatic structure was only fully clarified in the nineteenth century.
There are several axioms needed for a full description but I only mention the
following:

There are two primitive concepts called line and point.

There is a relationship between lines and points which can be equivalently
stated as ‘the line l passes through the point p’ or ‘the point p lies on the
line l’.

There is a unique line passing through any two points.

There is a unique point lying on both of any two lines.

The point I wish to emphasize is that the status of lines and points in these and the
other axioms is exactly the same. Hence, given any theorem in the subject, one
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Fig. 5.4 Pappus’ Theorem

may interchange the words ‘line’ and ‘point’ to obtain another theorem which
is necessarily true, because the proof is exactly the same. This phenomenon is
called duality. To illustrate it I describe the dual of Pappus’ theorem. (It happens
that this particular dual theorem is the same as the original, but this requires
one to relabel the diagram suitably.)

Let L and M be any two points. Let a, b, c be three lines passing through L and
let d, e, f be three lines passing through M . Consider the three (dashed) lines
p, q, r constructed as shown in the diagram. These lines must all intersect at
a single point N .

Consider two mathematicians who only communicate by email and who only
write about projective geometry. Suppose one of them tells the other a series of
theorems, but the other does not know which of the words ‘point’ and ‘line’ refer
to points and lines respectively. Then the two could have completely different
pictures in their minds, although they would agree about the truth of every
theorem. They would indeed have no reason to suspect that their mental images
were totally different.

The easiest conclusion to draw from the above is that the mental images
of the two mathematicians are not a part of the mathematics itself: they are no
more than psychological aids which humans seem to need when doing math-
ematics. There is however, a quite different interpretation, which I introduce
by an analogy with the manufacture of paper. Although its main application
nowadays is to keeping written records, it has always had many other uses,
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Fig. 5.5 Dual of Pappus’ Theorem

from wrapping presents and insulating walls to origami. One might say that
paper has little interest (except to manufacturers) until one thinks of using it in
some particular way. Similarly theorems have little interest (except to formal-
ists) until one passes from their formal statements to some interpretation, often a
geometrical one. This is why mathematicians try to find the idea behind a proof,
and feel that they are missing the whole point if they can do no more than check
the validity of each line. The possibility of a theorem having several different
interpretations is extra richness as far as mathematicians are concerned, and not
evidence of human inability to grasp the ‘true theorem’. Human mathematics
involves the continuous interplay between formal theorems and interpreta-
tions. Sometimes one is more dominant and sometimes the other, but neither is
dispensable.

5.3 The Search for Foundations

The formalization of logic was started by the classical Greeks, but the advanced
technical development of the subject only got started towards the end of the
nineteenth century with the work of Frege. By an historical accident Bertrand
Russell, destined to become one of the most famous intellectuals of the twentieth
century, was influenced more by Cantor and Peano than by Frege. He developed
their ideas into a monumental three volume work Principia Mathematica writ-
ten jointly with A. N. Whitehead between 1910–13. He may be regarded as the
founder of the logicist approach to the foundations of mathematics, described
below.
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The theory of sets2 is considered by some mathematicians to be so fun-
damental that it is surprising that it was not developed as a subject in its own
right until work of Dedekind and Cantor in the 1870s. Cantor showed how to
compare the relative size of two infinite sets. The idea developed that logic and
set theory were self-evidently valid in a way which the rest of mathematics was
not, and that all of mathematics should be derived from them by a process of
formal deduction and construction. Frege devoted much of his intellectual life
during the last quarter of the nineteenth century to this project, transforming
the technical status of logic.

Unfortunately Russell was to find a serious and elementary flaw in the work
of Cantor and Frege in 1902. Its precise nature is not central to our discussion,
but it went as follows. Let R denote

the set of all sets which are not elements of themselves.

He considered the two cases (i) R is not an element of itself (which you will
certainly believe if you consider that the idea that a set might be a member of
itself is absurd); in this case R has the property referred to in the definition of
elements of R, so R is an element of itself; (ii) R is an element of itself; in this
case R does not have the property referred to in the definition of elements of
R, so R is not an element of itself.

Russell’s paradox is not important in itself, since nobody had any interest
in this very peculiar set. The problem was rather that it was not clear what
principle one could use to eliminate other sets whose paradoxical nature might
be far from obvious. The paradox shook Frege’s confidence in the transparency
of the notion of sets and in the validity of his life’s work, since he could see
no systematic way of avoiding such paradoxes. It led Russell to his theory of
types, which imposed technical limitations on the kind of property which could
be considered to define a set. Others generally considered that this was at best
a clumsy way of resolving the paradoxes of set theory, and a better solution
came with the development of the Zermelo–Fraenkel theory of sets in 1908
and 1922. The ZF set theory also avoided the Russell paradox by imposing
limits on what kinds of property specify sets, but in a less clumsy way than
Russell had proposed. These limits are nevertheless still artificial in the sense
that the avoidance of obvious inconsistency is the only reason for their presence.
Although the ZF system has withstood the test of time, nobody knows whether
other paradoxes may turn up and force further fundamental changes in set
theory. Nor is this mere pedantry: the study of the foundations of mathematics
is full of theories which turned out to be inconsistent, and confident assertions
which turned out to be quite wrong.

We now turn to David Hilbert, who dominated the world of mathemat-
ics during the early years of the twentieth century. He made the Mathematics
Department at Göttingen pre-eminent in Europe, with streams of famous visit-
ors. Among his contributions was the proposal of an entirely new way of laying
secure foundations for mathematics. He was not willing to accept the ZF system
as truly foundational because of the lack of any proof of its consistency. Nor
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did Hilbert believe that infinite sets or any other infinite entities actually existed
in themselves. In 1930 he wrote:

As far as the concept ‘infinite’ is concerned, we must be clear to ourselves that
‘infinite’ has no intuitive meaning and that without more detailed investigation
it has absolutely no sense. For everywhere there are only finite things . . . And
although there are in reality often cases of very large numbers (for instance,
the distance of the stars in kilometres, or the number of essentially different
games of chess) nevertheless endlessness or infinity, because it is the negation
of a condition which prevails everywhere, is a gigantic abstraction.3

In spite of the above, Hilbert was not prepared to abandon any part of classical
mathematics, as Kronecker and later Brouwer and Weyl considered necessary.
His belief was that by focusing on the syntax of mathematics, that is the formal
rules for manipulating mathematical symbols, it would be possible to prove
that mathematics was consistent and complete. He was not suggesting, as some
thought, that mathematics was a meaningless formal game played by mani-
pulating strings of symbols, but rather that its consistency and completeness
could be established by his formalist programme. Once this had been achieved
mathematicians would be able to relax in the knowledge that they would never
again be caught out as Frege had been.

I should, perhaps, explain the words consistency and completeness. By
consistency Hilbert meant that it should not be possible to prove a contradiction
within the formal system constructed. Completeness is more interesting. The
idea is that if one takes a definite statement within the system, there must
always exist within the system itself either a proof of the statement or a proof
of its incorrectness. Now for Hilbert a proof was merely a string of symbols
produced and manipulated according to certain rules. Every such string is of
finite length and all possible strings can be listed in lexicographic order. So
completeness requires that if one runs through the list of all correctly formed
chains of symbols, one will eventually find either a proof of any statement or a
proof of its incorrectness.

Hilbert’s challenge was taken up by some of his junior colleagues, par-
ticularly Paul Bernays, with whom he eventually published Foundations of
Mathematics in 1934. Much valuable mathematics was produced, and Hilbert
repeatedly made his confidence in its ultimate success clear. On his retirement
in 1930 he was made an honorary citizen of his native city of Königsberg. The
end of his acceptance speech contained the following:4

For the mathematician there are no unknowable facts, nor, in my opinion, for
any part of natural science. The real reason why Comte was unable to find an
unsolvable problem is, in my opinion, that there are absolutely no unsolvable
problems. Instead of foolish claims about unknowability, our credo claims:

We must know. We shall know.

In that very year the whole programme was dealt a fatal blow by Kurt Gödel.
Gödel’s first theorem, published in 1931, proved that it was not possible to
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achieve the goal—all attempts were bound to fail whatever formal system was
used. In very rough terms Gödel proved that any formal system of sufficient
complexity to capture the behaviour of the numbers must be limited in the
sense that there will be undecidable statements. These are statements which
one can neither prove nor disprove if one only uses rules within the formal
system. His second major theorem was a proof that the consistency of any such
formal system is impossible to prove within the system. His results were highly
technical but mathematically decisive, and they came as a bombshell to the
community. Eventually they led to the acceptance that there was no way of
providing the unassailable foundations which mathematics was considered to
need and deserve.

Controversy arose when people (including Gödel!) started to claim that
Gödel’s discoveries had implications concerning human ability to transcend
formal methods. The argument is as follows. Consider the statement that every
number has some particular property. If we can check this systematically for
1, 2, 3, . . . then either there is a counter-example or there is not. If a counter-
example exists then that fact is revealed within the formal system by checking
that the relevant test fails. So if there is no formal proof that the result is false,
then no counter-example exists. We can conclude that the hypothesis is true,
whether or not a proof exists within the formal system. So human beings can
transcend any formal system, and hence any computing machine.

This argument assumes that it makes sense to contemplate the result of
testing all numbers. Equivalently it assumes that there is a matter of fact about
the statement, whether or not anybody could ever determine it. Gödel himself
was a Platonist and did indeed come to such conclusions. Penrose goes much
further than this in Shadows of the Mind when he says:

It will be part of my purpose here to try to convince the reader that Gödel’s
theorems indeed show (that human intuition and insight cannot be reduced to
any set of rules), and provides the foundation of my argument that there must
be more to human thinking than can ever be achieved by a computer, in the
sense we understand the term ‘computer’ today.

But Gödel’s theorems are about formal systems and make no reference to human
abilities. There is much controversy about whether one can legitimately draw
such conclusions from his theorems. Penrose’s argument is a modification of
that of John Lucas dating to the 1960s, and has been heavily criticized on both
occasions. Penrose has responded vigorously to these criticisms.

At the other extreme is the view that arithmetic is a human construction
within which Gödel demonstrated that there exist meaningful statements which
have no truth value. There have been so many arguments about this issue that
it would be impossible to list them. Michael Dummett has argued that human
insight ‘is not an ultimate guarantee of consistency, nor the product of a special
faculty of acquiring mathematical understanding. It is merely an idea in an
embryonic form, before we have succeeded in the task of bringing it to birth
in a fully explicit form’.5 Formalization is the best way we have of making
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ideas explicit and communicating them. The fact that Gödel proved that it has
limitations does not imply that some better method is waiting to be discovered.

5.4 Against Foundations

In this section I describe a number of arguments which have been used with
increasing force and confidence since about 1950 to undermine the claim that
mathematics needs foundations, whether these are based on set theory, logic,
formalism, or anything else. These arguments focus on the way in which math-
ematics is created rather than the description of the final product. They also have
considerable philosophical support, surveyed in Tymoczko’s recent anthology
New Directions in the Philosophy of Mathematics.

A positive case for regarding set theory as being fundamental is that it seems
to be possible to reformulate the basic notions of almost any mathematical
theory in such terms. The benefits of this are that one has a single theoretical
structure within which one may examine the correctness of mathematical proofs.
Unfortunately the reformulations are often much less easy to understand than
the concepts which they supposedly explain. This does not in itself contradict
the possibility that the set-theoretic version is more fundamental. For almost
everyone now accepts that the atomic theory of matter is more fundamental than
what preceded it, even though the properties of atoms are far more difficult to
grasp than the properties of bulk matter. But there is a vital difference. Since its
introduction atomic theory has had a profound and increasing practical impact
on vast areas of physical science. On the other hand even now hardly any of
the deepest theorems in mathematics have depended upon the use of formal set
theory, or formal logic.

I will digress to express my frustration about the numerous philosophers
who write about mathematics when they obviously know very little of it except
for formal logic and set theory. These subjects are not important for mathem-
aticians, the great majority of whom have never taken a course in formal logic
and would not be able to write down the Zermelo–Fraenkel axioms of set the-
ory. Some of these philosophers like to bolster their arguments by re-expressing
them in formal logic, subjecting their readers to the need to struggle through
the equations to work out what they actually mean. I have yet to see a case
in which this conveys any idea which could not be expressed just as well in
ordinary language.

I should not leave you with the impression that the debate about the status of
set theory has been forgotten by all pure mathematicians. In 1971 Paul Cohen
wrote the following:

Historically, mathematics does not seem to enjoy tolerating undecidable pro-
positions. It may elevate such a proposition to the status of an axiom, and
through repeated exposure it may become quite widely accepted. This is more
or less the case with the Axiom of Choice. I would characterize this tend-
ency quite simply as opportunism. It is of course an impersonal and quite
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constructive opportunism. Nevertheless, the feeling that mathematics is a
worthwhile and relevant activity should not completely erase in our minds an
honest appreciation of the problems which beset us.6

A problem with most approaches to the foundations of mathematics is that they
have no relationship with the way in which mathematics is created. There is
an enormous amount of activity in the subject, and providing formal proofs of
theorems which are already well understood comes at the bottom of the math-
ematical agenda. Indeed a wide range of outstanding mathematicians including
Hardy, Lakatos, Polya, and Thurston emphasize that it involves imagination,
analogy, experimentation, and a variety of other skills in essential ways. It is also
significant that logically incorrect arguments have frequently led to important
new insights. A famous, but by no means uncommon, instance of this occurred
when Euler proved that

1 + 1
4 + 1

9 + 1
16 + · · · = π2

6

by a method which even he did not regard as justified. But having then checked
the purported answer to several decimal places he convinced everybody that the
result was correct. Only years later did he find a more acceptable proof. From
a formal point of view everything except the very last stage of this process is
essentially meaningless.

There is abundant historical evidence against mathematics being a subject
based on logical deductions from explicit and precise initial premises. The main
properties of the trigonometric functions were established before the end of the
fifteenth century on the basis of a realist understanding of Euclidean geometry.
The development of calculus by Newton and Leibniz in the seventeenth century
preceded the rigorous definition of the real number system by two centuries.
Cauchy’s fundamental study of the theory of functions of a complex variable
early in the nineteenth century preceded the rigorous definition of complex
numbers by ‘only’ fifty years. I could go on, but it hardly seems necessary.

The last twenty five years have seen an increasing use of computer based
methods for investigating mathematical problems. I myself have written sev-
eral research papers in which my discovery of a certain phenomenon arose
from numerical calculations. The final result of one such piece of work was
an entirely conventional piece of pure mathematics in which the proofs made
no use of computation at any stage. I would reject any suggestion that only
this final product was actually mathematics, since for me, at the time, the two
aspects of the problem were totally intertwined. Combining empirical methods
with traditional proofs, with the empirical aspect leading the way, is becoming
increasingly common even among pure mathematicians.

Should we conclude from all this that what mathematicians spend their
time doing is not mathematics? And should we declare that the way in which
mathematicians create and understand mathematics has nothing to do with the
philosophical status of the subject itself? Since formal proofs of most substantial
theorems have never been produced, mathematicians cannot be relying on them
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to justify their belief in the truth of their theorems. David Ruelle put it the
following way:

Human mathematics consists in fact in talking about formal proofs, and not
actually performing them. One argues quite convincingly that certain formal
texts exist, and it would in fact not be impossible to write them down. But it
is not done: it would be hard work, and useless because the human brain is
not good at checking that a formal text is error-free. Human mathematics is
a sort of dance around an unwritten formal text, which if written would be
unreadable.7

Some people claim that we can be confident that formal proofs of all genuine
mathematical theorems could be produced. If one then asks for the basis for
this confidence, one discovers that it is no more than the intuition of practi-
tioners in the field. To focus exclusively on the formal aspects of mathematics
is to ignore the essential content of the subject, which consists of ideas. Pub-
lished research papers are usually written in a rather forbidding and unmotivated
style, and because of this are extremely difficult even for mathematicians to
understand. Indeed much of our understanding comes during discussions at a
blackboard. The fact that the nature of mathematical ideas is very difficult to
examine because of a lack of written evidence does not justify claiming that
something else is the essence of the subject. According to André Weil formal-
ism is rather like hygiene: it is necessary for one to live a healthy life, but it is
not what life is about. One needs to have experts in logic and set theory, as in
hygiene, but their chosen subject is not the basis on which everything else is
built. Formal logic is much better thought of as a mathematical discipline in its
own right, no more or less fundamental than any other part of pure mathematics.

I do not claim any originality for the above ideas, which have been expressed
by many people. For example Lakatos wrote:

[The logicists and meta-mathematicians] both fall back on the same subjective
psychologism which they once attacked. But why on earth have ‘ultimate’ tests,
or ‘final’ authorities? Why foundations, if they are admittedly subjective? Why
not honestly admit mathematical fallibility . . .8

He quoted von Neumann, Quine, Church, Weyl, and others as accepting that
mathematics should be regarded as a semi-empirical science, a position very
different from the popular perception of mathematics even today.

An illuminating view of the nature of proof in mathematics was given by
Richard Feynman in his book The Character of Physical Law. He wrote:

So the first thing we have to accept is that even in mathematics you can start in
different places. If all these various theorems are interconnected by reasoning
there is no real way to say ‘These are the most fundamental axioms’, because
if you were told something different instead you could also run the reasoning
the other way. It is like a bridge with lots of members, and it is over-connected;
if pieces have dropped out you can reconnect it another way.

We conclude that mathematics is a human activity with an ineradicable pos-
sibility of error. This has been much reduced by the efforts which generations of
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mathematicians have put into achieving consistency between the many different
approaches to the subject. One should imagine mathematics not as a tree in
which everything is fed by the roots of logic and set theory, but rather as a web
in which every part strengthens every other part.9

There is another type of support for the idea that a web is a better analogy for
the structure of mathematics than a tree. If mathematicians were only interested
in the truth of theorems then as soon as one sound proof of a theorem was
known they would move on, never to return. In reality, however, they constantly
return with new proofs of familiar theorems, each throwing new light on its
connections with other parts of the subject. On the web analogy this is entirely
comprehensible, in that every new proof forms new connections and reinforces
the structure. Ideally the subject should be so interconnected that a large number
of links could be removed without compromising its integrity.

Empiricism in Mathematics

Yet another possibility is to adopt an empiricist point of view towards
mathematics.10 Donald Gillies has argued that it is not profitable to discuss
whether mathematics as a whole is an empirical or a metaphysical subject. He
divides the statements of science and mathematics into four levels. The bottom
one consists of those which can be decided by direct observation, while the next
two involve theories which are to some degree testable. The top level consists
of metaphysical statements, which are too far from observation to be confirmed
or refuted even indirectly. He applies this classification to put certain highly
infinite sets and numbers into the metaphysical category. Some topics, such as
the real number system, are well supported by their use in scientific contexts,
while others, such as the theory of large cardinals, are not. To paraphrase his
argument:

Higher cardinal numbers have a use within the language game of Cantor’s set
theory. This activity may have few participants, but it is nevertheless a perfectly
definite social activity carried on in accordance with clear and explicit rules.
On the other hand statements about higher cardinals have as yet no truth value
because there is no application in physics which would give them a reference
within the material world. In such metaphysical parts of mathematics one may
prove certain theorems, but that is a different matter from attributing truth to
the theorems.11

In Chapter 3 I suggested that one should also adopt a nuanced attitude towards
the status of whole numbers. Small numbers have strong empirical support
but huge numbers do not, and only exist after assenting to Peano’s axioms.
I therefore consider that huge numbers have only metaphysical status. I have
argued in a recent article that this does not prevent one using the real number
system in the normal way.12 From the empirical point of view extremely small
real numbers have the same questionable status as extremely big ones. But this
is perfectly OK: physicists know that extremely small quantities, for example
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lengths far smaller than the Planck length, have no physical meaning anyway,
so this philosophy of mathematics matches the nature of physics perfectly.

From Babbage to Turing

If one had to sum up the life of Charles Babbage in two words they would
have to be ‘frustrated genius’. Born in 1791, he became a Fellow of the Royal
Society in 1816 and Lucasian Professor of Mathematics at Cambridge in 1828.
His early work on mechanical computing engines met with acclaim, and over a
period of time he was given seventeen thousand pounds in Government grants to
construct a machine which would compute mathematical tables automatically.
This would bring to an end the many errors which affected all tables produced
by hand.

Babbage devoted most of his life to this project. A part of his first difference
engine, dated 1832, is housed in the Science Museum, London, but it was
never completed because he fell out with his toolmaker, Joseph Clement, the
following year. Shortly after that Babbage discovered ‘a principle of an entirely
new order’. He abandoned his difference engine and started on the design
of a much more ambitious ‘analytical engine’, supported by Ada Lovelace.
Unfortunately the Government withdrew its support in 1842, at the express
order of the Prime Minister, Sir Robert Peel. From that point on, Babbage had
no chance of ever building the engine, which would have been the size of a
locomotive. He continued to work on the project as he grew older, but became
increasingly disappointed and embittered.

The analytical engine was (i.e. would have been) the first general purpose
programmable computer. It was controlled by a pile of punched metal cards,
which were read by it one at a time and then acted on. When compared with the
Jacquard loom of about 1800, it had a crucial innovation. In certain situations
the progression through the cards could be reversed, so that a group of cards
could be read again and again. In modern computing terms the engine could
implement iterative loops, and even nested loops. This resulted in a dramatic
reduction in the number of cards needed, but also a change in the character of
what could be calculated using the engine. The design even allowed the engine
to print out its results onto paper ready for binding. Figure 5.6 shows a small
part of it, measuring about a metre across, as it was at his death in 1871.

Ada Lovelace did not simply provide moral support to Babbage. She made
major intellectual contributions, in an era when this was more or less unheard
of for a woman. Born in 1815, she was the daughter of the poet, Lord Byron,
who abandoned her and her mother a month later. Her mother, who also had
mathematical talents, ensured that she had a thorough mathematical education.
After she met Babbage in 1833, she became engrossed in his project, and
eventually published a book in 1843, describing the operation of the analytical
engine. She modestly called the book a translation of an article of Menabrea on
Baggage’s engine, with notes by the translator, but her notes were twice as long
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Fig. 5.6 Part of Babbage’s Analytical Engine
By permission of Science Museum, London/Science and Society Picture Library

as the original article, and better informed. She emphasized how much more
advanced the analytical engine was than the earlier difference engine, referring
particularly to its use of ‘cycles’ (iterative loops). She included what is surely
the first ever computer program, which used the engine to compute Bernoulli
numbers. Her description sets up the problem mathematically, specifies the
intermediate variables used, and lists the elementary operations (+, −, ×, ÷)
to be carried out on those variables. This book was to mark the high point
of her career. Shortly after completing it she became ill, and died of cancer
in 1852.

After Babbage’s death, no further development of comparable scope
occurred until the middle of the twentieth century. Eventually the develop-
ment of electronics opened up an entirely different way of building computers,
and the Second World War made the expense of developing the technology less
important.

The starting point for the new initiative came in 1936, when Alan Turing
invented a mathematical idea which is now called a universal Turing machine,
and which is frequently considered to encapsulate what is meant by computation
within a formal setting. Turing was one of the key people in the (re-)invention
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of computers in the 1940s, and was the mastermind behind the now famous
code breakers of the German Enigma codes in Bletchley Park during the Second
World War. He was able to show that there exist problems which even a universal
Turing machine cannot solve. This provided the computational counterpart to
Gödel’s work in logic.

In a famous paper written in 1950, Turing discussed whether computers
would ever be able to think.13 He considered this question too vague for mean-
ingful discussion and proposed a sharper version. Namely would a computer
ever be able to conduct a conversation (by letter, say) so well that nobody could
distinguish the computer from another person. He expressed the belief that this
would happen within about fifty years. His test has become famous, but many
people consider that it is not an appropriate way of measuring the ability to
think. Gödel considered that Turing had made a serious philosophical error in
believing that computers might one day be able to indulge in genuine thought,
as opposed to mere simulation of thought.14 Turing was of course well aware of
Gödel’s work, and explained in his article why he did not consider it provided
any barrier to his conjecture.

The goal of this section is not simply to give yet another account of Turing
machines, although we have to start with that. It is to point out some difficulties
relating to the widespread belief that they describe perfectly what is meant
by computation. There are many different ways of describing Turing machines,
and we will follow the usual approach, in spite of the fact that it looks extremely
dated by the standards of modern computer technology.

One starts with an infinitely long tape, supposed to be laid in a straight
line on the floor. The tape consists of a long series of cells, each of which can
contain any of the symbols on a computer keyboard. It makes no difference

Fig. 5.7 A Turing Machine
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to the discussion if we impose the further restriction that each cell can only
contain the symbol 0 or 1, since one can group cells together eight at a time and
code any keyboard symbol by a sequence such as 00111010. The tape serves
as the memory of the computer. Initially a finite number of the cells contain
the problem/program, but all the rest contain only the symbol 0. In addition to
the tape the computer has a processor, which consists of a machine which can
move along the tape one step at a time.

The processor has a finite number of internal states and can view the cell
it is currently at. It then makes a decision about whether to alter the symbol
in the current cell and whether to move one step to the left or right. Among
the rules of the machine is one which tells it conditions under which it should
stop and print out its answer to the problem. A Turing machine is said to be
universal if its internal rules for making decisions are sufficiently rich. We need
not specify this more precisely, other than to say that any current computer
running a typical high level programming language such as C++ would be a
universal Turing machine (UTM) if it had an infinite memory. UTMs play a
key role in investigating the fundamental limits on what can be computed in an
ideal world in which there are no constraints on the size of the memory or on
the time taken for the computation. It has been found that there exist problems
which definitely cannot be solved by such a machine, and hence that there are
limits to what can be proved within formal mathematics.

A more precise statement of the problem is as follows. It is relatively
straightforward to test whether a program intended to be run on a particular
Turing machine is grammatical, that is whether it makes sense. Some gram-
matically correct programs will run for a length of time and then print out a
result and halt. Others may simply run for ever, because they have no instruction
to halt, because they get into a repetitive loop, or because what they are trying
to do gets more and more complicated, occupying ever more of the memory
tape. Turing discovered that there is no systematic procedure for examining
a program and deciding whether it will halt or not. This is called the Halt-
ing Problem: there are programs which would in fact run for ever, but it is
not possible to identify them in a systematic manner. This deep fact implies
Gödel’s incompleteness theorem. The link is the fact that proofs of theorems
can be carried out by a program which runs through all conceivable argu-
ments, checking whether any of them is in fact a formal proof of the required
theorem.

The theory of Turing machines has two aspects, which should be distin-
guished. They provide a context within which one can discuss the existence of
formal proofs of mathematical theorems. If a theorem cannot be proved using
a Turing machine with an infinite memory, it certainly cannot be proved in a
finite context. Whether or not such machines can be built in the real world is
not a relevant issue. This aspect of the theory of Turing machines has been an
extremely fruitful source of new mathematics since 1936.

The Church–Turing thesis is a more controversial matter. One form states
that any operations which can be performed by a computer following precise
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instructions can also be performed by a universal Turing machine. However,
the words do not mean what someone reading them in the year 2000 might
imagine! In 1936 a computer was a human being employed to carry out routine
calculations by hand. The thesis emphasizes that the person was not allowed to
use insight or intuition. Turing machines were concepts: their implementation
by electronic hardware was several years in the future. Turing and Church
were, however, well aware that Turing’s ideas were relevant to the capacities
of possible future computing machines. In his review of Turing’s 1936 paper
Church wrote the following:

(Turing) proposes as a criterion that an infinite sequence of digits 0 and 1 be
‘computable’ (if) it shall be possible to devise a computing machine, occupying
a finite space and with working parts of finite size, which will write down the
sequence to any desired number of terms if allowed to run for a sufficiently
long time. As a matter of convenience, certain further restrictions are imposed
on the machine, but these are of such a nature as obviously to cause no loss of
generality—in particular, a human calculator, provided with pencil and paper
and explicit instructions, can be regarded as a kind of Turing machine.15

There is a strong, or physical, form of the Church-Turing thesis which goes far
beyond anything written by Church or Turing. It states that anything which can
be computed by a physical computing machine with any conceivable internal
architecture in any possible physical world can also be computed by a universal
Turing machine (UTM). It is now known that this physical form of the thesis is
simply wrong!

We start by pointing out that real computers do not have infinite memor-
ies, so UTMs are idealizations. They are, moreover, idealizations which are in
conflict with the laws of physics in several ways. We mention just two. If the
universe is finite then a UTM cannot be built because there will not be enough
materials to build it. If the universe is infinite and each memory cell had the same
positive mass then a UTM would have infinite gravitational self-energy, and
would therefore immediately collapse into a black hole. If one is only concerned
with what a Turing machine can do then it does not need an infinite memory,
because any particular computation which can be completed will only use a
finite amount of memory. However, each of the above problems has a finite ver-
sion, leading to the conclusion that Turing machines with sufficiently large finite
memories cannot be built in our universe. In addition any long enough compu-
tation could not actually be carried out because the universe will not last long
enough in its present form. It is easy to write down computations of this type.

These objections are typically ignored on the grounds that UTMs are per-
fectly plausible in principle, and for a thought experiment this is sufficient.
However, much more powerful types of computer are equally possible as
thought experiments, and there is a growing literature on how to construct
them. One of the more exotic possibilities depends upon the fact that time is
not absolute in general relativity. It may be possible to shoot a computer into an
exotic space-time singularity and observe it actually carrying out an infinite
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number of computations within what is, for the observer, a finite length
of time.16

Another possibility is to consider an infinite hierarchy of mechanical cal-
culating machines, each of which is smaller and faster than the one before. The
operator gives a task to the first and biggest in the chain, which then passes it on
to the smaller machines according to certain carefully specified rules. One may
divide up certain infinite sets of computations between the various machines
in such a way that they are able to complete all of them in a finite length of
time. I have recently given a detailed specification of such a machine and how
to build it in a continuous Newtonian universe.17 This is an imaginary world
obeying Newton’s laws but with no atoms, so that matter may be subdivided
indefinitely. Such a machine could ‘prove’ Fermat’s last theorem not by finding
a finite chain of arguments, as Wiles did, but by the brute force testing of all
potential cases. If any of the machines finds a counter-example to the statement
being tested, this fact is reported back through the hierarchy to the first machine.
It may not be possible to report back the value of the counter-example, because
it may be too large to be stored in the memory of the first machine. If no report is
received within a certain finite length of time, then no counter-example exists.
The collection of machines would, in effect, act as an oracle. Of course these
machines are impossible to build in our universe, but so are sufficiently large
Turing machines.

There are other types of idealized computing machine which are not equi-
valent to that of Turing, but which are of substantial interest. One of them allows
each memory site on the tape to contain a real number rather than one of only a
finite number of symbols. Of course this is not possible in fact, but neither is an
infinite tape. The issue is which definition is more interesting, and this depends
upon what one wants to do with it. Since scientific computation is heavily
dependent on manipulating real numbers, there is a good case for studying this
new type of machine.18 This perhaps resolves a complaint of von Neumann
about the lack of relationship between Turing machines and the requirements
of mathematical analysis, ‘the technically most successful and best-elaborated
part of mathematics’.

There are computers operating within our own physical world which are not
Turing machines. We call them analogue computers. They simulate the world
in a non-discrete manner, and were quite popular in the 1950s. They certainly
do not fit into Turing’s framework and there are claims that they can go beyond
the Turing limit of computation. Of course one could say that they are not really
computers, but this line of defence turns the strong Church–Turing thesis into
a tautology. There is an active debate about whether analogue computers can
achieve anything which a sufficiently lengthy digital computation could not.

There is another kind of computer which goes beyond Turing machines in
a much more radical manner: the very recently invented quantum computers. It
appears to be possible, at least in principle, to construct computers in which the
fundamental processing units operate on quantum mechanical principles. Such
computers may one day be able to perform certain tasks which are far beyond
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the scope of traditional machines, and may allow the rapid deciphering of the
so called ‘unbreakable codes’ based on the use of very large prime numbers. If
this idea can be implemented at a practical level then it will create yet another
computer revolution. At the time of writing (January 2002) it has just been
announced in Nature that a quantum computer has succeeded in factorizing
the number 15. This may be regarded either as laughable or as a proof that
the fundamental concepts behind quantum computation are correct, depending
upon one’s attitude towards blue skies research. Clearly there is a long way to
go before practical quantum computers start being sold. Even if the technical
difficulties cannot be surmounted, the appearance of the idea already establishes
that computers need not be restricted to the use of classical logic. In particular
the view that physical computers and universal Turing machines are effectively
the same thing is no longer tenable.

Finite Computing Machines

The abstract theory of Turing machines disregards a crucial factor in all real
computers. A program which has to run for a huge length of time in order to solve
a problem is no more use to the human species than a program which cannot
solve that problem at all. What is missing is a way of measuring how long the
solution of a problem is bound to take. This issue of computational complexity is
at the centre of much recent mathematical research for very practical reasons.
As soon as one adopts the computational scientists’ point of view that the
possibility of solving a problem within a reasonable period of time is the real
issue, the theory of Turing machines loses much of its interest.

Suppose that we have a computer program written in one of the popular
computer languages, and that it is of the form

line 1
line 2
. . .

line k

We use the word ‘line’ instead of the more technically correct ‘executable state-
ment’ here and below. Then one can produce a new program from the old one
by writing something similar to the following pseudocode.

timelimit = 1010;
clock=0;
while clock<timelimit do
line 1
if clock<timelimit then clock=clock+1 else break;
line 2
if clock<timelimit then clock=clock+1 else break;
. . .

if clock<timelimit then clock=clock+1 else break;
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line k
break;
end;

This program carries out exactly the same computation as the previous one
with one extra feature. It counts how many steps it has implemented and if
this reaches the number 1010 then it stops. Of course 1010 could be any other
number, and in real computers one would probably set it so that the program
would halt automatically within a few hours or days. Let us call a program
with this particular structure a Program. Then anything which can be solved
by a program can also be solved by a Program provided timelimit is large
enough. However Turing’s halting problem does not exist for Programs! If we
have a Program then we know that it will stop within the time timelimit,
and at that point we can see if it has provided the solution or proof which
was sought. From this point of view programs are really infinite collections
of Programs for which timelimit is allowed to have larger and larger
values. The paradoxes relating to UTMs all arise because of this infinite
character.

Of course the disappearance of the halting problem has not solved any-
thing. Our Programs are less powerful than idealized programs which can run
for arbitrary lengths of time. Nevertheless the discussion of Programs shifts
one’s attention from a semi-philosophical problem, namely is a program going
to run for ever without coming to a conclusion, to one of more importance to
humans, namely is the problem soluble within a useful time scale. It is interest-
ing and perhaps surprising that automatic time limits are not a normal feature
of programs. It is usually easier to write programs without such controls and
simply to stop them if they have not finished within a reasonable length of time.
The time limit is there, but it is implemented manually rather than automatically.

We turn next to computers which do not have time limits written into their
programs, but which are restricted by having finite memories. Of course this
is not actually a restriction! Let us define a FCM (finite computing machine)
to be a machine with one or more finite sized processors (the chips which do
the computations) and a finite, possibly very large, memory connected to the
processors in any manner. The memory consists of a large number of sites, each
of which can be ON or OFF, usually labelled 0 and 1. The state of the machine
at any particular moment is the set of all values stored in the memory. It is clear
that the number of possible states is finite, but even for current machines it turns
out to be a huge number as defined in Chapter 3.

The processors are assumed to change the state of the machine at regular
intervals of time, perhaps every nanosecond. They do this in a fixed manner, so
that if the state at instant t is known then the state at instant t + 1 is completely
determined by that. The problem is entered into the machine by setting up
its initial state, so the initial state IS the problem (program). It then keeps on
changing its state until it reaches a point at which its output device prints the
solution and stops.
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No matter how its processors operate, a FCM cannot keep moving to new
states indefinitely since it only has a finite number of these. The maximum
length of time to solve a problem cannot be greater than the total number of
different states available multiplied by the clock time. If the machine is still
going after that time it must be passing through some state for a second time,
and must therefore be repeating itself rather than heading towards a solution. So
we have a decision procedure, that is a means of knowing whether that machine
is capable of solving that problem: wait for the relevant length of time and if
the problem is not solved it never will be. On the other hand, even for current
computers, the decision time is vastly longer than the lifetime of the Universe!
So Turing’s Halting Problem has again disappeared in the form he wrote it. The
practical halting problem is still there: it may not be possible to tell whether
a finite machine will solve a problem within a time scale of relevance to the
human species, except by running it.

Passage to the Infinite

The nature of the infinite has caused more problems to mathematicians and
philosophers than any other. Even Plato and Aristotle disagreed about whether
the set of all integers exists actually or only potentially. The appearance of
Cantor’s set theory in the late nineteenth century seemed to resolve this problem,
but developments in the first forty years of the twentieth century were to prove
that many of the difficulties might never be resolved. Because most of these
discussions revolved around logic and arithmetic, they had a discrete flavour
which directed people’s attention away from other attitudes towards the infinite.

Any finite set containing N points can be identified with the set of numbers
n such that 1 ≤ n ≤ N . These sets converge (in a sense which we need not
make precise) to the set of all positive numbers as N tends to infinity. We
have already seen that the difference between a finite computing machine and
a Turing machine lies solely in the fact that the first has a large finite memory,
while the second has an infinite memory, the memory sites being labelled by
the positive numbers. The purpose of this section is to describe other ways of
taking the infinite limit. These may be more appropriate in particular situations
than simply passing to the set of all positive numbers. We will take statistical
mechanics as an example of the appearance of new structures as one moves
from finite to infinite systems.

The science of thermodynamics arose in the mid-nineteenth century as a
result of the drive to improve the efficiency of steam engines. It describes the
relationship between the bulk properties of gases, for example their density, tem-
perature, and pressure. When we speak of phase transitions of bulk materials,
we are thinking about their sudden changes of state as the temperature changes:
water boils at 100 ◦C (at normal pressures) and freezes at 0 ◦C. Figure 5.8 shows
how the state of a substance depends upon the temperature and pressure. Note
that for high enough temperatures and pressures there is not a clear distinction
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to be made between liquids and gases. The critical point marks the point in the
phase diagram at which this distinction disappears.

Thermodynamics is a phenomenological science, in that it does not make
any reference to the fact that a substance is ultimately composed of individual
molecules or atoms. This is achieved by statistical mechanics, whose goal is
to explain the laws of thermodynamics starting from the interactions between
individual atoms.

In statistical mechanics one starts with a finite collection of atoms, either
quantum or classical, distributed randomly throughout a given region, with a
known density. It is not obvious how to prove anything about the bulk properties
of such an assembly, and the standard procedure is to take the limit of the system
as the volume increases to infinity, keeping the density of particles constant.
The infinite volume model is, paradoxically, easier to analyse than the more
realistic finite volume case, but even with this simplification progress has been
extremely slow. Nevertheless there are several special examples for which the
existence of a phase transition has been proved with full rigour. In these cases the
thermodynamic formulae can be derived from the atomic model by considering
only global quantities, such as temperature and pressure. So the justification of
thermodynamics involves two very hard steps: first the passage from a finite
collection of particles to the infinite volume limit, and then the identification and
analysis of the thermodynamics variables. The mathematics involved makes no
use of formal set theory or formal logic. Of course it uses logic in the sense that
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mathematicians and physicists argue more or less logically, but nothing related
to Turing or Gödel makes an appearance.

There is another way of seeing that different infinite limits of large finite
sets may have entirely different structures. If points are laid out on a straight
line at unit intervals starting at zero, then the infinite limit is clearly the set of
all natural numbers. However, if they are more and more densely packed inside
a unit square, then the appropriate infinite limit is the whole of the square,
which has a continuum of points and a totally different geometry from the
set of natural numbers. The same applies to computing machines. A parallel
processing computer might be constructed by putting a computer chip, each
with its own local memory, at each point of a two-dimensional square lattice,
connecting each one to its nearest neighbours. If the lattice spacing is very
small and the processors are correspondingly fast, then its behaviour might
be modelled by a set of equations involving every point of the continuous unit
square. These equations would of course be an idealized model of the real thing,
but they might well be more useful than trying to describe it in Turing machine
terms.

One might use this idea in the analysis of the functioning of the retina.
This contains a large collection of neurons, but for image analysis it might be
more useful to model it by a continuous plane region. Of course the retina is
not a continuous system, but nor is it a Turing machine: it has chemical and
biological parts, and does not have an infinite memory tape. The question is
which of various mathematical models generates more insight into some aspect
of its workings. The same issue arises when modelling the operation of the
brain as a whole. As Philip Anderson wrote in a review of a book of Penrose:

there is a fair amount of evidence that the mind is not a single, simple entity:
it may be a number of independent autonomous units squabbling for a central
dais. Multiple personality disorder is only an extreme form of what goes on
in the mind all the time. There is no single Turing machine or single tape. It is
not clear that it is correct to model a parallel collection of semi-independent
machines that is in some sense wider than it is deep, in terms of a sequentially
operating single algorithm. In discussing complexity, this can be a different
‘large-N limit’ with different capabilities.19

Are Humans Logical?

Arguments about the limitations of computers and UTMs are sometimes com-
plicated by an almost mystical belief that in principle there are no limits on
what human beings can understand. In Chapter 1 I presented the psycholog-
ical evidence that our reasoning powers are both granted and constrained by
the particular organization of our brains. One can profitably think of them as
pattern recognition systems. Presented with a new scene, object, or even idea,
our brains try to find the closest match out of all of the stored patterns. If a
scene or idea is radically new total misunderstanding is very likely, because
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the closest stored pattern bears no relationship to what is being presented. The
response of the brain to stimuli often has little to do with rational calculation,
and can involve behaviour which people cannot prevent, even if they know it
is inappropriate. Thus a spider sealed in a bottle or even seen on the television
may be put in the ‘dangerous spider’ category and evoke a strong fear reac-
tion, in spite of the fact that there is visibly no danger. There is substantial
experimental evidence that our rational abilities are added on top of a quite dif-
ferent type of system, and function quite differently from the expert systems of
computers.

We have seen that there are mathematical problems which are too hard
for anyone to solve, but Goldvarg, Johnson-Laird, Byrne and collaborators
have conducted series of experiments demonstrating the failure of people to
solve even very simple puzzles correctly. I quote one typical example which
involved a group of twenty Princeton students. The instructions emphasized the
importance of the opening statement and the need to think carefully.

Only one of the following assertions is true about a hand of cards.
There is a king in the hand, or an ace, or both.
There is a queen in the hand, or an ace, or both.
There is a jack in the hand, or a ten, or both.
Is it possible that there is an ace in the hand?

Nearly every participant in our experiment responded: ‘yes’. But, it is an
illusion. If there was an ace in the hand, then two of the premises would be
true, contrary to the opening remark that only one of them is true.

It appears that without thorough training in logic, people regularly fail
to deal with such problems. The particular weakness which Goldvarg and
Johnson-Laird identify is the inability to make correct mental models of false
possibilities.20

Next a more complicated example. Albert and Bertrand are each given a
card with a positive number written on it. They can look at their own card but
not at the other one. They are told that the numbers differ by one, but they do
not know which of them has the larger number. A is given the opportunity to
declare what B has, or to pass (stay silent) if he is not sure. Then B is given a
similar opportunity. The game continues until one of them declares the value
of the other’s card. Guesses are not permitted.

Let us start with a simple case. Suppose that B has the card numbered 2.
Then he knows that A has either 1 or 3. If A has 1 then he will immediately
declare that B has 2. So if A passes on his first turn then B can conclude that A
does not have 1; B can thus immediately declare that A has 3. It is fairly easy
to list all the cases in which the game terminates in the first round. They are

A has 1. A declares that B has 2.
A has 2 and B has 1. A passes and B declares.
A has 3 and B has 2. A passes and B declares.



Pure Mathematics 129

The simplest interesting case is when A has 4 and B has 3. I will give two
different arguments leading to different conclusions, without saying which is
right!

(i) Before they start playing both A and B can work out from their own cards
that nothing can happen in the first round. That is both A and B must pass
on their first turns. When this happens neither of them has learnt anything.
Therefore the situation at the start of the second round is exactly what it
was at the start of the first round. No progress has been made and the game
cannot terminate.

(ii) The game starts with A passing, B passing and then A passing again. It is
now the turn of B, who reasons as follows. A must have 2 or 4. If A had
2 then he would have started the game thinking that B had 1 or 3. In the
former case A would have expected B to declare on B’s first turn. He would
have seen that B did not and concluded that B has 3. Therefore he would
have declared on his (A’s) second turn. But A did not do this. Therefore B
can declare on B’s second turn that A has 4.

One can go on and on analysing more and more complicated cases, with the
possible conclusion that if A has a fairly large number then the two players pass
many times before one of them declares. During this long period of passing,
each of the players knows that nothing can happen, because each knows the
value on the other’s card to within an error of 2.

The paradox arises from feelings about whether such puzzles have real
validity, and whether the other person will actually follow the rules. It may also
depend upon our inability to construct mental models of other people’s mental
models of our mental models of their mental models of . . . , beyond a certain
depth. A mathematician is trained to follow the logic wherever it leads, while the
man in the street adopts a very different approach to problem solving. One could
argue that in an extremely diverse world this attitude has a higher Darwinian
survival value than the tightly structured response of the mathematician. If one
of the main problems in social interactions is detecting deceit, then there it
may be a bad idea to accept someone else’s statements at face value, and more
important to form an assessment of their character. The fact that inadequate
methods of reasoning give the wrong answer to certain types of question does
not matter if those questions rarely arise in the real world.

There is an analogy with the views of judges in a legal case and that of
juries. The former clearly know more about the law and about legal arguments.
Juries occasionally bring in ‘perverse’ verdicts which are contrary to the facts
of the case and the rules of the legal system, because they value justice more
than the rules of a particular legal system. This is regarded by some (but not by
many judges) as one of the reasons for the retention of the jury system. However
in highly complex financial fraud cases there are strong arguments for trusting
the decisions to judges, because ordinary people are often out of their depth in
such technical situations.
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So it is with mathematicians; there are many areas in which we can and
should trust their judgement, but that does not mean that we have to accept
logical deduction as the only way of making decisions. In most situations which
we deal with in ordinary life, we need to make repeated and rapid decisions sub-
ject to a constant flow of ill-defined new information about the external world.
This is what our brains are evolved to cope with. To quote Anderson again:

(Penrose’s) computers do not ‘halt’ until they have found an exact answer.
This can be crippling. In the real world it is usually adequate to ‘satisfice’
to use Herb Simon’s term. Methods directed at finding an acceptable way to
do something can be much more efficient than exact ones. This is one way in
which the mind can take advantage of its knowledge of the structure of the
world.21

A major difference between human discourse and computer languages is that
in the former terms are learned by association rather than by being defined. For
this reason, among others, natural language is not a good medium for conduct-
ing careful logical reasoning. There are rules of grammar within each natural
language, but there are not such clear rules of interpretative correctness. Among
the many well-known paradoxes I mention

The next sentence is true.
The last sentence is false.

As emphasized by Hofstadter,22 each of the sentences is potentially useful on
its own and only in combination are they deadly. Just as Russell introduced a
theory of types to remove self-reference paradoxes in set theory, so one might
introduce an infinite hierarchy of meta-languages to eliminate similar paradoxes
in ordinary language. One can indeed prevent self-reference by insisting that
one can only refer to a sentence in a meta-language which is at a higher level
than the language or meta-language in which the sentence is written. Neverthe-
less, to resort to such a rule would be extremely limiting. It eliminates perfectly
acceptable sentences such as

This sentence was typed in 2001.
This sentence contains five words.
This sentence is self-referential.

It appears that either the theory of hierarchies of metalanguages is not the right
way of eliminating the paradoxes of ordinary language, or natural language is
incapable of being rendered consistent without being rebuilt from the ground
upwards. One should not interpret the above as a criticism of natural language
as an inferior mode of discourse. Indeed a literary figure might say exactly the
opposite. The point is that the two are very different, and one should be very
careful about being carried away by intricate arguments in natural language.

5.5 The Real Number System

Since the start of the seventeenth century, the concept of a real number has
appeared to be unambiguous, even if a precise definition was not obvious. In
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this section we will see that the same difficulties arise as for integers, but in
a worse form. I will argue that real numbers were devised by us to help us to
construct models of the external world. Once again we start with a brief history
of real numbers and some examples of the ways in which they are used. This
will provide the evidence for the concluding discussion.

A Brief History

The discovery that the notion of length in geometry could not be developed
using whole numbers and fractions (the only numbers they knew about) was
made by the Pythagoreans in the fifth century bc. It caused a crisis in their closed
group, and they tried to suppress the bad news. Little is known about this group
of Greek mystics/geometers directly, and we have to rely upon sources such as
Pappus and Proclus, writing in the fourth and fifth centuries ad respectively.
It is known that they had access to much earlier documents, now lost. By the
time of Euclid many proofs of key theorems in geometry had been discovered,
but a proper theory of real numbers, as we now call them, still lay far in the
future.

With the rapid development of navigation and astronomy in the sixteenth
century, the need for efficient computational tools became steadily more urgent.
At last the Indo-Arabic notation for manipulating fractional parts of numbers in
the decimal notation had to be adopted. In 1585 Stevin published De Thiende,
in which he described in detail the procedures for multiplying and carrying out
other arithmetic operations with decimals. This notation was put to essential
use by Napier quite soon afterwards (by the standards of those days). He was
concerned to provide rapid and efficient methods of multiplying numbers and
extracting square roots, and started work at the end of the sixteenth century on
the production of tables for this purpose. His logarithm tables were published
in 1614, near the end of his life, and their value was immediately appreciated by
those who had previously spent long times on repetitive computations. The idea
was taken further by Briggs, who published much improved tables of 10 digit
logarithms in 1624. Such tables were in constant use right up to 1970, as were
slide rules, which implemented the taking of logarithms mechanically using
two sliding pieces of wood.

The use of decimals is readily associated with the idea that numbers may
be identified with points on a continuous line, and this was to prove vital for
Newton’s development of the calculus later in the seventeenth century. The
fundamental nature of this new type of ‘real’ number was, however, quite
problematical, and it was not fully understood until the nineteenth century.
A typical example of the kind of problems which arose concerns the geometric
series

1
1−x

= 1 + x + x2 + x3 + x4 + · · · .
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One can check the particular case

2 = 1 + 1
2 + 1

4 + 1
8 + 1

16 + · · ·
by adding together the first dozen terms on the right-hand side. However, Euler
and others in the eighteenth century were willing to put x = 2 to deduce the
nonsensical

−1 = 1 + 2 + 4 + 8 + 16 + · · · .

Mathematicians might have argued that they should be allowed to use this for-
mula in the middle of a calculation, since similar manipulations with the equally
absurd i = √−1 always led to valid results. One problem for us in understand-
ing such a formula is that we interpret it in the light of an understanding of real
numbers which only emerged much later.

One of the principal people to put analysis on a firm foundation was
Cauchy. In the 1820s he gave a precise definition of convergence and pro-
posed a programme which would determine when a formula which involved
adding together an infinite number of terms was acceptable. However, this still
left the precise nature of real numbers unclarified. Several different but equi-
valent definitions of the concept of real number resolved this problem around
1872. While this resolved the foundational problems of analysis, it did so at
the cost of making the real numbers into axiomatically defined objects, whose
relationship with the intuitive idea of points on a continuous line required a
considerable effort to understand. Indeed Dedekind referred to his definition
as creating the real numbers. From this time onwards many mathematicians
concluded that analysis was a matter of formal proofs, and that their geomet-
rical intuition was a guide to the truth, but not an infallible one. This aspect
of the definitions of real numbers was deeply regretted by some. For example,
du Bois-Raymond (1882) wrote about it ‘demeaning Analysis to a mere game
with symbols’, while Heine, one of the inventors of the new approach, wrote:

I take in my definition a purely formal point of view, calling some symbols
numbers, so that the existence of these numbers is beyond doubt.

There is an aspect of the above story which must not be forgotten. If the geo-
metrical idea that real numbers can be thought of as points on a continuous line
had not existed, nobody would have tried to carry out the rigorous construc-
tion. Concentrating on the formal side of the final product is like admiring one
of Shakespeare’s plays on the basis of his extraordinarily large vocabulary. In
both cases there is a deeper way of judging what has been produced, which goes
beyond merely technical issues. In mathematics formal constructions are only
of interest if they correspond to some degree with earlier intuitive ideas. This
involves a judgement which can only be made outside the formal system by a
human being. The construction of the real numbers confirmed what was already
believed, but also went further in allowing mathematicians to resolve questions
which had not previously been imagined. While the above construction of real
numbers is accepted as the best working tool in most circumstances, there are
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other formalizations, such as non-standard analysis and constructive analysis,
which are of value in certain contexts. None of them can claim to be ‘the correct’
way of formalizing our intuitive notions of the continuous line, any more than
one can say words are ‘the correct’ way of communicating ideas. This may be
true in the great majority of situations but it is not a necessary truth in all.

The result of the above developments was to give mathematicians con-
fidence that their previous more intuitive ideas did not harbour some hidden
inconsistencies. They continued to rely upon their geometrical image of the real
line as they always had, and used the technical definition simply to reinforce or
supplement the geometrical picture when this was needed.

The peculiarities of the new analysis were soon to be demonstrated. In 1872
Weierstrass showed that it was possible to draw curves which did not just have
changes of direction at a few points, but which had no direction (tangent line) at
any point on them: by peering more and more closely at the curves one could see
that they had infinitely many corners. Figure 5.9 shows one such curve, which
arises in hyperbolic geometry and is described in more detail in the notes.23

Such curves were considered by Poincaré, Hermite, and many of the other
prominent mathematicians of the late nineteenth century to be pathologies of the
worst kind—lacking computer graphics they could not see how beautiful they
were. Following the efforts of Mandelbrot, we have eventually come to terms
with these possibilities, and have even constructed a new science of fractal

Fig. 5.9 A Curve without Tangents
By permission of David Wright, using software developed for ‘Indra’s Pearls’
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objects around them. In other words we have developed a new geometrical
intuition, in which these objects appear natural rather than pathological. But
it should not be forgotten how many people were profoundly dismayed at the
consequences of definitions which they had chosen to accept.

Classical mathematics contains much worse peculiarities than directionless
curves. The Tarski–Banach paradox of 1924 has several forms, but the easiest
to understand is the theorem that a sphere can be broken up into a finite number
of parts which may then be moved around and reassembled to create two new
spheres, each the size of the original one! The weasel words are ‘can be’. The
theorem does not refer to the real world in which spheres are made of atoms
and the total number of atoms is conserved. It refers to a mathematical model of
reality including an axiom asserting the existence of certain exotic sets which
nobody could possibly construct. So much the worse for this axiom you might
think, but the mathematical community currently thinks otherwise. Fortunately
it is a free world.

What is Equality?

A standard issue in logic, much discussed by philosophers, is the law of the
excluded middle, (LEM). This is the claim that every meaningful statement is
either true or false, and that the only issue is to find out which of these is the case.
If one accepts this and certain aspects of set theory, then it is a consequence of
the work of Gödel and Turing that there are statements which are true but not
provable by any Turing machine.

In the case of a definite statement about the numbers (integers), the LEM
seems to be unarguably correct if one believes that the numbers exist in some
independent sense, on the grounds that one must concede that a meaningful
statement about an independently existing entity has a truth value. If, however,
the numbers only exist by a social convention then it is also a matter of con-
vention whether one chooses to use the law of the excluded middle. The same
issues apply to real numbers, but even more so. The standard constructions of
the real numbers from the integers assume that there is no fundamental issue
involved in asserting that two real numbers are or are not equal. Whether there
is a means of resolving this question in a particular case is taken to be a practical
problem. The goal of this section is to demonstrate that issues connected with
the equality of two real numbers lead to some interesting paradoxes.

Let us define a real number a as follows. We start by putting a = 5/9 and
write it on top of π , both in decimal notation.

a = 0.55555555555555555555 . . .

π = 3.14159265358979323846 . . .

We now alter a and π systematically as follows. Looking through π , if we find
any sequence of a thousand or more consecutive digits which are all the same,
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we switch those digits with the corresponding digits of a. This produces two
new numbers, which we call b and σ to avoid confusion with the previous ones.
The number b is as well-defined as almost any number in mathematics. We
can compute each of its digits in a finite length of time by a well understood
and routine procedure, and so can calculate b as accurately as we like. Let us
now think about the exact value of b. If no sequence of a thousand consecutive
identical digits occurs in the decimal expansion of π then nothing happens
and b = 5

9 . However if a sequence of a thousand consecutive identical digits
does occur then whether b < 5

9 or b > 5
9 depends upon which particular digit

is repeated a thousand times first.
It seems extremely difficult to imagine how the occurrence of such a

sequence (of a thousand successive identical digits) might be proved or dis-
proved, so we may never know whether b = 5

9 or not. But let us suppose that
one day someone proves a general theorem about the randomness of the digits
of π with the implication that such a sequence does occur somewhere in its
decimal expansion. It is even more unlikely that the first such sequence will
ever be discovered. So we could then be in the highly embarrassing situation
in which we knew that b was not equal to b = 5

9 but did not know whether it
was greater than or less than b = 5

9 . Certainly its difference from b = 5
9 would

be so small as to be invisible in any practical sense.
In Platonic mathematics such numbers as b exist and therefore either are or

are not equal to b = 5
9 . This belief, however, is without value in settling which

of these possibilities occurs. The Platonic philosophy may be comforting, but
it does not carry the subject any further forwards. One can plausibly argue that
science is concerned with finding and presenting evidence and not with discuss-
ing philosophical views about the nature of truth. Intuitionists have developed
this idea in a systematic manner, as we shall now see.

Constructive Analysis

The school of intuitionist mathematics was dominated by Brouwer during the
1920s, but it was also strongly supported by Hermann Weyl. Brouwer advoc-
ated a constructive approach to the subject, in which mathematical entities
would only be regarded as existing once an effective construction for them had
been written down. Such ideas had already been expressed forcibly late in the
nineteenth century by Kronecker, who had advocated the rejection of most of
analysis and set theory.

The intuitionist programme entailed the removal of the law of the excluded
middle (LEM) from the mathematician’s toolbox. According to Brouwer:

The long belief in the universal validity of the principle of the excluded third
in mathematics is considered by intuitionism as a phenomenon of the history
of civilization of the same kind as the old-time belief in the rationality of π

or in the rotation of the firmament on an axis passing through the earth. And
intuitionism tries to explain the long persistence of this dogma by two facts:
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firstly the obvious non-contradictority of the principle for an arbitrary single
assertion; secondly the practical validity of the whole of classical logic for an
extensive group of simple everyday phenomena.24

The above statement flows from Brouwer’s anti-Platonism and in particular his
belief, following Aristotle, that the set of numbers does not exist as a completed
entity in itself. One should think rather of a process for producing numbers
which can be continued indefinitely. Bernays explained it as follows:

This point of departure carries with it the other divergences, in particular
those concerning the application and interpretation of logical forms: neither
a general judgement about integers nor a judgement of existence can be inter-
preted as expressing a property of the series of numbers. A general theorem
about numbers is to be regarded as a sort of prediction that a property will
present itself for each construction of a number; and the affirmation of the
existence of a number with a certain property is interpreted as an incomplete
communication of a more precise proposition indicating a particular number
having the property in question or a method of obtaining such a number.25

Brouwer’s philosophy of mathematics was rejected by most other mathem-
aticians, partly because of his difficult personality, but mainly because it entailed
the loss of some of the most important branches of mathematics. There are even
intuitionist theorems which are definitely false in classical mathematics.26

Brouwer’s intuitionism (INT) is only one of several constructive approaches
to mathematics. In 1967 Errett Bishop developed an approach which avoided
the main problems of INT. The simplest summary is that he avoided the use
of the law of the excluded middle, but did not replace it by an alternative.
A consequence is that every theorem of Bishop’s constructive mathematics
(BISH) is also a theorem of classical mathematics. In the reverse direction some
theorems of classical mathematics either do not appear in BISH or appear in a
modified form. Contrary to the doubts of the sceptics, Bishop proved that one
could develop a large part of analysis within such a context by actually writing
out the details of the proofs. In order to prove that an equation has a solution
within BISH one needs to give a method for evaluating that solution. It is not
sufficient to derive a contradiction from the assumption that no solution exists.

If one wanted to explain BISH in one sentence it would be as follows. In
classical mathematics ∃ means ‘there exists’ but in BISH it means ‘the writer
has an explicit way of producing’. Thus in BISH one accepts that mathematical
statements are made within a particular social context and what cannot be
asserted today might very well be asserted in the future. One focuses not on
whether statements might be true in some Platonic sense but on whether we
have a method of proving them. Everything else is a result of following up this
idea systematically.

One does not need to make any philosophical commitment in order to take
an interest in BISH. In particular one does not have to believe that the law of
the excluded middle is false or meaningless. Avoiding its use can be regarded
merely as a way of forcing one to concentrate on the constructive aspects of
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classical mathematics. Inevitably constructive proofs are harder than traditional
proofs: they provide more information, and one never gets something for noth-
ing. Although Bishop’s version of mathematics takes some getting used to, it
does have real interest for any mathematician who has even a small respect for
computational issues.

Non-standard Analysis

At the end of the eighteenth century mathematicians were using two ideas which
caused them great unease. We have already discussed the first, the status of ima-
ginary numbers. The second has an equally interesting history. It is the nature
of infinitesimals, introduced by Leibniz in the late seventeenth century in his
development of the calculus. These were supposed to be infinitely (or perhaps
indefinitely) small but non-zero numbers denoted dx, such that either dx × dx

vanishes or it can be deleted from calculations without ‘essential error’. Of
course the meaning of the phrase ‘essential error’ caused mathematicians some
anxiety, but the results obtained using Leibniz’s notation were so valuable that
they felt unable to abandon its use. The status of these infinitesimals was appar-
ently resolved by their abolition in the 1820s, when Cauchy gave a new and
rigorous definition of limit. This provided proper foundations for the calculus
without ever mentioning infinitesimals.27 For the next hundred years infinites-
imals were universally agreed to have been one of the necessary mistakes in the
development of mathematics.

Unfortunately for those who like their history simple, and who would like
to think of mathematics as the gradual unveiling of some objective reality, the
situation was to reverse yet again. In 1961 Abraham Robinson pioneered yet
another approach, called non-standard analysis, in which the real number sys-
tem is augmented, rather than diminished as in constructive analysis. In this
system there do indeed exist a variety of infinitely big and infinitely small but
non-zero ‘numbers’, and Robinson developed a systematic way of doing ana-
lysis with these infinitesimals. After four hundred years Leibniz’s notation for
differentiation at last makes sense! The system is consistent with the standard
system in the sense that any theorem about ‘traditional’ real numbers proved
using non-standard analysis can also be proved by classical methods. The clas-
sical proof may, however, appear very unnatural. Non-standard analysis has a
slowly increasing number of devotees, and has recently been used to provide
a more intuitive proof of the Jordan curve theorem, a result about the geo-
metry of the plane. It has also been responsible for new mainstream theorems,
particularly in the area of probability theory called stochastic processes. Its
philosophical and historical importance has been acknowledged by a variety of
mathematicians including Lakatos, Bishop, and Kochen. It is one of the clear
cases of a revolution in mathematical thought, albeit one which is being played
out over a period of about fifty years.
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5.6 The Computer Revolution

Identifying a revolution while it is still in its early stages is a fool’s game, but I
will take the risk. I believe that the rapid growth of computer power is already
leading to changes in the way mathematicians work, and that within fifty years
the impact will be enormous.

To develop this idea, let me go back to 1900. If one looks at Cambridge
Tripos examination papers, one sees that students were expected to have a mas-
tery of special functions—Bessel functions and their relationships for example.
Even in 1930, when my father was in university, the study of such topics occu-
pied a substantial fraction of a typical degree course. When I went to university
in 1962, I had already learned by rote dozens of formulae involving trigono-
metric functions, and had spent many hours carrying out calculations involving
them. However, Bessel functions had more or less disappeared from the com-
pulsory part of the Oxford University syllabus. By that time there were several
weighty volumes listing their properties and providing tables to compute them.
People who needed to use functions named after Bessel, Struve, Airy, Whittaker,
Riemann, and many other mathematicians referred to the volumes as needed.
The quantity of information is these books was far beyond human memory, and
anyway we had more interesting things to think about.

Today’s students know only the basic addition formulae for trigonometric
functions when they arrive in university, if indeed that much. Many univer-
sity departments now start their courses teaching students how to use Maple
or Mathematica, software written by specialists and containing vast arrays of
formulae. If one needs to differentiate, evaluate or find the zeros of a Bessel
function, one now only needs to type in the correct command to get the answer.
The next generation will use this software, not knowing where the formulae
come from, and assuming that the computer is always right.

This is certainly a loss, but the gains are considerably greater. For example
the trigonometric function tan(x) can be written as a power series in x. It takes
only a few seconds to ask Maple to write out the first ten terms of the expansion

tan(x) = x + 1/3 ∗ x3 + 2/15 ∗ x5 + 17/315 ∗ x7 + 62/2835 ∗ x9

+ 1382/155925 ∗ x11 + 21844/6081075 ∗ x13

+ 929569/638512875 ∗ x15 + 6404582/10854718875 ∗ x17

+ 443861162/1856156927625 ∗ x19 + O(x20)

a task which would have taken me hours or, more likely, days.
It seems inevitable that as time passes more and more of our knowledge will

be integrated into a universal online system. Every theorem will have its own
internet address with links to all of the results on which it depends. New ideas
will be tested automatically for consistency with already accepted facts, with
apparent conflicts referred to humans for resolution. Formulae involving special
functions will be confirmed by evaluating them against thousands of randomly
chosen numbers. Theorems will be assigned reliability weightings by computers
which monitor the number of other results which tend to confirm them, and
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the number of mathematicians who have used them without objection. These
weightings will factor in the authority of the mathematicians who discovered
or used the theorems.

A few years ago there was a vigorous debate in the Bulletin of the American
Mathematical Society about whether it was necessary to have a method of qual-
ity assurance at all.28 There were many who believed that the most important
breakthroughs in the subject were made by people who were working entirely
intuitively, leaving the details of theorem-proving to others. In fact, of course,
one needs both generals and soldiers. Generals can be inspired, but they can
also live in a fantasy world which is exposed when others try implement their
grand plans. The automation of some of the work of the soldiers is inevitable
and does not threaten the generals; indeed it may enable them to access the
resources which they need more efficiently.

Is this prospect frightening? Well, did the transfer from walking to horses
and then to motor cars involve a diminution of our humanity? It is the same
question. It may worry us, but our children will take it for granted, because they
know nothing else.

Discussion

The origins of the real number system are deeply enmeshed with the belief
that the world is in some deep sense continuous. This has a biological basis
associated with our physical size, and is certainly scientifically incorrect once
one gets down to the atomic level. During the second half of the twentieth
century the definitions of our units of measurement have gradually acknow-
ledged the discreteness of matter. Since 1967 the second has been defined as
9, 192, 631, 770 times the period of a specific transition of caesium-133, and
since 1983 the metre has been defined as the distance light travels (in a vacuum)
in one second, divided by 299, 792, 458. The kilogram is still the mass of a par-
ticular platinum-iridium cylinder kept near Paris. It is easy to imagine it being
re-defined as the mass of a certain number of hydrogen atoms, but changing the
definition will depend upon basic advances in technology. There is a current
prospect of providing a new fundamental standard of electrical current based
upon quantum theory, and hence on counting.

One of the strongest arguments for the independent existence of real num-
bers is that they are indispensable for understanding the physical world. Very
unfairly, I have altered Shapiro’s presentation of the argument in one important
respect, discussed below.

1. Real analysis refers to, and has variables that range over, abstract objects
called ‘real numbers’. Moreover one who accepts the truth of the axioms of
real analysis is committed to the existence of these abstract entities.

2. Real analysis is indispensable for fluid mechanics. That is modern fluid
mechanics can neither be formulated nor practised without statements of
real analysis.
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3. If real analysis is indispensable for fluid mechanics, then one who accepts
fluid mechanics as true is thereby committed to the truth of real analysis.

4. Fluid mechanics is true, or nearly true.

The conclusion of the argument is that real numbers exist.29

Unfortunately the final assumption is questionable. We do not actually
believe that fluid mechanics is true. It is highly accurate in many circum-
stances, but fluids are actually composed of atoms, and these are discrete. The
accuracy of fluid mechanics is eventually a result of a different theory, statist-
ical mechanics, which has a completely different mathematical structure. If we
replace truth by accuracy, then the best which the above argument can yield is
that real numbers are a very useful tool. They may exist, but the argument does
not prove this.

Now I come to my change in Shapiro’s argument. Where I have written
fluid mechanics Shapiro wrote physics. It seems bold to suggest that the whole
of physics is not true, and that its ability to make accurate predictions of a huge
range of phenomena is not evidence for this. This, nevertheless, is what I do.
There have been major revolutions in what we regard as the fundamental theory,
and currently we know that we do not have one. Many physicists are willing
to contemplate the idea that space-time is actually discrete, or even that it is
totally unlike our present ideas about it. It has to be admitted that all current
theories are formulated in continuous terms. Current researchers use a variety
of sophisticated tools from differential equations to quantum mechanics and
Riemannian geometry, but the mathematics involved is just as continuous as
was Euclidean geometry. Whether the world itself is ultimately continuous or
not is unknown, and cannot be decided on the basis of the properties of our
current models of it. The models change with time, and we have no idea what
they may be like a hundred years hence. Maybe all of our current mathematical
models will be replaced by a theory of cellular automata, as Stephen Wolfram
has recently proposed. Only time will tell.
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6
Mechanics and Astronomy

6.1 Seventeenth Century Astronomy

This chapter considers two related topics. The first is the development of
astronomy in the sixteenth and seventeenth century, culminating in Newton’s
publication of his laws of motion in 1687; the second concerns the subsequent
history of these laws. More and more observations confirmed the predictions of
Newton’s theory, and after about 1750 nobody had any doubt that his theory of
gravitation provided a true description of the world. The task of philosophers
was to explain how finite human beings were able to acquire such certain know-
ledge of the world. Then in the first decades of the twentieth century it was
discovered that this certainty was a chimera. Einstein dethroned Newton, and
physics moved into a period of flux which has continued ever since.

The fact that such a well-established theory could eventually be superseded
poses a severe challenge to any theory of scientific knowledge. We re-tell the
story of the period, selecting the aspects which are most relevant to this matter.
In the second half of the chapter we then describe some of the developments
which led to the collapse of the Newtonian world-view. Finally in Chapter 10,
we will resolve the problem by invoking the modern distinction between reality
and mathematical models of reality.

The seventeenth century marks a decisive break between a social system
dominated by the authority of the Roman Church and the rise of a more indi-
vidualistic study of the world. At the start of the century the Church dominated
Europe and claimed the right to interpret scientific findings.1 By the end it
was known that the motions of the planets were controlled by Newton’s laws,
that is by impersonal mathematical equations. The influence of these laws has
never waned. In the twentieth century space craft have navigated around the
solar system using Newton’s laws to guide them, and the collision of the comet
Shoemaker–Levy 9 with Jupiter in July 1994 was predicted months in advance
by the same laws.

Nevertheless, the first quarter of the twentieth century was to bring two
fundamental scientific revolutions, each of which totally changed scientists’
view of the nature of the physical world. At the atomic level Newton’s laws
were to be replaced by quantum theory and at the cosmological level Einstein’s
general theory of relativity was to supersede them. These developments will be
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described later, but in this chapter we will concentrate on internal difficulties
arising from the laws themselves. Although some hints of serious problems
appeared late in the nineteenth century, it was only in the second half of the
twentieth century that scientists realized their extent. The occasion was a dra-
matic increase in our ability to carry out extremely lengthy calculations by using
computers. It led to the discovery of chaos—the highly unstable dependence
of the solutions of Newton’s equations on the initial conditions. This might
be regarded as no more than a tiresome computational limitation. However,
it is now recognized that it affects most of the phenomena in the real world
of interest to us. Following Popper, I will argue that to believe that Newton’s
laws are still applicable ‘in principle’ in chaotic situations is to make a philo-
sophical choice. This may be defended by reference to Ockham’s razor, but
it cannot be supported by scientific evidence. Indeed to predict the movement
of real particles in chaotic situations, one would need to include effects due
to quantum mechanics. But Newton’s laws demonstrate their own limits quite
independently of the appearance of quantum theory and general relativity.

The story starts during the second century ad, when the Alexandrian astro-
nomer Ptolemy elaborated the earlier ideas of Hipparchus into his famous
Ptolomaic system, described in He mathematike syntaxis. In this system the
Earth was at the centre of the universe, and the planets moved around it in com-
plicated orbits described in terms of cycles and epicycles. The Ptolomaic system
survived for over a thousand years, and blended conveniently with the official
dogma of the Church. Eventually Nicolaus Copernicus’ book De Revolu-
tionibus, proposed a model of the solar system in which the Sun was at the
centre and the planets rotated around it. His system still involved the use of
cycles and epicycles, but it was nevertheless substantially simpler and more con-
vincing. Among its revolutionary proposals was the idea that the stars were not
embedded in a crystal sphere which rotated around the Earth, but that they were
stationary and the Earth itself rotated around an axis through its poles. Coper-
nicus was well aware that his ideas might provoke the Church, and postponed
its publication until 1543, the year of his death. He dedicated it to Pope Paul III
in a letter which submitted entirely to the superior judgement of the Pope.

De Revolutionibus was not published by Copernicus himself, but by a friend
and Lutheran theologian called Osiander, who was justifiably concerned by
the fact that Luther had condemned such ideas as contrary to writings in the
Bible. He added an anonymous introductory letter explaining that the book
did not claim to be a true theory, but merely a method of calculation, to the
extreme anger of those who had entrusted him with its printing. This letter might
have contributed to the Roman Church tolerating its existence throughout the
sixteenth century.

It would be nice to report that Copernicus’ ideas were immediately accepted,
at least by the astronomical community. Unfortunately history is rarely so
simple. His work was read, but did not attract enormous attention because
it was regarded as physically implausible, in spite of its conceptual simplicity.
Later in the sixteenth century Tycho Brahe put forward a third model of the
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universe, in which the Sun and Moon moved around the Earth, while all of the
planets moved around the Sun. We would now say that they were describing the
same theory, but that Brahe preferred to use a rotating Earth-centred coordinate
system rather than the simpler Sun-centred coordinates. We would regard this
as a perverse (but not incorrect) choice, because it makes the equations more
complicated. However, Brahe had good reasons for thinking that it was the
physically correct choice.

Although the two theories were the same as far as the motions of the planets
were concerned, Brahe considered that if the Earth was truly moving around
the Sun, this would have visible effects on the apparent positions of the stars.
Namely, as the Earth moved around its orbit, they would appear to move
slightly—an effect called stellar parallax. This effect has now been observed,
but it is extremely small, and far beyond the discrimination of Brahe’s instru-
ments. It is an interesting comment on the history of science that Copernicus’
theory was accepted long before this problem had been resolved experimentally,
simply by supposing that the stars were far more remote than had previously
been thought. The difficulty was brushed underneath the carpet, but history has
confirmed that this was actually the right thing to do.

An understanding of the religious context of the times is of vital importance
in explaining the Church’s later reaction to Galileo. In 1520 a long simmering
conflict between the Church and Luther came to a head. He was threatened
with excommunication unless he withdrew his increasingly strident criticisms
of Papal indulgences and other degenerate activities of the Church leadership in
Rome. This spurred him on to open rebellion and the threatened excommunica-
tion took place in September of that year. Luther responded by casting the Papal
bull into the fire at Wittenberg in December and declaring that nobody could
be saved unless he renounced the rule of the Papacy. Luther spent the rest of
the decade fomenting a successful nationalist Protestant rebellion against Papal
rule in Germany. During the next decade Calvin led a Reformation movement
in Geneva. Henry VIII, who was more interested in power than in doctrine, took
control over the English Church in Britain, and was duly excommunicated in
1538, when he started the process of dissolving the monasteries and acquiring
their very substantial assets for his own use.

All of these events understandably caused a crisis in the Roman Church,
which desperately needed to carry out internal reforms and re-assert its author-
ity. This it did in the Council of Trent, which in 1546 laid out rules limiting the
rights of any individual to object to its teaching on grounds of conscience. It also
gave the Church the final authority in all matters concerning the interpretation
of the Bible. This can be illustrated by the following circular of the Jesuits:

Let no one defend or teach anything opposed, detracting or unfavourable to
the faith, either in philosophy or in theology. Let no one defend anything
against the axioms received by the philosophers, such as: there are only four
kinds of causes; there are only four elements; there are only three principles of
natural things; fire is hot and dry; air is humid and moist . . . Let all professors
conform to these prescriptions; let them say nothing against the propositions
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here announced, either in public or in private; under no pretext, not even that
of piety or truth, should they teach anything other than that these texts are
established and defined. This is not just an admonition, but a teaching that we
impose.

Thereafter the Church was extremely sensitive to any further suggestions of
revolt, and was prepared to impose its own decisions ruthlessly when it con-
sidered this necessary. In 1600 Giordano Bruno was burned at the stake in
Rome for having advocated over a period of years the physical correctness of
the heliocentric theory of Copernicus and the even more radical idea that our
Sun and planets might be just one of a large number of similar systems spread
throughout an infinite universe.

Bruno’s problem was not simply to be ahead of his time. He was incautious
to the point of absurdity. At the same time as promoting his cosmological views
throughout Europe, he advocated a religious doctrine (theosophism) which
bore little resemblance to Christianity, let alone to Catholicism. When tried
for heresy, he made no attempt to recant, even after seven years in prison, and
refused to withdraw or even moderate any of his claims. The conclusion was
inevitable.

Galileo

Galileo Galilei spent much of his life investigating the principles governing the
behaviour of bodies such as balances, levers, pendulums, and falling weights.
This was a very confused subject at the time: notions such as force and inertia
were not well understood, and many mathematical tools which we now take for
granted did not exist until after he had died. Indeed Galileo regarded geometry
as the language of mathematics, rather than algebraic equations. The story
about his dropping bodies of various weights from the leaning Tower of Pisa is
famous. Unfortunately it appears nowhere in his own writings, and is probably
a later invention of his biographer Viviani.

The Tower of Pisa story, nevertheless, encapsulates in a vivid image
something true and important: that Galileo overturned the scholastic myth pro-
claiming that heavier bodies fell faster in proportion to their weights. In fact,
as Galileo explained at length in Dialogue Concerning the Two Chief World
Systems, bodies of different weight fall at the same speed, once one has
discounted the effects of air resistance.

Galileo’s approach to science has been absorbed into our culture so thor-
oughly that it is hard for us to appreciate its revolutionary nature. He insisted on
the importance of experimental or observational evidence, and that one should
not accept the word of authority, whether this meant the scholastic philosophers
or the very powerful Church in Rome. His explanations of phenomena were not
always correct, but his discoveries provided the crucial context for Newton’s
later work. Of course he was not alone: there was a rising class of mechan-
ically skilled workers who became increasing self-confident as the sixteenth
century progressed, and he inherited their view about the right way to acquire
knowledge.
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Galileo is most famous for his astronomical discoveries and subsequent
conflict with the Roman Church, but he has another equally important claim to
fame. Mechanical clocks had existed since medieval times, the earliest surviv-
ing example which still works being that at Salisbury Cathedral, dating from
about 1386. Galileo’s idea of regulating such clocks using a pendulum was
to transform their accuracy. In 1659 Viviani produced a drawing of a simple
pendulum clock which had been designed by Galileo shortly before his death
in 1642. Huygens, however, actually built such a clock in 1657. From this point
onwards progress was extremely rapid. By 1725 it had led to the introduction
of temperature compensation, watches with spring balance regulators, and a
variety of other ingenious ideas. Clocks were then accurate to better than one
second per day, and further innovations were to continue until atomic clocks
arrived in the twentieth century. An enormous amount has been written about
the social origins of the explosion of science in the seventeenth century, but if
one had to pick out the most important single contribution, it might well be the
invention of the pendulum clock.

We now turn to Galileo’s astronomical discoveries. The story starts when
Roger Bacon wrote about spectacles in the mid-thirteenth century; convex lens
spectacles were already being manufactured in Florence by 1300.2 The tele-
scope may well have been invented by Hans Lippershey, a spectacle maker
from the Netherlands. Its military and commercial value were first recognized
in 1608. Galileo learned of it very soon after that and started making his own
improved copies in Florence. This was not an easy task: he had to grind his
own lenses and work out how to improve the optics in order to get higher
magnifications.

Galileo made his main astronomical discoveries in 1610. He examined the
surface of the Moon in detail, observing irregularities on it which he correctly
interpreted as mountains; he was even able to estimate that the height of one
mountain was at least six kilometres. These observations flew in the face of
the entire body of scholastic understanding of the heavenly bodies, which were
believed to be perfect. In January he first saw four moons of Jupiter. His initial
interpretation of them was as points oscillating back and forth along a straight
line, but he soon re-interpreted what he could see as rotation in circular orbits
seen edge on. He soon started to write his book The Starry Messenger, which
included drawings of craters and mountains on the Moon. Published in March
1610, it was an instant best-seller, and prompted Kepler to write his own pamph-
let Conversations with the Starry Messenger, emphasizing the importance of
Galileo’s observations.

There were, however, others who were not willing to accept Galileo’s
ideas immediately. In 1610 most telescopes were of very poor quality, and
this resulted in suggestions by some scholastic philosophers that the more con-
troversial objects which he claimed to have seen were illusions produced by
his instruments.3 Galileo actually saw dark patches on the surface of the Moon
whose size and shape changed according to the phase of the Moon. He realized
that the changes were what one would expect if sunlight was striking the tops
of mountains and causing shadows, and made this interpretation.
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Fig. 6.1 Far Side of the Moon
Reproduced from http://spaceflight.nasa.gov/images/

It is very easy to dismiss the objections of the scholastic philosophers as
wholly misguided, but Galileo could be completely wrong, even on important
matters. (The same is true of Newton, Darwin, Hilbert, and Einstein.) He
rejected the view of Brahe and others that comets were material bodies, arguing
instead that they were merely optical phenomena. He was right about the Moon,
not because of his superior logic, but because his interpretation of the evidence
provided by his telescope was later confirmed by a wide range of independent
evidence. This includes many wonderful NASA photographs, such as figure 6.1.
Hindsight is a wonderful thing, and is frequently associated with a simplification
of old disputes, in which the losers are presented as rather stupid, while the
winners are endowed with god-like powers of insight.

Galileo did not come out in favour of the Copernican theory in The Starry
Messenger, but stronger evidence was not long in coming. In the autumn of
1610 Venus was in the right position for him to be able to confirm Copernicus’
prediction that Venus should exhibit phases, a phenomenon which was entirely
inexplicable within the scholastic tradition. The phases of Venus were (and

http://spacefight.nasa.gov/images/
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still are) explained by assuming that Venus shone by reflected light and that it
orbited the Sun at a distance less than that of the Earth from the Sun. When it
was approximately between the Earth and Sun, it was at its biggest and also
appeared only as a narrow crescent. On the other hand when on the opposite
side of the Sun from the Earth, it was at its smallest and appeared as a fully
illuminated disc.

When Galileo turned his telescope to the Sun he saw that there were dark
spots or patches on its surface, which gradually changed shape as well as moving
from one side of the Sun to the other before disappearing at the edge. Galileo
concluded that the Sun was imperfect, and that it rotated about an axis. In other
words the Sun was also a material object, extraordinary only because it shines
by its own light. He had numerous exchanges with others about the nature of
the sunspots, and wrote that they bore some similarity to clouds, but was careful
not to go beyond what he could see.

Galileo was not the first to see the spots on the Sun, even within Europe.
Indeed, their existence had been known to the Chinese for about two thousand
years, but they did not invest this fact with any deep religious or philosophical
importance. The main beneficiaries of the Chinese passion for recording astro-
nomical events were twentieth century astronomers, who found their detailed
records of eclipses and other unusual events enormously valuable. For Galileo,
the existence of sunspots was to be one more piece in the argument leading to
the overthrow of the scholastic philosophy of the heavens.

The news about Galileo’s astonishing discoveries spread very rapidly and
copies of his telescope were sent all over Europe. As a result he became the most
celebrated philosopher in Europe, and also a public advocate of the Copernican
theory. This started a conflict between Galileo and the Church (more precisely
certain powerful people within it). The opposition to Galileo came partly from
the fact that the Copernican theory was in conflict with what was in the Bible.
However, Augustine had emphasized many centuries earlier how important it
was not to interpret Biblical statements about the natural world too dogmatically,
lest the Church might later come to appear foolish. Galileo was scathingly rude
about some eminent supporters of the Aristotelian system, and, unsurprisingly,
some of them were keen to take revenge. An example of the sharpness of his
attacks is provided by the following passage from the later Dialogue Concerning
the Two Chief World Systems:4

The anatomist showed that the great trunk of nerves, leaving the brain and
passing through the nape, extended on down the spine and then branched
out through the whole body, and that only a single strand as fine as a thread
arrived at the heart. Turning to a gentleman whom he knew to be a Peripatetic
philosopher, and on whose account he had been exhibiting and demonstrating
everything with unusual care, he asked this man whether he was at last satisfied
and convinced that the nerves originated in the brain and not in the heart. The
philosopher, after considering for awhile, answered: ‘You have made me see
this matter so plainly and palpably that if Aristotle’s text were not contrary to
it, stating clearly that the nerves originate in the heart, I should be forced to
admit it to be true.’5
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Other influential figures in the Church hierarchy considered that Galileo was
trying to reduce the Church’s authority by arguing too dogmatically for his
views. He was trying to take control of the terms of the debate, and claiming
the right to interpret theologians. He, on the other hand, desperately wanted
to disseminate his ideas concerning the physical correctness of the Copernican
theory. Unlike Bruno, he tried very hard to present his ideas as being in con-
formity with Church teaching, particularly that of Augustine, but ultimately to
no avail. In 1616 Copernicus’ book was banned, and Galileo was instructed not
to promote his ideas about the truth of the Copernican theory.

Galileo accepted from Aristotelian philosophers the distinction between
theories which had only been proved mathematically (i.e. were computational
aids but not literally true) and those which had been proved physically (i.e.
demonstrated beyond reasonable doubt). This distinction was clearly relevant
to the Ptolomaic system, which provided an accurate but completely artificial
mathematical scheme for predicting the motion of the planets across the sky.
It was argued by the Aristotelians that the Copernican scheme was merely a
simpler and better system of the same type. Foucault’s pendulum experiment
proved the rotation of the Earth beyond reasonable doubt, and could have been
performed by Galileo, but was not in fact carried out until the mid-nineteenth
century. The plane in which such a pendulum swings rotates slowly; the rate
depends upon the latitude of the site, and is easily explained as a consequence
of the rotation of the Earth. If the Earth was stationary, it is difficult to imagine
any explanation of this effect.

Galileo tried hard to find evidence for the rotation of the Earth which did
not rely upon gazing into the heavens, and believed that he had found this in the
existence of tides. Unfortunately, his theory of the tides was flawed. He claimed
that they were a consequence of the combined effects of the Earth’s rotation
and motion around the Sun, an idea which we now see to have been based
upon his imperfect understanding of dynamics. Many others, from Antigonus
in ancient Greece to Yü Ching in China, had correctly suggested that they
depended primarily upon the influence of the Moon, but Galileo dismissed this
idea with contempt in Dialogue Concerning the Two Chief World Systems. It
is much easier for us to see his arrogance when he dismissed the influence of
the Moon as not being worthy of serious discussion, than it is on matters about
which history has shown him to be right.

In fact direct evidence for the rotation of the Earth can be obtained by
studying the oceans. The rotation produces an effective force, called the Coriolis
force, which has a profound effect on the circulation patterns of both oceans
and atmosphere at a global level. It also provides the reason why hurricanes in
the northern hemisphere always rotate anticlockwise. Unfortunately systematic
information of this type was not available to Galileo, nor would he have been
able to make sense of it before Newton’s laws had been discovered.

Galileo did not stop his investigations into the Copernican theory after 1616.
Matters came to a head after the publication of his book Dialogue Concerning
the Two Chief World Systems in 1632. He adopted the device of presenting his
ideas in the form of a debate between three characters, so that he could claim



Mechanics and Astronomy 151

that their views were not his own. But it was obvious where his own sympathies
lay, and in 1633 he was finally charged with heresy and forced, under threat
of torture, to recant publicly. The Church seemed finally to have won, but the
Copernican system was so much simpler, and the evidence so easily available to
anyone with a telescope, that by 1650 his observations were widely regarded as
overwhelming evidence for its physical correctness. The eventual acceptance
of Newton’s theory of gravitation finally made the Church’s official theory an
historical irrelevance, but it was not until 1992 that Pope John Paul II officially
apologized for the Catholic Church’s error in persecuting Galileo. He admitted
that Galileo had been right both scientifically and theologically, but could not
bring himself to declare that the Church itself had been at fault, preferring
to blame theologians whose minds had been insufficiently flexible. This may
be technically correct, but there is no doubt that Pope Urban VIII had fully
supported the conviction and subsequent house arrest of Galileo.

One of the important passages in the Dialogue was Galileo’s lengthy dis-
cussion of objections by Brahe and others to Copernicus’ theory. Would not the
rotation of the Earth prevent objects such as leaves falling through the air vertic-
ally, as the Earth moved underneath them? Would not it have the (demonstrably
wrong) implication that a cannon ball fired to the west would carry further than
one fired to the east? Galileo answered this in a famous passage about a person
in a cabin of a ship which is moving with constant speed. He pointed out that
fish in a bowl were able to swim around with complete freedom, and that water
drops emptying from a bottle fell vertically when measured by reference to the
cabin. In other words all motions in the cabin were the same whether or not
the cabin was moving, provided they were measured with respect to the cabin.
Galileo concluded that observations of falling objects could not be used as an
argument against the rotation of the Earth.

This is a completely non-mathematical argument, but is nevertheless a prin-
ciple of relativity based on an argument of the same type as was later used by
Einstein. It was later transformed by Isaac Newton into the first of his three laws
of motion. It should not, however, be imagined that Galileo fully understood all
the implications of his own ideas. He remained wedded to the idea that bodies
naturally moved in circular paths. The circular orbit of the Moon around the
Earth therefore did not need an explanation in terms of gravitational forces: it
was only doing what came naturally to it. Rather than being smug about our
superior insight, let us consider how our descendants in four hundred years time
will think about our own failures to see the obvious!

Kepler

Johannes Kepler was born in 1571 to a poor family, but was fortunate to win
a scholarship to study in the Lutheran seminary at the University of Tübingen.
He was taught astronomy by Maestlin, who persuaded him privately that the
Copernican system was true, even though he was teaching the Ptolomaic system
publicly. As I have explained, its physical truth was not accepted by the Church,
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and it was not a safe doctrine to advocate in the political and religious turmoil
of those times. As a result of his early promise, Kepler was invited to join the
staff of the astronomer Tycho Brahe in Prague, and soon succeeded him as
Imperial Mathematician to the Holy Roman Emperor Rudolf II in 1601, when
Tycho died. He then had access to the vast quantity of detailed observations
by Tycho, and spent years trying to find a unifying mathematical explanation
of them. In 1609 this culminated with the publication of his first two laws of
planetary motion in Astronomia Nova. Ten years later he published his third
law in Harmonice Mundi. They stated that:

The planets move around the Sun in elliptical orbits with the Sun at one focus.

A line from the Sun to a planet sweeps out equal areas in equal times.

The squares of the orbital periods of the planets are proportional to the cubes
of their mean distance from the Sun.

The first law was revolutionary: it abolished the special status of circles in the
description of planetary motion, and replaced them by ellipses. The second
described how rapidly a planet moves at different parts of its orbit. The final
law explained how to relate the orbital periods of the different planets to each
other.

Kepler’s book Epitome of Copernican Astronomy, published in 1618–21,
was provocatively titled, and this was rewarded by its being put on the Index by
the Church. Kepler benefited from the relatively great intellectual freedom of
Rudolf’s court in early years, but later had to contend with a series of political
and religious pressures. This culminated in his prolonged defence of his mother
against a charge of witchcraft between 1615–21.

It is interesting that Galileo did not pursue Kepler’s ideas concerning
elliptic orbits, even though they corresponded on several occasions. Probably he
regarded ellipses as being as mystical and unscientific as Kepler’s introduction
first of the Platonic solids, and later of musical harmonies, into the description
of the Solar System. In addition Galileo was heavily involved in promulgating
the Copernican theory, supported by telescopic observations rather than math-
ematical formulations. When Newton published his Principia in 1687, he also
avoided references to Kepler, in spite of the fact that he derived Kepler’s laws
from his own theory of gravitation.6

There is another reason why Kepler’s laws might have been ignored by
many of his contemporaries. Kepler derived them by a long search for the
simplest mathematical formulae which would reproduce the planetary orbits,
but the result did not relate to anything else known about the planets. They
appeared to describe reality, but did not explain anything, and could only
be verified by someone who was willing to spend months re-analyzing the
data. Of course the preferred description in terms of circles did not explain
anything either, but at least circles were familiar and simple. Perhaps this
illustrates the fact that science is (or should be) about explanation rather than
prediction.
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Newton

The culmination of seventeenth century research in astronomy and mechanics
came with the work of Isaac Newton. Born in 1642 a few months after the
death of his father, in relatively modest circumstances, a series of lucky acci-
dents enabled him to go to Trinity College, Cambridge as a student in 1661.
As with so many other great scientists, his most fundamental work was done
at an early age, but he did not publish his laws of motion for many years. One
of the reasons was that he was misled by inaccurate astronomical data into
doubting its complete success. Eventually he was persuaded by Halley to pub-
lish Philosophiae Naturalis Principia Mathematica in three volumes in 1687,
to acclaim among the very few equipped to understand it. Principia was writ-
ten in Latin, as was almost all scientific work until the nineteenth century. He
wrote it in a severe classical Euclidean style, in order, so he wrote, ‘to avoid
being bated by little smatterers in mathematics’. Among the consequences was
a widespread lack of awareness of the magnitude of his achievement, which
persisted for many years.

Principia starts with the three laws of motion, which are rendered rather
freely below:

Every body continues in its state of rest, or of uniform motion in a straight
line, unless acted on by an external force.

The acceleration of a body is proportional to the applied force and is in the
same direction as the force.

The actions of two bodies on each other are equal but opposite in direction.

In a Scholium immediately following, Newton stated his indebtedness for these
laws to Galileo (but not to Kepler or Descartes), and mentioned later develop-
ments by Wren, Wallace, and Huygens. In fact Newton went far beyond Galileo
in the clarity of his understanding of dynamics, and it is probable that he was not
familiar with Galileo’s actual writings. He should instead have acknowledged
his debt to Descartes, but would not have done so because of his disagreements
with the Cartesians. Principia is not important just for the formulation of the
above laws. Its key feature was the development of his theory of gravitation.
His deduction of the inverse square law of gravitation from ‘the phenomena’ is
rightly considered to be one of the scientific triumphs of all time.

Although scientists in the seventeenth century did not regard detailed ref-
erences to earlier work as de rigeur, Newton’s attitude in this respect was
quite extreme. He was extremely jealous of his reputation, and liked to give
the impression that he owed little of substance to anyone else. He deliber-
ately removed references to Hooke from Principia, because of the latter’s
earlier (but unsupported) claim to have proved the inverse square law for
gravitational forces. Even his famous statement ‘If I have seen further it is
by standing on ye shoulders of Giants’ was likely meant as a subtle insult
to the stooped and physically deformed Hooke. Later in his life he used his
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position as President of the Royal Society of London7 ruthlessly to try to estab-
lish that Leibniz had stolen his work in calculus. This was in fact entirely
untrue.

The Law of Universal Gravitation

Like other early members of the Royal Society, Newton claimed to follow
Francis Bacon’s ideas about the proper way to do science. Rule 4 in Book
Three appears to summarize this method very simply:

In experimental philosophy, propositions gathered from phenomena by induc-
tion should be considered either exactly or very nearly true notwithstanding
any contrary hypotheses, until yet other phenomena make such propositions
either more exact or liable to exceptions.8

When one examines the arguments used in Principia, one finds a much more
complicated picture. In a famous General Scholium added to Principia in 1713
Newton emphasized that he was led from observations to laws by a process of
induction, and rejected the use of hypotheses which might result ‘from dreams
and vague fictions of our own devising’. This was not, as some people have
claimed, a rejection of the use of properly formulated hypotheses which could
then be tested, but an attack on the Cartesian school. When Newton came to
studying the orbits of comets, he explicitly assumed that they were parabolic,
used observations to determine the precise orbits under this hypothesis, and then
confirmed the validity of the conclusions by means of further observations.
In fact Newton was an opportunist. He used any and every method, as was
convenient.

Newton did not just show that the inverse square law of gravitation explained
all of the observed phenomena. He gave two independent arguments using the
astronomical data which proved that the forces on bodies in the solar system
must obey the inverse square law. He did not use the elliptical character of orbits
in either proof, presumably because planetary orbits are so close to circular that
distinguishing between ellipses and other curves is not a straightforward matter.
The first of his proofs depended on Kepler’s third law, but his second proof was
much more decisive.

When a planet moves in its orbit around the Sun, there are certain easily
measured features of its orbit which depend sensitively upon the force law.
These refer to the apsides, the points on the orbit at which the planet is closest
to or furthest from the Sun. Newton proved that for approximately circular
orbits the positions of these apsides changed from one orbit to the next except
in the case of the inverse square law. In fact he treated a number of different
possible gravitational laws in considerable detail. Figure 6.2 shows the angle A

between two apsides for an orbit which is not controlled by the inverse square
law; the circles of closest approach and furthest distance from the centre of
gravitation are shown as dotted lines.
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A

Fig. 6.2 Orbit with Rotating Apsides

Newton was then able to deduce Proposition 2 of Book 3, namely:

The forces by which the primary planets are continually drawn away from
rectilinear motions and are maintained in their respective orbits are directed
to the sun and are inversely as the squares of their distances from its centre.

. . . But this second part of the proposition is proved with the greatest exactness
from the fact that the aphelia are at rest. For the slightest departure from the
ratio of the square would (by book 1, prop. 45, corol. 1) necessarily result in
a noticeable motion of the apsides in a single revolution and an immense such
motion in many revolutions.

The orbit of the Moon did not quite fit this law, and Newton discussed several
possible reasons in Principia. However, even in this case an acceptance of
the data without corrections would have forced him to change the power only
slightly, from 2 to 2 · 0165. He correctly judged that the accumulation of all of
the evidence justified the conclusion that the inverse square law applied to all
bodies.

The decision to examine the ‘quiescence of the apsides’ was inspired.
Newton used a combination of ideas from his newly invented calculus, but
developed in as geometrical a manner as possible. On the observational side,
however, he only needed the ‘null’ observation that the apsides did not move
from one orbit to another. This could be confirmed with great accuracy because
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one could observe a planet over many orbits. One might say that never has so
much been deduced from so little!

Newton’s law of universal gravitation included the assertion that the grav-
itational force between two bodies depended upon their masses, but not upon
the type of substance they were made of. This argument involved two steps,
the first of which was a thought experiment designed to convince the readers
of Principia that the force between planets was the same as the familiar weight
which we experience on the surface of the Earth. Today we have overwhelming
proof of this via satellites and space probes, but Newton had no comparable
evidence. He argued that if the two forces were distinct, then a satellite orbiting
the Earth just above the highest mountains would be subject to both, and that the
consequences would be implausible. He completed the argument with a long
series of pendulum experiments, concluding that the composition of the weight
did not make any difference to the period of the pendulum, if one compensated
for the effects of air resistance. This fact was not entirely novel, but Newton’s
experimental design was very clever, and enabled him to prove the result to far
higher accuracy than had previously been possible, in spite of having no precise
method of measuring time.

The idea that gravity might depend upon the substances involved was
re-investigated fifteen years ago, when there appeared to be evidence of a
short-range correction to Newton’s law of gravitation, called a ‘fifth force’.
After several repetitions by others of the experiment of Peter Thieberger in
1987, the present consensus is that no such force exists.

In spite of its success, the Newtonian theory had one very unsettling feature.
Newton’s laws described two distant bodies attracting each other by a grav-
itational force whose strength and direction depends on where they were with
respect to each other. No explanation was given for how either of the bodies
could be aware of the existence of the other, when there was nothing between
them but empty space, let alone how they could know how far away the other
body was and in what direction. To put it less anthropomorphically, Newton
proposed no mechanism by which this remotely generated force could arise.

For Huygens and several others this was an unacceptable weakness of his
theory. Many seventeenth century scientists accepted Descartes’ argument that
everything in mechanics should be explained in terms of material interactions
between bodies which were in contact. His ‘explanation’ of the orbits of the
planets involved their being carried around the sun in a swirling vortex of some
ethereal fluid. Newton put a considerable effort into proving that this idea could
not work. It might be plausible for planets whose orbits were almost circular, but
comets were known to follow quite different types of orbit, which intersected
the planetary orbits at substantial angles. It was simply not possible to construct
a coherent account of how any fluid could produce the variety of orbits observed.

Newton addressed this issue in his General Scholium of 1713. He stated that
he adopted no hypotheses concerning the reasons for the gravitational force,
but contented himself with the fact that gravity did really exist. In retrospect we
may regard this as a defining moment in the history of science. It marked the
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time after which scientists started to admit steadily more non-material entities,
gravitational and later electric and magnetic fields, whose existence could only
be inferred from their effects. It also led to the idea that a scientific ‘explanation’
might be nothing more than the formulation of mathematical equations which
yielded correct predictions. This incursion of advanced mathematics into phys-
ics was destined to continue without pause up to the present day. A consequence
is that much of physics is now incomprehensible to all except a very few.

Newton is now considered to have been one of the greatest geniuses of all
time, ranking with Archimedes and Einstein, but his theory of gravitation was
not fully accepted until several decades after his death. Our judgement of him
depends upon forgetting his profound interest in alchemy, and the energy he
put into studying the Old Testament and its chronology. He actually spent far
more of his life on these subjects than he did on Principia. As with so many
geniuses, his outstanding characteristic was an ability to commit himself totally
to a single issue for as long as it took. Sometimes the results were worthwhile,
and sometimes they were not.

6.2 Laplace and Determinism

From our current point of view one of the key facts about this scientific revolu-
tion was that it abolished our special status in the universe. Coming to terms
with this was a slow process—indeed it is still going on. Before the seventeenth
century the Christian world was unashamedly centred on a theological view of
man as the centre of God’s act of creation. Afterwards scientific laws based
upon cold mathematics became ever more powerful. It is not surprising that
people came to believe that there were no limits to the power of the new sci-
ence, and that it provided a complete description of reality. One must remember
how small people’s control over their world was before the seventeenth century,
and how steady was the chain of new discoveries over the next three hundred
years.

During the eighteenth century, Newton’s theory was developed much further
by several French mathematicians, using Leibniz’s calculus. In spite of the
efforts of Euler and d’Alembert, the anomaly in the orbit of the Moon remained,
and by 1750 they were ready to declare that Newton’s inverse square law would
have to be modified. Then Alexis-Claude Clairaut proved, in 1752, that the
difficult calculation of the gravitational interactions between the Moon, Earth,
and Sun had been done incorrectly; he demonstrated that the inverse square
law did indeed yield the observed motion of the Moon. He followed this up by
refining an earlier prediction by Halley of the return of a comet, now named
after him. Clairaut’s calculation that it would reappear in April 1759 was only
a month late—a success so dramatic that it could not be due to chance.

The person who made the greatest contribution to the detailed analysis
of planetary orbits was Pierre-Simon, marquis de Laplace (1749–1827). He
gave complete explanations of nearly all the outstanding anomalies in planetary
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orbits. The success of his programme persuaded any remaining sceptics that
Newton’s theory constituted the final word on this subject.

Laplace was also responsible for the clearest expression of the deterministic
principle. He proposed that if a sufficiently vast intellect had complete know-
ledge of the positions and velocities of all the bodies in the Universe at some
instant, then it would be possible for it to work out the exact subsequent motion
of every body indefinitely into the future.9 Since the positions and velocities do
have values, even if we do not know them, this means that our future actions
are pre-ordained. These ideas were very influential, and were not effectively
challenged until the twentieth century, when their philosophical and scientific
bases were both undermined fatally.

In The Open Universe Karl Popper argued that one should distinguish
between metaphysical and scientific determinism. The former refers to how
things actually are without reference to whether we could possibly have any
evidence for them. If God exists and knows exactly what we will do at every
moment in the future, then our free will is an illusion and the future is com-
pletely determined. Whether or not the future course of events is controlled by
scientific laws or mathematical equations is a completely separate issue.

On the other hand, scientific determinism refers to whether a being who
is a part of the universe, like ourselves but far more powerful, might be able
to predict the future with arbitrarily specified accuracy provided sufficiently
accurate data about the present were obtained. Popper argues convincingly that
this is not possible for a variety of reasons. Among these is the impossibility of
gathering data of sufficient accuracy to predict the future of a complex multi-
body system, and the fact that in some situations effects associated with the
person making the prediction cannot be disregarded in the way that Laplace
assumed. This might not be relevant in astronomy, but astronomy concerns
systems which are far simpler than most of those to which Newtonian mechanics
might in principle be applied.

Since the time of Laplace (many) physicists have changed their attitude
towards scientific laws. Rather than being true representations of reality, they are
considered to be mathematical models, with limited domains of applicability.
A model may fail to be useful either because the equations are not exact for some
values of the relevant parameters, or because the equations cannot be solved
(by us). In the first case we can legitimately look for a better mathematical
model, but in the second it is possible that no modifications of the model will be
amenable to computation. In the next few sections we show that such situations
do indeed exist, and that there are ultimate limits to the mathematical method.

Chaos in the Solar System

Although the phenomenon of chaos is usually regarded as a recent discovery, it
has quite a long history. The first occasion on which a chaotic physical system
was described may well have been in a lecture by a Professor Pierce to the British
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Association in 1861, recorded in their Yearbook. He wrote down the formulae
governing the motion of a pendulum when the point of suspension is made to
move uniformly in a vertical circle. ‘He then exhibited beautifully executed
diagrams on transparent cloth, which showed by curves, some most regular and
some most fantastic in their forms, the behaviour of such a pendulum under
various conditions’. He also demonstrated the high instability of the irregular
motions in his lecture. We now know that this was a genuine instance of chaotic
dynamics, but his observations were not followed up by others.

The next important development occurred in 1890, when the mathematician
Henri Poincaré submitted a memoire to a prize competition held under the pat-
ronage of King Oscar II of Sweden and Norway. Its subject was the solution of
what we now call the restricted three-body problem for bodies moving under
Newton’s laws of motion. Poincaré mentioned the example of a small planet
whose orbital motion around the Sun is perturbed by Jupiter. Shortly before the
publication of his memoire, Poincaré became aware of a serious error in his
arguments, and had to withdraw the few copies which had already been circu-
lated. The version which was eventually published was substantially different
from the one which won the prize, although he tried to minimize the signi-
ficance of this fact. He had discovered the existence of very peculiar orbits,
which seemed to defy simple description. Eventually he wrote in Les Méthodes
Nouvelles de la Mécanique Céleste, vol. III, published in 1899, that:

One is struck by the complexity of this figure, which I am not even attempting
to draw. Nothing can give us a better idea of the complexity of the three-
body problem and in general all the problems of dynamics where there is no
single-valued integral and Bohlin’s series diverge.

In this book Poincaré had stumbled on the phenomenon of chaos. A precise
definition of this is beyond the scope of this book, but the key idea is that of
massive instability. If one throws two stones in a very similar manner then one
expects them to follow very similar paths. In chaotic dynamics this is only true
for a limited time: the deviations between the two paths builds up so rapidly
that after a certain length of time they become effectively independent, however
close they originally were. A simple analogy is with a pinball game, in which
one knows that the trajectory of the ball depends entirely upon how fast it starts,
but it is almost impossible to control where it goes in spite of this. Slightly more
precisely if one compares the motion of a body starting from two very slightly
different initial positions, the difference between the positions doubles over a
short time interval. Thus after ten time intervals the difference has multiplied by
a thousand, after twenty by a million and before too long the two trajectories are
completely unrelated to each other. The important point is that it is impossible
in practical terms to predict where the body will be even a short time into the
future, however accurate the measurement of its initial position is.

Although the importance of Poincaré’s discovery of chaos was soon appar-
ent to Hadamard, Duhem, and others, it was largely neglected until the 1950s
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because of the impossibility of carrying out quantitative investigations.
Computer technology has advanced so far since those days that simple com-
puter programs which demonstrate chaos for the restricted three-body problem
may now be found in elementary textbooks. Starting with mathematical work of
Kolmogorov in 1954 and more applied work of Lorenz in 1963 on meteorology,
this is now one of the most active areas of mathematical research.

One of the exciting discoveries in the astronomy of the Solar System in the
last few decades has been that chaotic behaviour of the type which Poincaré
discovered may actually be observed. It operates on a timescale of a hun-
dred thousand years or more, but nevertheless has dramatic consequences.
Between the Sun and the roughly circular orbit of Jupiter, there is a region con-
taining thousands of asteroids with a great variety of sizes and orbital periods.
When one counts the number of asteroids with each particular orbital period,
and compares this with the orbital period of Jupiter, one makes a surprising
discovery. There are no asteroids to be found whose orbital period is a third of
that of Jupiter, an absence referred to as a Kirkwood gap.

Following extensive and difficult numerical computations, the reason for
this absence has now been found. If one computes the orbital behaviour of an
asteroid whose period is almost exactly one third that of Jupiter, it appears to be
reasonably stable over periods of tens of thousands of years. On the other hand
every hundred thousand years or more its orbit suddenly changes dramatically,
taking it much closer to the Sun for a short period before returning to its previous
form. To explain why this should imply that there are no asteroids with such
orbits, we have to bring Mars into the picture. When its orbit takes it closer to
the Sun an asteroid may pass inside the orbit of Mars. It has a small chance of
colliding with or having its orbit dramatically changed by that planet. Over a
long enough period of time all such asteroids will be removed from the belt.
Although Mars comes into the picture at the end, the chaotic nature of the
orbits of the asteroids is a consequence of solving Newton’s equations for three
bodies, the asteroid, Jupiter and the Sun, as Poincaré had foreseen.

Hyperion

In many situations in Solar astronomy one can do computations as if the planets
and their satellites are point objects. There are two reasons for this. The first is
that it can be shown that the gravitational field of a spherical body is the same
as it would be for a point mass. The second is that the distances between Solar
bodies are usually so much larger than their diameters that small deviations
from sphericity are not significant.

When one examines the orbits of many satellites one discovers a phe-
nomenon called spin-orbit coupling. Our own Moon moves once around the
Earth every twenty eight days, which is exactly the same as the time it takes to
rotate once about its axis. The result is that the same face of the Moon always
points towards the Earth. The reason for this behaviour is that the Moon is not
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exactly spherical and the eventual result of the gravitational forces acting on it
has been as just stated.

The phenomenon, called 1:1 spin-orbit coupling, is common to many of
the satellites in the Solar System. Mercury is unique in having what is called
3:2 spin-orbit coupling with respect to the Sun. This means that Mercury takes
exactly 2/3 of an orbit, about 59 Earth days, to rotate once about its axis. This
is the length of the sidereal day on Mercury, defined by measuring rotation by
reference to the distant stars.

The satellite Hyperion of Saturn is an unimpressive lump of rock about
three hundred kilometres across. It was discovered in 1848, and photographed
by Voyager 2 in 1981. Not only is it very irregular in shape, but the eccentricity
of its orbit is also unusually large.10 The result of these peculiarities is that
instead of rotating stably around an axis, it tumbles as it orbits Saturn. The
irregularities of this tumbling have been observed from the variations in its
light curve as viewed from Earth, and during the fly-by of the Voyager 2 probe.
Mathematical models have been constructed to explain what is happening. They
show that one may predict the tumbling motion fairly accurately for times up
to its orbital period of 21 1

4 days. Over longer periods the model becomes more
and more unstable, and after a year it is impossible to make any meaningful
predictions; further analysis shows that the mathematical model is chaotic over
a very large region in its phase space. It is generally agreed that this is not just
a feature of the model, but describes how Hyperion does actually tumble in
its orbit.11 So we are in the interesting situation in which the application of
Newton’s laws yields the conclusion that it is not possible to use them to make
accurate predictions of the motion of Hyperion one year into the future.

Molecular Chaos

Let us consider a gas of air molecules at room temperature and pressure,
occupying a box which is a one metre cube. In this situation there are about
1025 molecules in the box. Let us suppose that the molecules are reflected by
the walls of the box without loss of energy, and that there are no influences on
them from outside the box. The average distance travelled between collisions
is about 200 times the diameter of a molecule. From the point of view of a
molecule they are widely separated from each other and move long distances
between collisions. From our point of view the situation is quite otherwise:
each molecule is involved in over a billion collisions per second!

The molecules are considered to move freely in straight lines and to bounce
elastically when they collide with each other. They are also considered to
obey Newton’s laws. Actually of course their collisions should be described
by quantum mechanics, but this would not resolve the paradox to be dis-
cussed. Now suppose that we could solve Newton’s laws for some typical
initial Configuration 1 of the molecules, and let us compare the result with that
of another Configuration 2. We suppose that in Configuration 2 every particle
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except one has exactly the same initial position and velocity, and that one is
displaced by an extraordinarily small amount, say one trillionth of the diameter
of a molecule. When this molecule has its first subsequent collision, it emerges
with a slightly changed direction, perhaps one trillionth of a degree different.
The slight change in direction implies that by the time it hits the next molecule
its displacement is substantially bigger than it was before it hit the first molecule;
let us suppose that at each collision the displacement is multiplied by a factor
of two. After about 50 collisions the molecule is displaced by more than the
diameter of a molecule, so the next collision does not take place. From this
point, which certainly takes less than a millionth of a second, the evolution
of the molecules in the two gases becomes rapidly more different. The effects
would be apparent at a macroscopic level within a minute or so, if one could
find a way of measuring them.

We have been discussing the effect of a tiny change in the initial conditions
of the gas, but the same effect arises if one makes a tiny change in the evolution
law, such as would be caused by influences of the outside world on the gas.
Even if one knew the initial position and velocity of each particle in the box
perfectly, the gravitational influence of very distant bodies will rapidly lead to a
change in the detailed movement of the molecules of the gas. Indeed only about
a hundred collisions are needed before the gravitational influence of an electron
at the furthest limits of the Universe has a substantial effect on the motion of
the molecules! In other words the notion of a gas in an isolated box is a fiction.
No part of the universe can in practice be isolated from any of the rest!

The above is written as if it were possible to know everything about the initial
state of the molecules, apart from one detail which leads to the rapid appearance
of major changes everywhere in the gas. However, the real situation is far worse:
one does not know the exact position or velocity of any of the molecules.
The result is that it is hopeless to think that the motion of the molecules can
be predicted in any but a statistical sense. This may be sufficient for many
purposes, but it is not always so. On page 172 we will discuss observations
made by the botanist Brown which depend entirely upon this random motion
of the molecules.

The behaviour of fluids in bulk appears to depend little upon their constitu-
ent molecules. Fluids are studied as if they were continuous distributions of
matter, using differential equation methods. Sometimes the solutions of these
equations are well behaved, as when describing the smooth flow of water down
a channel. Under other circumstances the fluid flow is turbulent, and the relev-
ant differential equations are impossible to solve with any accuracy. It is quite
possible that in such situations the continuum description of fluids is not a valid
approximation: in other words the molecular nature of fluids may indeed be
important in the turbulent regime.

This a recent insight. Forty years ago it was thought that as computers
became more powerful and the mathematical modelling more precise, it would
be possible to produce reliable weather forecasts further and further into the
future. Unfortunately in 1963 the meteorologist Edward Lorenz discovered that
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extremely simple equations of this type can exhibit chaotic behaviour, just as
Newton’s equations can. His idea is often summed up in the now famous motto:
the flap of a butterfly’s wings in Brazil may set off a tornado in Texas. This way
of describing the effect of chaos was not originally due to Lorenz, but he did
adopt it. It is picturesque but quite wrong. There is no way of distinguishing
the effects due to the butterfly from trillions of other small movements which
might equally well be regarded as ‘causing’ the tornado. One cannot perform
two calculations, in one of which the butterfly flaps its wings and in the other of
which it does not: the very instability of atmospheric dynamics renders such a
computation inconceivable. They could only be done by a being with an (almost)
infinitely powerful computer who does not have any material interactions with
the universe at all!

The phenomenon of chaos establishes that accurate long range weather
forecasts are in principle impossible. It does not, however, mean that there is
no point in trying to improve the models used for weather forecasting. When
considering a period of a few days model error might well be more important
than the error associated with chaos. A practical consequence of Lorenz’s dis-
covery is that meteorologists now make not one weather forecast, but a whole
series based upon very slightly varying initial data. Sometimes the results are
very similar to each other and one can have confidence in the forecast. On other
occasions they can be quite different and one can only give probabilities for the
various forecasts.

A Trip to Infinity

The following extra-ordinary scenario using Newton’s equations was recently
discovered by Xia.12 It has nothing to do with chaos, but illustrates a differ-
ent way in which Newton’s laws can break down. Consider five bodies: two
orbit closely around each other in one position while another two orbit around
each other in a second position, as in figure 6.3. The fifth, which we call the
particle, oscillates back and forth between the two pairs, passing exactly half
way between the bodies of each pair at either end. When it is not between the
pairs, they both pull it back; it eventually stops and moves back towards them.

There is a small but very important difference between successive oscil-
lations of the particle. Each time it passes a pair of bodies its gravitational
attraction pulls them inwards towards it, with the result that they lose potential
energy and move more rapidly. Some of this increased speed is passed on to
the particle.

Xia’s clever idea is as follows. He showed that it is possible to choose the
initial positions and masses so that the particle moves back and forth between
the two pairs of bodies faster and faster while the two pairs accelerate away from
each other. The process happens ever faster, and both pairs of bodies disappear
to infinity in a finite length of time! The particle shuttles back and forth, blurring
out into a continuous line which stretches infinitely far in both directions!
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Fig. 6.3 Xia’s Five Body Phenomenon

Of course the above would never happen in the real world. The whole
point of the example is to emphasize the difference between a mathematical
model and physical reality. The mathematical conclusion is irrelevant because at
sufficiently large speeds Newton’s theory must be replaced by general relativity.
Secondly, in order to acquire the kinetic energy to achieve the effect, the orbiting
pairs must move steadily closer to each other. Eventually one has to confront the
fact that the bodies cannot be point particles and must collide. On the other hand
the model uses Newton’s laws in exactly the same way as that used to predict
planetary orbits, except that we start with rather unusual initial conditions. In
this problem Newton’s equations have no solution after a finite period of time,
even though there are no collisions between the bodies concerned.

The bizarre scenario described above raises questions about the Solar
System. It appears to be stable, but we already know that the asteroids show
chaotic behaviour. How can we know whether solving Newton’s equations
may not lead to the Earth being ejected from the Solar System some distant
time in the future? The equations cannot be solved numerically if one looks far
enough ahead (many millions of years) and we have no guarantee that Newton’s
equation will protect us for ever.

The Theory of Relativity

I have delayed mentioning the theory of relativity because I wanted to emphas-
ize that Newton’s laws of motion themselves show that they cannot provide a
complete description of reality. There are situations in which the relevant com-
putations are impossible because of chaos, and others in which there exist no
solutions to the relevant equations. Historically the crisis for Newton’s theory
came not from the discovery of chaos but from Einstein’s theories of spe-
cial and general relativity. According to Einstein himself, the development of
electromagnetic theory was of key importance in this story. This started when
Faraday uncovered the close connection between electricity and magnetism
by a brilliant series of experiments in the first half of the nineteenth century.
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At that time it was natural for scientists to seek to explain electromagnetic
phenomena in mechanical terms. They posited the existence of a substance
called aether, which filled the whole of space, and hoped that electric and
magnetic fields might be explained as elastic distortions and vibrations of the
aether. However, it gradually became clear that the properties of the aether
would have to be so peculiar than it would hardly qualify as a substance. This
approach to the subject was abandoned after Maxwell discovered his electro-
magnetic field equations at King’s College, London between 1860 and 1865.
His prediction of the possibility of creating electromagnetic (i.e. radio) waves
in the laboratory was verified by Hertz in 1886. When Henri Poincaré, one of
the world’s leading mathematical physicists, wrote Science and Hypothesis in
1902, a wide range of different attempts to reconcile Newtonian mechanics and
electromagnetic theory were still being attempted. Poincaré was substantially
influenced by Kant and even more by two centuries of the Newtonian tradition.
While he regarded large parts of Euclidean geometry and Newtonian mech-
anics as being conventions rather than truths, they were conventions which
he thought would never be abandoned. In 1904 and 1905 respectively Poin-
caré and Einstein independently produced versions of the special theory of
relativity. Poincaré shifted his ground, but he was not able to adapt to the philo-
sophical implications of the new theory with the same ease as the much younger
Einstein.

By dethroning the two best established aspects of classical science, namely
Newtonian mechanics and Euclidean geometry, Einstein established himself
as one of the towering geniuses of all time. He distinguished sharply between
mathematics as an axiomatic subject, and its possible relevance to the physical
world, writing:

Pure logical thinking cannot yield us any knowledge of the empirical world;
all knowledge of reality starts from experience and ends in it. Propositions
arrived at by purely logical means are completely empty as regards reality.
Because Galileo saw this, and particularly because he drummed it into the
scientific world, he is the father of modern physics—indeed, of modern science
altogether.13

Einstein’s new insights were based on the proof by Riemann and others that
there were many different geometries which were equally valid in purely math-
ematical terms. His reason for distinguishing between Euclidean geometry as
mathematics and its physical relevance was not philosophical. His theory of
relativity showed that the idea that the physical world is Euclidean is not only
wrong in detail, but fundamentally misconceived. The same applied to the
unquestioned belief of scientists that time was a straightforward concept about
which everyone could agree:

At first sight it seems obvious to assume that a temporal arrangement of
events exists which agrees with the temporal arrangement of the experiences.
In general and unconsciously this was done, until sceptical doubts made
themselves felt. For example the order of experiences in time obtained by
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acoustical means can differ from the temporal order gained visually, so that
one cannot simply identify the time sequence of events with the time sequence
of experiences.14

His idea that objects could only be described properly if space and time were
considered together was already in the air at the time: H. G. Wells made it a
principal point in the opening pages of The Time Machine, published in 1895.
Out of such unpromising elements Einstein created a magnificent new theory in
which time lost its absolute status and was amalgamated with space into a new
entity called space-time. The reason for the importance of relativity theory lay
in the fact that it made new predictions about certain phenomena. Although very
difficult to measure in normal circumstances, the validity of the special theory
of relativity for bodies moving at very high speeds is not a marginal issue. High
energy accelerators such as the facility at Geneva have been producing billions
of high energy particles over several decades. There is no doubt at all that their
motion is in accordance with relativity theory and quite different from what
Newton’s laws predict.

Although Einstein’s new theory superseded Newtonian mechanics, it turned
out to be mathematically incompatible with the quantum theory which was to
be invented in 1925/26 by Heisenberg, Schrödinger, and others. So by 1930 two
brand new theories had come into being. Both demonstrated beyond doubt that
Newton’s theory was just that, a set of mathematical equations which provided
extraordinarily good predictions in many situations but were not ultimately a
true description of reality. Einstein worked for much of the rest of his life to find
a way of combining relativity with quantum theory into a unified field theory,
but he was not successful. His disbelief in the fundamental insights of quantum
theory is now remembered with feelings of sadness. His claim that ‘God does not
play dice’ is immortal, but almost all physicists now believe that he was wrong.

6.3 Discussion

Let us review what we have learned in the chapter. Galileo eventually triumphed
over the authority of the Church because people could confirm his astronom-
ical observations directly. For the Church to regard the Copernican theory
merely as a convenient computational device, provided its physical truth was
not advocated, was not a viable option by 1700. The Ptolemaic system faded
into insignificance because it involved ever more elaboration as observations
became more precise. Newton was undoubtedly a genius, but he was a genius
who was born at the right time. His laws of motion provided an astonish-
ingly good method of reconciling a wide range of physical phenomena using
equations which did not need continual revision.

With the benefit of hindsight it is easy to ridicule the use of cycles and
epicycles as hopelessly complicated, but in fact something extremely similar is
in common use at the present time. The expansion of functions in Fourier series
is based upon the same idea, that one should build up general periodic motions
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by a combination of circular motions of different amplitudes and frequencies.
Of course Ptolemy had to explain his system in purely geometrical terms, while
Fourier had the benefit of huge developments in algebra and calculus. The
fact that planetary orbits can be described exactly in terms of ellipses was of
tremendous importance at the time, because extended numerical calculations
were extremely hard. Until late in the twentieth century science progressed by
writing down solutions of problems in terms of a few well-known functions
such as sine and cosine for which books of tables were compiled. No simple
exact solution for the three body problem exists, but we are now undisturbed
by this fact because computers enable us to handle such problems routinely.

We next come to the question of the correctness of the heliocentric theory.
In spite of the great insights of Copernicus and Newton, we no longer believe
that the Sun is stationary—we have a much wider view in which galaxies and
even clusters of galaxies participate in a general expansion of the universe.15

Ultimately we defer to the general theory of relativity, which tells us that all
frames are equivalent, so that there is no meaning in asking whether the Sun
or the Earth or indeed anything else is at the centre of the Universe. In spite
of this, when contemplating space travel or designing satellite-based telephone
systems, we use Newtonian mechanics within a heliocentric universe. Indeed
we still talk in terms of the earlier geocentric theory when we refer to the Sun
rising in the East every morning and setting in the West, because in many
daily contexts that is the simplest language to use. The theory we use in most
circumstances is not the most correct one but the simplest one which fits the
facts well enough.

Certain consequences of the Galilean revolution are so fully incorporated
into our way of thinking that it is impossible for us to imagine abandoning them.
The Moon is now merely an object like any other, and the ‘face’ we appear to see
is merely our interpretation of geographical (or rather selenographical) features
on it. Similarly the Sun is a material object which radiates light and heat because
of nuclear processes going on deep in its interior, which will eventually come to
an end when the nuclear fuel is exhausted. The mystery of the Aurora Borealis is
explained by the interaction of streams of charged particles emitted by the Sun
with the Earth’s magnetic fields. These purely materialistic explanations provide
the context within which all of our thought takes place. Their explanatory power
is so great and so consistent that it is inconceivable that we could abandon them,
even if the details need working over on occasion.

There was, however, always a mystery at the centre of Newton’s law
of gravitation. Leibniz and others quite wrongly came to think that Newton
believed in action at a distance. He provided no mechanism by which two
remote bodies could attract each other, but it is clear from his private papers
and correspondence that this was a matter of great importance to him, and that he
did not feel satisfied with simply declaring what the laws were.16 In the General
Scholium Newton was, in fact, stating that the truth of the inverse square law
should be separated from its explanation. He had demonstrated the former and
made no public hypotheses about the latter. It is an interesting comment on the
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way in which physics has developed that current textbooks make no attempt
to explain why gravity should obey an inverse square law by the production
of a mechanical model. Indeed it seems that physicists now ‘explain’ the law
by recourse to an even more abstract theory, namely general relativity in the
approximation of an almost flat metric.

By the start of the nineteenth century Laplace and others were to claim that
the application of mathematical laws would enable one to obtain the solution
of any problem involving the motion of bodies, provided one had complete
knowledge of their dispositions at some initial time. With the benefit of hindsight
we can now see that basing a deterministic philosophy on the exact truth of
Newton’s laws was not a sound idea. One can often work out the orbit of a
collection of planetary bodies accurately because there are only a small number
of them, and they are essentially unaffected by the person applying Newton’s
laws to predict their motion. On the other hand there are situations in which
the dynamics of the three-body problem is unpredictable because of its chaotic
behaviour, and others in which the five-body problem literally has no solution
beyond a certain time even though the bodies are involved in no collisions.
The application of Newton’s laws to very large collections of particles is even
worse, in that chaos is generic rather than being dependent upon rather unusual
initial conditions. If one fills a box with air molecules at room temperature and
pressure, precise predictions of the motions of the molecules are impossible
because of the limitations on the power of any computer. Even if computers
could be sufficiently powerful, the degree of instability is such that the act of
putting the data into the computer would disturb the molecules enough to render
any computation worthless. The proposed calculation could only be performed
by a computer which was simultaneously a part of the Universe and computing
the effect of every part of the Universe on every other part. This is not possible.

John Polkinghorne has suggested that chaos theory encourages a belief that
there are new causal principles at work in such situations, which have a holistic
character. Newton’s theory cannot be applied in sufficiently unstable situations,
so something else may take over. There are several difficulties with this idea.
The first is that there is no reason to believe that any new principle would
bypass the extreme instability of the evolution of large assemblies of particles.
The second is that holistic principles are very unlikely to have scientific content,
because they do not provide the possibility of making precise predictions. One
might be able to make statistical predictions in such situations, but it is well
known that the same statistical conclusions can often arise from a variety of
different detailed causes. On the other hand, if one already has good reasons to
believe in the existence of some very subtle holistic principle, then chaos might
explain why its influence is not more obvious.

My main point is that any mathematical description of a gas of particles
is merely a model of reality, not reality itself. One cannot take any physical
model to be relevant if its application involves referring to distances far smaller
than the diameter of an atom. No physically relevant theory can necessitate
computing to hundreds of digits, because we will never be able to measure
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anything that accurately. The use of real numbers in physical models of reality
is not justifiable if one needs computations of that accuracy. If any physical
theory seems to require this, then the theory has proven its own eventual failure,
however impressive the experiments leading up to the theory were.

While I explained the errors in Laplace’s claims by reference to the effects
of chaos, historically speaking belief in the truth of Newton’s theory was aban-
doned for other reasons. Einstein’s general theory of relativity was discovered
(or invented) in 1916. The prediction that light would be bent by intense gravita-
tional fields was confirmed during an eclipse on 29 May 1919 by an expedition to
Principe Island in the Gulf of Guinea funded by the Royal Society of London. In
1925–26 quantum mechanics provided yet another mathematical theory which
yielded the same predictions as Newton’s as far as the motions of everyday
objects were concerned.

When Einstein developed the special theory of relativity he abandoned the
‘self-evident’ idea that space and time were different types of entity, and in
general relativity he also gave up the idea that space-time was flat or struc-
tureless. However he still clung, as subsequent physical theories have, to the
ultimate continuity of the universe. On the other hand Richard Feynman, a
Nobel prize winner for his contribution to quantum electrodynamics, specu-
lated in his Feynman lectures that the ultimate structure of space-time might
be quite different from that conceived by Einstein. In the last twenty years we
have had theories presented involving it being ten or eleven dimensional, or
having a very complicated topological structure at the smallest level. In some
research papers the ‘extra’ dimensions are supposed to be non-commuting.
Current fundamental physics indicates that one cannot measure anything to a
finer resolution than a certain very small distance, the Planck length of about
10−35 metres, and a very short time, the Planck time of about 10−43 seconds. It
is entirely possible that the mathematics which we have developed to describe
the world may be wholly inappropriate at a fine enough level, and that some
day a model will be devised in which space and time are actually discrete.

In the end we have to remember that the Universe is an entity, not a set of
equations. We can try to isolate some part of it and predict the behaviour of
that part using mathematics, or by other means. The success of physics consists
of making mathematical models which are simple enough for us to be able to
solve and yet complicated enough to capture some interesting aspect of the
world. A precondition for being able to carry out calculations is that the aspect
of the world being studied is closed (unaffected by the outside world) to a good
approximation, or that the influence of the outside world can be summarized
in a sufficiently simple manner. Our theories and methods of analysis work
extraordinarily well in a huge variety of such simple situations, but that does
not mean that we can assert that they would apply to the whole Universe if
only the relevant computations could be done, when we know that they cannot.
Nor do we have the right to claim that because a theory provides wonderfully
accurate predictions in a variety of special situations, it must be true in some
deep philosophical sense.
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Notes and References

[1] By the Church I shall always mean the Roman Church, without suggesting
that the Lutheran or Calvinist churches were any more tolerant of dissent.
They were not!

[2] The manufacture of glass was one of the key technologies underlying the
scientific revolution of the seventeenth century, and was one of the very
few technologies of that period which did not originate in China.

[3] Ariew 2001

[4] The full title is much longer.

[5] Galileo 1632, p. 108

[6] Actually he proved that planetary orbits were elliptical in the two-body
approximation, and acknowledged that the influence of Jupiter would lead
to discrepancies from strict ellipticity.

[7] This had been awarded its royal charter in 1662 by Charles II.

[8] This is taken from the opening section ‘Rules for the Study of Natural
Philosophy’ of Book Three. I follow the recent translation of Principia by
Cohen and Whitman, which also contains many comments about recent
scholarship on Newton. [Cohen and Whitman 1999]

[9] Laplace was well aware that the calculations would have to include the
effects of electricity and magnetism, not then at all well understood, as
well as of gravity.

[10] The eccentricity measures the extent to which the orbit deviates from a
circle, and equals 0.1236 for Hyperion.

[11] Black et al. 1995, Murray 1998, Murray and Dermott 1999

[12] Saari and Xia 1995

[13] Einstein 1982b

[14] Einstein 1982c

[15] One of Newton’s very few mistakes in Principia was to state that the centre
of the Solar System was in a state of absolute rest. This was a philosophical
principle, for which he provided no convincing evidence.

[16] Cohen and Whitman 1999, ch. 9



7
Probability and Quantum Theory

7.1 The Theory of Probability

Probability is a very strange subject. The Encyclopaedia Britannica has two
separate articles on it, one mathematical and the other philosophical. The first
gives the impression that the theory is completely straightforward while the
second states that the proper interpretation is a matter of serious controversy.
These controversies are still being actively discussed.1

One standard interpretation is that probabilities represent the frequency of
occurrence of events if they are repeated a large number of times. Thus one
may justify saying that the probability of getting a head when tossing a coin is
a half by tossing it a sufficiently large number of times, and observing that one
gets a head on about a half of the occasions.

A straightforward frequency interpretation of probabilities is inappropriate
if one asks for the probability that a hot air balloon will make a forced landing in
Dulwich Park, South London, next 13 June. The problem is that no such event
has occurred in the past, so one has to look at the frequency of similar events.
What counts as similar is, unfortunately, a matter of judgement. Thus one might
decide to find out the number of times at which hot air balloons have landed
in any London park, sports ground or golf course on any day in May, June, or
July in the past. If this number is reasonably large, the required probability can
be inferred, subject to certain assumptions. To name just one, Dulwich Park
is very close to three other large open areas, so a balloon might be less likely
to make a forced landing there than if it were more isolated. We conclude that
even in this case, the frequency interpretation would have to be combined with
considerations which are far from elementary.

Laplace regularly used probability theory in situations in which a frequency
interpretation was out of the question. As an example, he carried out a calcula-
tion of the mass of Saturn, concluding that there were odds of 11000:1 on the
mass of Saturn being within 1% of a certain calculated value. Now there is only
one Saturn and its mass is not a random quantity. Laplace was using probability
theory to express confidence in a calculated value, based on prior beliefs as
modified by subsequent evidence and calculations. As statisticians have had
to cope with ever more complex problems over the last thirty years, they have
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realized that prior judgements about what is relevant to a particular problem are
an essential part of the subject. Bayes’ theorem tells one how to update one’s
prior beliefs in the light of subsequent observations. In complex situations it is
simply not possible to carry out some standard ‘objective’ analysis of the data
which leads directly to the ‘right’ answer. Ed Jaynes put it as follows:

In Bayesian parameter estimation, both the prior and posterior distributions
represent, not any measurable property of the parameter, but only our state of
knowledge about it. The width of the distribution is not intended to indicate
the range of variability of the true values of the parameter . . . It indicates the
range of values that are consistent with our prior information and data, and
which honesty therefore compels us to admit as possible values.2

In this chapter we will discuss a series of examples which illustrate various
peculiarities of probability theory. Some of these are included simply for their
entertainment value, but I also have a serious purpose. This is to establish that
there are many situations in which two people may legitimately ascribe different
probabilities to the same event. These observer-dependent aspects are important
when the two people have differing information about the events being observed.
A complete separation between observer and observation may be possible in
Newtonian mechanics, but it does not always work in probability theory, or
in quantum theory as we shall see later. This is not to say that probability
or quantum theory are purely subjective—used properly they make definite
predictions which work in the real world.

Kolmogorov’s Axioms

Probability theory arose from attempts to devise strategies for gambling in the
seventeenth century. The single most important result in the field, the cent-
ral limit theorem, is due to Laplace in 1812. In 1827 the botanist Robert
Brown observed that minute particles of pollen in water could be observed
under a microscope to move continuously and randomly. Einstein’s quantitat-
ive explanation of this phenomenon in term of the random buffeting of visible
particles in a liquid by the molecules of the liquid became one of the key proofs
of the atomic theory in 1905, as well as establishing the fundamental role of
probability in physics.

Since the motions of pollen grains depend upon molecular collisions, these
also determine whether a particular pollen grain is eaten by some other organism
or survives to produce a new plant. We therefore see that real events at our own
scale of size may be unpredictable because they depend upon chaotic events
occurring at the molecular level.

Einstein’s paper made further points of general interest. Small enough vis-
ible particles subject to random impacts with molecules in a liquid could not be
said to have an instantaneous speed. Indeed the average distance they moved
in a short period would be proportional to the square root of the time elapsed,
rather than to the time itself. This would have the consequence that attempts
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to determine their speed would give larger and larger values the shorter the
time interval that was considered. This immediately explained the failure of all
previous attempts to measure just this quantity!3 It would later be incorporated
into a complete theory of stochastic processes.

The modern era of probability theory dates from 1933, when Kolmogorov
formulated it as an axiomatic theory. Probabilists’ subsequent concentration
upon the sample path analysis of stochastic processes is entirely set in this
context. Kolmogorov’s axioms enabled mathematicians to cut themselves free
of the philosophical controversies surrounding the subject, and to concentrate
upon what they did best. As time passed many eventually came to believe that
probability theory and Kolmogorov’s formulation of the subject were indistin-
guishable: that there was no other possible coherent account of the subject.

Kolmogorov’s theory may be summarized as follows. One first has to define
the possible outcomes of the experiment or problem. For three tosses of a coin
the possible outcomes are HHH, HHT, HTH, HTT, THH, THT, TTH, TTT. If we
are grading oranges into sizes by measuring their diameters, then each orange
is associated with a number in the range 0 to 10 (measured in centimetres). The
result of grading a dozen oranges is a sequence of 12 such numbers. Each such
sequence is a possible outcome.

The next step in the theory is to associate a probability with each possible
outcome, in such a way that the sum of all the probabilities equals one.4 These
probabilities are assigned after a careful consideration of the particular problem.
For example if you toss a fair coin 3 times then each of the outcomes listed above
would have probability 1

8 ; this is essentially what is meant by saying that the
coin is fair. At the other extreme if you knew that you had a double-headed coin
then you would assign HHH the probability 1 with all the other probabilities
equal to 0. A more interesting situation arises if you have two coins in your
pocket, one of which is fair while the other is double-headed. On taking out
one without looking at it and tossing it three times, you should assign HHH the
probability 9

16 while all the other outcomes have probability 1
16 .

The total number of possible outcomes is often very large, and each out-
come may have an extremely small probability: thus any particular sequence
of heads and tails in a long succession of tosses of a coin is extremely unlikely.
Because of this one is often more interested in probabilities of collections of
outcomes. Probabilists use the term ‘event’ to denote a collection of outcomes
with some common property. Thus getting two heads in three tosses of a fair
coin corresponds to choosing the event

TwoHeads = {HHT, HTH, THH}.
Each individual outcome has equal probability 1

8 , so the probability of the event
TwoHeads is

Prob(TwoHeads) = 1
8 + 1

8 + 1
8 = 3

8 = 37.5%.

Kolmogorov’s theory thus involves three elements: selecting the ‘sample space’
of possible outcomes, choosing the probability law which is most appropriate,



174 The Theory of Probability

and devising procedures for calculating the probabilities of quite complicated
aggregates of the individual outcomes. To a first approximation probabilists
assume that the first two stages are given and concentrate on the last. Statisticians
examine data and use a variety of statistical methods to select the most likely
probability law out of a range of previously chosen possibilities.

Although the rules of probability theory are straightforward, they lead to
more paradoxes in applications than any other subject apart from quantum
theory, which is also probabilistic. I will describe a few and explain how they
should be resolved.

Disaster Planning

One of the problems facing governments is deciding whether to allocate
resources to prevent or cope with disasters which have never happened, and
whose likelihood is very unclear. Such decisions must be based on a trade-off
between estimates of the likelihood of the disasters, the damage done if it occurs,
and the cost of taking precautions against it. Statisticians have to fight a constant
battle to stop politicians concealing facts which the latter find inconvenient.

Unfortunately estimates of the likelihood of many disasters depend upon
assumptions whose accuracy may never be known. Consider the year 2000
computer bug. Before the event there were many predictions of the dire con-
sequences of taking no action. It was suggested that if even one major bank
was not able to process its transactions, this might have rapidly escalating con-
sequences, leading even to the collapse of the world banking system. In the
end, of course, nothing happened, but was this because the horror stories led
major institutions to take measures which they might otherwise not have?

There are cases in which experts have been spectacularly wrong: namely in
the calculation of the risk of major nuclear disasters. I well remember reassur-
ances that modern management techniques would reduce the risk to about one
serious event every million years. Sad to say there have already been three—at
Windscale, Three Mile Island, and Chernobyl, each in a different country. In
one rather technical sense the calculations of the experts were not wrong; the
problem was that they did not consider the effects of inactivity on people who
had to manage systems for long periods of time, during which nothing giving
the appearance of danger ever happened. When no serious problems arose at the
operational level, people eventually convinced themselves that the precautions
were not necessary. The same happens when people drive cars, but in that case
blunders only cause a small number of deaths.

At the present time we face an even more frightening scenario: that of the
deliberate release of a highly infectious organism by terrorists. This presents
an extreme case of each of the three problems mentioned above. Effective
prevention would be extremely expensive, and would also result in a substantial
loss of accustomed democratic freedoms. The cost of such an event might be
measured in millions or even hundreds of millions of deaths. It was traditionally
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considered that nobody would be willing to carry out such an attack because
of the immensity of the consequences, but that argument no longer appears
persuasive. The use of probabilistic risk calculations in such a context seems
to the author to be wholly inappropriate.

I have long been surprised that a natural pandemic has not yet occurred. Aids
is close to this, but even worse possibilities can be imagined. Imagine a mutation
of the wind-transmitted foot and mouth disease which infects human beings as
well as sheep, and is usually fatal. With air travel at its present level, this could
have spread to every country in the world before its existence was even known.
Perhaps the only measure we can take to prevent it is banning most international
travel, but who will advocate this in the absence of any proof of necessity?

The Paradox of the Children

Let us turn away from such morbid fears, and discuss a lighter topic. A woman
with two children meets a stranger at the funeral of her aunt and the following
conversation ensues.

W. I will never wear my aunt’s diamond ring, but it seems a shame to sell it.

S. If you have a daughter you could keep it for her when she grows up.

W. What a good idea! I will do that.

Based upon this information, what is the probability that the woman has a son?
One approach, which leads to the wrong answer, is the following. You

can infer that the woman has a daughter from her final statement. Since you
know nothing about the other child, it is (more or less) equally likely to be
a boy or a girl, so the answer is 50%. The correct approach uses conditional
probabilities—which in this case means just keeping careful track of all the of
possibilities. Before the conversation there are four equally likely possibilities
BB, BG, GB, GG for the woman’s family, where the first letter refers to the
gender of the elder child, and the second to the gender of the younger child.
The conversation reveals only that the combination BB is not possible, so there
remain three equally likely possibilities BG, GB, GG. Two of these involve a
son, so the correct probability is 2

3 , ∼ 67%.
The point of this paradox is that one must be extremely careful about what

information is provided when computing probabilities. If the woman had said
that her elder child was a girl, the answer would indeed be 50%. Even pro-
fessional statisticians sometimes make mistakes by confusing two situations
which differ only in such details.

The Letter Paradox

A person has two cards, one with the word HEADS written on it, and the other
marked TAILS. He puts the cards into two identical envelopes and shuffles them
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so that he does not know which card is in which envelope. He then sends one
letter to a friend Belinda in Belgium, B, and the other to a friend Charles in
Canada, C.

Clearly the probability that C has the HEADS card is 50%. B now opens
her envelope to find that it contains the TAILS envelope. So the probability that
C has the HEADS card suddenly changes to 100%, even though C does not
know this. At this point B opens a parcel which contains a bomb, killing her and
destroying the card. Although tragic for B, the probability that C has the HEADS
card must surely remain 100%. Now suppose that B had opened the parcel first,
killing her and destroying the unopened letter. Would this change anything?

The paradox is resolved by accepting that the probabilities are not attached
to the cards alone. In other words the probabilities describe the ignorance of
particular people about the cards.5 For C the probability of getting the HEADS
card remains at 50% whatever happens to B. The latter, or someone who knows
what the sender actually did, would correctly assign a different probability to
the event. I emphasize:

Two different people can correctly assign different probabilities to the
same event, reflecting their different degrees of ignorance about the true
situation.

This is an important idea in the interpretation of probability theory. Note the
mention of the ‘true situation’. For a person fully informed about this there are
no probabilities.

The Three Door Paradox

In a television game show the studio has three doors behind one of which is a
prize. The contestant chooses one of these but it is not opened. The host, who
knows where the prize is, opens a different door to reveal that there is nothing
behind it. Should the contestant change his/her mind? Here are two arguments.

(1) The prize is behind one of the remaining two doors and is as likely to be
behind the one already chosen as behind the only other one left, so there is
no reason to change one’s mind.

(2) Originally the chance of winning was 1
3 , but in the new situation there are

two choices left, so the best thing is to make a new independent random
choice between those two.

Both of the above are wrong. It is widely agreed by probabilists that the correct
strategy is to change one’s mind and choose the other remaining door! Their
reasoning is as follows. The possible outcomes are 11, 12, 13, 21, 22, 23, 31,
32, 33, where the first digit refers to the door where the prize is and the second
refers to the choice of the contestant. Each of these has the same probability 1

9 .
The host now has to open a door with nothing behind it. In the cases 11, 22, 33
the contestant should not change his mind, but in the cases 12, 13, 21, 23, 31,
32 he should. So the probability that it is better to change is 2

3 .
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However, even this argument can be criticized, because it assumes that all
of the original nine possibilities was equally likely. In fact people have very
strong unconscious biases when making ‘random’ choices. If the contestant
knows that the host, being human, is likely to open the middle door whenever
that is possible within the rules, or that the prize is more likely to be behind
the middle door than any other, this should influence the way he plays. Lest
you think this is far fetched, I should mention that stage magicians regularly
exploit people’s failure to make even approximately random choices. When I
recently asked a group of 25 students to choose a number at random, almost all
of them chose a number under 11, none of them chose 1 or 2 and almost a half
chose 7 or 8.

The National Lottery

When the British National Lottery started, there was one event per week, which
involved the random selection of six balls from a larger set numbered 1 to 49
inside a rotating drum. Within a few months people were collecting statistics
avidly, hoping to find which numbers were lucky or unlucky. There were soon
enough complaints about unfairness for the Royal Statistical Society to be asked
to provide advice about them. Needless to say the effects noticed were the
results of people’s misconceptions about the behaviour of random trials rather
than problems with the Lottery.

I conducted a numerical experiment, selecting numbers randomly from 1 to
49 with replacement: this is not quite appropriate to the Lottery in which the
same number cannot occur twice in the same week. I stopped after 182 trials
(7 per week for 26 weeks). At this point I listed the frequency with which every
number had occurred in order starting from 1 and ending with 49:

7, 2, 4, 2, 3, 3, 5, 4, 5, 6, 3, 3,

5, 2, 3, 2, 5, 7, 4, 8, 2, 1, 1, 6,

2, 3, 2, 5, 4, 3, 6, 5, 7, 4, 2, 4,

4, 1, 3, 5, 2, 2, 2, 2, 4, 5, 5, 2, 5

The most unlucky numbers 22, 23, 38 occurred only once while the luckiest
number, 20, occurred 8 times. Similar results were found in other trials, except
that the particular numbers which were most or least lucky changed on each
occasion. In a dozen trials the ‘worst’ had one number never occurring and
another occurring 11 times.

These results are not surprising to a statistician, but they are exactly what
thousands of people have been studying in the belief that they will help them
to win the lottery. The lesson is that people expect that the results of a random
trial will be considerably closer to the ‘exactly equal’ outcome than either the
theory or the facts warrant.
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Although nothing can help one to win, there IS a strategy to increase your
profit in the unlikely event that you do win. Many people bet using their birth-
days, which must be less than 32, or numbers which they have good feelings
about. These good feelings may be related to their appearing in multiplication
tables and so being ‘familiar’. This suggests one uses large primes, in order to
reduce the chance that someone else has made the same choice as you. So a
good combination is

47, 43, 41, 37, 31, 29, 23

Unfortunately I just made the likelihood of people choosing this combination
increase by publishing it. This is an example of the ‘reflexivity’ which bedevils
the social sciences, that a successful theory of how people behave may imme-
diately be used by some of those very people to their own advantage. Such
behaviour renders the theory no longer valid. Perhaps the only laws in the
social sciences are those which are kept secret by those who discover and then
exploit them!

Probabilistic Proofs

Suppose that one is asked to prove an identity such as

(x2 − 3x + 3)4 = x8 − 12x7 + 66x6 − 215x5 + 449x4

− 613x3 + 544x2 − 300x + 81.

One could do this simply by expanding the left-hand side, but it would be fairly
painful, unless you have access to a computer algebra package. A second idea
is to check the identity for x = 0, 1, 2, 3, 4. It is true in all of these cases, so the
temptation is to say that it is probably true (actually it is not).

There is a quite different and very simple method of demonstrating the
validity of more or less any formula involving only one variable (I use the word
demonstrate, rather than prove, deliberately). This is to choose a real number
x at random, and check the identity for that single number. If the formula is
true to the usual accuracy of a computer or pocket calculator for that value of
x, then it is almost certainly true for all x. Or to put it the other way around, if
the formula is not true, then you would be incredibly unlucky if it turned out to
hold for a randomly chosen value of x.

There is actually a potentially rigorous way of proving polynomial identities
along the above lines. If the polynomial has integer coefficients and the identity
is true for the single value x = π then it is true for all x. This remarkable
property of the number π is of less practical use that might be thought: one
cannot evaluate the required polynomial exactly because computations always
involve rounding errors, and π has infinitely many digits. These vary in a highly
irregular manner. Indeed they satisfy all known tests of randomness, although
they are not random in any true sense.



Probability and Quantum Theory 179

The following type of empirical demonstration is close to one used by Euler
in the eighteenth century and discussed on page 114. Suppose that you have
produced the tentative identity

945

π6

∞∑

n=1

1

n6
= 1

by an abstract method in which you have little confidence. In order to check
whether it is plausible you might then evaluate the quantity on the LHS but
only adding up the first three terms of the series. One then gets the number
0.9996595 . . . , which is close enough to demonstrate that the identity is worth
further investigation. At this point one can make the testable hypothesis that
if one evaluates the LHS but adding up the first fifty terms then one should
get a much closer approximation to 1. The result of this second computation is
the number 0.9999999994 . . . . There is only one chance in a million that the
first six incorrect digits in the first approximation should become correct in the
second if the identity is not true.

The following story will serve to explain why the first calculation should
not be accepted as it stands, in spite of the closeness of the value obtained.
About a year ago I was in the Louvre in Paris, and decided to retrace my route
by a few rooms to see something which I had missed. On the way I bumped
into another mathematician whom I had not seen for several years. What an
amazing coincidence—or was it? As we walk around we constantly scan the
people near us, even if only to avoid walking into them. On that day alone
I had probably glanced at a few thousand people, and if I count since the
previous chance meeting there were probably hundreds of thousands of other
non-coincidences—people I passed whom I did not know. We humans have an
astonishing tendency to attach significance to random events, probably because
to fail to recognize a pattern might have more serious consequences than to
‘find’ patterns where there are none. The moral is that uncontrolled observa-
tions should always be regarded as no more than a source of hypotheses which
can then be tested scientifically.

Stopping trials as soon an unexpected result occurs, in order to tell everyone
about your amazing discovery, and forgetting all the coincidences which did not
happen, is extremely common. It is responsible for the so-called Torah codes
and for claims about ESP.6 Drug companies have to make major efforts to avoid
being drawn into the same trap.

What is a Random Number?

It is commonly claimed that if one chooses a number from 1 to 10 at random,
then each of them should be assigned the probability 1

10 , unless some other
information is given. Unfortunately there is no such soft option. One cannot do
probabilistic calculations without considering the way in which the probabil-
ities arise. The fact that equal probabilities are relevant to tossing ‘fair’ coins
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or rolling dice involves a judgement about how those actions are performed
physically.

If one tosses two dice, each numbered from 1 to 6, and then adds the scores,
one gets a total score between 2 and 12. Assuming that the dice are both fair,
the probabilities of each of the scores is as follows:

Score 2 3 4 5 6 7 8 9 10 11 12
Probability 1

36
2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36

If you do not know how the numbers from 2 to 12 were generated, and start
betting on the basis that they have equal probabilities, then you will lose a lot
of money until the data lead you to a better understanding! Of course, if you
start with a sufficiently large data set then such problems do not arise, but real
life is seldom like that.

Let us count the lengths of words in an article, omitting all words of length
greater than ten. The data in figure 7.1 were taken from the Economist magazine.

While longer words are less common, we also see that words of length 1 are
not very common. Although an experimental fact, the above probabilities are
highly dependent upon the context. If you pick up a different magazine, read
an article written by a different person or even by the same person when he or
she has a headache, you may find a different distribution of word lengths. Your
predictions should be affected by all of these bits of information. The more
you know about where the passage comes from, the better your predictions are
likely to be. There is no a priori ‘best guess’ in this situation: if you have no

10

1 2 3 4 5 6 7 8 9 10

20

30

40

frequency

wordlength

Fig. 7.1 Wordlength Frequencies
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idea of the correct distribution and assume that every word length from 1 to 10
is equally likely then your predictions will be extremely poor, until your failure
forces you to change your mind. The moral is that if you do not know where
some ‘random’ numbers come from then you should spend your time thinking
about what is likely to be their distribution, rather than betting in ignorance.

Bubbles and Foams

Foams, defined as materials densely packed with tiny spaces, are ubiquitous.
Sponges and the interiors of bones are highly porous, but cork and expanded
polystyrene are composed of separate cells, and are therefore good insulators.
Metal foams are becoming increasingly important as a source of lightweight
materials with novel properties. For such purposes, it is desirable to make the
size of the cells as uniform as possible. In other contexts their sizes can vary
enormously.

Let us consider a bottle containing a little soapy water. Shake it until it is
full of bubbles and then leave the bubbles to settle down. Gradually more and
more of them collapse until there are a few very big bubbles left in the bottle,
as well as a lot of smaller ones. The very schematic figure 7.2 represents a two-
dimensional section through the bubbles. We ask what size a randomly chosen
bubble is likely to be.

The obvious method is to calculate the average (or possibly the median)
size of the bubbles and declare that to be the answer. This idea has few merits,
and there is in fact no answer to the question posed. Let us imagine that there
are many bacteria floating in the air in the bottle. One way of picking a bubble
is to choose one of the bacteria ‘randomly’ and then to ask which bubble it is in.
This method of choice is most likely to pick one of the larger bubbles, because

Fig. 7.2 Soap Bubbles
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the number of bacteria inside a particular bubble is likely to be proportional to
its volume. In figure 7.2 the largest bubble has volume a few thousand times
that of the smallest, and so is far likelier to be chosen by this method. The
moral is that until one knows the mechanism by which the choices are made, it
is meaningless to talk about probabilities.

The above argument is clearly uncontroversial once one has thought about
it, but a fallacious discussion of a somewhat similar problem (the ‘design’ of
the universe, discussed in Chapter 10) is widespread. Imagine an intelligent
bacterium, which sees that the vast majority of the bubbles in the bottle are
much smaller than the one it is in. It might argue that this was so improbable
on the basis of pure chance that it must have been placed in one of the biggest
bubbles by design, but it would be wrong. The only justification for assigning
equal probabilities to various events is that, after careful consideration, one can
see no reason for believing any of them to be more likely than any other.

Kolmogorov Complexity

In the above examples the randomness observed is not inherent in events them-
selves, but is dependent on our ignorance of relevant information about them.
Here we discuss an attempt by Kolmogorov and others to give an objective
meaning to the phrase ‘a random sequence’.

If one has a long string of digits, one can consider the shortest program
which will generate that number in a particular programming language. Clearly
if the number x has 1000 digits then one such program would be ‘Print(x)’
which involves 1007 symbols. But many numbers have other, much shorter
descriptions. For example the number 101000 −1 may be described by ‘Print(9)
1000 times’. which involves only 19 symbols, although the number itself has
1000 digits. Although some numbers have shortest descriptions much smaller
than their number of digits, a simple counting argument shows that numbers
with very short descriptions are very uncommon. Kolmogorov suggested that
one should define a random string of digits as one which does not have any
description radically shorter than the length of the string. It may be shown that
this notion does not depend essentially on the programming language used in
the definition.

For each string of digits (i.e. number) x there exists a number f (x), called
the Kolmogorov complexity of x, which gives the length of the shortest proced-
ure for generating that string. We have already shown that f (x) is certainly no
bigger than n+7 where n is the number of digits of x. Unfortunately at this point
the subject starts to fall apart. One method of evaluating f (x) is to examine all
programs with length up to n + 7, see which of them generates the given string
and determine the shortest of those. Unfortunately this is wholly impractical,
and it has been shown that there is no short cut. There does not exist a systematic
procedure for determining the minimum length program which improves sub-
stantially upon the brute force search. A proof of this is beyond the scope of the
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present book, but the following example makes it plausible. The digits of π are
perfectly random according to a wide series of statistical tests as far as they have
been computed (about the first trillion are known), but a quite short description
of how to generate them is obviously possible. As a result if one were to write
down the digits of π starting not with the first but with the millionth, it would
take great effort or considerable luck to discover the non-randomness of the
sequence.

The above is an example of a subject which is completely conventional
in mathematical terms, but which has fallen from favour because it is uncom-
putable. Contrary to popular opinion, fashions do affect what mathematicians
study. The move towards topics which have a computational aspect seems sure
to continue for a considerable time. Mathematical fashions last so long, decades
at least, that they often appear to be permanent aspects of the subject, until they
are overwhelmed by the next fashion. But previous fashions are preserved in
folk memory, often to be brought out and dusted off ages later.

7.2 Quantum Theory

Quantum theory is perhaps the most difficult field of science to explain to a
general audience. The mathematics involved is highly sophisticated and the
subject is full of paradoxes which still resist intuitive understanding, even by
experts. On the other hand, technically quantum theory is very well understood.
In a wide variety of experimental situations involving atomic interactions physi-
cists know the precise mathematical equations which govern the motions of the
particles concerned. The rules for setting up and solving the equations are not
controversial. They yield predictions about the behaviour of microscopic sys-
tems which are regularly confirmed to high accuracy in laboratory experiments.
Even when an experiment is deliberately designed to test a particularly bizarre
prediction, the phenomenon regularly appears as the theory predicts.

Several attitudes towards the interpretation of the formalism have emerged.
The most cautious is that one should not ask such questions, because science
is about making correct predictions and not about providing mental pictures as
psychological crutches. Another is that quantum particles are strange entities,
partly particles and partly waves, and that we have to accept that we are not
mentally equipped to understand their essential nature. Yet another view is
that we must continue to struggle to find the correct interpretation, which will
remove all of the paradoxes once we have it.

In all of the above it is accepted that the equations of quantum theory are cor-
rect. Some people believe that quantum theory must be incorrect, and that future
discoveries will replace it by something more accurate and simultaneously more
easily comprehensible. One suggestion is to include irreversible terms in the
evolution equation which have not so far been noticed because of their very
small size. Unfortunately all such proposals have one of three defects: they
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have serious structural problems, have no experimental evidence to support
them, or are so vague as to be mere aspirations.

In this half of the chapter we discuss a few of the well-known paradoxes
of quantum mechanics. I will press one particular interpretation of the subject,
which insists upon a role for the observer, but not for his/her consciousness.
This interpretation is far from being my own invention, and strikes me as being
more convincing than any of the others currently advocated. It will not resolve
the deepest mysteries of the subject, because this is too much to ask at the
present time.

History of Atomic Theory

Democritus was the first person we know to have advocated an atomic theory of
matter, in 430 bc. Lucretius’ first century bc poem The Nature of the Universe
explained Democritus’ ideas, which were astonishingly accurate for the time:

On the other hand things are not hemmed in by the pressure of solid bodies in
a tight mass. Thus is because there is vacuity in things. . . . by vacuity I mean
intangible and empty space. If it did not exist things could not move at all. For
the distinctive action of matter, which is counteraction and obstruction, would
be in force always and everywhere. . . . Material objects are of two kinds,
atoms and compounds of atoms. The atoms themselves cannot be swamped
by any law, for they are preserved by their absolute solidity. . . . The number
of different forms of atoms is finite.

However, Lucretius also made statements which we now regard as wholly
misguided. The Greeks and Romans had no means of proving or disproving
the atomic hypothesis, which was made on philosophical rather than scientific
grounds. Seventeenth century scientists such as Boyle, Hooke, and Halley had
a lively interest in atomic theory, but an experimental proof of the existence of
atoms was still far beyond them.

A landmark in the development of scientific chemistry was Lavoisier’s
Traité élémentaire de chimie, published in 1789, five years before he died under
the guillotine. This gave a correct chemical account of combustion, established
a systematic notation for acids, bases, and salts, and provided the first true table
of the chemical elements. It might be described as the chemists’ equivalent
of Newton’s Principia. In 1808–10 John Dalton’s two volume New System of
Chemical Philosophy described precise quantitative laws for the combination of
elements. Dalton also strongly suggested that matter must be atomic. He wrote:

It is one great object of this work, to shew the importance and advantage of
ascertaining the relative weights of the ultimate particles, both of simple and
compound bodies, the number of simple particles which constitute compound
particles.

Dalton used his results on the relative masses of the atoms of different elements
to describe the structures of many chemical compounds. By these means he
was able to explain a wide variety of different reactions in a systematic manner.
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Dalton’s theory was widely recognized, but was not regarded as definitive
proof that matter was composed of atoms for many years. There were good
reasons for this: the actual structure of quite simple molecules was not easy
to settle, and in fact many of the atomic weights determined by Dalton were
incorrect. This was partly because he assumed that water molecules contained
one atom each of hydrogen and oxygen, rather than two of hydrogen and one of
oxygen. Although Avogadro resolved many of the confusions of the subject in
1811, his work was not recognized for another fifty years. It was only in 1869
that Mendeleyev produced a reasonably complete periodic table of the elements.

Dalton’s geometric representation of molecules was the first attempt at struc-
tural chemistry, but it was largely guesswork and was generally rejected in
a British Association meeting in 1835 in favour of the algebraic notation of
Berzelius. Although flawed in its details, Dalton’s belief that determining the
geometrical shape of molecules would be central to the understanding of iso-
merism and other aspects of chemistry was to be triumphantly vindicated in
the twentieth century. Of course accepting that the shapes of molecules had
an important influence on their chemical properties made no sense unless one
also agreed that molecules were real objects, which many nineteenth century
chemists did not.

In 1814 Fraunhofer viewed the light from the Sun through a spectroscope,
and discovered a large number of sharp dark ‘spectral’ lines. These were classi-
fied over the rest of the century and identified with the spectral lines of individual
elements, which could be observed by heating them in a flame in the laboratory.
One set of lines could not be found on Earth, and in 1868 these were associated
with an unknown element named helium, after the Greek word helios for Sun.
The element helium was eventually extracted from the mineral cleveite in 1895.

Nineteenth century scientists had no means of observing individual atoms
because of their tiny size, and many regarded them as no more than a simple,
and therefore convenient, way of summarizing experimental results. Leading
among these was Ernst Mach, who wrote the following as late as 1896:

The heuristic and didactic value of atomistics . . . should certainly not be
denied. It is significant that Dalton, who was a schoolmaster by trade, revived
atomistics. But atomistics, with its childish and superfluous accompanying
pictures, stands in sharp contrast to the other philosophical developments of
modern physics.7

Within twenty years such views had been abandoned by all reputable physicists.
The ‘schoolmaster’ had the last laugh!

The final evidence for the reality of the basic particles of matter came at the
turn of the century. Electrons were discovered by Thompson in 1897 and were
initially known as cathode rays, because of the manner of production. (We have
to pass over many others who made important contributions to the study of their
properties.) Millikan was the first to ‘see’ individual electrons in very ingenious
experiments. These measured the movement of a tiny oil drop suspended in the
air when it carried a single surplus electron, making it slightly charged. In 1911
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Rutherford observed the anomalous scattering of alpha particles, which he could
only explain on the basis that the atoms of matter were composed of even tinier
nuclei around which electrons were orbiting.

Although there was no explanation of the spectral lines of atoms in terms of
Newtonian mechanics, it was recognized that they had some connection with
the way in which electrons orbited around the atomic nuclei. Unfortunately,
classical electromagnetic theory predicted that such orbiting electrons would
have to emit radiation, losing energy in the process and consequently spiralling
in towards the nuclei. So even the existence of stable electronic orbits was a
mystery. Many attempts to find a new theory were made, the most impressive
of which was by Bohr. In 1913 he proposed quantization rules, according to
which only certain electron orbits were physically permitted, so they could not
decay. His theory correctly predicted the spectral lines of hydrogen and the
helium ion, but failed for the helium atom. It was recognized as being ad hoc,
and the search for a more complete theory continued.

The final breakthrough came in 1925 and 1926. In June 1925 Heisenberg
invented a new matrix mechanics, in which Newton’s notions of position and
momentum were generalized by replacing real numbers by matrices, thus allow-
ing an entirely new type of mathematics to be used in atomic theory. Between
January and March 1926 Schrödinger invented a quite different wave mech-
anics, based upon the use of the spectral theory of partial differential equations.
He then proved that his theory was essentially equivalent to that of Heisenberg.
There were of course many other people involved, but by the end of 1926 the
new theory was in place and many people were actively engaged in working
out its implications. Most people’s doubts about its correctness were laid to
rest when the energy levels of helium were correctly calculated. This was a
numerical computation done twenty years before the invention of computing
machines, when the word ‘computer’ meant a person employed to do long series
of calculations by hand.

The Key Enigma

In The Feynman Lectures on Physics Richard Feynman described a simple
phenomenon which is absolutely impossible to explain in any classical way,
and which is at the heart of quantum mechanics. He claimed, indeed, that it
contains the only mystery of quantum mechanics. Because he was writing for
physics students in Caltech, I will adapt his account.

Our starting point will be the photoelectric effect. Light striking a metal
surface causes the emission of electrons. It is observed that more intense light
does not increase the energy of each electron emitted, but does increase the
electric current, that is the rate of emission of electrons. On the other hand the
higher the frequency of the light (that is the closer the colour is to the blue end
of the spectrum) the more energetic are the emitted electrons. Einstein gave a
precise formula relating the relationship between the energy of the electrons
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and the frequency of the incident light, but this need not concern us here. More
importantly his explanation of the effect established the particle nature of light
as a fact.8

Einstein’s idea was that light is composed of particles called photons. More
intense light is simply light which has a greater number of photons passing
each second. Each photon knocks one electron out of the metal, so an increased
intensity of the light serves to increase the rate at which electrons ‘boil’ off
the metal, but does not change the character of the electrons themselves. On
the other hand the frequency of the light is directly related to the energy of
each individual photon, more energetic photons having a higher frequency. The
photons transfer their energy to the electrons which they knock out of the metal,
so higher frequency light gives rise to electrons of higher energies.

This insight seems to be decisive, but in other situations the particle inter-
pretation appears to be untenable. One of these is the so-called double slit
experiment. This has been carried out for photons, electrons, and atoms such as
rubidium.9 The following description is schematic only: the key requirement is
that the particles concerned should be able to travel from one place to another
by two different routes. Electrons (or some other particles) are emitted by a
source (on the left of figure 7.3) and pass through one of two apertures, after
which some of them hit a detector (on the right in figure 7.3). This is attached
to a counter, which keeps a record of how many electrons have hit the detector.
Let us suppose that if only the upper aperture is open then 7 electrons hit the
detector every second (on average) while if only the lower aperture is open the
number is 9. The question is how many electrons hit the detector every second
if both apertures are open together.

From a classical point of view the answer is 16, just the sum of the two pre-
vious numbers. If one is devious enough, one might argue that the number could
be slightly higher. It is logically possible that an electron might go through the

source screen detector

Fig. 7.3 The Double Slit Experiment
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lower aperture, then back through the upper one and through the lower aperture
a second time before hitting the detector; other more complicated possibilities
could also be taken into account. The true, experimentally confirmed, answer
is quite different. If the detector is in one of several calculable positions, no
electrons enter it at all! By opening a second aperture a previously possible
event becomes impossible.

This is so puzzling that it suggests trying to watch individual electrons as
they pass through the apertures. Unfortunately this only serves to make the
paradox deeper. If one makes any change in the experiment which enables
one to determine which of the two apertures individual electrons pass through,
then the number entering the detector changes to 16 per second as expected.
Apparently each electron ‘prefers’ to travel through both slits simultaneously,
but, if one tries to watch this happening, it stops doing so and behaves in a more
normal fashion.

It has been suggested that the paradox is a group phenomenon: electrons are
passing through the slits in a stream and those which go through one slit may
be interacting with those which go through the other before any of them enter
the detector. Unfortunately experiments show that this is not the explanation. If
one reduces the flow of electrons steadily, until eventually there is surely only
one in the apparatus at any time, the phenomenon is unaffected.

This beautiful but paradoxical experiment confirms once again that quantum
particles are fundamentally different from their classical counterparts. However
difficult it may be to imagine what is really happening, there is no doubt about
the existence of the phenomenon. Nor is there any doubt that the use of the
mathematics of quantum theory provides quantitatively correct predictions of
the observations.

Very recently a Viennese group of physicists have observed the same effect
for fullerene molecules composed of sixty or seventy carbon atoms.10 Figure 7.4
is a picture of such a molecule. The molecule has a very definite structure,
rather like that of a football, the corners being atoms and the edges representing
chemical bonds. Some of the rings of carbon atoms in it consist of five atoms,
while others contain six. It beggars belief that such an object might dissolve
into two probability waves which later rematerialize as the original object, but
that is the only way we have of explaining what is observed in words.

Quantum Probability

The 1930s saw not only Kolmogorov’s formalization of probability theory but
also von Neumann and Birkhoff’s theory of quantum logic. This was an alternat-
ive probability calculus which described the newly discovered quantum theory.
The history of this subject is rather unfortunate. The name quantum logic gives
the impression that what was needed to come to terms with quantum theory was
a new kind of logic. Over the following decades this idea was explicitly accepted
by many researchers, many of whom knew less about the physics involved than
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Fig. 7.4 The Fullerene Molecule C60

was desirable. It now seems much more appropriate to view the revolution of
quantum theory as being more to do with probability theory than logic. Segal’s
1950 description of quantum theory in algebraic terms made clear the precise
technical sense in which quantum theory deviates from Kolmogorov’s probab-
ility theory. He wrote down a general algebraic formalism which included both
classical probability theory and quantum theory as special cases. Kolmogorov’s
theory arose precisely when the algebra concerned had a very particular struc-
ture, but in quantum theory this was not the case and no such description was
possible. In spite of the failure of Kolmogorov’s axioms for quantum theory,
the latter is clearly a probabilistic subject. Every introductory text tells one
about wave functions, how they evolve in time, and how to extract probabil-
ities from the wave functions. The process may seem extremely strange and
counter-intuitive, but it gives correct predictions so reliably that it cannot be
dismissed.

There was enormous resistance among classically trained probabilists to the
idea that Kolmogorov’s axioms were only one possible model of probability
theory, and that it might not be applicable in some physical circumstances.
The more common view was that his axioms encapsulated what was meant by
probability so definitively that any situation in which they did not apply was by
definition not probabilistic. Only in the last quarter of the twentieth century did
this abhorrence for the paradoxes of quantum theory and its apparent denial of
an observer-independent reality start to disappear. This was a revealing case in
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which many physicists were unwilling over a long period to distinguish between
their mental models and the reality which they were supposed to describe.

Following the discovery of the many paradoxes of quantum theory, some
physicists sought a classical account of the subject, in order to explain the prob-
abilistic aspects of quantum theory in terms of Kolmogorov’s standard account
of probability theory. In this hoped-for reconciliation quantum particles would
have straightforward positions and velocities at any moment, together with cer-
tain other parameters describing their internal structure. There should also be
laws of motion which would describe how these evolve, and these laws would
only involve influences on the particles from their immediate environments.
More and more evidence accumulated that this was not possible, culminating
in the discovery of Bell’s inequalities, and the experiments of Aspect and others.
Many strange explanations of these phenomena have been proposed, including
the idea of influences which propagate faster than light but cannot carry any
information. In the view of many scientists the cures of the supposed illness
of quantum theory are no better than the malady. The current orthodoxy is
that there cannot be any classical picture underlying quantum theory. It is, of
course possible, some would say likely, that an entirely different way of look-
ing at these phenomena will be discovered. This is likely to involve moving to
ideas even stranger than those of quantum theory: the reinstatement of classical
physics is an extremely unlikely scenario.

To summarize, Kolmogorov’s axioms are no more a final definition of what
mathematicians must mean by probability theory, than Euclid’s axioms are a
definition of what we must mean by geometry. The arrival of quantum theory
destroyed Laplacian determinism even more thoroughly than did the discovery
of chaos. It tells us that even if we were able to set up two experiments in
exactly the same way their outcomes may well be quite different. Probabilities
are embedded in the nature of the physical laws of the universe, and cannot be
explained in terms of our ignorance of the necessary facts, even in principle.

Quantum Particles

In this section I will try to convey some impression of how a quantum particle
is described mathematically. It is customary in this field to talk about the
momentum of particles, but I will use the term velocity, which is more famil-
iar. Before starting I must make an important point. Quantum mechanics is a
mathematical model of reality. When we refer to a quantum particle, we will
mean a particle as described by quantum theory. We do not intend to imply that
quantum theory is correct by using this language, even though the mathemat-
ical model has survived all tests so far. Similarly when we distinguish between
quantum and classical particles, we do not intend to imply that both types exist,
and that they have different properties! Rather we are distinguishing between
the predictions of quantum and classical models of a situation. Physicists fre-
quently use language whose obvious interpretation is not the correct one. Thus
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when they say that they have proved that some new theory is true, they mean
that the relevant mathematical model provides a much simpler or better match
with reality than any previous ones.11

This is an important point, and is discussed further on page 265. Models
are not required to represent reality perfectly, and simple models may often be
used in preference to better but more complicated ones. Many physicists would
say that we cannot ever know about reality itself, and have to content ourselves
with constructing models of it which are simple enough for us to be able to
understand. Others are more optimistic about our eventual ability to understand
nature. But it cannot be denied that almost all of current fundamental physics
consists of the production and testing of mathematical models.

In Newtonian mechanics a particle is considered to have an exact position
in space at any instant. It also has other qualities, such as its velocity, mass
and electric charge, which are all attached to the particle in some sense. On
the other hand in quantum theory a particle is not located at a single point but
has a shadowy presence throughout a small region. In the simplest possible
case it has a phase and an amplitude at every point of space. The phase is
an angle between 0◦ and 360◦ while the amplitude is a positive real number.
The probability (density) that the particle is at some point is the square of
its amplitude at that point, but the phase has no classical analogue. The total
description of how the phase and amplitude of the particle vary from point to
point in space is called its wave function or state.

If we forget about the issue of phase, it is easy to visualize a quantum particle
in wave terms. A wave on the sea has an amplitude which varies from point to
point, and decreases as one moves away from the centre of the wave. A water
wave is not located at any particular place, but is concentrated around the region
where its amplitude is greatest. One difference from quantum particles is that
the total size of a water wave can be small or large. On the other hand if a
quantum wave describes one particle and one sums (or rather integrates) the
probabilities of the presence of the particle over all space points, one always
gets a total of 1. A rather mysterious way of putting it is that a quantum particle
is a probability wave.

The position of a quantum particle cannot be pinned down precisely from
its phase and amplitude functions. If one follows the prescriptions of quantum
measurement theory, one obtains a point in space, but this point is not the place
where one is bound to find the particle if one looks. Rather it is the expected or
average position near which the particle is likely to be. Everything in the subject
is similar, reflecting the fact that the theory deals only with probabilities.

When two particles come together and interact their total local structure is
not simply the sum of their separate local structures; the two local structures
influence each other as time passes, leading to a composite structure for the pair
of particles which cannot be disentangled. As the particles separate their local
structures may continue to be entangled, so that the result of later measurements
cannot be computed as if they were independent of each other. In some cases
this entanglement remains even when the particles are far apart and cannot
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possibly interact with each other in any conventional sense. Entanglement is an
intrinsically quantum phenomenon with no classical analogue.

Of course fundamental particles are too small to observe directly, and one
may only infer their presence from events which can be seen at a macroscopic
level. These could be bubbles in a cloud chamber, caused by the condensation
of gas around an ionized atom, or the observation of a photon emitted by
an atom as it changes from one energy level to another. The interaction which
eventually leads to the observation involves energies comparable to those which
the particle has in the first place, so the subsequent motion of the particle is
substantially changed by the process. This is the famous uncertainty principle
of Heisenberg: observations disturb the particle measured in a way which has
a precise quantitative formulation.

This formulation of the uncertainty principle is not particularly disturbing—
the same would apply to a very small classical particle. However, there is more.
The position and velocity of a quantum particle are not well-defined even in
situations where it is isolated and not subject to interactions or measurements.
The particle is not localized at a single point but is spread throughout a small
region. If the position distribution of a particular particle is very highly concen-
trated around a single point, then it turns out that its velocity distribution must
be very spread out. There is a precise mathematical sense in which the position
and velocity cannot both be accurately specified. This is the more fundamental
uncertainty principle, which has nothing to do with observations. It forces one
to recognize that quantum and classical particles are fundamentally different.

We make no conjecture about what fundamental particles themselves are
really like, but content ourselves with knowing how accurate various mathem-
atical models are in different circumstances. The quantum model is the best we
currently have, but it is technically harder to use it than one would like.

The Three Aspects of Quantum Theory

The application of quantum theory in a typical laboratory setting has three
stages. One first has to set up the apparatus in such a way that one knows the
initial state of the particles concerned. This is called state preparation. The
second stage involves writing down and solving the mathematical equations
which describe how the particles evolve in time. The final problem is to calculate
the results of the experiment from the wave functions, often called quantum
measurement. Each of these steps is carried out using a standard collection of
recipes.

Many of the deepest and most interesting results in quantum theory make
no reference to state preparation or measurement, but concern only analytic
properties of the mathematical model. We will refer to the study of these equa-
tions as quantum operator theory. This way of presenting the subject was the
responsibility of Paul Dirac, but mathematicians would also want to mention
the contribution of John von Neumann. Among the achievements of quantum
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operator theory are the calculation of the energy levels of atoms and molecules,
which lies at the core of computational quantum chemistry.12 Such results in
quantum operator theory have led to great confidence in the relevance and pre-
dictive success of quantum theory. There is a high degree of agreement about
what constitute correct procedures within it, because it is essentially a branch of
mathematics, concentrating on a particular type of physically motivated prob-
lem. At present we have no other plausible candidate for explaining the many
phenomena which quantum theory handles so well.

Quantum operator theory is particularly important when one has no con-
trol over the state of the system being investigated. This happens when one is
applying quantum theory to a phenomenon originating outside a laboratory, for
example natural radioactive decay or cosmic rays. Similarly, the computational
study of complex biological molecules makes no reference to state preparation
or measurement, and uses only the mathematical machinery of quantum oper-
ator theory. This type of approach to the design of new drugs has some claim
to be the most practically important aspect of the subject.

The other aspect of quantum theory, relating to state preparation and meas-
urements, is highly controversial. There are fundamental disagreements about
the proper philosophical interpretation of the formalism, highlighted by a
number of thought experiments, even when the technical application of the
formalism is well understood. The use of Bayesian ideas in quantum theory is
still controversial. By and large physicists are interested in the underlying laws,
not the current degree of ignorance of experimenters. Nevertheless the former
can often only be achieved via the latter. The moral is that the less an experiment
invokes measurement theory the better, as far as physics is concerned.

Quantum Modelling

When one examines a typical text-book on the subject, one finds that quantum
theory is like a tool-box with a manual. The manual contains general advice
about the relevant part of mathematics and how systems evolve in time. The tool-
box contains a collection of particular models which have been found useful in
various contexts, together with a variety of procedures for extracting predictions
from those models. It also provides tools for bolting together simple models
in order to handle complex problems involving many particles and/or fields.
Using the tool-box makes considerable demands on the quantum mechanic’s
skill and experience.

Let us examine how this works for the double slit experiment. A simple
model of an electron passing through a double slit involves a wave function
which has an amplitude and phase at each point of space. This neglects the
internal structure of the electron. A better model would involve allowing the
electron to have its two internal degrees of freedom (an electron is a spin 1/2
particle). Rather than considering individual electrons, one might consider the
beam as a whole, in which case one must take account of their Fermi statistics
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and charges. It may be thought necessary to include some model of the walls
of the slit, since the electron has some chance of being absorbed by the wall
rather than passing through the slits. We should have some quantum mechanical
model of the process of collision of the electrons with the eventual detector.
Perhaps we should include the quantized electromagnetic field in the model,
because it may have an effect upon the results.

Experimental physicists are well accustomed to problems of this type. They
do a rough calculation to see whether the extra complication of including the
above elaborations of the basic model makes an important difference. If it does,
then the elaboration is included or the experimental setup is refined. The various
effects referred to above are considered separately, but the most sophisticated
model never gets close to consideration. Most likely the final experiment is
described by using a series of separate quantum mechanical models, one for
each part of the experiment.

The above process is absolutely standard, but bears little resemblance to
ideas about there being an objective wave function in some ‘correct’ Hilbert
space. What we actually have is a series of choices by the scientist, which
are tested against experience with similar problems in the past. These choices
involve the preparation and detection processes just as much as the dynamics.
Scientists learn a set of procedures for constructing partial models, and these
include rules about how to draw boundaries around the part of reality to be
quantized. Scientists play a key part in the theory by making decisions about
which model to use, based upon their knowledge of the subject and experience.
There is no canonical choice of model, which must be simple enough for real
calculations to be possible.

Nancy Cartwright discussed the status of model building in several areas of
science in The Dappled World. In Chapter 8 she gave a careful description of
the so-called BCS model of superconductivity, which won Bardeen, Cooper,
and Schrieffer the Nobel Prize in 1972. She pointed out that the BCS model
was not constructed from the fundamental Coulomb interactions between the
electrons and nuclei involved. Instead the authors wrote down phenomenolog-
ical equations which incorporated a variety of relevant effects. She concluded
as follows:

We are used to thinking of the domain of a theory in terms of a set of objects and
a set of properties on those objects that the theory governs, wheresoever those
objects and properties are deemed to appear. I have argued instead that the
domain is determined by the set of stock models for which the theory provides
principled mathematical descriptions. We may have all the confidence in the
world in the predictions of our theory about situations to which our models
clearly apply—like the carefully controlled laboratory experiments which we
build to fit our models as closely as possible. But that says nothing one way
or the other about how much of the world our stock models can represent.

The first part of this quotation is a fair description of the way in which quantum
mechanics is applied. Her closing sentence might seem mere caution, but she
makes it clear elsewhere that she is strongly opposed to the fundamentalist
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doctrine that laws discovered in the highly constrained setting of a laboratory
must have universal significance. This is a provocative claim, and was strongly
criticized by Philip Anderson in his review of her book.13 I will explain in
Chapter 10 why I do not endorse it.

Measuring Atomic Energy Levels

Let us consider the measurement problem for an atom which is in an excited
state. An atom14 has a discrete set of energy levels and may jump down from a
higher one to a lower one, emitting a photon. In the most elementary description
the jump is sudden and irreversible, unless another photon of the right energy
arrives to push the atom back up to the higher energy level.

Reduction of the wave packet is often claimed to occur when one makes
an observation to determine if the atom is in some particular energy level. One
commonly says that asking this question forces the atom to change its state sud-
denly either to one for which the answer is yes or to one for which the answer
is no. While the evolution of wave functions is generally continuous and revers-
ible in time, performing such measurements is said to be discontinuous and
irreversible. The measurement is said to cause a collapse of the wave function.

The above description of measurements is far too simple-minded. An atom
cannot be observed directly. What one can do is direct a photon into collision
with it, and observe its scattering or absorption. One can also observe the
spontaneous emission of a photon. The true observation takes place at a very
remote location (on the distance scale appropriate to atoms). There is a model
of the process which includes both the atom and the quantized electromagnetic
field, which carries photons away from the atom. Computing with this model
is much more complicated than with the simple model previously described. It
also gives a quite different understanding of what is happening. One starts with
the atom in an excited state and no photons present. The wave function of the
combined system evolves continuously and reversibly in such a way that the
atom moves smoothly from the higher level towards the lower one and a photon
emerges continuously from the neighbourhood of the atom. As time passes the
probability that a photon has been emitted increases continuously towards 1 and
the probability that the atom is in its higher energy level decreases towards 0.

Nothing above involves any act of measurement. Once the photon is far
enough away from the atom it may interact with a photon counter. If one knows
that the photon has interacted with the photon counter then it becomes appropri-
ate to use a different wave function to describe it. This has already arisen in the
classical context, where we agreed (I hope) that probabilities may describe one’s
information about a situation rather than the situation itself. So with quantum
theory. The wave function describes our best knowledge of the system: if our
knowledge changes then we should use a different wave function.

An objection to this description of events is that it does not discuss the mech-
anism by which the information about the atom changes from being potential
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quantum mechanical information into objective fact. The answer is that quantum
theory is a set of mathematical models of various degrees of sophistication
which allow one to make predictions. Particles are not the same as the prob-
ability wave functions which we assign to them in quantum theory, and the
question presupposes this identification. There is a real world, but we should
not imagine that our best current model is more than that.

The EPR Paradox

Physicists frequently seek situations in which their theories make paradoxical
predictions. In cases which can be realized experimentally, one of two things
may happen. The prediction may be wrong, in which case their theory collapses,
or at least needs to be modified. Alternatively the prediction is borne out, and
they need to think about what is wrong with their intuition. Once they have
come to terms with the unexpected phenomenon, the paradox ceases to be
one. Unfortunately it sometimes continues to be called a paradox simply out of
tradition.

The EPR paradox is a beautiful example of this. It was devised by Einstein,
Podolski, and Rosen in 1935 to prove that there must be something fundament-
ally wrong with quantum theory. Unfortunately for them, it did nothing of the
kind. The behaviour predicted by the model was precisely what was observed
to happen in experiments, the most definitive of which were carried out by
Aspect in 1981. This fact indicates that our naive mental images of quantum
particles fail to correspond to reality in a rather fundamental manner. As time
has passed physicists have come to terms with the phenomenon, although there
are still many who feel uneasy about it. So Penrose has devoted several lengthy
discussions to its supposedly paradoxical status, while Gell-Mann, has robustly
dismissed these.15

The paradox involves a property of electrons called their spin. To a first
approximation one can think of this as a little arrow attached to each electron,
whose direction is the axis around which the electron is spinning. The paradox
relates to the fact that in some respects an electron behaves as if the spin axis
really exists, but appropriately designed experiments demonstrate that it cannot.
Let us consider Bohm’s reformulation of the paradox. We suppose that some
atomic event leads to the emission of two electrons, which travel away from
the atom in opposite directions (a similar discussion applies to photons). We
assume that the combined spins of the two electrons have the simplest possible
configuration. This is a pure, rotationally invariant, quantum state, often written
in the form

ψ =↑ ↓ − ↓ ↑
Many more fanciful forms of this equation have been written, including one of
Penrose in which the two types of arrow are replaced by little pictures of dead
and live cats!
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The natural interpretation of the state ψ is that either the spin axis of the first
electron points in the direction ↑ and the second in the direction ↓, or vice versa;
the two cases are equally probable. One might say that the spin axes of the two
electrons point in the same direction, but one electron spins clockwise and the
other anti-clockwise, so the spins cancel out. Which electron spins clockwise
and which anti-clockwise is a matter of chance.

Unfortunately the mathematics of spin one-half particles allows one to write
the same state in the form

ψ = →← − ←→

In this form the natural interpretation is that either the first electron is in the state
← and the second is in the state →, or vice versa; once again the two cases are
equally probable. Now up-down alternatives for the spin axis are quite different
classically from left-right alternatives. There is no classical way of reconciling
them, but quantum mechanically they co-exist.

The presence of the minus sign in the above equations provides another
indication of the enigmas of quantum theory. There is no classical or probabil-
istic meaning to the idea of subtracting one possible configuration, ↓ ↑, from
another, ↑ ↓. In quantum theory not only is this possible, but the result is experi-
mentally distinguishable from the result of adding them together. Even more
confusingly one cannot distinguish experimentally between ↑ ↓ − ↓ ↑ and
↓ ↑ − ↑ ↓. Because the two configurations are combined in this manner, the
electron spins are said to be entangled. This concept has no classical analogue,
and implies that one cannot regard the two electrons as independent particles,
even when they are widely separated.

The EPR paradox is often described in terms of the results of measurements
performed on one or both of the electrons. We will bypass these, since what
we have already seen implies that the results must be paradoxical. If the state
itself has non-classical properties, then there is no way in which measurements
can eliminate this fact. In an earlier version of this book I had given a more
detailed technical discussion of the EPR paradox, but was persuaded that this
was pointless. The main protagonists actually agree about the mathematics
involved. They also agree about the physics. Their problems relate to the philo-
sophical status of the theory, not to the theory itself. Those in the first camp
feel that there must be an objective state of affairs, and continue to seek either a
new interpretation of quantum theory or a modification of the theory which will
permit this. Those in the second camp regard discussions about the underlying
reality as lacking meaning. They are completely satisfied with a mathematical
formalism which provides correct predictions.

My own position is closer to the second camp. I do not consider that the
mathematical description provides a full understanding, but accept that it may
be the best which our type of minds are capable of. In the light of the known
paradoxes, it is surprising that so many people hope that one day we will find
a new formulation of quantum theory which will also correspond to our native



198 Quantum Theory

intuition. I do not believe that God, if he exists, is a mathematician. Surely he
would be vastly amused at our idea that such a tool might one day encompass
the vastness of his creation. Did prehistoric people analogously believe that
their gods had created the world using extremely delicate and sophisticated
stone axes?

Reflections

In order to understand better the tension between the quantum and classical
pictures of the world, one needs to talk to chemists rather than physicists. The
former have a more thorough understanding of the issues because they have to
deal with them daily! In the standard ball and stick models of molecules, such
as that of the fullerene molecule drawn earlier, the balls indicate the positions of
atoms, while the sticks represent bonds between atoms. Quantum theory tells
us that the bonds are in fact very crude representations of forces due to smeared
out electron wave functions. This crude classical model of molecules works
astonishingly well, and is still widely used today. However, it fails to explain
many issues, such as the properties of non-rigid molecules.

In this section we will discuss chiral molecules. These are molecules which
appear in two forms which are simple reflections of each other, in the same way
as left and right hands are. Many well-known compounds, such as glucose and
vitamin C, have two such forms, which have very different biological activity.
In the case of thalidomide, one of the two forms acts as an effective sedative, but
the other can produce major embryonic malformations. Unfortunately, when
it was used as a drug in the 1960s, the two forms were mixed together, with
disastrous effects.

If one looks at the structure of molecules from a (naive) physicist’s point
of view one would say that chiral molecules should not exist. According to
early views of quantum theory molecules are always in states with mathemat-
ically sharp energies and occasionally make sudden transitions between these
by absorbing or emitting a photon. Because the laws of quantum theory are
invariant under reflections the sharp energy states must also be so, with one
Caveat.16 Therefore they cannot be chiral.

There have been several attempts to resolve this paradox. It has been
suggested that some future development of quantum theory will incorporate
nonlinear effects. These would have to be extremely small, since quantum
theory is so well verified, but they might allow the existence of stable chiral
molecules. It has also been proposed that a known weak force which is not
invariant under mirror symmetries may be important in this context. In my
opinion both speculations are the wrong direction to seek the explanation: the
effects are too weak to have any significant influence, except possibly in inter-
stellar space or extremely rarified gases. In all normal situations molecules are
subject to constant collisions with their neighbours, and this will overwhelm
any much weaker effects, even if they exist.
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The actual flaw in the argument is the prejudice that atoms are always
in sharp energy states. This is a convenient fiction which makes calculations
much simpler. But it is well known to chemists that the appropriate state of
a molecule depends upon how it was prepared. The manufacture of chiral
molecules depends upon using a process which selects the left- (or right-)
handed form preferentially. The same applies to biological molecules, many
of which exist in only one of the two possible forms. It is a mistake to look for
some fundamental explanation of this. All current organisms on Earth probably
evolved from a single ancestor, and it is entirely plausible that the handedness
of its constituent molecules was simply a matter of chance. From that point
onwards evolution saw to it that only copies of those molecules, necessarily
with the same handedness, were manufactured. History does matter!

The fiction that molecules are always in sharp energy states is also respons-
ible for the idea that there must be a sudden change in the state of a molecule
when it is observed to ‘jump’ from one energy level to another. In fact when
one does the full calculation of the interaction between a molecule and its envir-
onment all changes are continuous. This is not a philosophical point: chemists
could not understand the dynamics of chemical reactions without carrying out
these more complete calculations, which involve the consideration of states
which do not have sharp energies.

Schrödinger’s Cat

More heat has been expended on the problems of quantum measurement than
on any other aspect of the subject. It has been claimed that in the process of
measurement a quantum particle undergoes a sudden collapse: its state suddenly
changes from its pre-measurement value to its post-measurement value. In the
last section I explained why this is wrong by referring to standard ideas taught
to all chemistry students. Here I discuss the famous story of Schrödinger’s cat.

In this (thought) experiment a cat is sealed inside a room with some appar-
atus. The decay of a radioactive atom in the room is detected by a Geiger
counter and triggers the death of the cat. The fate of the cat and of the atom can-
not be disentangled, and the radioactive decay can only be explained in quantum
mechanical terms. It is then argued that at a deep enough level the cat’s fate
must be also described using quantum theory. Indeed while the room remains
sealed the cat is supposed to be suspended in a quantum state, partially dead
and partially alive. This state is beyond intuitive understanding, even though its
mathematical description is simple and unambiguous. One might say that the
cat is in limbo, neither properly dead nor alive. When someone enters the room
and observes the cat this forces a collapse of the wave packet. The cat suddenly
becomes actually dead or alive.

I do not suppose that many people actually believe that cats can actually
exist in limbo, returning to the real world when observed. If one did then
one would be led into a series of ever more implausible questions. Who is
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Fig. 7.5 Schrödinger’s Cat

competent to collapse a wave packet and who is merely a part of the wave
function of other more significant observers? Does Schrödinger’s cat itself have
enough consciousness to collapse wave packets? Is quantum theory really about
dividing the animal kingdom or even the human race into those who are effective
observers and those who are not? Does the collapse take place when the relevant
photons hit our eyes or only when the signal reaches our consciousness? How
can one possibly answer these questions on a scientific basis?

Several different resolutions of the paradox have been proposed. Most of
them have some merits. The following three solutions are very much a per-
sonal selection. They are closely related and may be complementary ways of
describing the same truth.

The first solution is to deny that cats can be quantized. We have already poin-
ted out on page 66 that cats do not have well-defined boundaries. Exactly what
atoms are part of an individual cat is not objectively decidable: the number
keeps changing as the cat breathes in and out or digests its last meal. This
being so it is impossible to assign a quantum state to a cat. The situation
is very different from that for the fullerene molecule discussed previously,
which has an absolutely precise number of atoms locked into a particular geo-
metric configuration. If one replaces the cat by an object simple enough that
one can plausibly assign a quantum state to it, then the methods of quantum
theory do indeed become applicable. If one represents the cat by a simple two-
dimensional dead-alive quantum system, then one needs to remember that this
is an outrageous abstraction of the cat itself.

A second approach. Reduction of the wave packet has nothing to do with
consciousness. The supposed reduction of the wave packet is not an objective
effect but the result of giving an approximate description within an highly
simplified model. In this simplified model the effects of the environment are
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ignored apart from the inclusion of a wave-packet reduction formula. There is
no point at which one can make a principled division between the object studied
and the environment, but one has to make it at a point at which the quantum
mechanical model can actually be solved. This point is not sharply defined,
but it occurs long before one has got near the consciousness of any observer or
of the cat. I quote Omnes concerning the reality of the reduction of the wave
packet:

However there is no physical effect that might be called a reduction effect
. . . No formula resulting from a mathematical analysis is supposed to have a
physical content, and wave-packet reduction is only a formula expressing the
result of a calculation in logic.17

A final attempt. The quantum state is never attached to the particle or sys-
tem which it describes, but is rather our best (current) way of encapsulating
the information we have about it. If two people have very different knowledge
about an entangled quantum system, possibly because they are physically sep-
arated, then they are right to use different states to describe it. In the words of
the physicist Roger Newton ‘the befuddlement arises from the mistaken notion
that a quantum-theoretical state, as described in the ideal case by a wave func-
tion, is a direct description of reality’.18 Cats should not be confused with the
mathematical formulae which we use to predict the results of future observa-
tions of them. Once the cat has been observed it becomes appropriate to use a
different mathematical state to describe it. As with the EPR paradox, the state
which we use to describe something depends upon the information we have.

Let me sum up. It might seem trite to say that quantum theory is a math-
ematical theory, which should not be confused with the reality it claims to
describe. However, many of the paradoxes of quantum theory only arise because
of people’s failure to make precisely this distinction. The quantum state is a
mathematical construct quite distinct from the physical particle, about whose
nature we know little. Quantum theory makes extremely accurate predictions
in some simple situations and gives a good understanding in many other more
complicated ones. The equations are not always soluble in any practical sense,
and we have no proof that they apply in extremely complicated and dynamic-
ally unstable situations. We do not understand why the quantum mechanical
equations work. Perhaps the truth is just that we have kept on seeking equations
which describe various natural phenomena, and it would have been surprising
if we had not had considerable success, at least for some of those phenomena,
after several centuries of continuous effort. In another few centuries we should
expect that the equations then used will be even more effective. The universe
must not be identified with some set of equations which humans invented, and
can only solve with a good degree of accuracy in very special circumstances.
The phenomenon of quantum entanglement indicates that the universe cannot be
decomposed into small isolated parts. This has the fundamental consequence
that the way science has always operated is, finally, misconceived. What is
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astonishing is that we have got so far by studying small parts of the universe in
isolation from the rest.
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Is Evolution a Theory?

Introduction

In Chapter 6 we explained how one of the most impressive edifices in physics,
Newton’s laws of motion, was superseded early in the twentieth century by
other theories (quantum mechanics and general relativity) relying upon com-
pletely different mathematical foundations. The possibility of such a dramatic
upheaval appears to support cultural relativism, the idea that scientific theories
are culturally determined, like any other belief system. This stands in strong
contrast to the belief of scientists that they are progressively discovering object-
ive facts about the natural world. The distinction between the subjective and the
objective is indeed hard to define, and is nowhere more controversial than in
the subject of this chapter, evolutionary theory. It is clear that one cannot have a
balanced view of the philosophy of science if one’s only input is the way math-
ematicians and physicists view their subjects. Unfortunately the philosophy of
science is dominated by physics, partly because most philosophers lived before
the main era of development of the biological sciences. Even in the twentieth
century many writers seem to support the view that the depth of a science is
determined by the extent to which it depends on mathematics. Here we should
distinguish between those sciences which use mathematics but whose theories
can be phrased in common-sense terms, and others, such as quantum theory,
which depend entirely on mathematics for their formulation. Biology and geo-
logy are of the former type, but this does not prevent them being amongst the
most interesting scientific subjects which the human race has investigated.

Since 1980 a large number of excellent books on biology and the theory
of evolution have been published. Most of the authors have no interest in or
respect for creationism, and concentrate on communicating the fascination of
their own field. Our focus will be somewhat different. After discussing briefly
how scientists came to their present beliefs about the origin of species, we
will concentrate on establishing which parts of evolutionary theory are estab-
lished fact and which parts are still hypothetical. Popper has told us that no
scientific knowledge is ever final, but many philosophers and scientists do
not share his scepticism. His views will be discussed in greater detail in the
final chapter.
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Before proceeding, I must emphasize that biology does not have the tight
logical structure which physical scientists wrongly regard as the hallmark of
proper science. Although in one sense shallower than physics, it is far broader.
Its theories gain conviction from the huge variety of supporting evidence, not
because of the existence of critical experiments. This chapter follows the same
pattern as others: while the ostensible subject matter is the theory of evolution,
the actual focus is on how one makes decisions about the objectivity of scientific
knowledge.

The Public Perception

The publication of Charles Darwin’s The Origin of Species in 1859 provoked
an intense debate about its scientific merits and implications for the Christian
faith. The eventual outcome in the United Kingdom was an acknowledgement
that literal creationism was not a tenable doctrine, and that human beings have
indeed evolved from apes. The Church of England has no problems with this,
and senior members of the Church often speak in support of evolution.

The situation in the United States is entirely different. Opposition to
evolution has grown within the fundamentalist Protestant community there,
particularly during the second half of the twentieth century. A series of Gallup
polls held between 1982 and 2001 all reveal results very similar to that of
1999. Americans favour teaching creationism in the public schools along with
evolution by a margin of 68% to 29%, and 40% even favour replacing evolu-
tion by creationism. About 40% of Americans believe that human beings have
developed over millions of years from less advanced forms of life, but God has
guided the process; 9% believe that human beings have developed over millions
of years from less advanced forms of life, and God had no part in this process;
finally 47% believe that God created human beings pretty much in their present
form at some time within the last 10,000 years or so. I will refer to this last
group as hard-line creationists.

The position of the Catholic Church is clear if, as usual, very cautious. In
October 1996 Pope John Paul II made the following statement:

Today . . . new knowledge has led to the recognition of the theory of evolution
as more than a hypothesis. It is indeed remarkable that the theory has been
progressively accepted by researchers, following a series of discoveries in
various fields of knowledge. The convergence, neither sought nor fabricated,
of the results of work that was conducted independently is in itself a significant
argument in favour of this theory.

He did not, however, support Darwin explicitly, declaring, quite reasonably,
that ‘to tell the truth, rather than the theory of evolution, we should speak of
several theories of evolution’.

Many scientists either ignore or ridicule the creationists, but this has not
made them disappear, and we will examine the strength of their arguments in
this chapter. This chapter will explain why some aspects of evolutionary theory
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have now passed into the corpus of settled knowledge about the world. I will
follow the standard practice of using the term ‘evolution’ when referring to
the appearance and extinction of species over a time scale of many millions of
years. The phrase ‘theory of evolution’ in later sections refers to the more prob-
lematical issue of whether the mechanism driving evolution was what Darwin
proposed. The distinction between these two issues will be of key importance.
The next two sections describe a small fraction of the evidence that the Earth
is indeed several billion years old. The only way of avoiding this conclusion is
to suppose that vast quantities of false evidence have been deliberately planted
by a being with supernatural powers.

The Geological Record

Speculations about the nature and origins of fossils started over two thousand
years ago, and included a particularly perceptive analysis by Leonardo da Vinci.
However, the serious investigation of fossils started with Georges Cuvier in Paris
at the end of the eighteenth century. He was the first to think of comparing the
anatomy of fossilized bones systematically, and to record the rock formations
from which they were taken. The conclusion was inevitable. Many species of
large animals had become extinct, and fossils discovered nearer the surface
were always closer in form to existing species. In 1812 Cuvier published four
volumes explaining the significance of a vast number of careful observations,
from which it became clear that the Earth could not be just a few thousand
years old.

From this point the science of stratigraphy developed rapidly. In England
William Smith used the steady progression of forms of life in the fossil record
to classify the rock layers in his book Strata Identified by Organized Fossils
published in 1816. Mary Anning devoted her life to the collection of magnificent
and often complete fossils of plesiosaurs, ichthyosaurs, and other prehistoric
reptiles. Some of her specimens, which are up to eight metres in length, may be
seen in the Natural History Museum in London. The fossil in figure 8.1 is about
two metres long and dates from about 200 million years ago. Of course nobody
could have known their age in the nineteenth century, but it was obvious that they
bore little resemblance to any living creatures. Richard Owen was responsible
for the first attempt to build models of extinct animals based upon their fossils,
at an exhibition in Crystal Palace Park in South London which opened in 1854.
The models may still be seen there. So it was well known to the public, long
before 1850, that animals quite unlike those we now know had once existed
and perished.

In the first half of the nineteenth century, the accepted explanation for the
above, promoted by such authorities as Cuvier and Richard Owen, was called
catastrophism. According to this, animals retained their forms unchanged until
they suddenly became extinct in some natural catastrophe, to be replaced by
quite new forms in a separate and independent act of creation. The fixity of
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Fig. 8.1 Plesiosaurus hawkinsii
© The Natural History Museum, London

species was supported by the fact that there had been no changes in known
species throughout recorded history.

Two people did, however, argue that species might evolve from one form
to another over a long enough period of time. The first was Erasmus Darwin,
the grandfather of Charles Darwin, who published a two-volume work called
Zoonomia on his theory of evolution in the last decade of the eighteenth century.
Apparently ignorant of this, Jean-Baptiste Lamarck published a seven-volume
theory of evolution between 1815–22. His ideas, which are discussed further
on page 213, were considered obviously false, and were not followed up when
he died shortly afterwards at the age of 78. The time was not yet ripe for such
ideas to be taken seriously.

A lecture of Thomas Huxley given to the British Association in Norwich
in 1868 described some of the evidence for the vast time scale needed for
the evolution of life and rocks. He explained that there is a layer of white
chalk, hundreds of metres thick in places, stretching from north-west Ireland
to the Aral Sea via the Dover cliffs, central Europe, and Syria. When examined
under a microscope it is found that the chalk is composed of the shells of
tiny organisms called Globigerinae together with other organic granules called
coccoliths. These are remnants of marine organisms, indicating that this whole
area was once at the bottom of the sea. Such a thick layer must have taken
an extremely long period of time to accumulate, only to be covered by yet
other layers of rock. All this had to happen before this ocean floor started to
rise ever so gradually above sea level. Whether the time involved should be
measured in millions, tens of millions, or hundreds of millions of years is a
technical question, but it is clear that such a process could not occur within a
few thousand years.
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The next item in my selection is the theory of continental drift. Although
related ideas had been proposed on several occasions earlier, the first detailed
theory of continental drift was put forward by Alfred Wegener in 1912 and then
more fully in The Origin of Continents and Oceans published in German in
1915. He provided evidence that our present continents had been formed by the
break-up of a single supercontinent, Pangaea. His ideas went far further than
just accounting for the similarity of the Western coastline of Africa and the
Eastern coastline of South America. There is a striking relationship between
the geological formations on either side of the South Atlantic Ocean—one for
which we now have vastly more evidence than he did. In addition the fossil
records on the two sides of the Atlantic up to the presumed era of separation
have strong similarities. To give just one isolated example of Wegener himself,
fossils of a Permian1 reptile called the mesosaur may be found only in South
Africa and Brazil. Since this was a freshwater species living in lakes and ponds,
it is extremely implausible that it could have made its way across a divide of
several thousand kilometres of sea.

The Origin of Continents and Oceans contains far more material than
described here. Much of it is very convincing, but the chapter dealing with
actual evidence for the movement of the continents is not: geodesy was simply
not accurate enough in his day to demonstrate the very slow movements taking
place. Nevertheless, there was abundant evidence in support of his theory, and it
is interesting that Wegener’s ideas did not acquire scientific respectability until
long after his death. The reason is surely that there was no plausible mechanism
by which continents could move physically over the Earth’s surface. This being
the case, people preferred to believe that the evidence was surprising but not
ultimately significant.

In the 1960s the situation changed dramatically. Surveys of the bottom of
the Atlantic identified a ridge in the mid-Atlantic (with similar ridges on the
ocean bottoms elsewhere in the world). Hess proposed that basaltic magma was
being pushed to the surface at the ridges and that the sea floor on either side of
these ridges were moving away from it. Evidence in favour of this idea was not
long in appearing. It included the following:

• Observations of the mid-Atlantic ridge using underwater cameras showed
molten rock emerging all along it up to Iceland, which is one of the most
active volcanic regions in the world.

• Magnetic field reversals are recorded in the rocks in roughly parallel lines on
either side of the central divide; this has been explained on the basis that both
sides are moving steadily away from each other as new material is pushed to
the surface at the divide itself.

• The age of the ocean floor increases with its distance from the mid-ocean
ridges, but is no more than two hundred million years anywhere—a tiny
fraction of the age of the land masses.

• The continuing separation of the continents at the rate of a few centimetres
per year on either side of the Atlantic has been measured using orbiting
satellites.
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• The rate of separation is consistent with the date for the separation of Pangaea
obtained by dating methods based upon radioactive decay, namely that it
occurred over the period between one and two hundred million years ago.

It would take a whole book to describe the historical process which took the
new theory of ‘plate tectonics’ from the realm of an implausible story in 1960
to that of widely agreed fact by the early 1970s (and several more to describe
the present evidence in support of the theory). Any such account would have to
describe the important contributions of the research vessel Glomar Challenger,
launched in 1967 to take cores from the ocean floor. Agreement was reached
because new evidence from several independent fields of science supported the
same overall picture, and also because people finally understood the mechanism
behind the continental drift.

My next choice is much more visible. The rocks in the Grand Canyon
in Arizona naturally divide into twelve layers, most of which are between
100 and 200 metres thick. Let us consider just one of these, the Bright Angel
Shale, which is the tenth counting downwards. This is a greenish gray shale
containing fossils of marine arthropods called trilobites. The presence of the
fossils establishes that this layer is a sedimentary deposit. The vast extent of
the layers, which are not confined just to the canyon, attests to a process which
could not have occurred in a few thousand years. Moreover, all of the layers
in this plateau must have been formed when the area was below sea level and
long before their erosion by the Colorado river and the weather. Considering the
many cubic kilometers which have been removed by erosion, the erosion process
could not possibly have taken only the few years of a Biblical flood. It is believed
by experts that the formation of the canyon actually took somewhere between
one and six million years. The rocks themselves were laid down far earlier.
Trilobites first appeared about 540 million years ago, and after dominating the
seas for long periods, eventually became extinct by 250 million years ago.

Let us return to the remote past. The Earth is believed to have been formed
4.6 billion years ago, and the earliest known rocks on the Earth are about
four billion years old. The first primitive lifeforms were well established
by 3.5 billion years ago. There was an explosion of new species in the late
Precambrian era about 570 million years ago, and over the next 300 million
years many animals and plants were established on land. It seems that simple,
single-celled organisms arose relatively quickly as soon as the conditions made
it at all possible. The more remarkable (because the longer delayed) event
was not the appearance of life but the evolution of multi-cellular organisms
with complicated internal structures. The appearance of new species since that
period has been anything but steady. There have been three major extinction
events dating around 65, 200, and 250 million years ago. The most recent is
the best known, and coincided with the disappearance of the dinosaurs. I will
discuss instead the evidence for the middle one.

The Triassic period came to an abrupt end some time about 200 million years
ago, ushering in the Jurassic era. The latter is named after the Jura mountains
in Switzerland, where the ‘Jurassic’ rocks were first studied by Alexander von
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Humboldt in 1799, but in fact the transition was a world-wide event. Its abso-
lute date has been narrowed down to between 199 and 203 million years ago
by measuring radioactive decay products. Many scientists have devoted their
careers to trying to find out what precipitated the event, and there is now a
project to take systematic rock cores over the world to resolve these questions.
But already a great amount is known, with contributions from several different
fields. The fossil record shows the disappearance of about a half of all species
of land animals. Pollen and spore fossils and marine shelly organisms show
similar abrupt changes.

It has recently been observed that there was a dramatic change in the density
of stomata on the leaves of plants from the same period.2 Comparisons with
the stomata densities for the closest related present day species indicate an
increase of carbon dioxide concentration from 600ppm to 2300ppm across the
Jurassic-Triassic boundary. This could have raised the global temperature by
3 to 4 degrees centigrade. There was also a major reduction in leaf sizes during
this period, explicable as selection to avoid lethal leaf temperatures.

The probable cause of these events has also been identified. There are
three huge areas of volcanic rocks dating from almost exactly this time cover-
ing almost three million square miles in Brazil, West Africa, and North East
America. The original lava flows would have released carbon dioxide into the
atmosphere in enormous quantities. The three areas involved are widely sep-
arated now, but at the time they were parts of one area in a supercontinent
called Pangaea. This area, called the CAMP, is bounded by the broken lines in
figure 8.2, which also indicates the approximate position of the three continents
200 million years ago. The break-up of Pangaea eventually led to the present
positions of the continents by the process of continental drift. It is not known
whether there was also a precipitating event, such as the impact of a large comet,
and much remains to be done.

The investigation of the causes of this extinction event has not yet got to
the point at which it is beyond dispute. The interesting issue from our point
of view is the methodology adopted for resolving the problem, namely the
search for several independent sources of information. In this case the evidence
comes from three different continents, and the rate of progress suggests that the
outcome will be clear within ten years or so.

Dating Techniques

All of the examples in the last section attest to the great age of the Earth, but
much of our more detailed knowledge depends upon accurate dating techniques.
These are not straightforward, and require painstaking comparisons between
independent approaches to this problem. An idea of how this process is carried
out is given by the following example, which relates to the modern era.

During the last thousand years five supernovae are known to have occurred
from the historical record, in 1006, 1054, 1181, 1572 (Tycho Brahe), and
1604 ad (Kepler). The 1054 supernova, found in Arabic and Chinese records, is
associated with the now famous Crab nebula. (Many more have been catalogued
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Adapted from Marzoli et al. 1999, to be found at http://jmchone.web.wesleyan.edu/

in recent times, but they were too faint to have been seen with the naked eye.)
Each of these can be identified with objects which can now be seen only with
the aid of powerful telescopes. Our knowledge of the physics of supernovae
confirms that they exploded at the observed times.

In 1998 the X-ray satellite ROSAT reported the remnant of another super-
nova, which must have exploded some time early in the fourteenth century.
Although no written record of it has yet been found, there is an entirely differ-
ent source of evidence of the event. An analysis of the nitrate concentration of
a hundred metre section of an Antarctic ice core has revealed four sharp peaks
along its length. These corresponded to dates around 1180, 1320, 1570, and
1600 ad. The beautiful match between the three totally independent sources
of information provides good evidence that each of them is reliable. There is
even a mechanism for the increased concentration of nitrates in the ice. The
explosion of a supernova bathes the Earth’s atmosphere with ionizing radiation,

http://jmchone.web.wesleyan.edu/
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and this would lead to the reaction of nitrogen with oxygen to produce nitric
oxide and then nitrates by known chemical processes.

The dating of events thousands or even millions of years ago is a more
technically complicated matter. The most precise, tree ring dating, gives exact
dates for climatic events up to about ten thousand years ago. Ice core dat-
ing is reasonably precise and has the advantage that Antarctic ice cores have
been extracted with ages of up to four hundred thousand years. The dating of
rocks over even longer time-scales depends largely upon isotopic analysis, or
radioactivity. The latter phenomenon was quite unknown during the nineteenth
century, when most geological dating was essentially guesswork. One of the
main difficulties was that sedimentary layers of rock can only be formed at
places which are submerged under the sea. It follows that major sedimentary
layers may be entirely missing in one part of a continent, because that area was
above sea level for tens of millions of years.

Let me give a potted history of the discovery of radioactivity. In 1896
Becquerel discovered that certain uranium salts were able to affect a photo-
graphic emulsion by means of an unknown and invisible type of radiation. This
spurred Marie and Pierre Curie to discover the radioactive elements polonium
and radium, with the result that all three shared the Nobel Prize for Physics in
1903. Rutherford explained radioactivity as the result of the disintegration of
unstable elements into lighter and more stable ones, with the associated emis-
sion of energetic particles, in Radioactivity, published in 1904. These events
were the prelude to a transformation of our understanding of the nature of mat-
ter, and to the creation of several new industries; these relate to atom bombs,
nuclear power stations, new medical diagnostic tools, and treatments for can-
cer. There are two related ways in which it has altered our understanding of the
history of the Earth.

The nineteenth century physicist Thomson estimated the age of the Earth,
assuming that it contained no internal source of heat and had gradually cooled
down to its present state from a much hotter initial condition. Over a period of a
few decades he refined his calculations to reach the conclusion in 1899 that the
age of the Earth must be between 20 and 40 million years. This was regarded by
geologists as being far too short to accommodate their observations, and neither
side would give way. The discovery of radioactivity solved this problem. The
Earth was not inert, and radioactive elements such as uranium were sufficiently
common to provide an important source of heat within the Earth’s crust. This
allowed the Earth to be much older than had previously been thought by the
physicists, and brought them into line with the geologists.

Radioactivity has also affected our understanding of the history of the Earth
by providing values for the ages of rocks. Its reliability in this respect can only
be understood in the context of its basis in physics, so we will start there. Matter
is composed of about a hundred different elements, most of which come in two
or more forms, called isotopes, with slightly different weights. The main form
of carbon is called carbon 12, but there are two other isotopes, carbon 13 and
carbon 14, the second of which is radioactive. The rate at which an isotope
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decays into other elements is determined by its half-life: this is the length of
time it takes a half of the atoms in a sample to decay.

Most elements occurring in nature are stable over periods of many millions
of years. This is hardly surprising, since if they were not the atoms would already
have decayed into something else. The different isotopes of an element usually
occur in different proportions: for example uranium 235 makes up only 0.7% of
all naturally occurring uranium, almost all of the rest being uranium 238. The
dating of rocks depends upon the fact that certain isotopes of carbon, uranium,
potassium, and other elements are slightly radioactive and decay at known
rates to other elements. By comparing the amount of the decay products with
the amount of the original element in a sample, the age of the sample can be
calculated.

There are many reasons why the procedure just described might not yield
correct results. Here are just a few:

• The rate of decay of radioactive substances might have been different in the
past from what it is now.

• The original sample might have contained some of the decay products nat-
urally, with the consequence that the present amount does not depend solely
on the age of the sample.

• During the lifetime of the sample either the original element or the decay
products might have diffused into or out of the sample.

• In the case of the decay of carbon 14 the source of this isotope is supposed
to be the cosmic ray flux in the upper atmosphere and this might have varied
during the 50,000 years for which this particular technique is useful.

The above possibilities are not ones which I have invented for the purpose of
discrediting radioactive dating techniques. In fact they are only a fraction of
the issues which scientists have themselves raised and found ways of resolving.
Many ingenious methods have been used to test the reliability of the dating
techniques. Of particular importance is cross-checking between independent
methods of dating to see if they yield the same values. A recent monograph of
Bradley4 devotes 610 pages to the systematic comparison of dating methods
for the Quaternary Period (the last 1.6 million years) alone!

One of the methods of testing the reliability of dating methods uses the decay
of potassium 40 to argon 40. It depends upon the fact that both potassium and
argon have other naturally occurring isotopes. One can compare the apparent
age of the sample as calculated from each of the isotopes separately. If these
are consistent it increases one’s confidence that the age calculated is correct.
If one chooses a crystal free of obvious defects this increases the likelihood
that it was formed at a single time. If the concentration of the various isotopes
throughout the crystal is constant, this provides further evidence of the same
type. If, however, the concentrations of the isotopes vary between the surface
layers of the crystal and its interior, this suggests later contamination and may
force rejection of the sample. The physics of this and many other tests of the
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dating procedures have occupied scientists for many years, and as time has
passed they have steadily improved the reliability of the tests which they use.

The point I am making is that scientists have been their own sternest critics.
They have compared different techniques of enquiry, focussed on inconsisten-
cies between the results they provide and gradually found out why these arise.
Their method of approach must be contrasted with the blanket statement, still
made by some hard-line creationists, that fossils were planted in the rocks when
the world was created a few thousand years ago. While it may not be possible to
refute this on logical grounds, it turns geology into a carefully contrived charade
constructed by some super-being for no obvious reason. If one accepts this type
of argument then there is no reason to believe anything which one sees around
one: it might have been faked by some mischievous spirit just to deceive us.
Indeed it is logically possible that the world sprang into existence on 1 January
1900 (or any other date). It is easy to make bald statements which predict and
explain nothing, but very hard work to build up detailed explanations of the
natural world. The most severe criticism of extreme religious fundamentalism
is not that it is wrong (scientists are also sometimes wrong), but that it dis-
courages people from trying to understand the marvellously complicated world
around us.

We describe a beautiful example of the detailed knowledge which proves
the extreme antiquity of the Earth. Let us use the word aboriginal to refer to
those radioactive isotopes which are not currently being produced by any known
process—in other words those which we believe to have been present since the
formation of the Earth. If one measures the half-lives of the aboriginal isotopes
one finds values which are all greater than 80 million years. These facts, the
results of dozens of independent measurements, provide strong evidence that
the world has existed long enough, that is well over 80 million years, for all of
the many shorter lived isotopes to have decayed to unmeasurably small amounts.

The Mechanisms of Inheritance

We now turn from the proof of the extreme age of the Earth to the question
of what controls the forms of individual animals and species. This question is
logically independent of any theory of evolution, since there would have to be
something which ensures that the offspring of dogs are dogs and of rabbits are
rabbits, even if these species had been created in exactly their present forms.
Also there must be something which ensures that my children resemble me
more closely than they resemble another randomly chosen person.

Our present theory of inheritance is not contained in Darwin’s The Origin
of Species. Indeed his speculations about the physiological mechanisms of
inheritance were either vague or wrong. It is often said that Darwin refuted
Lamarck’s theory that acquired characteristics could be transmitted to des-
cendants, but this is not true. In later editions Darwin increasingly supported
Lamarck’s theory. Let me quote from the preface to the second edition of his
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The Descent of Man, published in 1873, when he had had fourteen years to
consider further evidence and correspondence:

I may take this opportunity of remarking that my critics frequently assume that
I attribute all changes of corporeal structure and mental power exclusively
to the natural selection of such variations as are often called spontaneous;
whereas, even in the first edition of The Origin of Species, I distinctly stated
that great weight must be attributed to the inherited effects of use and disuse,
with respect both to the body and mind.

Indeed in The Variation of Animals and Plants under Domestication, published
in 1868, he described an ingenious mechanism by which acquired character-
istics could be inherited. It involved the migration of myriads of tiny ‘gemmules’
(one imagines these to be the size of viruses) from the various organs of the
body to the germ cells, from which they are transmitted to the next generation.
The theory is rarely mentioned today because it turned out to be wholly without
factual support. This is not the only case in which people neglect to mention
matters which would lessen the reputation of those we revere as geniuses.

Lamarck’s theory was first challenged experimentally by Weismann late in
the nineteenth century. He systematically cut off the tails of mice over many
generations and found that the tails of their descendants were not affected in any
way. In fact these experiments were hardly necessary, as a little thought about
the foreskins of Jewish men demonstrates. Many later claims to have found evid-
ence for the inheritance of acquired characteristics proved to be wrong, but the
abandonment of Lamarck’s theory was eventually forced by the rise of genetics.

The key to the mechanism for the inheritance of characteristics was found
by Mendel. His experimental research on peas introduced the notion of discrete
genes which control individual characteristics and which are transmitted during
reproduction. It was not published until 1866, seven years after Darwin’s Origin
and remained obscure until it was revived/rediscovered in 1900. Even then the
nature of genes was shrouded in mystery: the detailed molecular structure of
DNA and the mechanism by which it encoded genetic information was only
discovered in 1953 by Crick and Watson, supported by Franklin and Wilkins,
both at King’s College, London. The central contributions of Rosalind Franklin
to the discovery are only recently being recognized, but her gender was only
one of the factors involved in her previous relative obscurity. Another is that she
had already died when the other three were awarded their Nobel Prizes in 1962.

Put briefly, a DNA molecule is a very tall stack of almost flat subunits of two
types, which may be called AT and CG. AT is actually an adenine-thymine base
pair, while CG is a cytosine-guanine base pair, but the details do not concern
us. The information in DNA is encoded by the order in which the AT and CG
subunits occur in the stack, which is arbitrary. Interestingly the subunits are
read three at a time when DNA is used by the cell to synthesize proteins. This
involves the production of RNA, followed by a complicated series of further
processes which we will not even attempt to describe. DNA has precisely the
same status as a floppy disc in a computer. It is completely useless except in the
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right environment, but can enable the cell to carry out procedures which would
be impossible without it.

These flat subunits can be seen in Irving Geis’s picture in figure 8.3. They
are surrounded by two outer spiral backbones, which act as scaffolding holding
the molecule together. The actual molecule is thousands of times longer than
the small fragment drawn.

The genotype of an organism is defined as its collection of genes. Most
genetic material, that is DNA, resides in the chromosomes within the nucleus
of each cell. But there is also extra-nuclear DNA in plasmids and mitochon-
dria, small structures found within cells. Moreover plasmids can transfer DNA
between species of bacteria, this being the mechanism for the transfer of drug
resistance between bacteria. As the genetic structure of more and more species

Fig. 8.3 A Small Part of a DNA Molecule
Illustration by Irving Geis. Rights owned by Howard Hughes Medical Institute. Not to
be reproduced without permission



216 The Mechanisms of Inheritance

have been investigated, it has become clear that the transfer of genes between
species has been quite common in evolutionary history. It is commercially
important at the present time because of the speed at which genes are being
transferred from GM crops to wild hybrids. The notion that different species
are rigidly distinct from each other is, quite simply, dead.

The phenotype of an organism is not as simply defined as its genotype, but
combines the physical structure of its body and innate behaviour (for example
the migration of certain birds and their nest building). The genotype is one of the
important factors determining the phenotype, but the environment, including
social interactions in some species, is another. It is well known, for example,
that a mother’s health and diet during pregnancy have a strong effect on the
health of her offspring, and therefore of its likelihood of reproducing.

The genotype affects the phenotype in an extremely indirect fashion, since
genes actually encode for the production of proteins. At present we understand
little about how a variation in the form of certain proteins can lead to a change
in bodily form or behaviour. One certainly should not expect to find ‘a gene for
X’: the situation is commonly far more complicated. A physical characteristic
may be affected by very many genes, and in the reverse direction a gene may
have several different effects. It is well known that the gene which gives some
protection against malaria when present singly also leads to sickle cell anaemia
for those who possess two copies. While the colour of our eyes is under the
control of a very small number of genes, most characteristics, such as our
height, are affected by a large number of different genes, as well as by nutrition
and disease. Many diseases have a genetic component, but the relevant gene
or genes may well have some other effect in people without the disease. It is
likely that some diseases are caused by several different genes or combinations
of genes. In such cases a drug which cures some people might be completely
ineffective against other people suffering from the same disease.

One of the main differences between ourselves and chimpanzees is that only
we have an inherited ability to use language. This must be a consequence of
the 1.5% difference between our gene pool and that of chimpanzees. A part
of the reason is the anatomy of our larynxes, but this is far from being the
whole story. How the possession of certain genes, and therefore the ability to
synthesize certain proteins, led to our ability to produce grammatical sentences
is totally mysterious. Some so far unidentified proteins affect the development
of embryos, leading to the appearance of special circuits in the brain, which
then enable us to develop language. But no steps in this process are yet worked
out, and the enormous progress being made in determining the human gene
sequence will not lead to a quick solution to this problem.

The precise definition of phenotype involves further complexities once one
starts looking at individual species, and Richard Dawkins has argued that the
notion needs to be extended well beyond its traditional scope. If one accepts
that the shell of a snail is a part of its phenotype then one should admit the web
of a spider in the same way, or at least the genetically programmed tendency
of spiders to spin webs of particular designs. The webs and the shells are both
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subject to selection forces in exactly the same way as the bodies of these animals.
Dawkins argues that the same idea should be applied to the dams of beavers
and the mounds of termites. In fact Darwin made a related point when referring
to cooperative behaviour in human tribes.

More controversially, Dawkins has argued that one should think of selec-
tion as acting on gene pools rather than on individual organisms. It is not even
clear what constitutes an individual for species such as slime molds, whose life
cycle includes a stage similar to a single-celled amoeba and a later one in which
groups of cells come together to produce a larger organism. A similar difficulty
applies to plants such as bamboos, which reproduce mainly by sending out
horizontal underground stems called rhizomes from which new shoots develop.
According to one definition single bamboo individuals may cover several hec-
tares! Extreme examples should not, however, be taken as proofs that the study
of the survival and propagation of individuals should be consigned to the dust-
bin. The genotype and phenotype are so deeply intertwined that neither can be
regarded as a secondary issue if one wishes to understand evolution fully.

Theories of Evolution

A theory of evolution differs from what we discussed in the last section by
asking how species came to exist in their present form. This is a historical
question about events which happened long ago, and for which most of the
evidence has disappeared. In addition the variety of forms of life is so great
that there is little hope of providing a single account of how evolution occurred.
The relationships between species include:

• predator–prey, e.g. tigers eating ruminants.
• host–parasite, e.g. cuckoos, tapeworms, leeches, and viruses parasitizing

their hosts.
• slavery, e.g. of one species of ant by another.
• symbiosis—the intimate physical association of two species to their mutual

benefit—possibly including mitochondria and chloroplasts, now essential
parts of the cells of animals and plants.

• interspecies cooperation, e.g. when flowering plants are dependent on a
particular species of insect for pollination.

• mimicry, e.g. when a harmless insect mimics a poisonous one in order to
reduce its own chances of being eaten.

The more one learns about this subject, the more one realizes that Nature has
tried a vast range of different ideas. The subject is messy in a way that physical
scientists and mathematicians can hardly imagine. This does not mean that it is
unscientific, but rather that one should not expect that the final conclusion will
be a set of laws which can be written down on a few sheets of paper. Instead
one is aiming towards a vast collection of case studies involving transferable
ideas and techniques. In contrast to the matters discussed so far, we will see
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that there is still plenty of controversy about the theory of evolution. This is not
surprising, since the evidence is still coming in.

Darwin conceived of his theory of evolution in 1838 shortly after returning
from his famous voyage in the Beagle to South America, and in particular to the
Galápagos Islands, between 1831–6. Plagued by ill-health, he soon retreated
to Down House in Kent, where he devoted the next twenty years to writing on
a variety of topics in biology, and to preparing a massive tome on his theory
of evolution. He was in no hurry to complete this work, and might never have
done so if he had not received a crucial letter in 1858. This came from Alfred
Russel Wallace, and presented very similar (but less well worked out) ideas,
asking Darwin to assist in getting it published! In the end their theories were
published jointly in the same Proceedings of the Linnean Society in 1858.
Rather surprisingly, in view of what happened a year later, there was almost no
public reaction. Following this shock, Darwin plunged into a frenzy of activity
to get a reduced version of his planned book published as quickly as possible. It
appeared in 1859 as The Origin of Species, and was an instant best-seller. Over
the next few years there was intense public debate about the scientific merits of
the theory, and about its religious implications.

In The Origin Darwin discussed in detail evidence for the evolution of a
variety of wild and domestic species. His originality lay in proposing a particu-
lar mechanism for evolution and in describing a very wide range of evidence
relating to his ideas. The key idea in his theory was that individuals vary slightly
from each other and are engaged in a constant struggle to survive with predators,
parasites, and each other in a constantly changing environment. The intensity
of this struggle is something we humans are hardly aware of; only a small
percentage of most organisms live long enough to reproduce and for many
species the proportion is far smaller. In these circumstances those individuals
which survive to reproduce pass on their characteristics to their descendents.
Darwin argued that this leads to slow but progressive changes in species which,
given enough time, can totally transform them. His central idea is summed up
in the phrase ‘evolution by natural selection’.

One of the key issues for Darwin was to emphasize the lack of clear boundar-
ies between species. For those who took the Bible literally, or their modern-day
equivalents, species were created individually by God in the form he wished
them to have, and therefore would not vary over time. Evolution, however,
supposes that forms of life change gradually over time, with the inevitable
consequence that if one could take some creature and a sufficiently distant des-
cendant, everyone would agree that they were different species, while at some
intermediate time people would not be able to agree whether they should be
regarded as different species or not.

Darwin’s theory proved very controversial, because it was completely
amoral and contrary to the teachings of the Bible. The phrase ‘the survival
of the fittest’, has often been ridiculed as a tautology, and was first used by
Spencer in 1852 in an essay which came close to formulating the general prin-
ciple of natural selection. It was only adopted by Darwin in 1866 at the urging
of Wallace. Dawkins devoted a whole chapter of The Extended Phenotype to
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the discussion of this unfortunate aphorism, quoting the letter from Wallace to
Darwin and explaining how to define fitness in a non-tautologous manner.

A serious weakness of the concept of fitness is that it depends heavily upon
the climate, which may vary irregularly from year to year. What aids survival one
year may not do so the next. Recent evidence that evolution follows changes in
the climate extremely rapidly has been provided by Peter and Rosemary Grant’s
studies of ‘Darwin’s finches’ on Daphne Major in the Galápagos islands.5 They
have followed the lives of every single finch on this tiny isolated island for about
twenty years, recording the beak sizes and other details of each bird, as well
as its breeding success. The large variations between the beaks of the thirteen
different species are crucial in determining which of the different types of seed
and other food each species is best adapted to eating: even tiny differences
can affect the survival of an individual greatly. The study provides convincing
evidence that measurable inherited changes in the populations can occur even in
a single generation, when failure of the annual rainfall causes high and selective
mortality. Daphne Major is ideal for this study because the climate is subject
to extreme droughts and floods, depending on El Niño.

On a much longer time scale the development and retention of major organs
depends upon the environment. Thus the evolution of wings might have been an
advantage at one time to enable some animals to escape from predators. At a later
time the degeneration of the wings of emus was also an advantage, because of
the lack of predators in their habitat in Australia and the high energy expenditure
involved in flying. In Mauritius the dodo’s loss of wings was first an evolutionary
advantage, and then much later a fatal disadvantage. Their inability to fly led
to their extinction because of the appearance of new predators—humans and
species introduced by them.

The three great mass extinctions of the last billion years also demonstrate
the limited usefulness of the concept of fitness. Sixty five million years ago
dinosaurs had been the dominant land animal for over a hundred million years.
Mammals had existed for a similar period, but were a class of marginal signi-
ficance. Within a few million years of the mass extinction which happened at
that time, dinosaurs had become extinct, while mammals had diversified and
increased in size dramatically. Mammals were obviously better able to sur-
vive whatever eliminated the dinosaurs. Equally obviously their ‘fitness’ in this
respect was not a result of their having evolved to cope with a type of event
which only occurs every hundred million years or so.

Darwin’s theory of natural selection was substantially influenced by
Malthus, who described the consequences of the geometric increase of a repro-
ducing population if unconstrained by any external factors. The force of this
argument is easy to demonstrate with some simple arithmetic. Consider a popu-
lation of a million short-lived insects, each of which produces a large number
of offspring every year out of which on average only one survives. The popu-
lation is then stable. Now suppose 1.01 survive (on average of course!); then
after 1500 years the population will have grown to about 3 trillion insects. Of
course this is not possible, and in reality some factor limiting the increase will
come into effect. On the other hand if only 0.99 survive on average then the
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population will disappear entirely after 1500 years. So a tiny change in survival
rates has a catastrophic effect on the population within a period of time which
is invisibly short by comparison with the total age of the Earth. When one
contemplates these figures the immediate question is how populations remain
stable at all. There are many possible answers. One is that as the number of
insects rises the number of birds also rises because the birds have more food,
with the result that the population is kept in check. Another possibility is that
the number of insects does in fact explode but it eventually runs out of food and
collapses again. The sporadic plagues of locusts in Africa and elsewhere show
that such events can have lifetimes measured in years rather than thousands of
years.

It is sometimes said that almost all mutations are deleterious, so evolution
cannot lead to positive effects on the species, however long one waits. This argu-
ment is simply wrong. A mutation which reduces the chances that an individual
will reproduce is rapidly eliminated from the gene pool. Its only influence is
to reduce the population slightly, but even this effect is negligible if the food
supply is the main factor holding the population in check. Even if such muta-
tions occur frequently they have no cumulative effect. On the other hand, those
rare mutations which improve the survival rate of the offspring possessing them
will become more common, unless chance factors eliminate them at an early
stage after their appearance. Even if they confer only a small advantage they
may easily become dominant within a thousand years in a small population.

Over a period of ten thousand years ten such changes could have accu-
mulated, even if only one feature was selected at a time. In reality one might
expect many times that number of variations to have disappeared or become
dominant. The extent to which a species changes as a whole depends upon
whether the variations are mostly in the same direction. This in turn depends
upon whether the climate steadily changes with time and whether competitors
move into the area or become extinct over this period. Certainly change is not
inevitable: cockroaches have survived as an order of insects almost unchanged
for over 300 million years. While they might therefore be described as prim-
itive, there is no law that primitive organisms must change if they are so well
adapted to their habitat that change is not necessary. Other examples include
ferns, already well established by 250 million years ago and not eliminated by
the ‘more advanced’ flowering plants which appeared a hundred million years
later.

There is recent evidence that under favourable circumstances evolution can
indeed be very rapid. Lake Victoria in Africa possesses more than two hundred
species of cichlid fishes, much more closely related to each other than to the
cichlid fishes of Lake Malawi, for example. It has been know for some time
that these must have evolved over a period of less than a million years, but
everybody was astonished by the results of a survey of the lake published in
1996. Cores taken from the deepest point of the lake showed that 12,400 years
ago it was completely dry: remains of grasses exist and can be dated reliably.
The conclusion is inevitable. All of these species evolved from a few ancestors
since that date!6
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One and a half centuries after Darwin the evolutionary record is still too
incomplete to trace the evolution of many species, but much progress has been
made. One of the well known pieces of evidence for actual evolution is that of the
horse. The early equid Hyracotherium, which appeared about 50 million years
ago, was so different from the present form that its fossils were not immediately
recognized as being related to modern horses. It was about 50 centimetres in
height, had three functional hooves on each foot, lacked the muzzle of our
horse and had substantially different teeth, not well suited to grazing on grass.
The fossil record does not show a directed development from the ‘primitive’
Hyracotherium to the modern horse. Many changes of direction and different
lines developed and survived for millions of years. Some changes, such as
that to a grazing type of dentition, happened rather suddenly (in evolutionary
terms), probably in response to a change in climate and the wider distribution
of grasses. Nevertheless the fossil record is sufficiently complete that one can
be confident that the modern horse is indeed a descendent of Hyracotherium.

Among the most convincing chapters in The Origin of Species are the two
on the geographical distribution of species. Darwin explained with great clarity
why one might expect land or sea barriers to lead to separate evolution of
species, and provided a wealth of detailed observations to support this. For
example:

Turning to the sea, we find the same law. No two marine faunas are more
distinct, with hardly a fish, shell, or crab in common, than those of the eastern
and western shores of South and Central America; yet these great faunas are
separated only by the narrow, but impassable, isthmus of Panama. . . . [On
the other hand] many shells are common to the eastern islands of the Pacific
and the eastern shores of Africa, on almost exactly opposite meridians of
longitude.

I cannot reproduce these chapters in toto, but strongly urge readers who have
not yet done so to read this wonderful book for themselves.

We have seen that the geological record establishes the existence of evolu-
tion in the sense that species appear, change in form, and become extinct over
long enough periods of time. The remaining issue is whether Darwin’s mech-
anism for evolution is the dominant one. One of the earliest serious criticisms
of Darwin’s theory was made by Jenkin in 1867. He wrote that Darwin’s theory
depended on the assumption that there is no typical or average animal, no sphere
of variation, with centre and limits; the theory could not, therefore, also be used
to prove that assumption. His opposing view was that of a race maintained by a
continual force in an abnormal condition, and returning to the original condition
as soon as the force is removed. Darwin was quite troubled by Jenkin’s com-
ments, since his own book recognized the phenomenon of reversion, by which
occasional individuals within a domesticated variety changed back towards the
ancestral form after having been bred so as to have quite different character-
istics. The trite answer to this objection is that effects observed when breeding
domestic species over a few hundred years may look very different from a
perspective of several million years. The difficulty is finding evidence one way
or the other.
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The effect of a change of perspective can be dramatic. The area of Dulwich
in inner London was almost the same twenty years ago as it is today. The most
obvious changes have been the disappearance of sparrows, the appearance of a
few new primary schools, and the proliferation of loft extensions. If one travels
back in time two hundred years, almost all of the buildings have disappeared and
Dulwich was a tiny village well outside London, notable only for its association
with the Elizabethan actor Edward Alleyn, who founded Dulwich College there
in 1619. Turn the clock back by two thousand years, just before the Romans
arrived, and hardly anything remains of London itself. But it is clear that every
change in the environment was a small one, and every building took months to
erect. If this can happen in such a period, how much more might change in a
million years?

Jenkin also made another objection to Darwin’s mechanism for evolution,
which is rather more technical. If a member of an abundant species has a
modification which renders it only slightly more fit, then the variation will
disappear by blending with the rest of the population before it has become
widespread. This dilution argument made evolution difficult to understand.
Darwin was unable to answer this criticism since he was not aware that evolution
might be controlled by discrete genes which do not disappear by blending, but
only increase in frequency or disappear.

Major efforts to find evidence for evolution by the statistical analysis of
populations were made by Weldon, Pearson, Bumpus, and others around the
turn of the twentieth century. Eventually this enterprise receded into the back-
ground, because the discovery of genes provided the mechanism for inheritance
and for the progressive modification of species. This, more than anything,
settled the issue for many scientists. Nevertheless controversies have continued
within the field. Some evolutionary biologists, such as Dawkins, maintain that
organisms should be understood primarily as machines for the transmission
of genes, which are the key objects worthy of biological study. In his book
Lifelines, Steven Rose criticizes this kind of ultra-Darwinism, pointing out that
Mendel’s observation of characteristics of peas determined by single genes is
far from typical of their mode of action. Different cells in the body of an animal
or plant have a wide variety of forms because different genes are expressed
(switched on or off) in them. Control over gene expression is not only a method
by which the parts of a growing organism differentiate. It is becoming increas-
ingly obvious that cells may switch particular genes on or off for a variety
of reasons—for example as a method of defending themselves against viral
invasions. The expression of genes therefore depends on the extracellular envir-
onment and even the environment outside the organism. The picture which
Rose paints involves such strong interactions between genes, organisms and
their environments that nothing worthwhile can be said without taking all three
into account.

There are other sources of disagreement in the scientific community. Darwin
claimed that evolution occurs by the accumulation of very small changes over
many millennia. Thomas Huxley, one of Darwin’s strongest supporters, wrote
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to him in 1859 to say that he had loaded himself with an unnecessary difficulty
in adopting ‘Natura non facit saltum’7 so unreservedly. More recently Gould,
Eldridge, and other punctuationists favour occasional major changes which
are very rapid if one measures on the scale of millions of years. The fossil
record provides some support for punctuationism but is so incomplete that it
is impossible to come to a final decision about it at the present time. Indeed
it is not clear what counts as a small change, since it is now known that the
alteration of a single base pair in DNA can have visible and important effects
on the whole organism. Nor is it clear that the thesis of the punctuationists is as
radical as they have claimed. Darwin himself accepted the possibility of long
periods of stasis interspersed with shorter periods of more rapid change.

One of the preferred mechanisms for rapid change goes by the unattractive
name of allopatric speciation. The idea is that a small group in some species
is physically isolated in a region to which they are not well adapted, possibly
because of a sudden change of climate. Over a period of perhaps tens of thou-
sands of years they evolve rapidly before rejoining the main population, which
they may then drive into extinction. If this happens, the fossil record would
show the instantaneous appearance of a new species and the disappearance of
the old. Another possibility is that the two species occupy sufficiently different
ecological niches that they both continue in existence. In this case the new spe-
cies might seem to have appeared out of nothing. The first stage of this process
is exactly what has been observed with the cichlid fishes of Lake Victoria. It is
not surprising that there is little evidence of similar examples in the past. The
transitional forms are supposed to be small populations because this makes the
inertia preventing rapid evolution much weaker, but this very fact implies it is
unlikely that any transitional fossils would ever be found.

There are several forms of contemporary evidence for the importance of nat-
ural selection in micro-evolution (the development of relatively minor changes).
The most obvious is the development of drug resistance by a variety of different
pathogenic micro-organisms, such as the tuberculosis bacillus, which now once
again poses a real threat to world health. Since the introduction of the first anti-
biotics during the Second World War, they have been used steadily more widely
as if they were magic bullets which would solve all problems. Within the last
twenty years more and more microbes have started developing serious levels of
drug resistance, a fact which is explained in terms of their evolving in the face
of what appears to them to be a more hostile environment. Another example
of such biochemical evolution is the development of resistance to warfarin by
rats. The use of warfarin started in the UK in 1953, and by 1958 the first popu-
lations showing resistance to its effects had already appeared. The fact that they
spread from a few small isolated locations suggests that the genetic changes
happened in single individuals which then passed on the resistance to their
descendants.

Macro-evolution (for example the appearance of entirely new organs) is
harder to document, but not impossible. Over the last fifteen years an enormous
amount has been discovered about the evolution of whales from their land-living
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ancestors fifty million years ago. The same can be said about pterosaurs, flying
reptiles which lived mainly during the Jurassic period.8 I will not repeat what
has already been written about many times.

Science has at last got to the point at which it might be possible to understand
the genetic basis for the development of the eyes of flat fish. These bottom-living
fish have such distorted heads that it is difficult to imagine how any being with
a sense of beauty or design could have created them. Can science do any better?
There are about three hundred species of flounder, some of which have both of
their eyes on the left and some on the right of their bodies. From our point of
view their eyes are on the tops of their heads, because they habitually swim
on their sides on the bottom of the sea. The young are born symmetrical, but
after a short period undergo a metamorphosis in which one of the eyes starts
to migrate rapidly to the other side of the head. During the metamorphosis
there are major changes in the bones, nerves, and muscles enabling the eye to
move and then function in its new position.9 It would be extremely interesting
to determine the precise causes of this major change of form. It is known that
there is a sharp increase in the production of thyroid hormone at the time of
metamorphosis, and this probably plays an important role in the development
of the asymmetry. Once it had appeared it is easy to see how selective pressures
would have preserved it as an adaptation to life on the sea bottom. Unfortunately
determining the genetic mechanisms involved has had low priority because of
its lack of glamour or obvious commercial relevance. From a Darwinian point
of view the interesting question is whether the movement of one eye to the
‘wrong’ side of the head was the result of the accumulation of a large number
of small genetic changes, or whether it depended upon a single gene.

Although the last question remains unanswered, there has recently been
a breakthrough in the understanding of the formation of limbs in arthropods
(animals with segmented bodies and external skeletons), and particularly
insects.10 Evidence that arthropods evolved from simpler ancestors something

Fig. 8.4 An Adult Flounder
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like today’s annelid worms comes from a vast fossil record, going back over
500 million years.11 The details of how this happened was, until recently, a
mystery. By comparing the precise structures of certain genes and proteins in
very different species, scientists have now found the genetic mechanism which
suppresses the formation of limbs on most segments of the bodies of insects
such as Drosophila. Unsurprisingly the mechanism is very complicated, and
may well need revision in detail, but it is clear that such questions can now
be answered with sufficient effort. We are close to the point at which we can
identify the precise features of their DNA which cause insects to have six legs
and spiders eight!

Some Common Objections

The claim that evolutionary theory cannot be correct is often repeated, mostly
by people who have a religious agenda. Their objections should nevertheless be
addressed. Several arguments have been put forward. One is that the evolution
of an organ such as the eye is inconceivable, since each of its parts depends so
intimately upon the others for its correct functioning. It is claimed that the eye
is as obviously designed as is a camera, and, wherever there is design, there
must be a designer.

Unfortunately (for its proponents!) this argument is misconceived. It would
only carry any weight if any intermediate but less developed organ would be
useless, since evolution is required to proceed by the accumulation of small
changes, each of which has direct evolutionary advantages in itself. Darwin
himself discussed this issue and provided examples to prove that several inter-
mediate stages in the development of the eye do in fact exist in various animals.
Computer models have also been constructed which show how the eye could
have evolved in accordance with Darwin’s theory. This does not of course prove
that it did evolve this way, but the argument that it could not have done so is
false. The suggestion that intermediate stages in the evolution of the eye would
be useless is also obviously false. Many people have various degrees of short
and long sight, but it is quite clear that even extremely poor sight is vastly better
than no sight at all. Moreover, the better the performance of one’s eyes, the
better one is able to find food and to avoid threats such as poisonous snakes. An
eye without a fovea (the central area of the retina which provides particularly
sharp vision) would be entirely functional but any concentration of rods and
cones there would have clear advantages. There are therefore large benefits
obtained from extremely poor sight as well as great evolutionary pressures for
poorly functioning eyes to improve.

A second argument against Darwin is that his theory was conceived in an
extreme capitalist society. It was accepted, either consciously or unconsciously,
because it provided a justification for the exploitation of weaker members
of society. Darwin himself was largely apolitical. He abandoned traditional
Christianity fairly early and became an agnostic, but took some trouble not
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to press his views in public beyond what was needed to support his scientific
theories. On the other hand Malthus’s doctrine was indeed frequently used to
justify the brutal suppression of the lower classes and various minorities. One
cannot dispute these facts, but the reasons why we accept or reject Darwin’s
theory now need not be exactly the same as those which may have made it
attractive in the middle of the nineteenth century. Each generation re-examines
a theory for weaknesses and strengths, and over a long enough period one finds
out which parts of it retain their validity. The ‘capitalist objection’ was respons-
ible for the rejection of Darwin’s theory in communist Russia in favour of a
Lamarckian evolutionary theory. This had the political merits of permitting the
skills acquired by an individual’s efforts to be passed on to his/her descendants.
Unfortunately science does not bend itself to political wishes, and the outlawing
of standard genetics in the Soviet Union under Stalin by his head of agriculture,
Lysenko, proved disastrous for Soviet agriculture.

The idea that evolutionary theory justifies the exploitation of the weak
depends on the underlying assumption that the way things have happened is
by definition ‘good’ and that opposition to it is misguided. Taking this view is,
however, a matter of choice and not of fact. One can as easily argue that our
moral task is to provide help for those whose lives are less than full for genetic,
environmental, or even accidental reasons. A similar mistaken argument is still
being actively used to justify discrimination against homosexuals and women:
namely that what the discriminator considers to be ‘natural’ is also by that fact
morally right. This ignores the obvious fact that the human species has only
become what it is by trying to improve on what it was given by nature. If we
stuck to what was natural civilization would never have arisen. A defence of
some moral principle by appealing to evolutionary theory is what philosophers
call a category mistake: facts cannot dictate ethics. Arguing this way is almost
always an excuse for promoting the interests of the social or ethnic group the
person concerned happens to belong to, conveniently identified as the super-
ior race (or gender). In nineteenth century Europe the ‘naturally superior’ race
were, unsurprisingly, white European males.

The above ideas are not taken from a recent revisionist interpretation of
Darwinism. In fact Darwin’s greatest supporter, Thomas Huxley, expressed
similar ideas with great eloquence in his 1893 Romanes Lecture Evolution and
Ethics:

There is another fallacy which appears to me to pervade the so-called ‘ethics of
evolution’. It is the notion that because, on the whole, animals and plants have
advanced in perfection of organization by means of the struggle for existence
and the consequent ‘survival of the fittest’; therefore men in society, men as
ethical beings, must look to the same process to help them towards perfection.
I suspect that this fallacy has arisen out of the unfortunate ambiguity of the
phrase ‘survival of the fittest’. ‘Fittest ’ has a connotation of ‘best’; and about
‘best’ there hangs a moral flavour. In cosmic nature, however, what is ‘fittest’
depends upon the conditions . . . As I have already urged, the practice of that
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which is ethically best—what we call goodness or virtue—involves a course
of conduct which, in all respects, is opposed to that which leads to success in
the cosmic struggle for existence . . . Let us understand, once for all, that the
ethical progress of society depends, not upon imitating the cosmic process,
still less running away from it, but in combating it.12

There is a group of people, already mentioned in the Gallup poll, who
accept evolution over a very long time scale, but believe that it took place under
God’s guidance, with the intention of leading eventually to the appearance of
human beings. This is not what Darwin proposed in his book, but it is a long
established idea, and should not be condemned on those grounds alone. It is
not tenable if one believes that natural laws completely determine everything
about the world, as many scientists do. However, the position of this book is
that the natural laws which we know represent our best attempt to understand
the world, and may only succeed to a limited extent. Miller has given a lengthy
defence of the idea that the world can be wholly governed by natural laws while
simultaneously being subject to God’s continuous guidance and direction.13

Let us examine how this question might in principle be resolved. Suppose
that substantial numbers of well preserved fossil remains of precursors of Homo
sapiens were eventually discovered, providing an essentially continuous record
of our evolution over the last five million years. Suppose also that a detailed
examination of the DNA of ourselves and the other great apes allowed us to
reconstruct the entire genome of our common ancestor five million years ago
and the probable sequence of stages by which our DNA changed over that
period to its present form. The question would still remain: why did this par-
ticular sequence of DNA changes occur out of a wide range of other unknown
possibilities which might have led to ‘just another great ape’? An answer to this
question would have to depend on the detailed historical and environmental
origins of our own species, information which seems unlikely ever to be avail-
able in the required detail. It is undeniable that the other great apes have not
followed our route to language and sophisticated tool-making, and only in the
last half million years does it begin to seem inevitable that we would develop
the way we have.

The above programme could run into difficulties. Perhaps nobody will be
able to find a plausible sequence of small changes of our DNA over the period
of five million years. Every such sequence might contain a form which would
be less ‘fit’ in the evolutionary sense than the previous one in any imaginable
environment. This would be a truly serious development, which would inevit-
ably be taken by the advocates of guidance as a proof of divine involvement in
our appearance. Evolutionists would no doubt regard it as just another challenge
to their ingenuity. On the other hand if the programme were successful, advoc-
ates of guidance could still say that our appearance is such a singular event that
without a proof of its inevitability they still felt fully justified in regarding the
evolution of our species as directed.
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The fact that this position is logically unassailable does not prove its cor-
rectness: the existence of poltergeists or leprechauns is not logically impossible,
just very unlikely. Guided evolution is more plausible than either of these, but
there is no compelling evidence for it which would be recognized by a person
who does not already have the relevant religious convictions. Science has pro-
gressed as far as it has by looking for natural explanations of the world, and
appeals to divine guidance inevitably discourage people from continuing the
search. The attempt to explain our appearance along naturalistic lines might
eventually fail, but much more has been learned by trying than ever could have
been by accepting passively a ‘solution’ based on no evidence.

There are other issues which the advocates of guidance need to address. One
is that the most important evolutionary developments took place long before
humans appeared on the scene. There are many fossils of vertebrates dating
back to 400 million years ago, and the first very primitive mammals had already
appeared by 200 million years ago (during the Triassic period). So eyes, skel-
etons, digestive systems, blood circulation, spinal cords, and brains all existed
at that time, and human beings are merely one of a very large number of vari-
ations on a well tried body scheme. If external guidance was indeed needed it
was mainly during this distant era, not in the few million years when humans
evolved. There are those who consider that the rapid development of complex
organisms in the late Precambrian is incapable of explanation and is therefore
evidence of divine intervention. The evidence this far back is unfortunately so
fragmentary that no conclusions can be reached either way.

A problem for those who believe that guidance was involved in the evolution
of human beings is the failure of the guiding spirit to create as good a product
as it could have. Those who feel convinced by arguments from design need to
consider the following facts.

• Humans often develop impacted wisdom teeth because our jaws are not big
enough to accommodate the number of teeth we have.

• Our appendixes have no positive function, but occasionally cause acute
illness, which results in death if rapid medical intervention does not occur.

• We are peculiarly liable to choking on food, and indeed occasionally dying,
because of the structure of our throats, which are designed differently from
those of other mammals.

• Our pelvic anatomy makes childbirth painful for many women, and resulted
in many deaths until very recently. Once again this is not a common problem
for other mammals, and is connected with our bipedal locomotion and large
heads.

• We have a blind spot in our visual field because of the peculiar manner in
which the neural pathways pass in front of the light-sensitive receptors on
their way to the brain.

• Humans suffer from the disease scurvy when our diet is deficient in vitamin C.
Many other vertebrates and plants can synthesize this vitamin themselves.
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It is very easy to understand how such things might have arisen if the process of
evolution had no overall direction, but just consisted of responses to selective
pressures.

We have concentrated above on humans, but objections to guided evolution
can also be found in the fossil record. If a creator has been directing evolution
towards the currently existing forms of horse, why would he/she produce a
large variety of other lines of evolution from Hyracotherium, almost all of which
subsequently became extinct? Why produce the huge variety of dinosaurs, all of
which became extinct by around 65 million years ago, except for the small group
which may have developed into modern birds? The case of trilobites, a group
of arthropods, is even more extreme in that, after appearing about 540 million
years ago, they became one of the dominant marine animals, only to become
entirely extinct by 250 million years ago. All these facts (and many more like
them) make the psychology of a guiding creator difficult to comprehend.

A typical answer to such questions is that we cannot understand God’s
purposes because of our limited perspective and finite intellect. Nobody would
deny that our intellect is finite, but our self-imposed task is to try to find explana-
tions for the way the world is, and not to accept mysticism as an ‘explanation’,
when in fact it explains nothing. Another response is to refer to original sin as
the cause of our present suffering. I have never understood this doctrine, and
feel grateful not to have been brought up in an atmosphere in which people are
supposed to acquire guilt/sin by association with the deeds of distant ancestors.
There is indeed plenty of human evil in the present world, but this does not
explain a substantial proportion of the causes of human suffering.

I should not end this section without acknowledging the existence of people
such as the American philosopher Michael Ruse, who has written many books
exploring whether the gulf between Darwinism and Christianity is really as
sharp as is often considered.14 Starting from a Quaker background, he has
argued that most of the difficulties of Christianity pre-existed Darwinism.
Darwinism may explain why infectious diseases exist, but the question of God’s
ultimate responsibility for such things already exercised people’s minds long
before the nineteenth century. God’s best defence is that even he is constrained
by the requirement of logical consistency. Our freedom to choose between bet-
ter and worse (good and evil) implies that there must exist things which are
worse, and in a sufficiently varied world there must be many things which are
worse and which are not easily evaded. For most people a world without infec-
tious diseases would be a better one, but it would also be a world in which mass
starvation was much more common. As long as people breed faster than the
food supply can support, there must be a mechanism for removing the ‘excess’
members of the population. There is no possibility that this will appear morally
good to its victims. On the other hand a world in which the birth rate was exactly
adapted to the food supply would be a world in which the freedom to decide how
many children one had did not exist. Such agonizing dilemmas confront people
responsible for guiding social policy, as well as those who seek to understand
the mentality of their God.
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Discussion

In earlier chapters I have argued that much of our knowledge of physics is
provisional, and that seemingly impregnable theories have subsequently turned
out not to be correct in any absolute sense. It therefore seems inconsistent
to suggest that in biology and geology it is possible to acquire knowledge
which will never be proved mistaken. Nevertheless, it is certain that the Earth
is a few billion years old, and that continents have moved over the surface
of the Earth during the last several hundred million years by a mechanism
called plate tectonics. It is also established that information about the form of
living creatures is carried by their genes in the structure of their DNA, that
animals and plants evolve over long periods of time, and that most species
which have ever existed are now extinct. The reason for being confident that
the above statements (and many more which I have no space to list) are cer-
tain is that the evidence for them comes from so many independent sources,
which all corroborate each other. Moreover the statements do not depend upon
the abstractions of mathematics in order to understand them. Mathematics
is a wonderful tool, but history has shown that theories which can only be
expressed in mathematical form are liable to radical change with the passage
of time. Of course nothing can be certain in an ultimate sense, but my confid-
ence that the above statements will still be believed in a thousand years time
is much greater than my belief that quantum mechanics or general relativity
will be remembered by most scientists at that time. I would be happy to be
proved wrong, because I find the changes in our views about the nature of the
world fascinating, but I do not expect this to happen with respect to the above
facts.

Darwin’s proposed mechanism for evolution needs to be separated into two
parts. One can hardly dispute his claim that those organisms which have more
offspring will also pass on their peculiar characteristics to a greater extent than
those which have fewer offspring or even die before reproduction. On the other
hand his view that evolution only proceeds by the accumulation of individually
small changes is more controversial. There are many serious scientists who do
not believe this, and the evolutionary record remains too fragmentary for a final
view to be possible.

The study of evolution is quite different from physics. Biologists cannot
hope for a single coherent explanation of all phenomena in their subject because
Nature is far too varied. Excluding such generalities as the fact that living
organisms all contain carbon, oxygen and hydrogen, every biological law has
exceptions. The following list of items are a selection from those which interest
evolutionary scientists, and several might be regarded as statements of fact.
They are not articles of faith, but ideas which have so far been steadily more
strongly confirmed as knowledge accumulates. I have omitted some further
items deliberately because they are still controversial. Several of the principles
listed below are present either explicitly or implicitly in The Origin of Species.
Others are completely absent.
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• Species are not immutable, but have evolved over long periods of time, and
most species have eventually become extinct.

• There is not a sharp boundary between species. Nor is there a sharp division
between the notions of species and varieties.

• Organisms have inherited characteristics, and those which survive to repro-
duce pass on their characteristics to their offspring. Those which don’t,
don’t.

• The evolution of new species or organs cannot involve the existence of
intermediate stages which are less well adapted than what they evolved
from.

• The origins of the human species go back several million years and are closely
tied to those of chimpanzees, gorillas, and orang-utangs.

• Information about the form of living organisms is carried in their genotypes,
ultimately encoded in their DNA (or, rarely, their RNA).

• The fossil record and DNA analysis support the idea that all species arose
from a single-celled ancestor several billion years ago.

• The relationship between the genotypes and phenotypes of organisms is often
extremely complicated, and must be investigated case by case.

• It is essential to distinguish between plausible stories about how evolution
might have occurred and testable hypotheses.

I might also have included the controversial

• One should seek explanations for the evolution of living organisms which
are not dependent upon design or external guidance.

This should be regarded as a methodological principle, i.e. it describes the
method by which science studies all phenomena, not just those relating to
evolution. But many scientists believe it to be evident that such explanations
exist, and that the only task is to find them. This belief cannot be proved beyond
any possibility of challenges, but the way of proving it wrong is by finding a
case in which it definitely fails. This has not yet happened.

It is rather implausible to describe such a list of principles as a theory. It is
really no more than a summary of a programme which is so vast that it could
not be committed to paper: it would consist of all of the knowledge which
has accumulated for each of millions of species since the subject began. The
idea that there should exist a theory with concisely formulated and verifiable
hypothesis is clearly not appropriate in the biological sciences for two reasons.
The first is that the variety of life is so vast and unlike the subject matter of
the physical sciences that attempts to cast evolution in a rigidly deductive form
are not appropriate. The second is that evolution has occurred in response to
erratic and occasionally cataclysmic variations of the climate. The real issue is
whether it is possible to apply the above methodology to individual species and
come to interesting and detailed conclusions about them.

It has been said that evolution is unscientific because no experiment could
refute it. It is just a series of tales, which can be elaborated without end whatever
new facts are discovered. This criticism is often intended to suggest that if
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there is not a watertight proof of any of the possible theories of evolution, the
question of whether evolution itself occurred must remain open. This argument
is flawed. There are many discoveries which would force a serious re-evaluation
of the whole subject, were they to be made. I mention the discovery of stone
axes embedded within rocks which can be reliably dated as over 100 million
years old; the discovery of a fossil human skeleton within the stomach of a
Tyrannosaurus; the discovery of an animal or plant whose DNA was wholly
unrelated to that of any other species; the discovery of an animal species less
than ten million years old which has two backbones instead of one; the existence
of a mammal whose brain was located in its abdomen. Every evolutionary theory
predicts that no such discovery will be made. The evolution of an entirely new
type of animal in a few generations would certainly destroy Darwin’s theory,
but it would not be a fatal blow to evolution itself.

There is an extraordinary amount of evidence which only makes sense if
one accepts that evolution has in fact occurred. Our understanding of it may not
be perfect and may need substantial revisions in certain directions, but there
is no scientific basis for doubting its essential correctness. Darwin’s theory
of how evolution occurred provided a spur for the search for a mechanism of
inheritance, and after great effort this was found in the existence of genes and the
structure of DNA. The idea that evolution is an arbitrary collection of tales only
makes sense from the false perspective that finding a consistent and detailed
explanation for a huge collection of facts is an easy task. In fact it is enormously
difficult. Scientists often struggle for decades trying to find an explanation of
their experimental or observational data, and experience enormous pleasure
from the eventual discovery of a coherent theory. Claiming that evolution is
unscientific is very easy, but finding an alternative explanation for the detailed
facts which it explains would be much more impressive. Simply saying that
everything was created by God as he willed it discourages us from seeking
an explanation of a multitude of different facts. In the end one has to decide
whether one wants to understand the enormous variety of Nature. If one does
then genetics, evolution, and natural selection must be an important part of any
detailed explanation. They may form the entire explanation, but this would be
difficult to prove. Our scientific understanding of evolution could be wrong if
some super-being has deliberately created vast quantities of false evidence for
some unknowable reason—but this is true of all human knowledge.

Notes and References

[1] I refer to the period between about 260 and 290 million years ago.

[2] Stomata are pores which allow the movement of gases into and out
of leaves. In particular they allow carbon dioxide into the leaves for
photosynthesis. See McElwain et al. 1999 for details of this research.

[3] The shaded regions are included to make the boundaries of the present
continents clearer; they do not represent ancient seas.
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9
Against Reductionism

Introduction

The extraordinary development of physical science over the last two centuries
has led to claims that it is capable of explaining all aspects of reality. Some
scientists, mainly those in subjects close to chemistry and physics, have pro-
posed a programme, called (scientific) reductionism, describing how this is to
be achieved. While some scientists equate a disagreement with the programme
to a rejection of the scientific method, others consider that its programme is
absurdly narrow-minded.

Reductionists start by ordering scientific fields according to how funda-
mental they are. There are several slightly different ways of doing this, but the
following will suffice here.

Each of the subjects in the box below is supposed to be fully explicable in
terms of the one directly below it. The ‘explanation’ of any phenomenon in terms
of something at a higher level is ruled out as being methodologically unsound
or even meaningless, on the grounds that an event cannot have two different and
unrelated causes. Thus every type of brain activity is claimed to have a complete
explanation in terms of its constituent neurons and the chemicals which affect
their behaviour. Consciousness must be explained in terms of brain physiology
if it exists at all. Many reductionists reject the existence of souls in the strongest
possible terms. They are confident that their thesis will ultimately be accepted,

social structures
consciousness

brain physiology
the biology of cells
molecular biology

chemistry
physics

theory of everything
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and believe that the role of the scientist is to fill in the details of how the reduction
is effected.

One may contrast reductionists, who would impose a tree-like structure on
reality, with those who prefer to use the analogy of a web of inter-related aspects
of knowledge, as already described. Puzzlingly, the physicist Philip Anderson
claims to be a reductionist, at the same time as rejecting the tree description of
modern scientific knowledge in favour of the web analogy.1 Clearly he attaches
a different meaning to the word ‘reductionism’ from that used here—as he has
every right to.

There is an immediate and obvious problem with reductionism (in the sense
used here). At the present time fundamental physics is not a coherent subject,
because quantum theory and general relativity are not consistent with each other.
Generations of physicists have struggled with this problem, but the existence
of a final ‘Theory of Everything’ has not been proved. If such a Theory exists,
it is logically possible that it will include a mental component. However, there
is no evidence for this, and reductionists assume that the final Theory will be
a recognizable refinement of what we already know about physics. The goal
is supposed to be a set of mathematical equations which describe all physical
phenomena exactly in a single formalism.

The above view of the future course of physics is described very clearly
by Steven Weinberg in Dreams of a Final Theory,2 but it is not shared by all
physicists. Indeed, there are many disagreements between those involved in
so-called fundamental physics and solid state theorists, not least in relation to
the amount of funding each of them receives. In this chapter I argue that the
world is too complex and inter-related for an explanation of everything to be
possible. (By ‘possible’ I mean possible in fact, not possible in principle.) The
idea of breaking reality up into small parts which are then analysed separately
has been brilliantly successful, and may be the only way our type of mind can
understand the world. However, its explanatory power is ultimately limited by
the existence of chaos and quantum entanglement. There are many complex
phenomena which are beyond our understanding, in the sense that even if we
knew the relevant physical laws completely, we still could not use them to
predict what would happen. If one knows that one cannot make predictions
from the relevant laws in certain contexts, one cannot also know that the laws
apply in those contexts. While Anderson often expresses himself too strongly,
he is, as usual, worth quoting on this matter:

Physicists search for their ‘theory of everything’, acknowledging that it will in
effect be a theory of almost nothing, because it would in the end have to leave
all of our present theories in place. We already have a perfectly satisfactory
‘theory of everything’ in the everyday physical world, which only crazies such
as those who believe in alien abductions (and perhaps Bas van Fraassen)
seriously doubt. The problem is that the detailed consequences of our theories
are often extraordinarily hard to work out, or even in principle impossible to
work out, so that we have to ‘cheat’ at various stages and look in the back of
the book of Nature for hints about the answer.3



Against Reductionism 237

Perhaps the most convincing evidence in support of reductionism is that
of chemistry to physics, and we will start by discussing this aspect of the
programme. In the 1960s ‘real’ chemists generally ridiculed quantum chem-
istry, the discipline which attempted to deduce the properties and reactions of
molecules from fundamental quantum mechanical laws. The problem was that
the power of computers to perform the necessary mathematical calculations
was so limited that only a few very small molecules could be successfully ana-
lysed. Since those days matters have changed dramatically, partly as a result of
pioneering work by Kohn and Pople, who were rewarded with the 1998 Nobel
Prize in Chemistry. The other major factor has been the astonishing increase in
the power of computers over the last thirty years. Computations of the shapes
and energy levels of molecules of up to a thousand atoms can now be performed
routinely. The computed structures are an essential tool in the design of new
drugs and the understanding of the dynamics of chemical reactions.

As practised at the present time, the above computations depend upon an
ingredient which does not come from quantum theory. Chemists start from a
knowledge of the approximate geometrical structure of a molecule and then
confirm and refine this by the use of quantum mechanical laws.4 This approach
is forced on them by the impossibility of carrying out an ab initio calculation:
for molecules with more than a dozen or so atoms this would be far beyond the
resources of any computer which could ever be built. The idea of molecular
structure is not easy to justify from first principles because it breaks the sym-
metries of the quantum mechanical laws. We have already discussed this in the
context of chirality on page 198, but related issues arise for other types of iso-
merism. Reductionists take the view that this is a technical question which does
not pose fundamental issues, but there are certainly physicists and chemists
who disagree with this assessment.5

Let me put it another way. Chemistry involves both knowledge of the laws
of quantum theory and decisions to look for molecules of some particular type.
Without the latter human ingredient the fullerene molecule drawn on page 189
would never have been discovered, in spite of the fact that it contains only one
type of atom, carbon. Nobody could have predicted its existence by solving the
Schrödinger equation for a large assembly of carbon atoms from first principles
without any preconceptions about the result. The actual process is, and has
to be, the confirmation using quantum theory of intuitions which come from
another source.

One of the most outspoken of the critics of a Theory of Everything is Robert
Laughlin, a recent Nobel Prize winner in physics. He and David Pines conclude
a deliberately provocative article on this subject with the following words:

Rather than a Theory of Everything we appear to face a hierarchy of Theories
of Things, each emerging from its parent and evolving into its children as
the energy scale is lowered . . . The central task of theoretical physics in our
time is no longer to write down the ultimate equations but rather to catalogue
and understand emergent behavior in its many guises, including potentially
life itself . . . For better or worse we are now witnessing a transition from
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the science of the past, so intimately linked to reductionism, to the study of
complex adaptive matter . . .6

The article of Laughlin and Pines has two strands. They believe that understand-
ing the behaviour of assemblies of atoms and electrons is more important than
chasing ‘fundamental’ theories, which may well be beyond us. Like Anderson,
they also argue that, even within physics, the amount which can actually be pre-
dicted has definite limits. In Chapter 6 we examined Newtonian mechanics, one
of the most successful of all physical theories, and showed that it contains the
proof of its own limitations. The phenomenon of chaos shows not just that there
are situations in which we cannot yet predict what will happen using Newton’s
equations, but that such predictions will never be possible. Weather forecasting
has taken this on board by restricting itself to predicting the probability that the
weather will develop in a certain manner over the following week, and it seems
clear that this situation will not change fundamentally. In quantum theory the
basic equations are probabilistic, and deny the very possibility of predicting
exactly what will happen to an individual quantum particle. It appears that even
if reductionism were proved correct, it would be a pyrrhic victory: knowing
the equations which govern a phenomenon does not mean that one can thereby
know how the phenomenon will develop.

Steven Rose has given a another criticism of reductionism in Lifelines. He
tells a story in which a physiologist, an ethologist, a developmental biologist, an
evolutionist, and a molecular biologist argue about why a frog jumps into a pond.
His point is that each explanation is a valuable contribution to understanding
the frog’s behaviour, and we should not regard any one of them as providing the
real reason. Rose considers that we should not be trapped into accepting that
the most mathematical explanation is also the most fundamental. He regards
this view as a consequence of the particular way in which Western science
developed. Although a mathematician myself, I entirely agree with him.

Biochemistry and Cell Physiology

The application of the reductionist method to biochemistry has progressed
enormously over the last fifty years. The conclusion is inescapable: every indi-
vidual biochemical reaction in a cell can be explained in purely chemical terms,
and hence in terms of quantum theory. Max Perutz has written:

Since then [Hopkins’] views have been vindicated by the demonstration that
such fundamental and diverse processes as the replication of DNA, the tran-
scription of DNA into RNA, the translation of RNA into protein structure, the
transduction of light into chemical energy, respiratory transport and a host
of metabolic reactions can all be reproduced in vitro, without even a hint of
their individual activities being anything more than the organized sum of the
chemical reactions of their parts in the test tube.7

This type of investigation of cell function has been enormously important in
extending the limits of our knowledge and giving hope of eventually curing
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a variety of diseases. There is no need to elaborate since there are newspaper
and popular science articles on new discoveries in this field more or less weekly.
These provide support for the current commitment of philosophers such as
David Papineau to physicalism.8 This should be contrasted with vitalism, the
centuries-old belief that the behaviour of living creatures involves some non-
physical vital spirit, which was quite popular during the nineteenth century.
Vitalism withered during the twentieth century because no evidence to confirm
the existence of such an influence was ever found, in spite of enormous research
into physiology.

Even if one accepts physicalism, there is a fundamental difference between
cell physiology and the application of Newton’s laws to planets. In Lifelines
Steven Rose has emphasized that the processes going on at different levels in
cells are very heavily inter-related: the chains of cause and effect between the
various components of a cell go in all directions:

Genetic theorists with little biochemical understanding have been profoundly
misled by the metaphors that Crick provided in describing DNA (and RNA) as
‘self-replicating’ molecules or replicators as if they could do it all by them-
selves. But they aren’t, and they can’t. . . . particular enzymes are required to
unwind the two DNA strands, and others to insert the new nucleotides in place
and zip them up. And the whole process requires energy, the expenditure of
some of the cell’s ubiquitous ATP.9

These are only a few of the activities involving DNA and RNA in the general
metabolism of a cell. Instead of referring to DNA as the controller of all higher
level processes, it would be just as appropriate to say that the cell uses its DNA
to carry out various tasks, such as the manufacture of proteins.

I should add that even a complete account of cell physiology, were that
possible, would not enable us to predict the behaviour of an individual cell
even a few seconds into the future, except in a laboratory. Let us imagine John,
standing on the balcony of a house and looking into the night sky. The passage
through the atmosphere of a meteor stimulates his retina and hence the neurons
in his cortex. The chemical balance of one such neuron therefore depends
upon the strength of the local street lighting, the degree of cloud cover and
the trajectories of all near Earth objects. Even if all of the relevant information
could be gathered together, it would have nothing to do with John’s physiology.

In fact John never sees the meteor. He returns into his house at the critical
moment to answer the telephone. The call turns out to be a wrong number. So
the state of John’s neuron depends on a mistake made by someone else a few
seconds earlier, and not upon the meteor after all.

Such examples have prompted Edelman to argue that ‘for systems that
categorize in the manner that brains do, there is macroscopic indeterminacy’.10

Even the most committed reductionist has to admit that there is no way of
predicting many brain events at the purely biological or chemical level. One can
only hope to predict the behaviour of individual cells in the tightly constrained
setting of a laboratory.
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It is legitimate to reply that biochemistry and cell biology are concerned
with the general mechanisms which govern the behaviour of cells, and not
with the accidental circumstances particular cells happen to experience. In this
respect the subjects differ from astronomy, mechanics, and engineering, which
do predict what will happen to individual bodies very accurately. The reason
is clear. Many Newtonian systems are closed to a good approximation, but
most biological systems are open, that is heavily influenced by the surrounding
environment. One can only claim that biochemistry is reductionist to the extent
that it declares non-reducible behaviour to be outside its subject matter. Within
these limits it has been extraordinarily successful over the last fifty years. This
restriction of the scope of biological science to the elucidation of mechanisms
contrasts strongly with the claim of Laplace and others that there is nothing
which science cannot explain.

Since I might be misinterpreted, let me make it clear that I am not arguing
for the introduction of a new principle to take over where physics or chem-
istry fail to deliver the goods. What I am saying is that the only explanation
that we are ever likely to have for people’s behaviour is in terms of motiva-
tions, thoughts, preconceptions, love, hatred, etc. The idea that there is a
deeper analysis in terms of the motions of the atoms and electric fields in
people’s brain and everywhere else in their surroundings cannot be used to
predict the actions of particular individuals. The relevant computations would
involve so many internal and external factors that they could not possibly be
implemented in practice. The existence of an intermediate level of explanation,
involving neural networks and brain biochemistry, may well help us to under-
stand certain types of abnormal brain functions, and even to cure some of them.
It is unlikely to change the way in which we describe people’s behaviour in
everyday life.

Prediction or Explanation

The reader will have noticed that I have frequently referred to the task of sci-
ence as being to predict what will happen in specified situations. With the
above examples in mind one might argue that this is too narrow a view, and that
understanding is the true goal. Newton provided equations which explain (to
a mathematician or physicist) how material bodies move under the influence
of gravity. He and later Laplace convinced everybody that the theory was cor-
rect by making highly accurate predictions of particular astronomical events.
Unfortunately Newton’s theory was ultimately superseded by theories whose
explanations of the same events were totally different even though the predic-
tions were almost identical. General relativity and quantum theory use entirely
different branches of mathematics from Newton’s theory, even though all three
yield almost exactly the same predictions of where a stone goes when one throws
it. In quantum theory, particularly, the very idea of explanation has undergone a
fundamental change. The only fully consistent account of the subject is the set
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of mathematical equations, and the intuition of physicists is limited to helping
them to guess what the equations will predict.

The situation in the biological sciences is quite different. Here prediction
of the behaviour of individual entities is regularly impossible. The goal of the
subject is rather the elucidation of general mechanisms which control the beha-
viour of organisms. The sense in which this study is scientific is quite different
from that of astronomy. One goal is the possibility of predicting the effects of
various types of drugs on the functioning of organisms or cells. A second is the
possibility of carrying out surgery on people or animals with the desired effects.
Yet another is the possibility of breeding or genetically modifying plants and
animals systematically. None of these procedures is ever likely to be one hun-
dred percent reliable, but the increase in our ability to intervene successfully
demonstrates that our understanding is genuine. Interestingly the explanations
found in this field are of the type which Descartes would have approved of.
Biologists study the interactions of material bodies in immediate proximity
with each other. Action at a distance is not relevant, and explanations make
sense in terms which a layman can often understand, because mathematics
plays a much more subordinate role.

Even in solid state physics there is a profound difference between under-
standing and prediction. Suppose that one had a large computer program which
simulated the forces between the atoms of a complex solid, and correctly showed
the detailed crystalline microstructures which they can possess. This program
would provide no understanding of what was going on. In particular if the para-
meters of the model were changed slightly, one would have no option but to run
the program through again. Understanding in such cases means constructing a
mathematical model of the size and type which a human mind can handle, to
work out general features of the solid before it is examined.

Even if we agree that understanding the natural world is the true goal of
scientific activity, its validity can only be demonstrated if the theories which we
devise can be tested. A theory may be confirmed in a wide variety of ways, and
we must be very careful not to take any one science as the model for all others
in this respect. The progress of physics shows that understanding is an elusive
matter, and that no matter how well a theory performs, it may be superseded
by a quite different one in the future. As society develops, different ways of
understanding will appear and compete with each other on the basis of their
simplicity and scope. We should not be too confident that a single method
of understanding all phenomena will ultimately emerge—the world is far too
complex and our brains far too limited for this to be likely.

I have avoided one issue in order to avoid being sucked into a deep philo-
sophical problem: giving a general definition of understanding. This is harder
than it appears, and many different solutions have been proposed.11 Rather than
discuss these, let us consider an example which illustrates the difficulties. Any
historian of science could provide many similar cases.

When Newton proposed his law of gravitation, he was acutely aware of not
having explained how two distant objects could exert a gravitational force on
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each other. In the seventeenth century such a possibility was simply not accept-
able to many people, and he was not able to reply effectively to his critics. By
1760, however, his theory was completely accepted, and nobody regarded this
as a problem. No explanation for action at a distance was considered necessary:
this was simply how nature worked. When Einstein’s general theory of relativ-
ity appeared the situation changed again. Action at a distance was again barred,
and even more emphatically; in addition the gravitational force disappeared,
to be replaced by a varying curvature of space-time. It therefore appears not
only that explanations change with time, but even that what needs explanation
changes. What is acceptable as a theory depends upon the social context of
the time, however unpalatable that may be to those who would like to banish
human beings from the science in which they engage.

Money

In the previous sections we have considered some successes and failures of the
reductionist programme in chemistry and physics. We turn next to a subject dis-
cussed by Donald Gillies12 in which it is difficult to argue that any reductionist
account can be given—money. Let us start with a potted history.

Until the twentieth century money could be equated with pieces of copper,
silver, or gold. For most of the time since their introduction in the first millen-
nium bc coins were regarded as intrinsically valuable, their value lying in the
metal of which they were made. The introduction of milled edges on coins in
the late seventeenth century was intended to stop people clipping the edges, a
practice which would make no sense today. At that time and until quite recently
paper notes were contracts: British ten pound notes still bear the words:

I promise to pay the bearer on demand the sum of ten pounds

with the confirming signature of the chief cashier of the Bank of England. This
promise is literally meaningless! During this classical period coins were real
money, while notes were substitutes introduced for the sake of convenience.

The abandonment of the Gold Standard, led by the United Kingdom in 1931,
was an acknowledgement of a new monetary theory in which coins became
merely tokens, rather than the real thing. In the latter part of the twentieth
century accounts in banks became increasingly computerized, and cash-based
transactions became ever less important. Money now is an agreement to give
that name to certain data stored in machines in banks, and coins form only a
small part of an abstract conceptual system.

We thus see that at various times in history money has consisted of lumps
of metal, pieces of paper, and more recently magnetic domains on the hard
disks of computers. The only thing which has remained constant is society’s
requirement, enforced by law, that people should honour obligations recorded in
these various ways. Thus money should be considered as a social construction.
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Both its existence and its nature depend upon collective social agreements.
Although it affects the behaviour of individuals, it is not merely a part of their
mental worlds. If a single individual believed that he/she possessed some money
this would not have the desired consequences unless others agreed with this
belief. One cannot deny that money is real, because it has real effects upon the
physical world. On the other hand this does not give it a Platonic status, because
it is not eternal. It did not always exist and its nature may change with time.

The above discussion of money illustrates a general point. One could
provide similar arguments for other social constructs, such as the legal system
or the French language. These are undoubtedly real if reality is proved by hav-
ing an effect on material objects. They are also obviously not material objects
themselves, and depend for their existence on society. All such examples under-
mine the reductionist position. They provide examples in which the behaviour
of material objects is explained in terms of something higher in the list which
we presented at the start of this chapter.

Information and Complexity

A nice example of the futility of looking for reductionist accounts of ecological
systems has been given by Alan Garfinkel.13 Consider populations of rabbits
and foxes, in which the foxes eat the rabbits, and both reproduce and die. At
the simplest level this may be described by just two variables, the numbers of
foxes and of rabbits, together with a linked pair of equations which describe
how these numbers change with time. An excessive number of foxes makes the
number of rabbits plummet catastrophically, after which the foxes start starving
to death. A very small number of foxes allows the rabbits to breed freely, with the
result that their numbers explode. The questions to be resolved are whether one
should expect the numbers of foxes and rabbit to settle down to an equilibrium,
or whether the sizes of the populations will oscillate periodically in time.

We are not concerned here with the details of the mathematics, but rather
with what is not included in the above description. A reductionist would have
to claim that the equations are approximations to a fuller description which
involves individual rabbits being eaten by individual foxes. Now such an event
is not an abstract one. It has to occur at a particular place and time. Whether
a fox eats this rabbit rather than that one depends on where the rabbits are in
relation to the fox and how alert to the presence of foxes they are. It also has
to bring in factors such as the lighting, amount of undergrowth and whether or
not it is raining. A full reductionist explanation would involve so many such
factors and be so complicated that the relevant data could never be collected.

This is not to say that somewhat more complicated and realistic models
of the rabbit-fox populations cannot be constructed. The point, rather, is that
there is a trade-off between how many factors the equations take into account
and whether the model is in practice soluble. Selecting the relevant factors
cannot be done from first principles. Ecologists rely upon their experience



244 Information and Complexity

and judgement to devise models which are simple enough to be solved but
complicated enough to capture the essential features of the ecosystem. In fields
which have such a high degree of complexity, a reductionist approach has no
chance of being implemented.

Some scientists working on the theory of complex systems adopt an anti-
reductionist approach to understanding. They claim that in many cases the
use of reductionist techniques would actually be a barrier to understanding.
If quite different systems exhibit the same detailed behaviour, then the key to
understanding depends upon information theory, a relatively new subject. The
following examples illustrate what is at issue.

The first is the theory of fluids. It is believed that the behaviour of fluids is
governed by the Navier–Stokes equations, and enormous efforts have been put
into finding approximate solutions of these under a variety of initial conditions.
There have also been derivations at varying levels of rigour from the underlying
atomic dynamics. Now consider the fact that at room temperature and pressure
water, olive oil, mercury, and butane are all liquids. These substances have
totally different molecular structures, but this fact is not relevant to the fact
that they all satisfy the Navier–Stokes equation. In most ordinary situations the
details of the molecular dynamics is precisely what we do not wish to consider
when we study the behaviour of these liquids.

A similar point has been made in the study of the mind by the function-
alist group of philosophers. They emphasize that the brains of monkeys and
octopuses have totally different neural architectures, and evolved independently,
and yet they are both conscious of their environments. If we ever meet intelli-
gent aliens we can be sure that their brains will have a very different structure
from our own. Functionalists claim that we can only understand consciousness
fully if we concentrate on the way in which brains process information rather
than on their particular anatomy.14

The mathematical theory of games was developed by von Neumann and
Morgenstern in 1944 to provide a quantitative basis for studying competition in
economics. The subject investigates optimal strategies, that is the rules which
players should follow in order to maximize their gains or minimize their losses,
under the assumption that the other players are also doing the best possible
for themselves. It has had a wide variety of applications, including predicting
whether animals should be aggressive or submissive when competing for mates,
and how to minimize the risk of losing a nuclear war. (It was widely believed in
the 1950s that such a war would have winners and losers.) The theory of such
games defies any description in the categories associated with reductionism.
The physical composition of the players is wholly irrelevant, while their goals,
which belong to the top level of the hierarchy, determine how they should play.
Nevertheless the theory does govern how people and animals behave in the
relevant situations.

The new and vigorous science of complexity theory (or more precisely
self-organized criticality) started in 1987, when the physicists Bak, Tang, and
Weisenfeld simulated the growth of a pile of sand when grains slowly trickled
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onto it. They confirmed that the sand forms a roughly conical shape with a
characteristic angle. Their numerical calculations showed that piles had periods
of stability, interrupted by sudden landslides. There were landslides of all sizes,
the proportions of different sizes being related by universal scaling laws. They
argued that the behaviour which they observed might be a universal structural
feature of complex systems. In this sense the subject is anti-reductionist: it is a
study of generic features and not of the consequences of particular physical laws.

Subsequently it has been found (or perhaps claimed) that such considera-
tions apply to the frequency and size of forest fires, earthquakes, stock market
crashes, the extinction of species, wars, and many other subjects in which there
are sudden catastrophes. However, this is a very young subject, and actual
experiments on granular piles, with rice instead of sand, have shown that self-
organized criticality is not a universal phenomenon. It appears to depend upon
the shape of the grains and whether the predominant motion of a grain is sliding
or rolling.15

There are two morals to be drawn from this story. The first is to be cautious
about any new scientific discoveries. It is important to wait for the considered
judgement of the community, which may take years to emerge. The second
moral is that in those cases in which self-organized criticality does occur, it
is pointless to try to prevent individual catastrophes, because this will merely
postpone the day of reckoning. One can solve the problem, but only by changing
the behaviour of the system in a more fundamental manner.

Subjective Consciousness

We now pass to another subject in which there has been prolonged and heated
debate about the relevance of the reductionist viewpoint. This is the study of
subjective consciousness (sc). This is what we experience ourselves, to be
contrasted with third person consciousness, which is what we can infer about
others by observing their behaviour. Its reality seems undeniable, even though
it is very difficult to discuss its nature. All attempts seem to move more or less
rapidly to the third person subject. Thomas Nagel even states that the problem
of consciousness is rendered insoluble by the very assumptions of the Cartesian
philosophy of science:

So when science turns to the effort to explain the subjective quality of exper-
ience, there is no further place for these features to escape to. And since the
traditional, enormously successful method of modern physical understanding
cannot be extended to this aspect of the world, that form of understanding
has built into it a guarantee of its own essential incompleteness—its intrinsic
incapacity to account for everything.

One consequence is that the traditional form of scientific explanation, reduc-
tion of familiar substances and processes to their more basic and in general
imperceptibly small component parts, is not available as a solution to the ana-
lysis of mind. Reductionism within the objective domain is essentially simple to
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understand . . . No correspondingly straightforward psychophysical reduction
is imaginable, because it would not have the simple character of a relation
between one objective level of description and another.16

Let us start with the perception of pain. At first sight it appears that a reduction-
ist account of pain should be straightforward. There are specific receptors in the
skin and elsewhere which respond to certain stimuli, such as extreme heat, cold,
certain chemicals, and physical damage, and when these receptors fire we often
feel pain. Detailed descriptions of the structure of the relevant receptors and of
the mechanisms which activate them are readily available. Unfortunately this
does not settle the matter. Under the influence of anaesthetics we may not
experience the pain which we normally would. At the other extreme the phe-
nomenon of phantom pain from limbs which have been amputated long ago is
well attested. Again, sports players frequently continue playing unaware that
they have suffered quite severe injuries because of the excitement of the activ-
ity. Thus we discover that pain sensations are by no means simply and directly
related to messages originating in the periphery of the nervous system. The
next task is to determine what physical events within the brain correspond to
the subjective experience of pain. If we believe that octopuses experience pain,
then a complete account of pain cannot be dependent upon the particular brain
structures which mammals possess. Making progress on this is going to be a
very difficult task.

Unfortunately the above fails to address the nature of the subjective exper-
ience of pain. If we experience pain exactly when some brain mechanism is in
one particular state, is there a difference between the experience of the pain and
the physical operation of this mechanism? We will only mention the following
three positions, each of which has many subvarieties:

• Epiphenomenalism. Subjective experiences are distinct from the operation
of brain mechanisms. They accompany it but have no actual effect upon the
way in which the brain operates.

• Interactionism. The relevant brain mechanisms do not obey the normal laws
of physics, but can be affected by subjective experiences in a way which
transcends physics.

• Physicalism. Subjective experiences are completely explained by the opera-
tion of the relevant brain mechanisms, which are determined by the laws of
physics.

It is well recognized that each of these positions leads to awkward problems
if pursued sufficiently far. Some of these will be described in the next few
sections.

The Chinese Room

John Searle has had a long interest in the philosophical problem of distinguish-
ing between simulation of consciousness and the real thing. He argued that even
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if a computer could simulate a human conversation perfectly, it would no more
be conscious than a computer predicting the weather has an actual storm inside
it. To explain the distinction he invented a Chinese room story which runs as
follows:

Suppose a computer program can be designed which will accept questions in
Chinese and process these by a complicated set of rules leading to a response,
also in Chinese. If the responses are always appropriate, does that mean that
the computer is conscious and understands Chinese?17

To prove that the answer is no, Searle imagines a person who does not understand
Chinese and who is put in a room with the complete manual of instructions
which the computer would follow. On being set the question he eventually
works through all the instructions and gives the response without having any
idea of their significance. Where is the consciousness, or more specifically the
understanding of Chinese, in this case, he asks? He claims that a computer
translation program must act syntactically and does not touch on the semantics,
i.e. the meaning, of sentences. The difference is illustrated by the following
sentences:

I was surprised to see that Joan was wearing a red dress.

I was surprised to see that John was wearing a red dress.

A translation program would deal with the two sentences more or less identic-
ally, possibly changing the form of the second verb in an inflected language.
But we understand that surprise means something and look for that meaning.
Because we know something about social contexts, we guess in the first case
that Joan was thought not to like the colour red, but in the second case that
John does not usually wear women’s clothing. (Both guesses might of course
be wrong.) Without the social context, which is not needed for the translation,
we would not be able to hazard any guess about the significance of the sentence.

Now change the word ‘surprised’ to ‘pleased’. The first sentence suggests
that I have a warm relationship with Joan, and that I think that the colour red suits
her. The second is rather strange, and impossible to interpret without further
context. But from the point of view of a translation program almost nothing has
changed.

Over a hundred articles relating to Searle’s argument have been published,
and it seems safe to say that the resulting disagreements can no longer be
resolved. The extent to which his example is relevant to the existence of SC is
also debatable. I will raise only one of the most common objections to Searle’s
argument, without any suggestion that it is the most important one.

A well known response is that the understanding of Chinese belongs to the
whole system rather than to the parts. In the same way individual neurons in a
person’s brain do not understand a message, and the understanding is a result
of all of the neurons working together. A vivid way of expressing this is to
point out that if one looks at the engine of a car, one cannot identify a particular
part which makes it work. Its ‘engineness’ is a consequence of all of the parts
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working harmoniously together. It is implied by some that Searle’s argument is
analogous to vitalism, the outmoded philosophy that inanimate, even organic,
matter could not gain life without the addition of a ‘vital spirit’.

This has been repudiated as irrelevant, on the grounds that consciousness
is both a property attributed to a person by others on the basis of behaviour,
and also something experienced as a subjective fact. This second aspect has
no analogue for engines. Even if we do not know the biological mechanism
which causes SC, that does not allow us to pretend that it does not exist. We are
conscious of certain brain functions but not of others, and this must be explained.
Consciousness is one of the primary facts about ourselves to be explained, and
any theory of the brain which does not do this is necessarily incomplete.

Searle accepts that in principle an artificial system could be conscious, but
only if it had the appropriate (and so far unknown) internal structure. Like
many other philosophers, he rejects the Turing test for consciousness. This
asks whether a computer can converse (perhaps by email) with a person in such
a way that the person cannot tell that it is ‘only’ a computer. Perhaps, however,
the debate about the Turing test is predicated on a false hypothesis. The failure
over several decades of attempts to get computers to simulate human behaviour
in open ended contexts suggests that this might only be possible if the computer
does indeed contain the appropriate semantic structures. Expert systems such as
chess playing programs do not, and they only work in very narrowly constrained
contexts.

Zombies and Related Issues

In his recent book The Conscious Mind David Chalmers dismisses physical-
ism, stating that the existence of subjective consciousness is not capable of
serious doubt—even though he admits that Daniel Dennett and others do doubt
it. He agrees that denying the existence of SC makes explaining the world
much simpler, but reiterates that one must take SC seriously. We will discuss
physicalism further in the next section.

One of Chalmers’ arguments against interactionism imagines that there exist
‘psychons’ in the nonphysical mind which may affect physical processes in the
brain and which are themselves the seat of subjective experience:

We can tell a story about the causal relations between psychons and physical
processes, and a story about the causal dynamics among psychons, without
ever invoking the fact that psychons have phenomenal properties. Just as with
physical processes, we can imagine subtracting the phenomenal properties of
psychons, yielding a situation in which the causal dynamics are isomorphic.
It follows that the fact that psychons are the seat of experience plays no essen-
tial role in a causal explanation, and that even in this picture experience is
explanatorily irrelevant.18

Other descriptions of how subjective consciousness might act on the brain seem
to have a similar problem. They seem attractive at first sight because they
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correspond to the way we feel inside ourselves. However, once one starts to
analyse the idea in detail it seems impossible to build subjective experience into
any systematic account of its mode of action on the brain. The very process of
providing an explanation seems to transfer the essence of the phenomenon to a
different place.

Much of Chalmers’ book explores a type of epiphenomenalism. He spends
a considerable number of pages discussing zombies, which have exactly the
same physical structures in their brains and behave in exactly the same way as
we do, but which do not have any inner subjective experiences to match their
behaviour. He puts forward plausible arguments designed to show that zombies
do not exist and that all objects sufficiently like ourselves must in fact possess
SC. These arguments are based upon imaginary scenarios of the type which
philosophers delight in considering. The following is not in his book, but has a
similar flavour. Let us suppose that a half of all humans are zombies, and the
rest, including the reader of course, possess SC. If asked, the zombies would
state that they possessed SC, and would appear to be indignant at any suggestion
that they did not, because they behave exactly like us. They would be wrong,
but would not know this because, as zombies, they can know nothing in any
true sense. Now suppose that a zombie and one of us marry and have children.
Perhaps the children would all be zombies, perhaps they would all possess
SC and perhaps this would be a matter of chance. Alternatively our distant
descendents might possess a fraction of our SC depending on the proportion of
ancestors who were zombies. The problem here is that it is difficult to imagine
what having a fraction of ‘normal’ SC might mean.

Let us turn to the much-discussed subjective experiences of colours. These
are frequently called qualia to distinguish them from psychological processes
which can be studied by scientific methods. Consider the possibility that A
may look at a red object and call it red, because he has been taught to do
so, even though his subjective experience is what B would have when B sees
a green object. This philosophical possibility of subjective colour inversion
was first discussed by John Locke. He already stated that there is no way in
which this phenomenon could be detected, since the subjective impressions
of an individual are not available for external inspection. All one can do is
compare people’s responses to similar objects. In such discussions it always
seems to be assumed that this is merely a ‘philosophical’ possibility, and that
we have some other reason to believe that different people looking at a red
object have the same subjective experience, unless one of them has a visual
defect. Actually the detailed neural connections in any two individuals are
so different that their subjective experiences might well differ as much as, say,
their ability at mathematics or portrait painting. We know that trained musicians
can distinguish the separate instruments in an orchestra in a way which others
simply cannot. Their training has altered their brain circuits, and hence their
subjective impressions.

It appears that even if one believes that SC is a real phenomenon, we have
no way of describing it publicly. This being the case, it might be as well for
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us to give up trying. Chalmers’ attempt to develop a science of SC is bound to
fail because ultimately it is only based on plausibility arguments. His thought
experiments cannot be a substitute for real-world experiments, even though they
are interesting from a philosophical point of view. They may enable one to rule
out certain types of explanation of SC, but in science it has repeatedly been found
that real experiments are needed to obtain a correct description of the world.
Unless some radically new ideas appear in the future, it appears that our belief
that others possess SC similar to our own is not amenable to rational or scientific
proof. SC cannot be studied, only experienced. Third person consciousness, on
the other hand, can be investigated by a rapidly increasing range of techniques.

A Physicalist View

Inevitably there are philosophers who deny the existence of SC. A recent col-
lection of essays by Churchland and Churchland, On the Contrary, argues that
our current views about consciousness are a part of a profoundly mistaken folk
psychology (FP):

FP functions best for normal, adult, language-using humans in mundane situ-
ations. Its explanatory and predictive performance for prelinguistic children
and animals is decidedly poorer. And its performance for brain-damaged,
demented, drugged, depressed, manic, schizophrenic, or profoundly stressed
humans is pathetic. Many attempts have been made to extend FP into
these domains, Freud’s attempt is perhaps the most famous. All have been
conspicuous failures.19

The Churchlands describe in some detail current research on the brain, con-
sidered as a self-programming neural network. This constantly and sometimes
incorrectly tries to find the best mental pattern from a vast space of possibilities
to match the images, ideas, etc. being considered. This idea fits well what we
learnt about the functioning of our visual systems in Chapter 1. The absence
at the deepest level in our brains of a sentence-like or propositional structure
explains the failure of AI systems to reproduce anything like human cogni-
tion. They argue that since FP is based on introspection it fails to appreciate
that concepts such as subjective sensations which appear to us to be unit-
ary and irreducible may actually be highly complex. They also anticipate a
major change in the way we describe our subjective thought processes as a
result of current scientific advances. In this context their dismissal of the argu-
ments of Nagel and Searle above is hardly surprising. Consider the following
passage:

There is also a standard and quite devastating reply to this sort of argument,
a reply which has been in the undergraduate textbooks for a decade . . . Stated
carefully the argument has the following form:

1. John’s mental states are known-uniquely-to-John-by-introspection.
2. John’s physical brain states are not known-uniquely-to-John-by-

introspection. Therefore, since they have divergent properties.



Against Reductionism 251

3. John’s mental states cannot be identical with any of John’s physical brain
states.

Once put in this form, however, the argument is instantly recognizable to any
logician as committing a familiar form of fallacy, a fallacy instanced more
clearly in the following (example).

1. Aspirin is known-to-John-as-a-pain-reliever.
2. Acetylsalicylic acid is not known-to-John-as-a-pain-reliever.

Therefore, since they have divergent properties
3. Aspirin cannot be identical with acetylsalicylic acid.20

The Churchlands point out that in the second case the paradox disappears as
soon as John is told that acetylsalicylic acid is identical with aspirin. Such
arguments are said to be epistemological, that is about people’s knowledge.
However, Searle claims that his argument is quite different: it is intended to
demonstrate a true difference between first person and third person conscious-
ness. In other words it is an ontological argument, that is about the nature of
things. In response to this the Churchlands state that Searle’s conclusions do
not follow from his premises. They are simply assumed from the start.

Let us put this technical debate aside, and return to the central issue. Suppose
that circuits are discovered within the human brain such that the activation
of these circuits occurs precisely when the subject claims to experience the
sensation of pain. Suppose also that the linkages between these circuits and
the pain receptors in the peripheral nervous system are understood, and the
mechanism by which local anaesthetics act to stop the activation of these circuits
is also discovered. Are we really expected to believe that these facts would have
no implications at all for the explanation of the subjective experience of pain?
At the very least one should admit that the problem of pain would look very
different after such scientific discoveries. If a similar reduction is eventually
made for all subjective experiences it is possible that interest in SC will go the
same way as vitalism did.
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10
Some Final Thoughts

This final chapter is a collection of topics which relate to the status of science
in our society, and to its conflicts with other systems of thought. The matters
discussed include the so-called ‘anthropic principle’ and cultural relativism.
In some cases I point out definite errors in standard arguments. In others the
plausibility of the criticisms of science depends upon beliefs which are imported
from outside science. There is nothing wrong with doing this, provided one is
honest about it. Science is a system of thought, and should not claim to have
a monopoly on the truth. But neither can its achievements be dismissed as of
no import. I finish with a statement of my overall conclusions.

Order and Chaos

The science of thermodynamics grew during the nineteenth century as a con-
sequence of attempts to make steam engines more efficient and to find the
ultimate limits on what was possible in this new technology. During that period
many people tried to design perpetual motion machines, some of extraordin-
ary ingenuity, but without exception they failed to work. Their failure was
encapsulated in the first law of thermodynamics, also called the law of conserva-
tion of energy. It states that you cannot get something for nothing, or that
perpetual motion machines are impossible. The evidence for it is so convinc-
ing that applications for patents for such machines are now rejected without
consideration, in Britain and the USA at least.

The ideas behind the first law are not elementary. Kinetic and potential
energy were both well known in Newtonian mechanics, but for the purposes of
the first law one also has to include heat as a form of energy. When a ball falls
to Earth and eventually stops bouncing it loses its potential energy (which it
had by virtue of its initial height), and also its kinetic energy (which it had just
before hitting the ground by virtue of its speed of motion) with nothing obvious
to show for these. During a bounce its energy is converted to elastic energy
of the material of the ball, before being reconverted into kinetic energy as the
ball moves upwards. The process is not entirely efficient and on each bounce
a little of the energy is lost within the material of the ball as heat. Eventually
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the mechanical energy is converted entirely into heat. This is not just a manner
of speaking. One can quantify heat energy using the temperature of the ball and
its heat capacity, and confirm that the total energy is indeed conserved.

The second law of thermodynamics is regularly misinterpreted by creation-
ists. One formulation is that there is a fundamental irreversibility in the universe,
in which energy is converted into more degraded forms, and a quantity called
entropy inevitably increases. It may be summarized as asserting that the overall
disorder of a closed system always increases. An example of this occurs if one
pours a cup of hot water and a cup of cold water into a jug. The two mix together
producing a jug of water at an intermediate temperature which can be calculated
using the first law. The second law implies that the water in the jug will never
unmix itself into two halves at different temperatures. It also ensures that a ball
resting on the ground will never start shaking more and more vigorously until
it bounces into the air, unless there is some external reason for this (e.g. an
earthquake).

Unfortunately this law has frequently been misinterpreted as saying that
order can never emerge from chaos, leading to the claim that the existence of
living creatures is proof of the existence of a creator. This argument is simply
wrong. The second law refers to the behaviour of a closed system, that is one
which is not interacting with the external world, and which is therefore moving
steadily towards thermodynamic equilibrium. However, most of the phenomena
in which we are interested concern open systems, far from equilibrium. The
dynamics of most life on Earth is entirely dependent upon the constant flow
of heat and light from the Sun. Only when the Sun runs out of energy and the
core of the Earth cools down, billions of years in the future, will the Earth be
an isolated equilibrium system, and will life cease to exist. In the meantime
complex structures are driven into existence by the flow of energy from the Sun
to the Earth, and then from the Earth to outer space.

Everybody has probably seen a ball balanced on the top of a jet of water.
It is surprising that it does not immediately fall sideways out of the jet and
then drop to the ground. But it is quite stable: it does not need to be placed in
position with extreme care, but moves back to the centre of the jet if slightly
displaced. This is a typical example of a system which can stay in a state far
from its natural equilibrium (lying on the ground) as long as there is a constant
flow of energy (moving water) to sustain it.

The possibility of complex patterns emerging by purely physical processes
from materials which contain no traces of the patterns is beautifully illustrated in
the structure of snowflakes. Figure 10.1 is just one out of an astonishing 2453
different examples in Snow Crystals1 by Bentley and Humphreys. William
Bentley produced the first ever photograph of a snow crystal in 1885 and dis-
covered that no two were identical. Almost all of the images in the book have
approximate hexagonal symmetry.

Snowflakes arise by the accumulation of water molecules which condense as
ice onto a central nucleus. Their symmetry is a result of the atomic interactions
between the constituent particles, while the slight variations between different
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Fig. 10.1 A Snowflake
Reproduced from the W.A. Bentley collection by kind permission of the Jericho
Historical Society

snowflakes depend upon the varying temperature and humidity of the cloud
within which they form and through which they fall. Nowhere is a designer
needed, in spite of the astonishing beauty and regularity of the snowflakes. The
creation of snowflakes does not contradict the second law of thermodynamics,
since the conditions within the cloud guarantee that the local environment of
each snowflake is sufficiently far from equilibrium. Their symmetry is a con-
sequence of the atomic forces between the water molecules which form them,
and the fact that at any instant the environment of a growing snowflake is the
same on all sides of it.

Of course snowflakes disappear as fast as they grow, so comparing them
with living organisms is only an analogy. Nevertheless, the fact that such highly
organized structures can indeed appear out of nothing within a few minutes
proves that order can appear ‘from nowhere’, and also makes it more plausible
that given billions of years vastly more complicated entities such as living cells
might appear by purely physical processes.

As a second example consider soap bubbles. The shape of such a bubble,
almost a perfect sphere, is not designed by the person blowing the bubble, nor is
the shape stored in the soap mixture waiting to be released. Except for the fact
that our reactions are dulled by familiarity, it is highly surprising that blowing
on a bit of liquid can have such a result. Once again no designer is needed.
As soon as it is formed the bubble changes shape to minimize its energy in
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conformity with the thermodynamic laws, and it can be proved mathematically
that the minimum energy configuration is a perfect sphere. The same applies to
mud bubbles in natural cauldrons.

The idea that order may emerge from chaos by the operation of purely phys-
ical laws was pressed by Ilya Prigogine, who received a Nobel Prize in 1977 for
his development of this subject. He identified many situations in physical chem-
istry and physics in which the behaviour of the associated nonlinear systems
gave rise to organized behaviour. These include the spontaneous formation of
Bénard cells (periodic structure in space) in fluid convection and the variety of
oscillating chemical reactions (periodic structure in time) going under the name
of the Belousov–Zhabotinsky reaction.

The examples above do not prove that highly organized structures such as
living cells must have emerged by natural processes. They were only intended
to counter the argument that this is physically impossible. There is no knock-
down argument to determine whether the very first life was created or came into
existence by natural processes. The events concerned are sufficiently remote
that settling the issue is going to be very hard.

Anthropic Principles

The progress of science has been accompanied by separating the question of
why the laws of nature are as they are, from the detailed examination of the
laws themselves. A few theoretical physicists turn to the big questions, and
discuss what they call anthropic principles. Among these one has to mention
John Barrow, Paul Davies,2 John Polkinghorne, and Martin Rees.

The debate centres around the fact that the laws of nature appear to be
very finely tuned by the values of certain fundamental constants involving the
weak and strong interactions. In the early 1950s Fred Hoyle discovered that
the production of carbon in stars, and hence the appearance of life as we know
it, depended on the existence of a resonance in the carbon nucleus at a cer-
tain energy and hence on the precise values of the fundamental constants in
nuclear physics. This was only the first of a number of discoveries that small
changes in the fundamental constants of physics would have a profound effect
on the evolution of the universe. Almost any such change appears to prevent
the complex structures and thermodynamic disequilibrium on which our exist-
ence depends. These facts led Brandon Carter in the early 1970s to formulate
the weak anthropic principle—that the existence of human life imposes certain
conditions on the universe, since its structure must be consistent with our being
here to observe it.

Attitudes towards this principle may be classified as follows—the phe-
nomenon is real and implies the existence of God; there exist many different uni-
verses, each with its own values of the fundamental constants; the whole debate
is overblown and unscientific. This summary is, of course, too simple-minded,
but it will serve to set the scene.3



Some Final Thoughts 257

Let us start with the first response. John Polkinghorne has written:

In the fine-tuning of physical law, which has made the evolution of conscious
beings possible, we see a valuable, if indirect, hint from science that there is
a divine meaning and purpose behind cosmic history.4

He goes on to say that the evolution of conscious life seems the most significant
thing that has happened in cosmic history, and we are right to be intrigued by
the fact that so special a universe is required for its possibility. This statement
is difficult to disagree with, since any entity capable of doing so is presum-
ably conscious. (Douglas Adams’s android Marvin would presumably disagree,
however!) On the other hand Polkinghorne does not claim that the anthropic
principle provides a proof of the existence of God, the so-called argument of
design, and theologians in general are rather careful not to over-interpret the
scientific facts. In Universes5 John Leslie, on the other hand, argues that such
caution is inappropriate and that the evidence for design is overwhelming.

At the other extreme are physicists such as Heinz Pagels, who believes that
the influence of the anthropic principle on the development of contemporary
cosmological models has been sterile: it has explained nothing, and has even had
a negative influence. When reviewing Stephen Hawking’s book The Universe
in a Nutshell, Joseph Silk referred to the anthropic principle as ‘one of the more
remarkable swindles in physics’.

There are in fact a few possible lines of investigation of the principle which
hold out some slight possibilities of being scientifically testable. Martin Rees
and others have discussed the possibility that inflationary cosmological models
and other more speculative theories might allow the existence of myriads of
different universes in which the fundamental constants have different values.6

If this is correct then the values of the constants in our particular universe,
which would be just a part of a much vaster ‘multiverse’, must allow us to have
evolved. No theological conclusions need be drawn from the coincidences. It
would be relevant to know roughly how tiny our part is within the greater whole.

The very existence of the numerical coincidences underlying this debate has
recently been questioned by Robert Klee,7 in an article provocatively entitled
‘The revenge of Pythagoras: how a mathematical sharp practice undermines
the contemporary design argument in astrophysical cosmology’. He likens the
search for numerical coincidences in the fundamental constants to the mystical
numerology of the Pythagoreans, and provides detailed evidence that the coin-
cidences are much less impressive than is usually claimed. This paper dissects
the scientific literature on the problem, and should be read by anyone with
a serious interest in it.

Bogus coincidences are extremely easy to produce. Consider the following:

mp

me

= 1836.153

6π5 = 1836.118
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where mp is the mass of a proton and me is the mass of an electron. It looks
impressive, and is far better than many of the coincidences ‘noticed’ by those
arguing for design. If pressed one might even ‘justify’ the power 5 as being one
half of the dimension of the currently popular model of string theory. But I found
it simply by playing around for a few minutes with powers of π . Although
scientists noticing unexpected numerical coincidences in particle physics and
cosmology are not consciously doing this, it may be the true explanation of
what they have found.

This is, of course, very unsympathetic. The occurrence of the same constant
in quite different contexts often leads scientists to discover important new con-
nections between different phenomena. This has been particularly true in the
study of critical exponents in statistical mechanics. It is a mistake to generalize
about such issues, but Klee’s conclusion is that the cosmological evidence for
design is far from compelling. Nor is he the only one. Livio and colleagues
constructed a detailed computer model of stellar interiors in order to find out
the effects of slightly changing the carbon resonance mentioned above. They
concluded by stating, with typical academic caution, ‘we believe that at least
some formulations of the strong anthropic principle (are) weakened signific-
antly by our results’.8 These disagreements between experts about whether
there is anything to be explained are unsettling, to say the least.

Let us look at the issue from a different perspective. There has been a long
history of attempts to invoke the hand of God to explain matters which science
currently could not. As science developed, this led to a series of tactical with-
drawals by theologians, and the whole idea of invoking a ‘God of the gaps’ has
been discredited by many theologians themselves. Yet the anthropic principle is
of precisely this type: it depends upon the view that the fundamental constants
could have taken any other values and that a substantially less arbitrary model of
the universe will never be found. Sixty years ago it would not have been possible
to formulate the principle, because the evolution of the stars was not sufficiently
well understood. Over the last few decades the main task of theoretical physi-
cists has been to go beyond the standard model. Their goal is to find a theory
which would enable the number of fundamental constants to be reduced from
eighteen, possibly to none in the hypothetical Theory of Everything. Deliber-
ately or not, believers in the anthropic principle are encouraging the view that
there is no scientific way of explaining why the constants have the particular
value which they do. They may be right, but the best way of finding out is to
try to find a reason.

Let us next concede the possibility that the universe might indeed have been
designed for the production of carbon as Hoyle and others have suggested. It is
plausible that there are many planets (billions) on which carbon-based life has
developed, since the evidence from our own planet is that life appeared almost
as soon as the conditions made it possible. Granted this, we can deduce almost
nothing about the nature of the designer(s). It might be a super-civilization, of
the type favoured by many science fiction authors. It might be an entity which
created the universe out of mere curiosity, as the mathematician John Conway
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did with the computer Game of Life. In spite of the arguments of Leslie, I see
no reason to assume that the creator has any ethical or religious purposes
in producing the universe. Perhaps he is a super-chemist, and is just using
organisms to manufacture a variety of proteins with as little effort as possible.
Even if the creator was interested mainly in the possible evolution of life, there
is no reason to believe that life on the planet Earth was uppermost in his mind.
Perhaps he was interested in a much more ethically responsible species which
will evolve far away in the universe a billion years in the future.

One driving force behind people’s search for proofs of the existence of
God is the need to give ourselves a special status in the universe. We crave
the security and meaning that a benevolent creator—a personal God—would
provide in our lives, and must be careful not to let our wishes influence our
judgement. There is, unfortunately, plenty of evidence of the contingency of
our individual lives, including the fact that each one of us only exists because
of the success of a particular chain of acts of copulation stretching over many
millennia. We know that the Earth has been hit by massive asteroids on several
occasions, and that there have been many super-volcano eruptions, some quite
recently in the past. Both types of event have had disastrous effects on the
ecosystem, and will no doubt cause huge numbers of deaths in the future. The
author finds it hard to reconcile such events with belief in a benevolent God,
although he would like to be able to do so.

From Hume to Popper

Between the seventeenth and twentieth centuries the dominant philosophy of
scientific discovery was very straightforward. Scientists amassed a large number
of observations, and then searched for a simple explanation, possibly by a set of
mathematical equations. The process was supposed to be objective and the laws
obtained were believed to be true, subject to the normal provisos about possible
errors. Doubts about the justification for believing in the truth of scientific laws
might be expressed by philosophers such as Hume, but most scientists were
confident that these doubts need not cause them any loss of sleep. During
the first thirty years of the twentieth century they were to discover that much
of their prized knowledge of the world needed radical revision. Many facts,
previously certain, turned out to be no more than approximations to a quite
different truth. This led to a re-examination of the basis for the possession of
any final knowledge of the world.

We take as the starting point for this story the radical scepticism of the
eighteenth century philosopher, David Hume, as described in his Treatise of
Human Nature. Hume called into question the basis for the acquisition of any
knowledge about the outside world. He emphasized that the repeated occurrence
of an event B after an event A does not logically imply that A causes B:

Let men once be fully persuaded of these two principles, That there is nothing
in any object, considered in itself, which can afford us a reason for drawing



260 From Hume to Popper

a conclusion beyond it; and That even after the observation of the constant
conjunction of objects, we have no reason to draw any inference concerning
any object beyond those we have experience of.9

Hume was of course aware that one cannot live one’s life without constantly
employing this type of induction. But he argued that ‘belief is more properly an
act of the sensitive than of the cogitative part of our natures’. The fact that we
base our lives on the belief that events are causally related does not imply that
there could be a rational demonstration that this is indeed so. Rational argument
has its limitations, like everything else.

It is difficult for a non-philosopher to develop a feeling for the force of
these arguments without considering some examples. Let us suppose that one
has a clock which ticks once every second for a year before running down,
but that one has forgotten when the battery was last changed. In this instance,
because we know something about its interior mechanism, we are quite unper-
turbed that the inductive inference is reversed. Each tick reduces the chances
of a further tick, because it takes us closer to the point at which the clock must
stop. This demonstrates that a naive belief in induction is not justified, and that
understanding the reason something happens provides much more compelling
grounds for believing in its continuation than any number of repetitions of the
event.

On closer examination the above argument merely opposes two different
types of regularity. The first is the regularity of the clock itself, while the second
is the regularity of the physical laws which govern the operation of the clock.
Our ‘understanding’ consists of preferring the regularity of the physical laws,
on the basis that this regularity has been tested very thoroughly in the past. If
we take this stand, then Hume reminds us that even if these laws have operated
exactly as we believe in the past, we have no evidence at all that the future will
resemble the past.

This is not mere philosophy. Consider the tale of the pig:

A pig is cared for by a farmer, and all of the evidence at its disposal indicates
that the farmer is its friend. Indeed he has taken every care for its health and
welfare since the day it was born. Yet one day the farmer comes into its pen
and takes it out to kill it for profit.

The point of this story is not merely that the particular pig was deceived about
the nature of the world, but that every pig is in the same situation! Unlike
sheep and cows, the almost universal fate of pigs is to be killed and eaten. We
assume that we are not in the same situation, and that our apparent progress
in understanding the world has some basis in fact, but we can never know that
this, or indeed anything, is so. In order to retain some use for the word ‘know’,
one needs to exclude the possibility of deliberate and systematic deception by
some super-being.

There have been many attempts to resolve the above problem. I rather like
the following one, even though it has an important flaw. As we have become
more sophisticated we have replaced a belief in the regularity of events, such
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as the rising of the sun, by a belief in the continued validity of scientific laws.
These laws have become ever more general, and we have discovered that all
aspects of our bodily functions depend in a critical way upon the continued
validity of a few very fundamental laws, which also control all other aspects of
the world. Every proper use of induction can be reduced to the assumption that
these laws will continue to operate. We are justified in believing this, because
if the laws change, even slightly, we will never know it. We will already have
died or even disintegrated.

The flaw is the assumption that a change in the laws of physics would have
to apply everywhere simultaneously. It is logically possible that there might
be occasional localized disruptions of physical law, which were beyond our
understanding. This is indeed what miracles are supposed to be. The Moon
might disappear for a day and then reappear and continue to orbit the Earth as if
nothing special had happened. Such events, if common enough, would certainly
make people have less confidence in the use of induction! Well, maybe, but it
would hardly be sensible to plan our lives on the assumption that such events
are about to become common.

Richard Swinburne has devised another defence of our use of induction. He
argued that as a rational being one has no choice but to assume that the simplest
explanation of a collection of facts is most likely the right one. If we have to
make a real life decision about the next term in the sequence 2, 4, 6, 8, 10, 12, . . .
then we will choose 14 because it is the value yielded by the simplest possible
formula. If no other information is available people are right to prefer this
choice to that provided by more complicated formulae. This thesis presupposes
the possibility of agreeing on criteria of simplicity, which are not easy to for-
mulate even though there is often a clear consensus about the relative simplicity
of two rules. The above is not intended to be an argument about what is actually
true. All Swinburne is claiming is that people are right to prefer the simplest
theory, as in fact they do in all situations in real life.

One must be careful not to over-interpret the concept of likelihood. In the
first half of the twentieth century Carnap tried to formalize the likely truth
of a scientific theory within Kolmogorov’s theory of probability. Both Carnap
and Reichenbach were severely criticized by Popper in The Logic of Scientific
Discovery, where he demonstrated why no such programme could succeed.
Without following the details of the argument, one can see the one of the
problems by considering the anomalous orbits of Uranus and Mercury. The
apparent failure of Newton’s laws to predict the motion of Uranus exactly led
to a search for a new planet whose gravity might have been perturbing its orbit,
and Neptune was discovered in 1846. On the other hand a similar search for
a new planet to explain the slight failure of Newton’s laws to predict the motion
of Mercury led nowhere. Eventually Einstein’s general theory of relativity was
needed to resolve the matter. So here two fairly similar phenomena turned
out to have completely different explanations. It strains credulity to argue that
any philosophical study or probability calculus could have anticipated such
developments.
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In spite of Hume’s scepticism, philosophers in the eighteenth and nineteenth
centuries had to explain the fact that human beings appeared to have two forms
of knowledge of the world which everyone agreed were not subject to question.
These were Euclidean geometry and Newtonian mechanics. The first seemed
to be a description of how physical space actually is, while the second seemed
to give an exact description of how bodies move. Unfortunately even these
certainties started to unravel in the second half of the nineteenth century. The
process started when Riemann showed that there were an infinite number of
different possible geometries, all of equal standing from a mathematical point
of view. When Einstein’s general theory of relativity was confirmed by observa-
tions of the bending of starlight during an eclipse in 1919 the implications could
not be evaded. It was seen that both Euclidean geometry and Newton’s laws
of motion were just theories, perhaps extremely accurate ones, but no longer
‘true’ descriptions of the world. The advent of quantum theory a few years later
further undermined people’s belief that reality and any particular theory we
may have of it are identifiable. Einstein was fully aware of the philosophical
implications of his work, and frequently wrote along the following lines:

In the previous paragraphs we have attempted to describe how the concepts
space, time, and event can be put psychologically into relation with experi-
ences. Considered logically, they are free creations of the human intelligence,
tools of thought, which are created to serve the purpose of bringing exper-
iences into relation with each other, so that in this way they can be better
surveyed. The attempt to become conscious of these fundamental concepts
should show to what extent we are actually bound to these concepts. In this
way we become aware of our freedom, of which, in case of necessity, it is
always a difficult matter to make sensible use . . .

Why is it necessary to drag down from the Olympian fields of Plato the fun-
damental ideas of thought in natural science, and to attempt to reveal their
earthly lineage? Answer: In order to free these ideas from the taboo attached
to them, and thus to achieve greater freedom in the formulation of ideas or
concepts. It is to the immortal credit of D. Hume and E. Mach that they, above
all others, introduced this critical conception.10

In an attempt to eliminate the problem of justifying induction, Karl Popper
proposed a different approach to the nature of scientific knowledge in 1934.
Many years were to pass before the importance of his ideas was realized. This
was partly because his book Logik der Forschung was not translated into Eng-
lish (as The Logic of Scientific Discovery) until 1959, and partly because his
ideas were so at variance with the dominant tradition of logical positivism and
linguistic analysis in Oxbridge at that time. He argued that scientific knowledge
advances not by the application of the inductive process, but by the formula-
tion of conjectures, which are then tested in the laboratory. A theory can never
be proved by repeated testing, but can be refuted by failing some test. His
idea that all scientific knowledge is provisional, and subject to possible later
refutation and replacement by a new theory, provided an attractive explanation
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of developments in physics during the twentieth century, and became the new
orthodoxy. Outside the circle of professional philosophers his ideas are often
mentioned as if they alone are incapable of refutation!

Scientific theories can be tested in many different ways, and it is better to
make a variety of quite different tests than a large number of similar ones. In
this respect Popper’s ideas correspond better to actual scientific practice than
Hume’s references to the ‘constant conjunction of two objects’. The pig in my
parable was deceived because it relied entirely upon the repetition of one event
(its survival to the next day) and could not put this into a wider context. We are
not deceived by the repeated ticking of a clock because we know about the law of
conservation of energy, which has been tested in many quite unrelated situations.

Unfortunately, while Popper’s ideas were taking root among scientists, a ser-
ious flaw in his theory was discovered by Hilary Putnam. He argued that it did
not break free of the problem of induction as Popper intended. It might be pos-
sible to argue that Popper’s theory applies to certain types of scientific work in
a laboratory, but scientists do not only test conjectures, they eventually recom-
mend that others rely upon the laws which they believe they have found. Putnam
pointed out that if testing conjectures were all that scientists ever did, then sci-
ence would be a wholly unimportant activity. The fact that a law has been highly
corroborated, i.e. has never failed a critical test, is taken in the real world as
evidence that it may be used in practical contexts. The lack of a logical basis
for this is exactly the difficulty which Hume had pointed out.11

Although Popper claimed to be writing about empirical science in general,
The Logic of Scientific Discovery never mentioned geology, biology, or evolu-
tion, but concentrated on physics, mathematics, logic, and probability. Indeed
he defined a scientific theory as a universal statement consisting of symbolic
formulae or symbolic schemata. So plate tectonics would not be a scientific
theory by his definition. Popper’s work has had considerable impact on phys-
ical scientists, but there are situations in which knowledge cannot sensibly be
described as provisional, even though it is directly testable and wholly scientific.
Indeed in a public lecture in Cambridge in November 1994 Max Perutz criti-
cized Popper’s theories as having no relevance to the way molecular biology
and chemistry have developed. In support of this consider the following list of
facts, which are no more provisional than our belief that the world is round.
None of them was known four hundred years ago, none involves symbolic for-
mulae and each required a considerable effort to discover. There are many other
facts of a similar type.

• The Earth rotates about its axis and also orbits around the Sun.
• The blood circulates around the body, pumped by the heart.
• Diamond, graphite, and coal are all predominately composed of the same

element, carbon.
• All material objects are composed of atoms.
• There is a close connection between electricity and magnetism.
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• Malaria is caused by a parasite transmitted by mosquitoes, which takes up
residence in people’s red blood cells.

• Many insects, and in particular bees, have compound eyes.

Although the above statements are surely objectively true, that does not mean
that they have to be accepted on authority. They remain testable, and hence in
principle refutable; but experience tells us, as certainly as anything can, that they
will pass any tests made of them. So it is with the statement that 3×4 = 12. You
can test it for yourself by putting down four rows of three beans, and then count-
ing them, but this does not mean that there is even a slight chance that the identity
is wrong. Scientific knowledge may also be certain even when it is not expressed
in words or equations. Robert Hooke’s book Micrographia—published in
English rather than the usual Latin—had an enormous and immediate impact
when published in 1665: its many beautiful engravings of objects seen using
a microscope changed the kind of questions people could ask about nature.
Figure 10.2 is of the most famous flea in human history!12

One might try to imagine the possibility that a future physics will have
dispensed with the need to believe in atoms, and that our descendents will
describe chemistry, molecular biology, genetics, solid state physics, and nuclear
physics in some quite different manner. It is of course impossible to prove that
this could not happen, but there is no historical case in which an idea with
such diverse experimental support has been completely abandoned. The best

Fig. 10.2 Hooke’s Drawing of a Flea
© The Royal Society
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candidates are alchemy, phlogiston (discussed further on page 271), and the
geocentric universe, but more on the grounds of their longevity than of the
amount of evidence supporting them. An indication of the volume of current
research supporting Dalton’s atomic theory of chemical compounds is given by
the following table, which lists the size of the journal Chemical Abstracts for
three chosen years in the twentieth century. Size is measured by the combined
thickness of the relevant volumes!

Year Size
1920 21 cm
1955 44 cm
1990 318 cm

Similar statistics could be given for physics and mathematics, but the volume
of current research in medicine and the life sciences is surely much larger.

One might try to rescue Popper by suggesting that he was writing about
theories and that the above items are hypotheses or facts. However, this will not
do, because there is actually no sharp distinction. Dalton’s claim that material
bodies are composed of atoms was certainly a theory which many chemists did
not believe during the whole of the nineteenth century. At that time it satisfied
the criterion of providing an abstract quantitative mathematical structure which
explained a steadily increasing range of experimental facts, while being well
beyond direct experimental verification. During the twentieth century the sheer
variety of different types of corroboration of the theory has eventually made
atoms a part of the very language which we use to describe phenomena. One can
challenge individual items such as whether one can ‘really see’ single atoms in
suitable microscopes, but collectively the weight of evidence is overwhelming.

On considering these examples a rather interesting fact emerges. Scientific
theories can be true (or false in the case of phlogiston) when they can
be expressed in common sense terms. On the other hand scientific theories
which can only be expressed in terms of sophisticated mathematics have a
much more provisional status. History shows that they may be replaced by
better theories using entirely different mathematics at some future date. Math-
ematical theories do not explain the subject they refer to, but only provide
models which enable predictions to be made. Recall Newton’s own admission
that there was something deeply mysterious in his theory of gravitation. Popper
was right only in as much as he was referring to mathematical theories. They
are simultaneously the most accurate theories we have and also the ones whose
formulations have changed most with time.

It is an interesting fact that scientific theories are not discarded simply
because they fail to predict a range of facts correctly. Paradoxical new discov-
eries prompt two responses. The first is an attempt to find errors in the new
work, and the second is to try to incorporate the new facts into the existing
theory with the fewest possible changes. Only if both of these responses fail
do scientists start looking for a new theory which will explain all of the new
facts in an economical and convincing manner. They never throw away the old
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theory until a superior replacement has been found, and frequently do not do
so even then.

The current orthodoxy among physicists is that every (mathematical) theory
has a domain of validity. Within its domain it yields reliable predictions, but as
one approaches the boundary of the domain the predictions become steadily less
accurate. Note that the idea of truth or falsity of theories is no longer an issue:
all that remains is whether theories yield accurate predictions or not within
some domain. This accounts for the peculiar fact that Newtonian mechanics
continues to be used long after it has supposedly been superseded by general
relativity and quantum theory. Its domain of applicability involves restricting
the speeds of the bodies to be much less than the speed of light, and avoiding
the scales of size and energy at which quantum effects become important.

The acceptance of the radically new quantum theory in the late 1920s resu-
lted from a collective agreement that the new theory explained a wider variety of
facts than did the previous one. The reason why the older Newtonian mechanics
was not abandoned with the advent of quantum theory is quite simple. The equa-
tions of quantum theory might have been quite simple to write down, but they
were extremely hard to solve in all except the simplest cases. Even though the
old theory was less accurate, its much greater technical simplicity ensured that
it would be used in all cases in which quantum effects were not of paramount
importance. In particular Newton’s theory, although ‘superseded’, is still the
one used to calculate the orbits of satellites and the trajectories of spacecraft.

Empiricism versus Realism

In this section we consider some fairly recent contributions to the philosophy
of science, which again illustrate how difficult it is to produce a satisfactory
description of the scientific enterprise. The two major contenders are called
scientific realism and empiricism.13

The issue in this debate is not whether the world exhibits regularities,
which can be discovered and classified by scientists. This can hardly be denied.
Faraday’s work relating electricity and magnetism has transformed almost every
aspect of our daily lives. The same can be said of Dalton’s atomic theory. The
Curies’ laboratory study of radioactivity has had profound implications for the
study of stellar evolution, geological dating, and several different industries.

During the nineteenth century many elements were heated and then exam-
ined using spectrometers, which split their light into its different colours. Sharp
spectral lines were observed, with a different and characteristic pattern for each
element. Exactly the same patterns are observed in the light received from
very distant stars viewed using our most powerful telescopes. This provides
convincing evidence that physics is the same over an enormous range of times
and distances. There is no logical proof that laboratory observations should
apply to the larger world, but nevertheless it has been so, time and time again.
That, ultimately, is why science is more than a hobby for eccentrics.
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The issue therefore is not the existence of regularities in the world, but the
status of theories which describe those regularities. Let us start with realism,
the natural position for any scientist. In his influential book The Scientific Image
Van Fraassen defined it as follows:

Science aims to give us, in its theories, a literally true story of what the world is
like; and acceptance of a scientific theory involves the belief that it is true.14

He emphasized the inclusion of the words ‘aims’ and ‘literally’ in this definition.
He also stated that if belief comes in degrees, so does acceptance, and we may
then speak of a degree of acceptance involving a certain degree of belief that the
theory is true. The above should be contrasted with his definition of empiricism:

Science aims to give us theories which are empirically adequate; and accept-
ance of a theory involves a belief only that it is empirically adequate.

Van Fraassen is not a realist, and in particular puts the evidence provided by
microscopes into the ‘theoretical’ category. Indeed he is only prepared to accept
as real what can be perceived using the unaided senses. Needless to say there
are many philosophers and scientists who disagree with him. Van Fraassen’s
position cannot be disproved on logical grounds, but logic is not everything.
Figure 10.3 is of the skeleton of a marine protozoan called a radiolarian, mag-
nified about a thousand times using a scanning electron microscope. Unlike
fleas, the very existence of radiolarians is only known because of the existence
of microscopes. Nevertheless, such images are so obviously similar in type
to what we see with our naked eyes that to regard them as theoretical entities
strikes me as extremely contrived. But it is not merely a matter of saying that
‘seeing is believing’. Scientists regularly sort cells into types by moving them
around with a probe, and inject material into single cells using extremely fine
hollow needles. Such manipulations greatly increase one’s confidence that there
is something real at the other end of the microscope.

I am emphatically not saying that what we see using a microscope coincides
exactly with what is there. Indeed much of Chapter 1 was devoted to showing
that this ‘naive realism’ is not justified even when looking at objects of our own
size. Different types of microscope provide different images, and one often has
to work hard to find the best way of viewing almost transparent cellular bodies.
But the same would be true for almost transparent objects of our own size.

Even if one accepts the reality of entities seen using a light microscope, the
existence of viruses might be questioned. They are theoretical entities in the
sense that we have to infer their existence from primary sense data. On the other
hand the evidence is so overwhelming and comes from so many independent
sources that it is impossible to imagine it being overthrown. I doubt that any
scientist considers that the existence of viruses is open to serious debate. The
situation is not comparable with the status of Newtonian mechanics in 1900.
The amount of evidence for the existence of viruses is vastly greater and more
varied than it ever was for Newtonian mechanics. Similar comments could be
made about DNA, protein molecules, all of the fainter stars in our galaxy, other
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Fig. 10.3 A Radiolarian
Photographed by Tony Romeo, Electron Microscope Unit, The University of Sydney

galaxies, etc. The existence of all of these is inferred via the use of sophisticated
instruments and not by direct observation. Nevertheless it would be absurd to
regard their existence as merely hypotheses which lead to good predictions.
A few philosophers might take this attitude to prove how open-minded they
are, but they will convince nobody else.

The above comments should not be taken as an endorsement of all scientific
theories. Each one has to be considered on its own merits. Some theories have
now progressed to the status of settled fact, but there are many others which
are much more provisional. If we look into the sky on a cloudless night we
may see many randomly scattered points of light. As a result of a long chain
of theoretical arguments involving optics, spectroscopy, and nuclear physics
we now believe that these are caused by large glowing bodies at incredible
distances. As this stage in the development of astronomy it would be absurd to
deny the existence of stars, but many questions about them are still open. For
example, the recent ‘solution’ of the solar neutrino problem may be correct, but
it is still capable of being doubted. This being so, we cannot yet be sure that
we fully understand the dynamics of our own sun, let alone all others.

Everything written above favours the realist interpretation of science. Unfor-
tunately, once one turns to scientific theories of a highly mathematical kind the
situation reverses. The three most successful such theories are Newtonian mech-
anics, quantum mechanics, and relativity theory. The predictions of Newtonian
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mechanics are extremely accurate for medium sized and slow moving bodies,
but scientific realism is about truth, not predictive power. Appeals to predictive
power are retreats to an empiricist position. Quantum mechanics and relativity
theory depend upon utterly different views of ‘what the world is like’. The
Newtonian action at a distance has disappeared from general relativity, but is
still present in quantum mechanics. The three theories are based on completely
different fields of mathematics. So fundamental physics, as currently practised,
fails van Fraassen’s test for realism.

Let us look at a more recent definition of Psillos:15

Mature and successful scientific theories are well-confirmed and approxim-
ately true of the world. So the entities posited by them, or, at any rate, entities
very similar to those posited, inhabit the world.

Unfortunately Newtonian atoms are not very similar to quantum mechanical
atoms: the latter can interfere with themselves in double slit experiments
with measurable consequences; the former cannot. Scientists’ understanding
of the nature of protons was entirely changed by the discovery of quarks, so
presumably the earlier very successful theory of protons was immature. Recent
discoveries at the cutting edge of cosmology are just as amazing. Observations
of the rotation of galaxies show that they must be surrounded by large quantities
of dark (i.e. unobservable) matter, and even of unknown and exotic forms of
energy. What we can observe may be only about 5% of what is there. It seems
possible that the origin of the universe may involve a bizarre phenomenon going
under the name of inflation, and that there may be many parallel universes with
which we can have no contact. Physicists cannot even agree on the nature of
space-time: its preferred number of dimensions at present is ten (or possibly
eleven). The inevitable conclusion is that fundamental physics and cosmology
are not mature sciences. Psillos’s definition can only be saved by agreeing that
there are no mature sciences!

Since (these two) philosophers have not resolved the issue, perhaps they are
approaching the problem from the wrong angle. Almost all physicists claim to
be realists, so it might be worthwhile to see what one of them means by this
term. We choose Steven Weinberg, who has written several very thoughtful
popular books about science, and who has won a Nobel Prize for his work in
fundamental physics. In Dreams of a Final Theory he writes:

My argument here is for the reality of the laws of nature, in opposition to the
modern positivists, who accept the reality only of that which can be directly
observed. When we say that a thing is real we are simply expressing a sort of
respect. We mean that the thing must be taken seriously because it can affect
us in ways that are not entirely in our control and because we cannot learn
about it without making an effort that goes beyond our own imagination.16

This is a rather weak concept of realism, but he continues with the following:

But I have to admit that my willingness to grant the title of ‘real’ is a little like
Lloyd George’s willingness to grant titles of nobility; it is a measure of how
little difference I think the title makes.
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I have struggled to understand what he means by this sentence, without
success. The rest of the passage suggests that he may be saying that scient-
ists are not free to invent laws arbitrarily, and that it is not worth worrying about
the absence of absolute criteria of truth, or of reality. This is certainly true
from the point of view of physics, but philosophers of science are not trying
to facilitate the progress of physics. They are trying to understand the nature,
or status, of scientific knowledge, an entirely distinct matter. Developments
in physics must be of importance to them, but that does not imply that their
conclusions should have any relevance to the practice of physics. This is not
a criticism, since exactly the same is true of many other people, for example
computer chip manufacturers.

A part of the problem is that it is extremely hard to detach oneself from
one’s beliefs about the future endpoint of the scientific enterprise. New dis-
coveries may lead science into quite unanticipated territory, as quantum theory
did, destroying Laplacian determinism in the process. We may one day have
a ‘Theory of Everything’, as Weinberg expects, and we may not. Arguing that it
must necessarily exist, even if we never succeed in finding it, is simply express-
ing the prejudice that the world must inevitably be law-like, and that the laws
must be mathematical. Seeking mathematical explanations is fine as a method
of investigating the world. It has been extremely successful, but that does not
commit one to declaring that there cannot be any other way of thinking about
the world.

It seems best to be content with a description of science as it now is, and
to attribute goals only to individual scientists. We might characterize science
simply as the systematic enquiry into the properties and behaviour of the natural
world. Scientists try to obtain detailed explanations of aspects of the world by
using a combination of theoretical arguments and empirical tests. These must
be accessible to everyone, subject to the acquisition of the necessary technical
skills. The conclusions must be testable in the natural world and falsifiable.
Pure mathematics is not science, nor is Christian Science.17

The Sociology of Science

A weakness of the last section is that it focuses on only one aspect of science.
John Ziman, who describes himself as a lapsed physicist, has argued for many
years that we can only understand science fully by considering also its psy-
chological and social aspects.18 The psychological aspect refers to the process
of discovery by individual scientists, who now increasingly work in organized
teams. Any detailed investigation of this must be based on comparing their
note books and personal accounts. Every historian knows that the latter are
frequently unreliable: people unconsciously simplify the process of discovery
and often do not mention false trails; after a period of years they forget the
sequence of events, and occasionally deliberately misrepresent them.
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The social aspect of science refers to the process by which the community
adopts a new discovery. This is frequently highly complicated and drawn out,
as well as being dependent upon the reputations and personalities of the scient-
ists involved. Textbooks regularly ignore this aspect of science, or reduce it to
a parody which does not mention any of the doubts expressed at the time. The
importance of these social issues came to the attention of the general public
when Thomas Kuhn published his book The Structure of Scientific Revolutions
in 1962.19 He argued that science does not consist only of the steady accu-
mulation of knowledge, each bit carefully considered by the community and
then added onto the list of established facts. This he called normal science, to
be contrasted with revolutionary science. In the latter there is a major change
of viewpoint, which he called a paradigm shift, in which the old framework
is demolished and replaced by a radically new one. Two obvious examples
of theories which caused major paradigm shifts are Darwin’s theory of evolu-
tion and Einstein’s general relativity. Kuhn argued that scientists do not make
decisions about what paradigm to accept on narrowly logical grounds. Like
everyone else, they depend upon judgement and experience.

Kuhn’s emphasis on discontinuities in scientific development and on chan-
ging paradigms were valuable contributions to the understanding of science, as
was his declaration that science does not proceed only by logical arguments.
Indeed one could go further: most innovative research depends as heavily upon
judgements as upon logic, and leads to changes of attitude towards what was pre-
viously known. Sometimes these are large changes justifying the term paradigm
shift, and sometimes they are small. There is no principled way of distinguishing
between normal and revolutionary science.

Kuhn also introduced the notion of incommensurability between theories.
This is difficult to explain, and we will start with one of the many examples
which Kuhn described. This involves phlogiston, a word referring to a sub-
stance (or principle) whose existence was widely accepted in eighteenth century
chemistry.20 It has no direct translation into modern chemistry, and we now con-
sider that no such substance exists. But with sufficient effort one can understand
how eighteenth century chemists built up a coherent picture of chemical phe-
nomena using phlogiston. Most explanations of phenomena using phlogiston
can be interpreted in modern chemical language, but the interpretation is very
different from case to case. Kuhn described phlogistic chemistry and modern
chemistry as incommensurable.

The concept of incommensurability was widely discussed, and even cri-
ticized as ultimately incoherent. Later in his life Kuhn claimed that many of
his critics were over-interpreting what he had written; he also accepted some
responsibility for the misunderstandings.21 Let us start with the strong incom-
mensurability position he is widely considered to have been advocating in The
Structure of Scientific Revolutions. This stated that there could be no basis for
rational discussions between the advocates of a sufficiently radical new theory
and its predecessor. The concepts they used were so different that one simply
had to adopt one of the two world views. Scientific revolutions were rather like
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political ones, the winner being determined by a power struggle rather than by
rational argument.

This strong version of incommensurability was criticized by several of
Kuhn’s contemporaries, and is not sustainable. As a test case let us consider
the birth of quantum theory in 1925–26. This must be counted as one of the
greatest revolutions on scientific thought ever: it has totally transformed phys-
ics, chemistry, and even biology over the last century. The scientific community
agreed fairly quickly that it was a huge advance on Newtonian mechanics, even
if some, such as Einstein, expected that it would eventually be replaced by
something less mysterious. However, it is not strongly incommensurable with
Newtonian mechanics: the earlier theory is derivable as a limit of the new one
as Planck’s constant converges to zero; in the reverse direction many of the
notions of Newtonian mechanics (space, time, potential energy, kinetic energy,
momentum) have direct analogues in quantum theory. While quantum theory
undoubtedly reigns in the micro-world of atoms, this is not to say that quantum
theory and Newtonian mechanics make the same predictions about the beha-
viour of all sufficiently large bodies: superconductivity and superfluidity are
among the macroscopic effects which are inexplicable along Newtonian lines.
The point is rather that quantum theory enables scientists to work out when
Newtonian mechanics will make the right predictions.

The same applies in to the discovery of the structure of DNA, and to plate
tectonics, the theory explaining continental drift. Each was entirely compre-
hensible within the existing frameworks of the two subjects. They provided
detailed mechanisms to explain a range of phenomena which had previously
not been understood. Both were confirmed by rapidly increasing amounts of
evidence, which caused huge changes to sweep through the subjects. They
might have shown that certain earlier beliefs were wrong, there is no evidence
of (strong) incommensurability of paradigms.

In 1976 Kuhn wrote that he intended incommensurability between theories
to be interpreted in a much weaker sense: he agreed that two incommensurable
theories could be compared, even though some terms used in one might have
no analogues in the other.22 Exploring the extent to which he changed his views
with time, as opposed to simply finding a clearer way of expressing them, is
far beyond the scope of this book. But Kuhn’s ideas about incommensurability
have been so influential (often unfortunately so), that I must quote the following
passage of his:

To name persuasion as the scientist’s recourse is not to suggest that there
are not many good reasons for choosing one theory rather than another. It
is emphatically not my view that ‘adoption of a new scientific theory is an
intuitive or mystical affair, a matter for psychological description rather than
logical or methodological codification’ . . . What I am denying then is neither
the existence of good reasons nor that these reasons are of the sort usually
described. I am, however, insisting that such reasons constitute values to be
used in making choices rather than rules of choice. Scientists who share them
may nevertheless make different choices in the same concrete situation . . . In
such cases of value conflict (e.g. one theory is simpler but the other is more
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accurate) the relative weight placed on different values by different individuals
can play a decisive role in individual choice.23

To the extent that he is supporting reason and judgement, as opposed to fixed
rules, for the acceptance of theories, this seems entirely acceptable.

Kuhn’s ideas have had a major impact on the development of the sociology
of science. This is distinguished from the history and philosophy of science by
its methodology. At its best it merely avoids addressing the truth of scientific
beliefs, considering only the social issues. This is entirely defensible: soci-
ologists studying an immature and controversial field are not in a position to
judge which view will eventually prevail. Their accounts of personal and group
interactions would hardly be trustworthy if they had prejudged the outcome of
future experiments.

According to Barnes, Bloor, and Henry the pursuit of science has more in
common with other forms of human activity than is commonly admitted:

In no way does this imply any criticism of science, but it does suggest that
the realisms of science are particular instances of something common to all
forms of culture and implicit in all forms of practice. The presumed reality
of ghosts and spirits organizes life in many tribal cultures . . . Scientists are
distinctive in the theoretical objects they currently assume to be ‘really there’.
But in their sense that such objects are there, and in their use of the techniques
and devices of the realist mode of speech, they are typical of human beings in
all cultures.24

Unfortunately there are those who go far beyond the above statement, claiming
that Western Science is merely one culture among many, and that one has the
right to reject its conclusions if one feels uncomfortable with them. Richard
Dawkins claims to have been confronted with this type of attitude regularly
when speaking about the theory of evolution in public meetings. His response
is now famous: ‘show me a cultural relativist at thirty thousand feet and I’ll
show you a hypocrite’. It is easy to refute the extreme position adopted by such
people. That objects thrown upwards return to Earth is a fact about which one
can hardly argue, and given that, the relationship between the force with which
one throws an object and the length of time before it returns is not a matter
on which one can have a variety of opinions. All available evidence confirms
that the same scientific laws operate everywhere and that no changes in the
fundamental physical constants have taken place over billions of years.

For a more systematic criticism of cultural relativism I recommend the
recent book The Truth of Science by Roger Newton. Accepting his argu-
ments does not, however, render irrelevant other matters raised by more serious
sociologists of science. They have examined how scientific discoveries were
actually made in a number of case studies, and have found that the process
was nothing like the ‘official’ method by which science is carried out. The case
of the measurement of the charge of the electron by Millikan provides a very
clear example of this. Barnes, Bloor, and Henry pointed out that in his 1913
paper in Physical Review, Millikan used only 58 of the 175 experiments which
he performed according to his notebooks; the others were rejected because he
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regarded them as anomalous in some respect. This might have resulted in his
being accused of falsification if his results had not stood the test of time. They
also describe the contemporaneous experiments of Ehrenhaft, which yielded
quite different results for the electron charge, and were eventually eliminated
from the corpus of science without being convincingly refuted.

Our current beliefs about the charge of electrons are not based upon the
results of either of these scientists. Millikan realized that direct measurements
of the charge were in fact possible. Since that time technology has progressed
so far that his experiments would now be regarded as extremely primitive. We
remember him rather than Ehrenhaft because the value he obtained turned out to
be more or less right. Much more accurate measurements are now possible and
have been verified by their consistency with a wide variety of other knowledge.

At the start of the seventeenth century Francis Bacon declared that scientists
proceeded, or should proceed, by collecting facts until they saw the pattern into
which they fell. There are only a few examples which fit this description. Kepler
did indeed study Brahe’s astronomical data for years, before he concluded on
this basis alone that the orbits of the planets were elliptical. Much more recently
a lot of progress in genetics depends upon comparing the genomes of very
different species, using the massive databases which have been collected.

Particle physics is at the opposite extreme. Experiments are designed on
the basis of a large amount of theoretical calculation, in order to test a specific
prediction in a true Popperian manner. In this field the observational data are
so far removed from the objects they are supposed to be related to, that the
very existence of the objects might well be questioned: detecting an atom of
argon in an underground vat rich in chlorine is hardly the same as seeing a solar
neutrino. The interpretation of such experiments depends on several layers of
theory, but theory which is better accepted than that being investigated. It may
take decades before scientists reach a consensus about the validity of a new
theory. There are no rules setting out what criteria should be used to decide
such questions: every case is unique and can only be settled by a combination
of experiment and informed debate.

Most of the general public were not aware of this process until recently
because scientists have had an interest in portraying their subject as objective
and free of the confusions which are all too obvious in most aspects of life. Their
increasing willingness to join in public debates and to admit their ignorance is
very much to be welcomed. If only governments were willing to spend more
on research before the regular disasters which hit us. Alas, the time scale of
politicians is reckoned in weeks or months, not the years, or even decades,
which scientists need to make reliable judgements.

Science and Technology

One of the grounds for claiming that science is not morally neutral is the
impossibility of separating the scientific enterprise from applications which
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some regard as unethical or ecologically unsound. It cannot be denied that much
of the scientific enterprise is an attempt to control the world rather than to under-
stand it. The development of accurate timepieces was a response to the need
for reliable navigation around the world. The science of thermodynamics arose
in the nineteenth century out of the need to make more efficient steam engines.
Discoveries of peculiar effects in quantum theory have had such important
consequences for the growth of the semiconductor/computer industry that it is
difficult to disentangle the two. Much of the development of chemistry has been
a response to industrial needs, from the synthesis of fertilizers onwards.

Scientists frequently defend controversial areas of research on the grounds
that we must have the abstract knowledge to enable us to make informed choices
about how society should develop. This presupposes that a distinction between
science and technology can be made. Traditionally this was quite easy: science
was what was done in universities while technology was what was developed
by industries. Indeed there are still cases in which one can be clear that a subject
is science and not technology. Particle physics, astronomy, cosmology, and the
study of human origins spring to mind. Once upon a time this distinction was
also clear to the British research councils: they funded fundamental science and
expected industry to fund its applications. However, times have changed, and
the new orthodoxy is to expect university researchers to pursue lines of research
which will benefit the economy, and to set up spin-off companies to do so.

There is plenty of contemporary evidence to support the claim that scientific
judgements can be contaminated by political considerations. The spread of the
disease BSE in the UK in the 1980s was a result of the adoption of unsafe
livestock feeding practices. According to a British Government report in 2000,
the behaviour of the Government of the time had been designed more to allay
fear than to provide full information about the possible risks.25 Two of its many
recommendations—‘epidemiologists, particularly those in the public sector,
should make available the data upon which their conclusions are based’ and
‘an advisory committee should not water down its formulated assessment of
risk out of anxiety not to cause public alarm’—speak volumes about the gen-
eral Government custom of manipulating information. At least one Ministry
(MAFF) was more concerned to protect the profits of the farming community
than the health of the public it supposedly served.

A direct result of this scandal in the UK has been the collapse of public
confidence about advice concerning related issues, such as the safety of GM
foods. The public are behaving perfectly rationally in this matter. Although very
few can assess the scientific issues personally, everybody knows that reassur-
ances by those in authority are unreliable (some would say worthless) when the
profits of major corporations or industries are at stake. The only way forward
is for everyone to admit that no human activity can be ‘safe’ in an absolute
sense. According to Robert May26 ‘the full messy process whereby scientific
understanding is arrived at with all its problems has to be spilled out into the
open’. The public must be allowed to compare the risks of any action with the
benefits and with the risks of alternative courses of action.
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The most recent controversy among the increasing number which science
is presenting us concerns the cloning of human organs. For some this raises the
horrors of Frankenstein’s monster and is clearly unethical. For others it provides
the possibility of saving the lives of those suffering from severe and irreversible
illnesses. Those in favour argue that we should first determine the scientific
possibility of producing cloned organs so that we can then make the ethical
decisions about their use in a properly informed manner. Those opposed say
that the large investments involved in such research always lead to its eventual
use, and the decision not to proceed should be taken now. Public discussion is
urgently needed, and is happening in the UK, but the number of totally novel
and important issues appearing is overwhelming our capacity to discuss them
seriously.

Conclusions

The distinction between science and technology is just one of many which
we impose upon the world in order to organize our thoughts. Many other dis-
tinctions have been thought valuable by some but criticized by others. Thus
Descartes constructed a dualistic philosophical system in which mind and mat-
ter were largely separated. Others such as Popper and Penrose have argued that
the world has three aspects, the third being the world of human constructs for
Popper and the Platonic world for Penrose.

One could equally well propose that the world should be divided into
five categories: matter, fields, individual consciousness, information, and cul-
ture. Some people probably regard electromagnetic, gravitational, and quantum
fields as being just aspects of matter, but this would not have been understood
by Descartes. Penrose appears to think that consciousness might one day be
amalgamated into the fields category in some speculative approach to quantum
gravity. Functionalist philosophers try to absorb consciousness into the informa-
tion category. I have argued that Platonism arises by trying to objectify human
concepts, as Popper is close to doing with his third world. The right response
to all of these theories is to remember that we choose the categories in order
to organize our thoughts. They may be useful, even for centuries, but it is not
plausible that any small number of categories can provide a comprehensive way
of analysing the world.

At the present time the various sciences may be divided into two categor-
ies: those which depend heavily upon mathematics and those which do not.
The former are generally regarded as more fundamental, but that does not
imply that they have more significance for our everyday lives. Indeed, I do
not know anyone who considers that the most fundamental branches of physics
will have any technological relevance to our lives; the huge energies at which the
effects become important more or less rule out basing industries upon them. On
the other hand, there are many examples of important scientific developments
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which did not depend significantly upon mathematics. In particular, Galileo’s
astronomical discoveries shook the scientific world in spite of the fact that
they depended upon nothing more than simple observation through a telescope.
Linnaeus’ systematic classification of organisms depended only upon observa-
tion aided by the use of the microscope. Darwin’s Origin of Species does not
contain a single equation. Faraday, the discoverer of electromagnetic theory
and one of the greatest experimenters of all time, had an aversion to mathem-
atics and rarely used more than simple ratios to describe his results. The recent
theory of plate tectonics is completely comprehensible without any recourse to
mathematics.

If one examines technology rather than science, one finds that mathem-
atics (as opposed to simple arithmetic) had little effect on its development
before the nineteenth century. An example is the design of ever more soph-
isticated locks over the last four centuries. This depended upon a high degree
of three-dimensional geometric imagination and ingenuity, of the type which
mathematicians pride themselves on possessing. However, no mathematics was
involved, nor was any input from Newtonian mechanics, in spite of the fact that
locks are mechanical devices. No doubt one could produce a mathematical
specification of a combination lock if one tried hard enough, but it would be
about as useful as describing a beautiful sunset in terms of the frequencies of
the radiation involved.

When people talk about the unreasonable effectiveness of mathematics in
the description of nature, they are usually referring to physics. The essence of
this subject is to identify elementary systems whose behaviour depends upon
an extremely small number of relevant factors, each of which can be expressed
in numerical terms. This way of looking at the world was the responsibility of
Galileo, more than any other single person. Once enough such systems have
been understood, it is natural to start combining them in ever more complex
ways, until, eventually, the mathematics is no longer able to cope, because of
chaos, self-organized criticality, or some such issue. The power of mathematics
only seems astonishing because of our lack of historical perspective. The subject
today is the cumulative result of intense efforts by some of the most able people
in the world over a period of two and a half thousand years. The acceleration
of its progress in the seventeenth century was partly the result of Gutenberg’s
introduction of the printing press in the middle of the fifteenth century. Its
relevance to the description of the world is a consequence of the fact that much
of it was created for precisely this purpose.

The existence of major metropolises provides a different type of evidence
of the astonishing achievements possible when whole societies cooperate, even
unconsciously, over several centuries. New York was founded almost four hun-
dred years ago, as New Amsterdam, and now boasts millions of inhabitants and
a network of buildings, roads, and trains which would have been inconceivable
to its founders. How much more one might expect to achieve in two and a half
thousand years!
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Let us return to mathematics. The physicist Roger Newton supports a less
conventional view of its status than is usual among physicists:

It is not that Nature’s own language is mathematics—as Galileo thought—
and that we are thus compelled to learn every obscure rule and usage of
that tongue to comprehend it, but that mathematics is our most efficient and
incisive instrument for rational understanding of relations between things. If
mathematicians have already built, with great ingenuity, elaborate structures
containing results of long and hard thought, if they have devised concepts
appropriate for reaching their conclusions, then scientists are only too happy
to make use of this ‘wonderful saving of mental operations’.27

This makes much more sense than the seventeenth century view that God
decided to create a universe which was governed by mathematical equations.
This view of the world arose within the Judaeo–Christian tradition, but prob-
ably owed more to the (pre-Christian) Greeks than it did to Christianity. For
many scientists it has now been replaced by the view that we construct models
and theories about reality in order to help us to understand it.

The unfathomable mysteries of quantum theory provide forceful support
for this more modest view of our abilities. We have used mathematics as a tool
in helping us to understand the universe. A crucial assumption is that we can
break the problem of understanding the universe up into small components
which can be understood separately, and then combined to produce the big
picture. This latter method has had brilliant successes, but it is fundamentally
wrong. I have produced examples from Newtonian mechanics and quantum
theory which demonstrate that the universe is an integrated whole, in which
remote events can have rapid and important consequences for the behaviour of
small systems, such as our brains. We, or if you prefer, our brains can then
change the behaviour of other inanimate systems. The problem is not that the
mathematics is wrong, but that it cannot be applied to sufficiently complex open
systems, and such systems include almost everything which we encounter in
our daily lives. To maintain that the relevant equations are correct, but that they
are far too complicated and unstable to be soluble by us, is to adopt a philo-
sophical stance. If one refuses to take this easy and conventional step, then
the existence of free will becomes just one among many things which cannot be
explained using equations. We only consider it to be uniquely difficult because
we have made grossly exaggerated claims about our ability to understand
the rest of reality. In fact we are merely intelligent apes, with an almost infin-
ite capacity for self-congratulation. We are certainly far smarter than anything
else around, but the fact that an elephant has a much longer trunk than anything
else does not imply that it can suck up the ocean, whatever it may think about
the matter.

There is no a priori reason why theories must necessarily be ordered in
a hierarchy, the most fundamental being the ultimate and true explanation of
everything. The evidence that our consciousness has an influence on our bodies
as well as the other way around indicates that this is not a full explanation of the
world. A more modest claim is that every scientific theory has ultimately to be
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consistent with reality, at least to some extent, if it is to be useful. The real world
does not fall into neat divisions between physics, chemistry, biology, etc. These
are boundaries which we impose upon it in order to break up its complexities
into chunks which our brains can cope with. When we look at the structures of
molecules, for example, we see that they lie on the boundary between quantum
theory and chemistry. Both subjects claim to describe molecules, so the theories
have to agree with each other if they are to agree with reality. Any improvements
in the fit of either theory to the real world forces an increased similarity between
the two theories. The degree of overlap will increase as the predictive powers
of the two theories both improve. The claim that chemistry can be derived
from physics is superficially attractive, but the historical chain of implication
went in the reverse direction. The main evidence for atomic theory throughout
the nineteenth century came from chemistry, just as the main evidence for the
existence of genes came from the biology of whole organisms. Even today it is
not possible to analyse the structure of large molecules without a major input
from chemistry. We have seen that an ab initio approach to this problem will
probably never be possible.

The situation in mathematics is similar. Gödel showed that this cannot be
built in an orderly hierarchical manner starting from firm foundations. Hilbert’s
programme of deriving the whole of mathematics from a perfectly secure formal
system is dead, but the bulk of mathematics necessarily survived this catastrophe
because it had never been based upon this type of formalist reduction. Mathe-
matics is a collection of overlapping fields, each with its own methodology. The
reason that these are consistent with each other is that each is built using logic
and geometrical imagination. Neither of these is infallible in our hands, because
we are finite creatures, but experience shows that if apparent inconsistencies
are examined slowly and carefully they can eventually be resolved.

Science may be regarded as providing a series of different views of the
world, some sharp but narrow in scope and others broader but fuzzier. Each of
the windows gives an equally valid view of different aspects of the same reality.
As we study each view, we gradually sharpen our focus and find similarities
with the views through other windows. The full complexity of reality is far
beyond our ability to grasp, but our limited understanding has given us powers
which we had no right to expect. There is no reason to believe that we are near
the end of this road, and we may well hardly be past the beginning. The journey
is what makes the enterprise fascinating. The fact that the full richness of the
universe is beyond our limited comprehension makes it no less so.

Notes and References

[1] Bentley and Humphreys 1962

[2] No relation to the author of this book!

[3] An exhaustive study of the literature up to 1986 is given in Barrow and
Tipler 1986.
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[4] Polkinghorne 1998, p. 92

[5] Leslie 1989

[6] Barrow and Tipler 1986, Rees 1995, Rees, 1997, Rees 1999

[7] Klee, 2002

[8] Livio et al. 1989

[9] It is best to interpret the word ‘object’ as including events.

[10] Einstein 1982c

[11] See Putnam 1991. In the same article Popper rejects Putnam’s criti-
cism as completely misconceived, and Putnam rejects Popper’s rejection.
Philosophy is never dull!

[12] The drawing might well have been by Christopher Wren rather than by
Hooke himself.

[13] My own position takes something from each of these, and is closest to
entity realism. [Clarke 2001]

[14] Fraassen 1980

[15] Psillos 2000

[16] Weinberg 1993, p. 35

[17] Judge Overton made a definitive judgement to this effect in 1982 in the
case of McLean v. Arkansas Board of Education. I have adopted parts of
his statement of the essential characteristics of science above.

[18] Ziman 1995

[19] The French philosopher Gaston Bachelard anticipated some of the ideas of
Kuhn, but his work is largely unknown in the English-speaking world.

[20] Kuhn 2000, p. 40–44

[21] Kuhn 2000, p. 155

[22] Kuhn 2000, p. 189

[23] Kuhn 2000, p. 157

[24] Barnes et al. 1996, p. 84

[25] Phillips 2000

[26] The current President of the Royal Society

[27] Newton 1997, p. 140
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