
DISTRIBUTED PARAMETER SYSTEMS

Many physical systems are naturally modeled by partial
differential equations (PDEs): Chemical reactions, fluid
flow, vibrations of flexible structures, and acoustic fields
are some examples that occur in engineering applications.
Typical control problems might be to reduce the vibrations
in a flexible structure (such as a robot arm or a satellite
antenna), to reduce the noise levels in an aircraft, to damp
out undesirable eddy currents in a fluid, or to attain a uni-
form temperature distribution for processing steel bars.
Current engineering practice is to obtain a mathematically
simpler linear ordinary differential equation model by ap-
proximating the original nonlinear PDE model based on
the physics of the process. Then, applying the formidable
arsenal of known finite-dimensional control theory and de-
sign methodology, a control scheme is formulated and sub-
sequently tested and modified based on exhaustive com-
puter simulation experiments. In the 1960s, certain math-
ematicians envisioned an alternative approach: Retain the
more accurate PDE model, and formulate the control prob-
lem for this model directly (1). The obvious advantage is
that the physical interpretation is retained at all stages of
the control design process. However, there is also the con-
siderable disadvantage of introducing the very complicated
mathematics involved in manipulating PDEs. Moreover,
the feedback couplings, which are an inevitable feature of
control, introduce new types of PDEs that were not well
understood in the 1960s. This has provided the motivation
for intensive research into modeling and control of systems
described by partial differential equations.

Although it is useful to subdivide the area of control of
distributed parameter systems into

� Modeling as a controlled PDE, including well-
posedness issues and identification of parameters

� Extension of finite-dimensional linear systems theory
and control concepts to deterministic and stochastic
PDE systems

� Nonlinear systems
� Implementation of the theory to controller design for

real physical systems

We stress that all four areas are closely interrelated.

MODELING

For example, whereas the modeling aspect draws on a vast
body of known theory of physics and mathematics of PDEs,
the control action must be incorporated into the model. Al-
though distributed control (the control acts over a whole
region of the system) is fairly straightforward to model,
control action on the boundary requires a careful analy-
sis. The closed-loop system with boundary control action
results in a nonstandard PDE, and much research has
gone into developing appropriate mathematical formula-
tions, using both PDE and semigroup approaches (2–4).
Similar remarks apply to the modeling of the observation
via sensors that act on the boundary or at points in the
medium. More recently, the introduction of a new genera-

tion of advanced sensors and actuators (smart materials)
has necessitated formulating new composite PDE models
in which the actuators and sensors form an intrinsic part
of this new type of PDE model (5, 6). With ever continuing
technological advances in materials science and other ar-
eas of physics, we can expect a steady stream of new mod-
eling problems for composite configurations of controlled
PDEs. A consequence of physical modeling is the inclusion
in the PDE model of several physical quantities (constants
or operators) that are not known precisely. To complete
the modeling step, these need to be estimated from mea-
surement data. This important step has developed into a
subspecialty called parameter identification (7). The tech-
niques can be described roughly as a sophisticated deter-
ministic least-squares data-fitting procedure in which em-
phasis is laid on the appropriate choice of a numerical
approximation scheme to suit the PDE under considera-
tion. This is in contrast to finite-dimensional identification
techniques that use a stochastic algorithmic approach. Al-
though a complete mathematical theory of stochastic evo-
lution equations exists (8) and there is some stochastic
identification theory in a PDE setting, these theories have
not become current practice. The philosophy behind the es-
timation/identification step for PDE models is to exploit the
given PDE structure fully, as is done in the closely related
area of inverse problems.

EXTENSION OF FINITE-DIMENSIONAL THEORY

Most of the literature concerns the extension of known
finite-dimensional theory in systems and control. There
are two main approaches, the first using a PDE descrip-
tion and the second using a semigroup one. The advantage
of the first approach is that it is directly applicable to PDE
systems, and by using the power of PDE estimates applying
to a specific type of system (for example, parabolic or hyper-
bolic), very sharp results on controllability or stabilizability
can be obtained. For PDE systems, there are many possible
concepts of controllability; the main two are exact control-
lability (the ability to steer exactly to a given state of the
system) and the weaker concept of approximate controlla-
bility (steering arbitrarily closely to a given state). The first
concept implies stabilizability of the system a feedback con-
troller makes the system stable) as for finite-dimensional
systems, but the second concept does not. For this reason,
stabilizability replaces controllability as the key property
needed for control design. Similar remarks hold for the
dual concepts of observability and detectability. The litera-
ture on establishing that these properties hold for particu-
lar PDE systems is vast and continues unabated from the
1960s; the reason is that every new configuration of coupled
PDEs with assorted control action leads to a new, very dif-
ficult mathematical problem requiring sophisticated PDE
techniques (9). The other main problems studied from a
PDE viewpoint are stabilization by boundary control feed-
back and the linear quadratic control problem and its asso-
ciated operator Riccati equation (3, 10). The latter problem
is the key to the main control design for distributed pa-
rameter systems. Recently, extensions of this problem to
the so-called min–max versions have received attention.
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On the other hand, the semigroup approach has the ad-
vantage that several different types of PDEs and delay
equations can be included in the same theoretical formu-
lation, and this formulation closely resembles that for or-
dinary differential equations (11, 12). The basic assump-
tion is that the uncontrolled system can be modeled as a
strongly continuous semigroup. The attractive feature of
this approach is that it is more accessible to engineers (13)
and the theory naturally includes frequency-domain de-
scriptions that are so useful in robust control design. A
wide range of control topics have been covered using this
description: linear control, dynamic compensators, linear
quadratic Gaussian and H-infinity control, Kalman filter-
ing, model reduction, servo problems, observer theory, P.I.
controllers, and adaptive control, to name just a few. The
best results have been obtained for linear systems with dis-
tributed control and observation; that is, there is sensing
and control distributed over the physical system. For sys-
tems that allow sensing and control at interior points or
on the boundary, the mathematical technicalities increase
dramatically. During the past decades, a theory for such a
class of well-posed linear systems has matured (14). The
key property of this class of well-posed linear systems is
that they are closed under composite configurations of cas-
cade, parallel, and closed-loop connections. Many classic
control problems such as linear quadratic Gaussian and H-
infinity control (15), (Riccati-) balanced realizations, track-
ing problems, passivity (16), and certain stabilization prob-
lems (17, 18) have been solved for this class of systems. The
price one has to pay for such a broad coverage is that the
step from the original PDE formulation to a semigroup one
is nontrivial and the results obtained for a particular PDE
example are not always the sharpest possible with dedi-
cated PDE techniques. More recently, research has begun
on a wider classes of systems, where more general types of
semigroups are studied (19).

NONLINEAR PDES

Of course, many systems are nonlinear and PDE models
of physical systems often entail nonlinear damping effects
through the boundary conditions. Considerable literature
exists on the stability analysis of nonlinear PDEs using a
Lyapunov approach (20). More recently, research has been
done on proving stabilization by feedback control imple-
mented on the boundary for certain nonlinear PDE models,
but as yet there is no general theory (21).

A more traditional topic is optimal control of nonlin-
ear PDEs based on the philosophy of Pontryagin’s maxi-
mum principle (22, 23). Existence results are hard to prove,
but necessary conditions can be obtained and numerical
schemes for implementation are available (24). Of course,
the controllers are open loop, but in some applications, this
suffices, for example, shape optimization (25).

IMPLEMENTATION

The implementation of controllers for PDE systems in-
evitably involves approximation. The usual approach is to
first approximate the PDE by various finite element meth-

ods. This very high-order system is then approximated by
finite-dimensional techniques (20), and the controller de-
sign is based on this reduced order model. A disadvantage
of this approach is the lack of an adequate error analy-
sis. Alternatively, one can first do a PDE design and then
approximate the controller. For example, the H2 design
that comprises a linear quadratic controller coupled with
a deterministic observer with output gain from a dual Ric-
cati equation. A fairly complete theory exists of numerical
approximations of the operator Riccati equations involved
and the effect of the approximating controller on the orig-
inal PDE (10). Experience has shown that an appropriate
choice of the numerical approximation is crucial: Modal
approximations rarely give adequate results. An excellent
overview of this design methodology and its successes in
nontrivial applications to vibration control of a plate and
noise attenuation in two- and three-dimensional cavities
can be found in (5). Although the H2 control design usually
yields good results, in some applications, a min–max modi-
fication is to be preferred. A closer analysis of the full PDE
controller can often lead to useful information on the opti-
mum placement of sensors and actuators and to choices for
low-order suboptimal controllers. The above H2 methodol-
ogy is now well established, but it is a linear theory. If the
nonlinearities are not great, then a linearization of the non-
linear model is appropriate. However, the control of highly
nonlinear systems like controlled fluid flow remains a chal-
lenge. A promising approach called “Proper Orthogonal
Decomposition” exploits this new theory on local low-order
approximations of PDEs to design low-order nonlinear con-
trollers. In this approach, physical experimentation and
extensive computer simulations go hand in hand with
a theoretical analysis of the PDEs and their numerical
approximations (see (26)).
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