
NETWORK DESIGN: ALGORITHMS AND EXAM-
PLES

INTRODUCTION

An interconnection network connects various sources of in-
formation using a set of point-to-point links. A link is a
connection using a copper wire or an optical fiber, or it may
be wireless. The nodes are autonomous data sources and
can request to transfer any amount of information to any
other node. Figure 1 shows an example network consisting
of four nodes. Node A has a link connected to node B and
a link connected to node C. Node B is connected to nodes
A and D. Nodes C and D are connected to nodes A and B,
respectively. If node C desires to send some information to
node B, it sends it to node A, which in turn routes it to node
B. Node A thus acts as an intermediate node. The capac-
ity of a node is the amount of information it can transmit
(also called source capacity) or receive (also called sink ca-
pacity). The capacity of a link is the amount of information
that can be transferred over the link in one unit of time.

The network design deals with the interconnection of
various nodes and how to transmit information from one
node to another. Network architecture and design both
have multiple meanings. The most commonly used inter-
pretation relates to the decisions one needs to make to de-
sign a network.The four most important aspects of network
architecture and design are described below.

Network Topology

A topology defines how nodes are interconnected. For ex-
ample, the topology of the NSF network is shown in Fig.
2. Most network topologies are hierarchical in nature. The
design involves developing the structure of the hierarchy,
structures of nodes at each level,and detailed designs of the
nodes. It also involves assigning link and node capacities
to transport the desired traffic. A hierarchical topology is
depicted in Fig. 3. We will be studying the decisioin-making
process and related algorithms and examples in detail in
this artice.

A network node is placed in a hierarchical fashion in
such a way that it is “close” enough to several data sources.
The closeness is described in terms of suitable performance
metrics such as physical distance and cost of connection. A
network node serves as a service point for all data sources

Figure 1. A four-node network.

Figure 2. Topology of the NSF network.

Figure 3. A hierarchical network.

connected to it. Such a node is called a “gateway” as it con-
nects data sources to network nodes. NodesA,B,C,are such
nodes. Gateways connect to data sources, such as nodes
1, 2, .... 12 at the next lower level in the hierarchy and to
routers or switches such as nodes X, Y, etc. at the next
higher level. Switches and routers route information to
other switches and routers on way to other gateways from
where the data are delivered to destinations. There may be
more levels in the hierarchy.

Node and link placement, and their capacities, in a net-
work topology depend on the desired or required traffic flow
that is defined by the traffic characteristics. This problem
is well-studied, and more information can be found in Ref-
erences (1–7). In principle, ideal locations for both network
nodes and links may be specified using algorithms (possibly
complex) that would optimize network design using perfor-
mance metrics of interest. In practice, these placements are
also governed by factors such as existing network, ease of
operation, and convenience of management, which are not
always easy to accommodate in the design process.

Transmission Technology

Physical layer transmission technologies describe the char-
acteristics of physical medium. These technologies involve
signal processing techniques, modulation and demodula-
tion techniques, coding and decoding of information, mul-
tiplexing and demultiplexing techniques employed to en-
hance the utilization of each link, and issues related to
these techniques. Physical medium can be a wire, such
as copper link, coaxial link, optical fiber, or wireless link
using microwave or radio frequencies. The signals being
transmitted over the physical medium can be modulated
and demodulated using amplitude modulation, frequency
modulation, or phase modulation where the information
being transmitted modifies the shape of the waveform be-
ing transmitted. Figure 4 demonstrates examples of mod-
ulation techniques. Multiplexing techniques such as time
division, frequency division, and code division multiplexing
techniques are used to mix and transmit information from
various sources on a single link. In time division multiplex-
ing, each source is given a fraction of time in a given inter-
val, called a frame. In frequency and code division multi-
plexing, frequencies and bandwidth available on a chan-
nel are effectively partitioned so that all sources can use
parts of the capacity of the channel simultaneously. Figure
5 shows different multiplexing techniques.

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright © 2007 John Wiley & Sons, Inc.



2 Network Design: Algorithms and Examples

Figure 4. Different modulation techniques.

Figure 5. Time and frequency multiplexing.

Traffic Control and Network Management Techniques

This aspect of network architecture involves the control
of the switching technology, flow control algorithms for
smooth flow of offered loads to the network, control mes-
sages flow to set up paths, connection requests and re-
sponse protocols, collection of data on actual usage, fault
detection and management algorithms, and effective re-
source utilization algorithms.

Connection requests between nodes in a network are
realized by employing a routing algorithm. Routing algo-
rithms are designed to use existing network capacity and
switching methodology. Either circuit switching or packet
switching can be employed for data transfer in a commu-
nication network.

In a circuit-switched network, a complete, dedicated
path from a source to a destination is established through
the network before communication begins. Dedicated phys-
ical resources are reserved for the communication to take
place. A signal is sent from the source to the destination
node, through intermediate nodes, requesting a connection.
An acknowledgment signal is sent back from the destina-
tion to the source accepting or rejecting the request. A re-
quest is accepted only if all nodes on the path have required
resources available and they can reserve these resources
statically. If no free path exists from end to end, the traffic
is blocked and has to wait for transmission. Path establish-
ment may take substantial time. Once the path is estab-
lished, information is transmitted freely from the source
node to the destination node using the path. The sender
and receiver may use any format for data transfer and
bit rate subject to the constraints of the physical channel.

When the transfer is completed, the path is removed.
In a packet-switched transmission, no physical path is

established in advance. Instead, when a source has infor-
mation to transmit, it assembles it in a packet. A packet
consists of data to be sent and a header. The header con-
tains the source and destination addresses, possibly inter-
mediate node addresses through which the packet must
be routed, and some error correcting codes to check the
correctness of the information. The packets are forwarded
from node to node, one hop at a time. The packets are
queued in buffers at the intermediate nodes along a route
between a source and a destination, traveling from node to
node, releasing links, and switching elements immediately
after using them. A packet is received by a node, checked
for correctness, A and retransmitted, if required. During
the transmission, store and forward operation at each node
increases the overhead and time delay of data packets.

Most networks use packet switching for smaller mes-
sages. In a packet-switched network, it is possible that the
path may change from packet to packet between the same
source-destination pair. Circuit switching is used when a
source/destination has a substantial amount of informa-
tion to transmit. The main advantage of circuit switching
is that the links on a path are always available for commu-
nication. The only delay is the propagation delay. However,
if no information transfer takes place for sometime during
the exislence of a connection, the capacity on the path is
wasted. To reduce this waste, it is possible to statistically
multiplex the path. A path is established in advance be-
tween a source and a destination that is used by every
packet from that source to that destination. However, ac-
tual transmission occurs as in a packet-switched network.
Such a path is called a virtual path, as opposed to a physi-
cal path that is Established in a circuit-switched network.
Such a service, in which a path is established in advance,
also called a connection-oriented service. A pure packet-
switched service is called a connectionless service. To set up
a path, the network control sends messages to nodes on the
path to request a connection. If all nodes on the path from a
source node to a destination node agree, then the path is es-
tablished. Flow control algorithms are employed to control
the actual flow of information so that each node on the path
is not overwhelmed with the information. If a fault occurs
in a node on the path, then the path is established again. In
case of a connectionless service, data packets are just sent
to the next node along the path. If a faulty node is encoun-
tered on the path, the routing is changed on-the-fly. The
Internet datagram service uses a pure packet switching
protocol, whereas the telephone system, for the most part,
uses circuit switching. Networks employing asynchronous
transfer mode (ATM) (that are currently being developed)
use the concept of virtual path for ATM cell transmission.
An ATM cell is a small, 53-byte-long packet that includes
48 bytes of actual data and 5 bytes of control information.
In this case, a path is established that is used by all cells,
but actual transmission is cell by cell from point to point
similar to a packet-switched network.
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Cost

The cost of the network is viewed differently by different
people. The cost includes parameters such as installation of
links and nodes, including the cost of the facility to house
the nodes and lay the links (copper or fiber). Laying out
links is very expensive and includes buying/leasing land,
digging land, laying out conduits, cost of cables, wires, or
optical fibers, end-interfaces, buffering, processing hard-
ware at each end of a link, and management of links. Ad-
ditional operational and maintenance costs are needed to
keep the hardware up and running, replacing faulty com-
ponents and cables, and managing the resources.

For a network service provider, the cost consists of lay-
ing out and operating the network. On the other hand, the
users or consumers of network resources do not concern
themselves with these costs. The costs they account for are
the cost quoted to them by the network providers in terms
of tariffs for different quality of service (QoS) at different
times. These tariffs are usage sensitive and depend on the
volume of data being transported, time of day (morning,
evening, or night), priority of transmission, tolerable de-
lay and loss of data, and several such factors. These fac-
tors together are called QoS parameters. To provide and
guarantee a specific quality of service, the network ser-
vice provider has to dedicate some network resources such
as bandwidth on individual links, buffer spaces at various
nodes on the path, time slots for transmission of specific
data, and alternative resources in case of a failure for that
service. The cost of these resources forms the basis for tar-
iffs. The development of a cost model for a link is a difficult
problem. Often good approximations and simplification of
cost structures are used by the network service providers to
keep the complexity of the network design and service tar-
iffs under control. In our designs, we consider both models
(actual physical network cost model and consumer network
cost model) of cost in our designs.

APPROACHES TO NETWORK DESIGN

If a new network is being designed from scratch with no
existing capacity, well-defined traffic requirements (traffic
intensities), and full freedom in selecting network compo-
nents, then the designers can make the best possible deci-
sions by balancing the cost and QoS requirements, such as
throughput, delay, and other performance measures. How-
ever, more often than not, most real designs are incremen-
tal; that is, the resources are added or upgraded over the
existing capabilities as required by the new demands. The
network really evolves with the needs and, in general, is
in response to the new requirements. This restriction re-
stricts the optimality in design as the existing design gov-
erns the final output.

Inputs for network designs are based on the best esti-
mates of the anticipated traffic between various sources
and destinations. Such data are available in the form of
a traffic matrix. Many networks are designed using cur-
rent and additional anticipated needs and certain rules of
thumb in an incremental fashion. The decisions are based
on the experience of the designer. It is possible to make
serious mistakes as part of a new design. For example,

when the information transmission is from point to point
as in packet switching, intermediate nodes store and for-
ward the incoming information. By not providing enough
buffer space or control for incoming traffic streams, losses
may be excessive and/or delays may exceed the acceptable
limits. A loss may or may not be tolerable. For example,
in a voice communicatioin, a small loss may almost go un-
noticed, but loss of even a byte may not be tolerable in a
computer file transfer application. For a voice or real-time
video communication, any significant delay may mean that
the information is no more relevant at the destination.

The design process could be manual or automated using
exact or heuristic-based algorithms. An automatic design
process can avoid such serious design flaws in the network.
Unfortunately, most known properties and optimization
techniques, relate to networks that are designed new and
not incrementally. Heuristic algorithms are used as part of
the Automated design process to incorporate design prin-
ciples used in manual algorithms. One of the most used
heuristicis is the use of a greedy algorithm.

Sometimes a greedy algorithm may find an optimal so-
lution. A greedy algorithm selects a feature that seems to
be of immediate benefit. Consider a situation in which sev-
eral nodes communicate with each other. Providing a direct
link between two nodes that have a maximum amount of
traffic flowing between them is a greedy approach. This
may have other effects later on in the algorithm. Similarly,
incorporating and using the cheapest link in a network is
also a good design practice. However, this may have serious
cost implications at a later stage in the design and a greedy
algorithm may fail to account for them. A greedy algorithm
may not always yield the best result, but nonetheless it is
the most used heuristic algorithm.

To fully understand the network design process and al-
gorithms necessary in network design, we first develop a
graph model of the network. Graph models capture the ex-
act behavior of a network and simplify the task of analysis.

GRAPH MODEL FOR NETWORK

A network is represented by a graph G = (V, E),where V
is a finite set of elements called nodes or vertice and E is
a set of unordered pairs of nodes called edges or arcs (8).
This graph is undirected. A directed graph is also defined
similarly except that the arcs or edges are ordered pairs.
For both directed and undirected graphs, an arc or an edge
from a node i to a node j is represented using the notation
(i, j). Examples of five-node directed and undirected graphs
are shown in Fig. 6. In an undirected graph, an edge (i,j)
can carry data traffic in both directions (i.e., from node i
to node j and from node j to node i) Whereas in a directed
graph, the traffic is only carried from node i to node j.

Graph Representations

A graph is stored as either an adjacency matrix or an inci-
dence matrix as shown in Fig. 7. For a graph with N nodes,
an N × N 0-1 matrix stores the link information in the
adjacency matrix. The element (i, j) is a 1 if node i has a
link to node j. An incidence matrix, on the other hand, is an
N × M matrix where M is the number of links numbered
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Figure 6. A directed and an undirected graph.

Figure 7. Matrix representation for graph of Fig. 6(a).

from 0 to M − 1. The element (i, j) stores the information
whether link j is incident on node i or not. Thus, the inci-
dence matrix carries information about exactly what links
are incident on a node. If a graph has more than one link
from a node to another node, the incidence matrix will be
able to carry this information exactly, whereas the adja-
cency matrix will require additional information to store
the number of links.

The following terms associated with a graph are used
throughout this article:

1. The degree of a node is the number of links incident
on a node. In the case of a directed graph, we count
both the number of incoming links, or in-degree, and
the number of outgoing links, or out-degree, of a node.
For example, in Fig. 6a, node 1 has a degree of 3,
whereas in Fig. 6b, node 1 has an in-degree of one
and out-degree of two.

2. A walk in a graph G = (V,E) is a sequence
of nodes w = [v1,v2, . . .vk], k > 1, such that
( j, j + 1)∈E, j = 1, 2, . . . k − 1 . A walk is closed if
k > 1 and v1 = vk .

3. A walk without any repeated nodes in it is called a
path.

4. A closed walk without any repeated intermediate
nodes is called a cycle. An acyclic network does not
contain any cycles as shown in Fig. 8.

5. A node s is said to be connected to node t if node s has
a path to node t in the graph. This path is called an
(s, t) path.

6. The length of a path is the number of links on the
path.

7. An (s, t) path is called the shortest path if there is no
other path of length shorter than the length of the
given path.

Figure 8. An example of an acyclic graph.

Figure 9. A graph and its connected components.

8. δ(i,j) denotes the length of a shortest path between
nodes i and j. In a network, it is a measure of the
maximum communication delay.

9. The diameter (the longest shortest path between
any pair of nodes) of a graph is given by Max
{δ(i, j) ∀ i, j ∈V }.

10. A graph is said to be connected if a path exists be-
tween any of nodes, s and t.

11. A graph is said to be strongly connected if ∀ i, j, ∈V

a path exists, from node i to node j.
12. A connected component of a graph (V,E) is a sub-

graph G′ = (V ′, E′), V ′� V and E′� E with every
(i, j)∈E′, i, j ∈V ′ such that G′ is strongly connected.

An example of connected components of a graph is
shown in Fig. 9 where nodes 1, 2, and 3 form one con-
nected component and nodes 4, 5, and 6 form another.
Node 7 is a component by itself.

13. The node connectivity of a graph is the minimum
number of nodes that should be removed from the
graph in order to partition it into two disjoint sub-
graphs, that is, the number of node-disjoint paths.
The node connectivity is a measure of the reliability
of communication.

GRAPH ALGORITHMS

Once we select the graph model of a network, various al-
gorithms can be used to efficiently design and analyze a
network architecture. Some of the most fundamental al-
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gorithms among them are finding trees in a graph with
minimum cost (where cost is defined appropriately) or find-
ing a minimum spanning tree; visiting nodes of a tree in
a specific order; finding connected components of a graph;
finding shortest paths from a node to another node, from
a node to all nodes, and from all nodes to all nodes in a
distributed or centralized fashion; and assigning flows on
various links for a given traffic matrix.

In the following discussion, we describe some useful
graph algorithms that are important in network design.
Recall that N represents the number of nodes and M rep-
resents number of links in the graph.

Shortest Path Routing

Shortest path routing, as the name suggests, finds a path
of the shortest length in the network from a source to a
destination (9–13). This path may be computed statically
for the given graph regardless of resources being used (or
assuming that all resources are available to set up that
path). In that case, if at a given moment all resources on
that path are in use, then the request to set a path between
the given pair is blocked. On the other hand, the path may
be computed for the graph of available resources. This re-
duced graph will be obtained after removing all links and
nodes that may be busy at the time of computing from the
original graph. In either case, computation of the shortest
path is based on the following concepts.

Suppose for a given graph G, each arc (i, j) is also as-
signed a weight (or length) denoted by ai,j . We are inter-
ested in finding out a path of the shortest length from a
given source node to a given destination node. The path
will not have any node repeated. This type of problem is
fundamental in graphs, and in particular networks, as we
may be interested in searching for a path from a source to
a destination that is least expensive in terms of traversal.
The weight or length of an arc may represent, the actual
cost of traveling on that edge. The cost may be in terms of
delay, dollars, or any other metric of importance.

One key ideas in computing the shortest path is that
of dynamic programming. It is also based on the princi-
ple of optimality. For the shortest path computation, it has
been shown that, if all edge weights are positive, then an
undirected graph can be treated as a directed graph by re-
placing each undirected (i, j) by two directed edges (i, j) and
(j, i). With negative edge weights, this transformation in-
troduces cycles of negative weights and the shortest path
may go through the cycle as often as necessary to bring the
total path lengths to zero or negative. Thus, it is not desir-
able. In the following, we will assume that all edge weights
are positive. With that assumption, the shortest path can
be computed using the following formulation.

Bellman’s Equations. To compute the shortest path from
source s to destination t, it turns out that we end up com-
puting the shortest path from the source node s to all desti-
nations (9). Let aij be the weight of edge (i, j) if the edge ex-
ists. Otherwise, it is∞. Let uj be the weight of the shortest
path from origin s to node j. For simplicity we assume that
the nodes are numbered from 1 to n and the source node is
node 1. We can always renumber the nodes. It is clear that

u1 = 0. Let node k be the last node on the shortest path
from node 1 to node j. Then we can say that uj = uk + ak j,
which also implies that the path from node 1 to node k
with path length Uk must also be the shortest path from
node 1 to node k. Otherwise, the path we selected is not the
shortest path. This Concept is from the “principle of opti-
mality.” Now, we only have a finite number of choices for k.
Bellman’s equations use this principle concept to search for
shorter paths to other nodes by using the known shortest
path to node k and edge weights of direct links from node
k to other nodes for all such ks. The equations state that

u1 = 0

and

uj = min
k �= j
{uk + ak j} j = 2, 3, · · · , N

Using these equations, we can find a shortest path to a
node as follows. First, find a node k with edge (k,j) such that
uj = uk + ak j. Then find an arc (l,k) such that uk = ul + alk,
and continue in this fashion. Eventually, we would reach
node 1. Unfortunately, Bellman’s equations do not lead to
a solution directly.

Shortest Path in Acyclic Network. In an acyclic network,
as shown in Fig. 8, it is easy to use Bellman’s equations
to find a shortest path. The nodes in such a network can
be renumbered in such a fashion that an edge (i, j) exists
if and only if i < j. In this case we can rewrite Bellman’s
equations as

u1 = 0

and

uj = min
k< j
{uk + ak j} j = 2, 3, · · · , N

These equations can then be solved as u1 is known, u2 only
depends on ul, u3 only depends on u1 and u2, and so on. The
complexity of this problem is O(N2).

Dijkstra Method. For cyclic graphs, we need another
method given by Dijkstra (11). This method is applicable
to a graph for which edge weights are positive. This algo-
rithm starts with labeling nodes in stages. At each stage of
computation, some labels are designated permanent and
others remain tentative. A permanent label on a node rep-
resents the true length of the shortest path from that node.
After including the new labeled nodes, distances to all other
nodes are computed again.

Let dij denote the distance from node i to node j. Let i
be the source node. Then dii is set to zero and dij , i �= j is
set to a large value if j is not a neighbor of i. Otherwise,
it is set equal to the weight of the direct link aij . Next,
the algorithm finds a node j with minimum d and labels
it permanent. It then uses it to improve distances to other
nodes by computing

dik←min(dik, di j + ajk)

At each stage in the process, the value of dik represents the
best known shortest distance from i to k. Using these labels
of the nodes, the algorithm then marks another unlabeled
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Figure 10. Example of execution of Dijkstra shortest path algo-
rithm.

node with the mimimum value of dik as permanently la-
beled. The same computation is carried out again. As all
edge weights are positive, in the next iteration, none of the
marked nodes can have any smaller value.

An example of the execution of the algorithm is shown
in Fig. 10. Node A is the source node. A dark node is a per-
manently labeled node. At each step, one node is marked
labeled and the value associated with a node is its short-
est distance from the source thus far with L being a large
value. The algorithm terminates in N — 1 steps.

Shortest Paths Between All Pairs of Nodes

Now, suppose we want to compute the shortest path be-
tween all pairs of nodes. This process may be necessary as
communication may occur between any pairs of nodes. It
is desirable to use the shortest path as this reduces the
requirements for network resources. Sometimes using the
shortest path may cause congestion as has been shown by
many researchers. For example, suppose that the network
graph is such that it can be partitioned into two parts, A
and B, and the two parts are only connected by two links,
one with a low-weight link and the other with a high-
weight link as shown in Fig. 11. All communication be-
tween the two halves will use the low-weight link and the
other link remains unused.The second link should not have
been included in the design, but if it exists, then its use will
reduce the congestion on the low-weight link. The shortest
path routing algorithm does not use the seconolink at all.

Coming back to the all-to-all communication problem,
we can compute paths from every node to every other node.
Thus, we need to solve the problem N times. Alternatively,
we may use an integrated procedure developed separately,
which may be more advantageous. We investigate the lat-
ter approach next. Let uij denote the length of the shortest
path from node i to node j, and let uij

m be the shortest path
such that the path contains no more than m edges. It is
clear that uij

N will be Uij , the length or the shortest path

Figure 11. Two parts of a network connected by only two links.

from node i to node j. Also,

uii = 0

and

u0
i j = ∞ i �= j

and

um+1
i j = min

k
(um

ik + ak j)

The last equation computes the shortest path lengths for
the paths that contain up to m + 1 edges given that we
know the shortest path lengths for paths that contain up to
m edges. This calculation seems to be equivalent to matrix
multiplication C = A× B, where element cij is computed
using

ci j =
∑

k

aikbk j

We modify the computation of cij as

ci j = min
k
{aik + bk j}

by replacing multiplication by addition and summation by
minimum function. We know that A = (ai j) is the matrix
of arc lengths, and we let U0 be the identity matrix; then
U0 × A = A. Let Um+1 = Um × A. Then UN−1 = AN−1 gives
us the desired shorten path length matrix. It turns out
that this type of matrix multiplication is also associative.
Thus, we can compute A2k = Ak × Ak, and once 2k > n− 1,
we have UN−1. A single matrix multiplication has O(N3)
complexity, and we need to perform log N matrix multipli-
cations. Therefore, the overall complexity is O(N3 log N).
This process is more complex than Dijkstra’s algorithm but
in practice may run faster. An example computation for the
five-node graph in Fig. 6a for a given edge weight matrix
A is given next:
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A =

⎛

⎜⎜⎝

0 100 40 30 ∞
100 0 ∞ ∞ 20
40 ∞ 0 20 30
30 ∞ 20 0 ∞
∞ 20 30 ∞ 0

⎞

⎟⎟⎠ A2 =

⎛

⎜⎜⎝

0 100 40 30 70
100 0 50 130 20
40 50 0 20 30
30 130 20 0 50
70 20 30 50 0

⎞

⎟⎟⎠ A4 =

⎛

⎜⎜⎝

0 90 40 30 70
90 0 50 70 20
40 50 0 20 30
30 70 20 0 50
70 20 30 50 0

⎞

⎟⎟⎠

Floyd–Warshall method

Another method to compute the shortest paths between all
node pairs is from Floyd and Warshall with a computa-
tional complexity of O(N3). In this method, um

i j defines the
length of the shortest path from node i to j such that it
does not pass through nodes numbered greater than m −
1 except nodes i and j. Then

u1
i j = ai j

and

um+1
i j = min{um

i j, u
m
im + um

m j}
uN+1

i j is the shortest path length matrix. Also, um+1
i j = 0 for

all i and for all m.
This procedure has N(N − 1)(N − 2) equations, each of

which can be solved by using N(N − 1)(N − 2) the additions
and N(N − 1)(N − 2) comparisons. This order of complexity
is the same as that for Bellman’s method (also known as
the Bellman–Ford method as it was independently discov-
ered by two researchers), which yields the shortest path
only from a single origin. The Dijkstra method can also
be applied N times, once from each source node, to com-
pute the same shortest path length matrix. This process
takes only N(N − 1)/2 additions for each pass, for a total of
N2(N − 1)/2 additions, but again housekeeping functions
in Dijkstra’s method make it noncompetitive.

The computation in the Floyd–Warshall method pro-
ceeds with u1 = A and Um+1 is obtained from Um by us-
ing row m and column m in Um to revise the remaining
elements. That is, uij is compared with uim + um j and is re-
placed if the latter is smaller. Thus, the computation can
be performed in place and is demonstrated in the following
for the graph in Fig. 6a.

A0 =

⎛

⎜⎜⎝

0 100 40 30 ∞
100 0 ∞ ∞ 20
40 ∞ 0 20 30
30 ∞ 20 0 ∞
∞ 20 30 ∞ 0

⎞

⎟⎟⎠ A1 =

⎛

⎜⎜⎝

0 100 40 30 ∞
100 0 140 130 20
40 140 0 20 30
30 130 20 0 ∞
∞ 20 30 ∞ 0

⎞

⎟⎟⎠ A2 =

⎛

⎜⎜⎝

0 100 40 30 120
100 0 140 130 20
40 140 0 20 30
30 130 20 0 ∞
120 20 30 ∞ 0

⎞

⎟⎟⎠

A3 =

⎛

⎜⎜⎝

0 100 40 30 70
100 0 140 130 20
40 140 0 20 30
30 130 20 0 50
70 20 30 50 0

⎞

⎟⎟⎠ A4 =

⎛

⎜⎜⎝

0 100 40 30 70
100 0 140 130 20
40 140 0 20 30
30 130 20 0 50
70 20 30 50 0

⎞

⎟⎟⎠ A5 =

⎛

⎜⎜⎝

0 90 40 30 70
90 0 50 70 20
40 50 0 20 30
30 70 20 0 50
70 20 30 50 0

⎞

⎟⎟⎠

Multiple Shortest Paths

Many times it is useful to be able to compute additional
shortest paths between a node pair, which may be longer
than the first shortest path but still short in case the first
shortest path is not available. The first path may be con-
gested or may have a failed link or a node. The problem can
be constrained by specific requirements such as allowing
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or not allowing repeated nodes and links or specific nodes
and/or links. Specific methods exist to compute alternative
shortest paths for all cases (see reference 14). One specific
case with respect to fault tolerance is nonavailability of a
node or a link. Such a path can be computed by removing
the specific node or link in the original graph (removal of a
node also removes all associated links) and then using the
same shortest path algorithm. In another scenario, we may
want another path that is mutually exclusive of the first
path. In that case, all nodes and links have to be removed
from the original graph before computing another shortest
path. The algorithm to be used in these cases is the same
as already stated.

Minimum Spanning Tree (MST)

The minimum spanning tree is the “best” tree one can iden-
tify in a given graph with edge weights. Recall that edge
weights represent some “cost” of communicating on that
edge. The cost may be delay or expense in terms of real
dollars to use the link.

The MST problem is to find a set of edges with a total
minimum cost so that the nodes in the graph remain con-
nected. A greedy algorithm can be used to find this set of
edges, called MSTE. The algorithm starts with one edge
with minimum weight. Then it finds an edge “e,” the best
candidate that has not yet been considered and adds it if it
is feasible. An edge can only be added to this set if it does
not create a cycle in the graph with the same set of nodes
as the original graph and set of edges MSTE. MSTE is com-
plete when it contains N − 1 edges in an N node graph. It
is known that a greedy algorithm indeed finds an MSTE.

Several algorithms are available to find an MST. We
will consider two algorithms here based on the greedy ap-
proach, but their complexities may differ slightly.

Kruskal Algorithm. This algorithm essentially requires
all edges to be sorted, shortest first. Then the edges are
included in set MSTE, one at a time, in an order such that
the edges do not form a cycle. The test for forming a cy-
cle can be efficiently made by maintaining a proper data
structure of edges included thus far. The complexity of sort-
ing is O(M log M)), the test is of complexity O(M + N) as
suggested by Tarjan (12). As the process terminates once
the set MSTE includes N − 1 edges, one may not have to
sort all edges (the first few may be sufficient). This result
be achieved by putting all edge weights in a heap that can
be created in O(M) time. An edge with the smallest weight
can be removed from the heap in O(log M) time. If k edges
have to be considered to select N − 1 edges for inclusion in
MSTE, then the complexity of the selection process is O(M
+ klog M). Therefore, the total complexity is O(M + N + k
log M). An example of execution of Kruskal’s algorithm is
shown in Fig. 12. Each edge is labeled with its weight and
its number (shown in brackets). In each pass, the selected
edge and the included nodes are shown in the table.

Prim’s Algorithm. For a dense network, when M is of
O(N2), an alternative method to find an MST is from Prim
(13). This algorithm maintains a tree and adds additional
nodes to the tree using minimum cost edges. For this pur-

Figure 12. Kruskal’s MST algorithm.

pose, the minimum distance of each node that is out of the
tree is maintained from the tree nodes. Each time a new
node is added, the distances of nodes that are not yet in the
tree from the tree change. Therefore, these distances need
to be revised. In fact, the distances of the nodes outside the
partial tree from the newly inserted node only need to be
considered as that is the only change in the tree. The al-
gorithm has a complexity of O(N2). We need N passes, one
each to select N nodes to be included in the tree. Each time
we need to find a node with minimum distance (this is an
O(N) procedure) and update distances of all other nodes
after considering the new node (another O(N) procedure if
the distances are maintained in the adjacency list). Both
O(N) procedures can be performed in O(d) if the maximum
degree of each node is only d because we only need to con-
sider d neighbors of the new node introduced in the tree.
Thus, the overall complexity of the procedure is O(dN).

Constrained MST. The MST computation may be con-
strained using some optimality criteria or requirements.
In the case of constrained MST computation, the Selection
of edges is constrained using appropriate selection criteria
consistent with the specified constraints. For example, in
the previous algorithm, it is assumed that the weight of an
edge is the only criterion. But the new constraint may be
that no node can have more than a certain number of edges
connected to it. In that case, the algorithm may have to de-
cide on a selectable candidate differently. If a node already
has a given number of edges originating from it, then no
more edges connected to that node may become part of the
solution.

Tree Traversal

For a given tree graph, one may like to visit all nodes of the
tree. Recall that a tree graph has no loops and the number
of edges is exactly equal to N − 1. A node is visited after
another node along a link. We will assume that no more
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Figure 13. A 13-node tree example.

than one link exists between any pair of nodes. Nodes can
be visited in two different ways. In the first case, once we
are at a node, we visit all of its neighbors before visiting any
other (non-neighbor) nodes. This process is called breadth
first order. For example, for a given tree graph as shown in
Fig. 13, we first visit the root node A. After that, we visit
all its children, which are B, C, and D. Then we traverse
children of B, C, and D, which are E and F, G and H, and
I, respectively. Finally, we visit the children of these nodes
and include nodes J, K, L, and M in the list of visited nodes.

In the second case, we visit nodes in depth first order.
In this case, when we visit a node, we immediately visit
its children first before visiting any of its siblings. In the
example tree of Fig. 13, the nodes will be visited in order
A, B, E, F, J, C, G, K, L, H, D, I, and M.

Depending on the application, one or the other method
is used. For example, if the tree nodes represent solutions
of a problem and we are interested in one solution, depth
first search is likely to yield the solution faster. On the
other hand, if we are interested in all possible solutions,
then breadth first search is more appropriate.

Network (Max) Flow

In a given network, one may like to compute the available
capacity on all paths from a source to destination. In that
case we need to determine the maximum information flow
possible from the source to the destination, which is accom-
plished by using a network flow analysis algorithms (15).
The network graph is treated as a directed graph, and the
maximum possible flow from a source node s to a destina-
tion node t is computed. For a given directed graph, each
edge (i, j) is assigned a capacity using a nonnegative value
Cij that represents the available capacity to carry informa-
tion on edge (i, j) from node i to node j. In addition, nodes
may have additional constraints in terms of amount of in-
formation they can support in terms of buffer space and
other factors from all incoming edges or links. This char-
acteristic is the node capacity constraint. Let Xij be the
amount of actual flow through edge (i, j). At each node, in-
formation must be conserved as part of the total flow from s
to t. That means the amount of information entering a node
must be the same as the amount of information leaving
that node. This information must not exceed the capacity
of the node, or the following constraints must be satisfied:

0 ≤ Xi j ≤ Ci j, and
∑

i

Xi j =
∑

j

Xji

Also
∑

j
Xs j is the amount of information that leaves the

source node s and is equal to
∑

j
Xjt , which is the amount

of information that arrives at the destination node t.
Any such set of flows Xij that satisfies the above con-

straints is called a feasible flow set. Maximizing feasible
flow by increasing flow on different links while satisfying
all constraints yields the max-flow value. For a given graph,
this result is achieved. For a given graph, this result is
achieved as follows.

First, we find a feasible flow from node s to node t (0
flow is trivial). Now, let P be an undirected path in the
directed network from s to t. An edge on this path is called
a forward edge if it is directed toward node t. Otherwise, it
is a backward edge. A flow on this path can be augmented
or increased if Xi j < Ci j on all forward edges and Xi j > 0 on
all backward edges. The amount of increase is given by

min{ min
forward

{Ci j −Xi j}, min
backward

{Xi j}}

If this value is greater than zero, then such a path is called
an augmentation path. The process is repeated on all pos-
sible undirected paths. A flow is maximum if no augmen-
tation path is available.

Figure 14 demonstrates computation of maximum flow.
Figure l4a depicts a feasible flow. Each edge is marked with
its capacity and the current flow value. Figure 14b shows
an augmentation path with three forward edges and one
backward edge. Using the relationship described above,
the amount of flow that can be increased is one. Figure
14c shows the graph again with new feasible flow. Figure
14d shows another augmentation path with three forward
edges. The flow can be increased by two on this path, and
the new feasible flow is shown in Figure 14e. Figure 14f
shows another augmentation path with four forward edges
and the flow is again increased by two to obtain a maximum
flow of ten as shown in Figure 14g.

The maximum value of a s-t flow is equal to the mini-
mum capacity of a s-t cut. A cut is defined by a set of edges
that partitions the network into two parts with s and t in
separate partitions. A minimum cut set is a cut set whose
total capacity of the edges is minimum.

Linear Programming Problems (LPPs)

In network design, we are mostly concerned with minimiz-
ing cost or delay in the network while maximizing the per-
formance. Such problems can be expressed as optimiza-
tion problems. The statements of such problems have an
objective function that is required to be minimized or max-
imized subject to certain constraints. In most cases, these
constraints are also linear in relation. A general linear pro-
gramming problem (16, 17) is to find values of n real vari-
ables, denoted by x1, x2, x3, · · · , xn, which will minimize or
maximize an objective function given by

z =
n∑

j=1

c jx j

where Cj is a cost or reward value associated with variable
Xj . The set of constraints that governs a feasible solution
may vary in numbers and includes linear combinations of
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Figure 14. An example demonstrating feasible flow and augmen-
tation paths.

variables xs and has a general form as in
n∑

j=1

ai jx j > bi i = 1, 2, · · · , m.

The values of variables may also be bounded by some
lower and upper bounds as parts of constraints. For exam-
ple, it may be desirable that all variables are positive or do
not exceed a certain value. Various methods solve LPPs.
The most commonly used method is the simplex method,

which has no more than
(

n

m

) = n!
m!(n−m)!

solutions for m

≤ n possible solutions. The simplex method systematically
searches for an optimal solution over this space.

A variation of this problem is when all variables are
restricted to be integers only. This situation is called an in-
teger programming problem (IPP), and it makes the prob-
lem more complicated. Standard packages are available to
solve the two types of problems. The goal of a network de-
signer is to formulate the proble as an LPP or IPP and
then solve it using a standard package or a heuristic al-
gorithm. If the problem size (the number of variables and
constraints and therefore the number of possible solutions
to search from) becomes too large, then we use heuristic
methods only to solve the problem.

ROUTING ALGORITHM

A routing algorithm establishes an appropriate path from
any given source to a destination. The objective of network
routing is to maximize network throughput with minimal
cost in terms of path length. To maximize throughput, a
routing algorithm has to provide as many communication
paths as possible. To minimize the cost of paths, the short-

est paths have to be provided.
However, there is always a trade-off between these two

objectives. Most routing algorithms are based on assigning
a cost measure to each link in a network. The cost could be
a fixed quantity related to such parameters as link length,
bandwidth of link, or estimated propagation delay. Each
link has a cost associated with it, and in most cases, it is
assumed that the links have equal cost.

An interconnection network is strictly nonblocking if a
routing algorithm exists to add a new connection with-
out disturbing existing connections (1). A network is rear-
rangeable if its permitted states realize every permutation
or allowable set of requests; here it is possible to rearrange
existing connections if necessary(1). Otherwise it is block-
ing.

The store-and-forward operation in packet switching
incurs a time delay and causes significant performance
degradation. If the algorithm is used in a packet switching
network, the total time delay of a data packet is obtained
by summing up the time delay at each intermediate node.
As the nonavailability of any link along a route causes the
route not to be available, the network sees a high prob-
ability of blocking under heavy traffic, which rejects the
incoming request and eventually causes data loss or delay.

The routing algorithm can be centralized or decentral-
ized. A centralized algorithm may use a global backtrack-
ing depth first search or any other algorithm described in
section on algorithms.

EMBEDDING ARBITRARY CONNECTION REQUESTS

The interconnection network should be able to embed ar-
bitrary requests until resources are available in the net-
work. If a set of requests is such that each node needs to
communicate with a unique node, then such a set of re-
quests is called a permutation. It is desirable to be able to
satisfy this set of requests simultaneously. If each node re-
quires communications with up to k other nodes, it may not
be possible to satisfy these requests in one round and the
communication requests may have to wait. Depending on
the application environment, either the requests are par-
titioned in k disjoint permutatiqns (some may be partial
permutations) or the communication needs are satisfied
in k rounds without any contention. Altenatively, the net-
work is designed to satisfy all requests up to k requests
at the same time. A better solution would probably lie in
between these two extreme cases. Depending on the num-
ber of transmitters and receivers, a node should be able to
source and sink those many connections. The links in the
network should be able to support the traffic corresponding
to the requests being serviced simultaneously. The permu-
tation routing capability of a network is extremely useful
in improving the overall performance of a system.

In a permutation routing, the messages transferred
from a source to a destination can be regarded as a com-
modity flow. For each commodity, the required flow of com-
modity is 1 for a single source and a single destination. In
a general network, the problem of solving multicommodity
integral flows is known to be NP-complete.
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NETWORK TOPOLOGY DESIGN

A network can be designed using various topologies. Many
interconnection networks have been proposed by the re-
search community; some have been prototyped, but few
have progressed to become commercial products. A net-
work may be static or dynamic (18–23). The topologies can
be divided into two categories: (1) regular and (2) irregu-
lar. The regular topologies follow a well-defined function
to interconnect nodes. The regularity, symmetry, and most
often the strong connectivity of the regular network topolo-
gies make them suitable for general-purpose interconnec-
tion structures where the characteristics of the traffic orig-
inating from all nodes are identical and destinations are
uniformly distributed over the set of nodes. Thus, the link
traffic is also uniformly distributed. The irregular topolo-
gies are optimized based on the traffic demands. If there
is a high traffic flow between two nodes, then they may be
connected using a direct link. If a direct link is not feasible,
then an alternative is to provide a short path between the
two nodes. Such designs are much more involved and need
special attention.

We will first discuss regular topologies and then get into
the design of irregular topologies. We will also discuss some
specific regular topologies, such as a binary cube and its
variations, in greater detail.

Regular Topologies

Several regular topologies have been proposed by various
researchers in the literature. The most important among
these are complete connected graphs, star, tree, ring, multi-
ring, mesh, and hypercube. One desirable property of a
structure is to be able to accommodate or embed an arbi-
trary permutation. We discuss various regular topologies
in the following paragraphs.

Completely Connected Topologies. In a completely con-
nected topology, every node is connecled to every other node
as shown in Fig. 15a; that is, for every ∀ i, j, ∈N, (i, j)∈E.
Thus, N ∗ (N − 1) links exist. The routing is straightfor-
ward as a node i directly sends messages for node j on the
corresponding link (i, j). Each node has N− 1 transmitters
and N − 1 receivers, one for each link. The diameter of the
graph is one and the reliability of the network is very high
as, in addition to a direct link, N − 2 paths of two hops
exist from a node to every other node. This topology is the
most expensive but most efficient. In practice, not many
networks are aesigned using this topology. However, in a
given network, one may set virtual topologies that are the
eqivalent of a completely connected graph.

Star and Tree Topologies. The star and the tree are two
topologies that require a minimum number of links to con-
nect N nodes. The number of links is exactly equal to N− 1.
A star topology has a central node to which all other nodes
are connected as shown in Fig. 15b. The tree topology, as
shown in Fig. 15c and d, is hierarchical where the root of
the tree at each level has to act as the intermediate node
in any communication between nodes in the two halves of
the tree (called left subtree and right subtree). In the star

topology, the central node communicates with every other
node using the direct link. If we consider the central node
as only an intermediate node, then the routing between
any two nodes is always through the central node and each
path is of length two. The central node may become a bot-
tleneck in communication. Failure of this node also causes
the entire network to fail. Moreover, the central node is the
most expensive node with degree N − 1 and has to support
N − 1 other connections. On the other hand, the degree of
each node is bounded and that is a big advantage. For ex-
ample, in a star, each node connects to only one other node,
and in a binary tree, each node only connects to three other
nodes, one link to its parent node and at most two links to
its Children nodes. The longest path in a binary tree can
be up to 2 ∗ logN. In a hierarchical structure like a tree, a
different number of parallel links can be used to connect
nodes at two adjacent levels to accommodate more traffic
near the root node. This node is called a fat tree (24).

Rings and Multirings. The rings and multiring topologies
are even simpler design’s with fixed node degrees. For a
simple ring, each node is connected to two other nodes. If
the connections are unidirectional, then the simplest ring
has one incoming link and one outgoing link. The diameter
of the graph is N − 1. In a bidirectional ring, each node
has two incoming links and two outgoing links. A node i
has a link to node i + l and node i – 1 (module N). The
diameter of the graph is N/2. The multiring architecture
has multiple links from each node to other nodes. Each set
of corresponding links from each node forms one ring. Some
examples of ring topologies are shown in Fig. 15e, f, and g.

Meshes. A node in an n-dimensional mesh structure has
2n neighbors, two in each dimension. A two-dimensional
structure is shown in Fig. 15h. Each grid point is numbered
using an n-dimensional tuple. Two-and three-dimension
meshes are most commonly used in designing interconnec-
tion structures for multiprocessor systems. A mesh can be
extended or shrunk in any dimension allowing easy recon-
figuration and scalability required in many subsystem de-
signs.

Hypercubes and its Variations. A hypercube is n-
dimensional structure as shown in Fig. 15i. Hypercubes
and its variants are popular interconnection structures be-
cause of unique properties such as symmetry, regularity,
low diameter, and good fault tolerance characteristics (25).
A Boolean n-cube Qn = (V, E) has |V | = N = 2n nodes. Each
node is numbered using an n-bit binary string. The Ham-
ming distance between two binary strings is the number
of bit positions in which they differ. A pair of nodes in a
Boolean cube is connected by an edge providing a bidirec-
tional communication path between them if the Hamming
distance between their binary addresses is one. An impor-
tant property of an n-cube is that it can be constructed
or decomposed recursively from/to two lower dimensional
subcubes as is clear from its recursive definition as given
next.

Definition. Boolean n-cube Qn = (V, E) is defined recur-
sively as follows.



12 Network Design: Algorithms and Examples

Figure 15. A hierarchical network.

1. The 0-cube Q0 is defined as a single node with no
edge.

2. Qn = Qn−1+Qd
n−1, where the + operation is a twofold

operation of the graph G = (V,E) denoted by Gt = G +
Gd that yields a graph Gt = (Vt , Et ), where Vt = V ∪
Vd and Et = E∪Ed ∪ {(v, |V | + v)| ∀ v∈V }.

The degree of each node, the diameter of the graph, and
the node connectivity of the hypercube graph is n each. The
length of the shortest path between any two nodes i and j in
an n-cube is equal to the Hamming distance between their
binary representations. There are H(i,j)! shortest paths be-
tween two nodes i and j, and among them, H(i, j) paths
are independent (node-disjoint or parallel). In a Boolean
n-cube, there are no cycles of odd length. The other regular
topologies discussed above can be embedded in a binary
n-cube or its variations discussed below.

Dynamic Topologies. A dynamic topology is created by
modifying an existing topology as the need arises. This
modification is achieved by adding links between nodes to
either create more paths or point-to-point direct links to
reduce delays and congestion and improve performance.
Resulting networks usually look like random graphs with
possibly no symmetry and very little fault tolerance.

Reconfigurable Topologies

There are two important issues in the design of a recon-
figurable network: ease of embedding a given permutation
and the cost of implementing the network. An N×N cross-
bar can realize all permutations easily but has a cost that is
proportional to O(N2). To reduce the cost, a rearrangeable
network (26) may be acceptable. The generalized folding-
cube (GFC) and the enhanced hyper-cube (EHC) are two
such topologies derived from binary cube architecture.
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Generalized Folding Cube. A generalized folding cube
is obtained by folding a hypercube along any dimension
as follows. For a given a Boolean n-cube Qn = (V,E), the
folding operation of the cube Qn denoted by f(Qn ) yields
a graph Q1

n−1 = (V 1, E1) and consists of the following two
steps. (1) Split the cube into two subcubes by removing
(n− l)-dimension links from Qn(Q′n−1 = (V ′, E′) and Q′′n−1 =
(V ′′, E′′)). (2) Overlap the two subcubes Q′n−1 and Q

′′
n−1 in

such a way that v′ ∈V′ and v′′ ∈V′′ become one and the same
node v1 ∈ V1 if v′ and v′′ differ by 2n−1. v1 is numbered as
min(v′, v′′). Either of the two links in each dimension, cor-
responding to v′ and v′′, can be used by either nodes, v′ and
v′′, for communication.

The kth folding operation f k(Qn) = f ( f k−1(Qn))
yields a graph Qk

n−k = (Vk, Ek). The kth unfolding opera-
tion f−k(Qp

n ) = f−1( f−(k−1)(Qp
n )) = Q

p−k

n+k = (V p−k, Ep−k),
where k ∈ {1, 2, . . . , p}. The GFC denoted by Qp

n = (V p, Ep)
for p≥0, is defined from the folding operation of a hy-
percube: f p(Qn+p) = Qp

n . The GFC consists of 2P pairs
of links in each dimension, and each node of the GFC
consists of 2P individual nodes of the original cube and a
(n+ 1)2p × (n+ 1)2p switch. The original hypercube Qn =
(V, E) can be considered as a special case of the GFC and
denoted by Q0

n = (V0, E0). Figure 15j shows 3-D GFC with
2P pairs of links in each dimension. The rearrangeability
of the GFC is shown in Reference 27.

Enhanced Hyper-Cube. If we wish to keep only one node
at each vertex position and still want to design a rear-
rangeable network, then by duplicating links in any one
dimension of the original hypercube, i.e., two pairs of links
are provided instead on one, we obtain a structure that can
provide conflict-free routes for every permutation (28). The
EHC is shown in Fig. 15k.

A reconfigurable architecture, such as EHC or GFC, can
embed other structures efficiently. The EHC and the GFC
concepts can be combined to design a more cost-effective
network. This design methodology has been used to design
and implement the Proteus multicomputer system (29).

Helical Cube. A binary cube grows only as an integer
power of two. To remove this deficiency, several of alterna-
tives (30) have been suggested. An attractive option is a
helical cube that removes N − K nodes from a hypercube
to obtain a K node structure while preserving all advanta-
geous properties of the binary cube such as regularity, sim-
plicity of routing, and fault tolerance. The degree of each
node remains n = log K. Only neighbors of removed nodes
are affected and reconnected in such a fashion that the high
graph connectivity is maintained. The links connected to
nodes that are being removed are connected pairwise using
a helical connection strategy, thus the name helical cube.
An example of a helical cube is shown in Fig. 15l. The de-
tails of the actual connection scheme are given in Refer-
ence 31. It has been shown that this structure can have
any number of nodes while maintaining a high connectiv-
ity and the same level of fault tolerance as the original
cube.

Arbitrary Topology Design

If the graph structure is not constrained to be a regular
topology, then the design problem can be formulated as a
linear or nonlinear programming problem. Suppose we are
use certain kinds of links and are given a traffic matrix.
Here we assume that only one type of links is available and
will consider a more complex problem in the last section.
We will wish to design a network that is connected. The
cost of connecting different links is different. Let Xi,j denote
whether a link between nodes i and j exists, Xi j ∈ {0, 1}, and
suppose the cost to lay the link is denoted by Cij . Let the
original nodes be numbered as 1 to N.

One goal of the design is minimize the cost that is given
by

Cost =Min
∑

i j

Ci jXi j

Then the existence of links has to be subjected to condi-
tions that the network should satisfy. For example, each
node should be connected by at least one link. This can be
specified as

∑

i

Xi j +Xji≥1

Then we may have constraints to specify that there is a
path from each node to another node, or the graph should
be connected. It is hard to formalize this as an equation but
can be easily checked for a given Xij configuration. After all
the constraints are specified, one solves the problem to find
a solution that is a vector of Xij .

It may appear to be a simple problem but is generally
very hard even for a moderate number of nodes. Therefore,
it is usually solved using some heuristics. We will see a
solution technique in the example section.

QUALITY-OF-SERVICE (QOS) REQUIREMENTS

Unlike conventional packet-or circuit-switched networks,
some applications such as broadband integrated ser-
vices/digital network (B-ISDN) require the network to pro-
vide not only connectionless traffic transportation but also
connection-oriented operation for real-time data transfer
between end users with multiple bit rates. Broadband
packet switching based on the asynchronous transfer mode
(ATM) that has a fixed packet length has been proposed for
multimedia and multibit rate communications of end users
by using the network resources efficiently. The most impor-
tant aspect of these networks is to satisfy the (QoS) require-
ments. These features require a different approach to net-
work design in comparison with the conventional packet-
switched network design. For example, the cell loss proba-
bility has to be considered in an ATM network design. In
circuit-switched networks, the call blocking probability is
an important metric to determine the design of the circuit-
switched networks.

Connection-oriented services have certain maximum
delay requirements in exchanging information between
the end users as given by the QoS requirements. The de-
lay in a packet-switched network includes switching, queu-
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ing, transmission, and propagation delays. Because of the
high data rate of fiber-optic links, propagation delay and
node queuing delay are the dominant delay factors. In the
conventional packet-switched network design problem, the
average network delay and throughput have usually been
used as the metrics to optimize the network cost and per-
formance. In multimedia networks, services may have crit-
ical delay requirements; instead of the average network de-
lay requirement, the end-to-end delay must be considered
while determining the network topology.

In addition to these new requirements, the high data
rates require special attention to fault management or
fault tolerance. Compared with low-speed data networks,
it is possible to lose many data, packets if a data link fails
even for a short time. Fault management requires that the
network has a control mechanisms that ensures that the
existing traffic is affected as little as possible because of
a failed link, and the traffic on the failed link is rerouted
through the spare capacity on other links. This rerouting
of traffic from a failed link to the other linkss (32) can be
performed by a special facility such as the digital cross-
connect system (DCS)(33).

Fault tolerance in high-speed networks is greatly
needed even for short-time link failures because of large
cell loss possibility. An alternative route may be longer
than the original path. If a service, such as data file trans-
fer, is not sensitive to propagation delay, the reconfigura-
tion can be done using arbitrary available spare capacity on
the other links. As voice and video service are sensitive to
end-to-end delay, the reconfiguration path must be selected
such that the end-to-end delay requirements are met. This
performance requirement restricts the logical reconfigu-
ration that can be embedded into the physical network.
Therefore, while designing the network topology, possible
failures of network links must be considered in advance.

To maintain the QoS requirements in services, we also
have to consider the cell loss probability during a burst
transfer. Burst cell loss can occur in several stages of the
network: switch buffer overflow, cells discarded for conges-
tion control, and physical link errors. The optical fiber link
has negligible physical link errors. However, the switch
buffers for each link may be of a fixed size and the packet
contention for the same link may cause the output buffer
to overflow in each link. Thus, we have to find the optimal
link capacity assignment to meet the cell loss restrictions.

With this in mind, we investigate a fault-tolerant back-
bone network design algorithm and network resource man-
agement schemes while considering different (QoS) such
as cell loss probability and mean end-to-end delay require-
ments for each call request. In the design algorithm, we
ensure that these performance requirements are met even
in the presence of faults in the network. We first introduce
some mathematical notation and then present the design
formulation, solution heuristics, and numerical examples
demonstrating the goodness of the solution.

Figure 16. A bell-shaped curve.

DELAYS AND QUEUING IN NETWORK DESIGN

Probability Distributions

We will first describe three important probability distri-
bution functions that are used in the analysis of network
systems. More details can be found in Reference 34.

Normal Distribution. A random variable x is normally
distributed if its probability density function is of the form

f (x) = 1√
2πσ2

e
−(x−µ)2

2σ2

This is a bell-shaped curve density function as shown in
Fig. 16. The peak of the bell occurs at x = µ, and the width
of the bell depenas on the variable σ. The random variable
x is completely characterized by the two variables, mean µ,
and the variance σ2. The variable σ is the standard devia-
tion. Three standard deviations from the mean cover about
99% of the area under the curve. That is why most of the
time we are interested in µ + 3σ variations in the value of
random variable x.

Binomial Distribution. The number of ways in which k
out of n objects can be selected is given by

C(n, k) = n!
k!(n− k)!

If the probability of selecting a particular type of object is
p (and the probability of selecting the other object(s) is (1
− p)), then the probability of selecting k such objects out of
a total of n objects is given by

P(n, k, p) = C(n, k) · pk · (1− p)n−k

The mean value of this statistic is E(n, p) = n · p and the
variance is V (n, p) = n · p · (1− p).The standard deviation
σ is given by

√
V (n, p) =

√
n · p · (1− p).

Exponential Distribution. A random variable x is expo-
nentially distributed with parameter λ if the probability of
x ≤ t is given by

p(x ≤ t) = 1− e−λt t≥0

The mean and variance of x are 1/λ and 1/λ2, respectively.
An arrival of a request for service is usually modeled us-

ing a random process. Two requests are often assumed to be
independent of each other. A process in which interarrival
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times between two consecutive requests are independent
and distributed according to an exponential distribution
with parameter λ is called a Poisson process (with param-
eter λ).

Design

How we use these distributions can be demonstrated using
the following example. Suppose a network has ten nodes
that want to communicate among themselves. Assume the
probability that a node originates a data request is p=
0.1. The switching network can connect a call if all re-
quired links are free or not in use. How many links should
we provide so that a communication request can be satis-
fied with high probability? In this case, the average num-
ber of requests is E(n, p) = 10 ∗ 0.1 = 1.0 and the devia-
tion is σ = √10 ∗ 0.1 ∗ 0.9 = √0.9 = 0.95. To satisfy most
of the requests with high probability, we may like to pro-
vide µ+ 3 ∗ σ = 1+ 3 ∗ 0.95≈4 links.

Delays in Networks

A communication link can be viewed as a bit pipe over
which a given number of bits is transmitted over a unit
of time. This number is called the transmission capacity
of the link and depends on the physical channel and the
interface at the two ends of the link. The bit pipe (link) is
used to serve all traffic streams that need to use the link.
The traffic of all streams may be merged into a single queue
and transmitted on a first-come-first-serve basis. This pro-
cess is called statistical multiplexing. It is also possible
to maintain several queues for a link, one for each traf-
fic stream or one for each priority if the incoming traffic
streams have multiple priority levels assigned to them. If
a packet length is L and the link capacity is C bits/s, then
it takes L/C seconds to transmit a packet.

In case all incoming communication requests for a link
are assigned to a queue and serviced as the resources be-
come available, there are four different kinds of delays a
packet suffers on a link. If the packet has to travel through
multiple links, then the total delays will be the sum of de-
lays on all links

1. Queuing Delay. The queueing delay is the delay be-
tween when a packet is assigned to a queue and when
it is ready to be processed for transmission. Dur-
ing this time, that packet simply waits in a queue.
This time depends on the number of packets waiting
ahead of this packet in the queue.

2. Processing Time Delay. The processing time is the
time between events when the packet is ready to be
processed and the time it is assigned to the link for
the transmission. The processing delay depends on
the speed of the link processor and the actions the
processor needs to take to schedule the transmission.

3. Transmission Delay. The time difference between
the transmission of the first and last bit of the packet
is referred to as the transmission delay. This delay
depends on the bit transmission rate of the link.

4. Propagation Delay.The propagation delay refers to
the time difference between the instances when the

last bit is transmitted by the head of the link (source),
and it is received by the tail of the link (destination).
This delay depends on the physical distance of the
link and speed of propagation and can be substantial
for a high-speed link.

Queuing Models

To compute the queuing delay for a packet, we have to un-
derstand the nature of the packet arrival process to a link,
the kind of service time it needs (amount of transmission
time), and the number of links we have from the source
to the destination. In most queuing systems (35, 36), we
assume that the arrival process is a Poisson process. We
also assume that the holding time (the amount of time a
request requires to service) follows an exponential distri-
bution with parameter µ. The mean service time is then
given by l/µ. If two nodes i and j are connected by m links,
then m packets can be transmitted from node i to node j at
the same time. Generally m = 1 and therefore packets are
transmitted one at a time. In case of circuit switching, it
can be observed as one request being established at a time.

M/M/m Queue. A queuing system with m servers, Pois-
son arrival process, and exponentially distributed service
times is denoted by the M/M/m queuing system. The first
letter M stands for memoryless. It can also be G for general
distribution of interarrival times or D for deterministic in-
terarrival times. The second letter stands for the type of
probability distribution of the service times and can again
be M, G, or D. The last number indicates the number of
servers.

In a M/M/l queuing system, the average number of re-

quests in the system in steady state is given by
1

µ− λ
and

the average delay per request (waiting time plus service

time) is given by
1

µ− λ
. Utilization of the system is denoted

by ρ = λ/µ, and the average time for a request in a system
is given by average service time/(l — ρ). The average wait-
ing time Tw is given by the difference of the average time
in system and the average service time. This time is equal
to 1/(µ− λ)− 1/µ. The average number of requests in the
queue is given by λ ∗ Tw. Also, the probability that exactly
k requests are waiting is given by Pk = (1 − ρ)ρk . These
results for a queuing system will be used later on.

Performance Metrics. When a request for service arrives,
the server (link) may be busy or free. If the server is free,
the request is serviced. If the server is busy, then there
are two possibilities: 1) The request is queued and serviced
when the server becomes available. In this case, we are
interested in finding out how long, on average, a request
may have to wait before it is serviced. In other words, we
need to find out how many requests are pending in a queue
or the average length of the queue. This has implications
in designing queues to store requests. 2) The incoming re-
quest is denied service, which is called blocking. In this we
are interested in determining the blocking probability for
an incoming request. Again, this has implications in net-
work design. We would like the blocking probability to be
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Figure 17. A fiber divided among multiple wavelengths.

as small as possible.

EXAMPLE 1: DESIGN OF A NETWORK USING WDM
FIBER OPTICS

Wavelength Division Multiplexing-Based Optical
Networking Technology

With the advent of optical transmission technology over
optical fibers, the communication networks have attained
orders of magnitude increase in the network capacity.
The bandwidth available on a fiber is approximately 50
THz (terahertz). Hence, wavelength division multiplex-
ing (WDM) was introduced that divided the available
fiber bandwidth into multiple smaller bandwidth units
called wavelengths. Figure 17 depicts the WDM view of
a fiber link. Different connections, each between a single
source/destination pair, can share the available bandwidth
on a link using different wavelength channels. Advanced
features such as optical channel routing and switching sup-
ports flexible, scalable, and reliable transport of a wide va-
riety of client signals at ultra-high speed.

Early optical networks employed broadcast and select
technology. In such networks, each node that needs to
transmit data broadcasts it using a single wavelength and
the receiving node selects the information it wants to re-
ceive by tuning its receiver to that wavelength. To avoid
unnecessary transmission of signals to nodes that do not
require them, wavelength routing mechanisms were devel-
oped and deployed. The use of wavelength to route data is
referred to as wavelength routing, and networks that em-
ploy this technique are known as wavelength-routed net-
works. In such networks, each connection between a pair of
nodes is assigned a path and a unique wavelength through
the network. A connection from one node to another node
established on a particular wavelength is referred to as a
lightpath. A wavelength-routed WDM network is shown in
Fig. 18. The figure shows connections established between
nodes A and C, B and C, H to G, B to F, and D and E. The con-
nections from nodes A to C and B to F share a link. Hence,
they have to use different wavelengths on the fiber.

One alternative to circuit switching, described above,
is to use optical packet switching (OPS) or optical burst
switching (OBS) (44–46)technology in the backbone. The
major advantages of OPS/OBS are the flexible and efficient
bandwidth usage, which enables the support of diverse ser-
vices. However, implementation technologies are not yet
there for successful deployment of them in an all-optical

domain.

WDM Network Design Issues

WDM network design involves assigning sufficient re-
sources in the network that would meet the projected traf-
fic demand. Typically, network design problems consider a
static traffic matrix and aim at designing a network that
would be optimized based on certain performance metrics.
Network design problems employing static traffic matrix
are typically formulated as optimization problems. To for-
mulate a network design problem as an optimization prob-
lem, the inputs to the problem, in addition to a static traf-
fic demand, are some specific reguirements, e.g., required
network reliability and fault tolerance requirements, net-
work performance in terms of blocking, and restoration
time when a failure occurs. The objective of the optimiza-
tion problem is to find a topology that would minimize the
resources, including the number of links and fibers, the
number of wavelengths on each fiber, and the number of
cross-connect ports, to meet the given requirements. The
outputs include the network configuration and the routes
and wavelengths that are to be used for source-destination
pairs. The network design problem can be formulated as an
integer liner programming (ILP) or mixed integer linear-
programming (MILP) problem. As the number of vari-
ables and constraints can be very large in WDM networks,
heuristics are usually used to find solutions faster.

If the traffic pattern in the network is dynamic, i.e.,
specific traffic is not known a priori, the design problem
involves assigning resources based on a certain projected
traffic distributions. In case of dynamic traffic, the net-
work designer attempts to quantify certain performance
metrics in the network based on the distribution of the
traffic. The most commonly used metric in evaluating a
network under dynamic traffic pattern is blocking proba-
bility. The blocking probability is computed as the ratio of
number of requests that cannot be assigned a connection to
the total number of requests. With this metric, one makes
decisions on the amount of resources that are needed to
be deployed in a network, the operational policies such as
routing and wavelength assignment algorithms, and call
acceptance criteria.

Traffic Grooming WDM Networks

Data traffic in ultra-long-haul WDM networks is usu-
ally characterized by large, homogeneous data flows. The
metropolitan-area WDM networks, on the other hand, have
to deal with dynamic, heterogeneous service requirements.
In such WAN, and MANs, equipment costs increase if sep-
arate wayelengths are used for each service. Each wave-
length offers a transmission capacity at gigabit per second
rates, whereas the users request connections at rates that
are far lower than the full wavelength capacity. In addi-
tion, for networks of practical size, the number of avail-
able wavelengths is still lower by a few orders of magni-
tude than the number of source-to-destination connections
that may be active at any given time. Hence, to make the
network viable and cost-effective, it must be able to offer
sub-wavelength-level services and must be able to pack
these services efficiently onto the wavelengths. These sub-
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Figure 18. A wavelength-routed WDM network.

wavelength services henceforth are referred to as low-rate
traffic streams in comparison with a full wavelength ca-
pacity. Such an act of multiplexing, demultiplexing, and
switching of lower-rate traffic streams onto high-capacity
lightpaths is referred to as traffic grooming. WDM net-
works offering such sub-wavelength low-rate services are
referred to as WDM grooming networks. Efficient traffic
grooming improves the wavelength utilization and reduces
equipment costs.

Dynamic Traffic Grooming in WDM Network

In the future, as Internet Protocol (IP) becomes the pre-
vailing protocol, it is the responsibility of the IP layer to
effectively multiplex traffic onto wavelengths. These IP-
over-WDM networks are likely to be arranged in a mesh
topology rather than a ring. The traffic requirements of IP
are bound to change much faster than the static scenario.
It is thus important that dynamic traffic grooming is em-
ployed so that the networks can efficiently accommodate
changes in traffic. Minimizing equipment costs in such a
dynamic traffic grooming scenario for SONET/WDM rings
is an important consideration.

It is possible to restrict traffic grooming in such a way
that all traffic streams that are groomed on a path orig-
inate and terminate at the same node pair. For example,
Fig. 19, traffic streams between node pair (S1,D1) and traf-
fic streams between node pair (S2,D2) are groomed on their
respective paths. In another case, it is possible that traffic
streams between different node pairs share a path. For ex-
ample in Fig. 19, traffic streams between node pair ((S1,D1))
and traffic streams between node pair ((S1,D2)) can share a
link. Similarly, traffic streams between node pair ((S2,D1))

Figure 19. Example of grooming streams for same node pair.

and traffic streams between node pair ((S2,D2)) can share
a link.

A challenging problem for carrying IP traffic over WDM
optical networks is the huge opto-electronic bandwidth
mismatch. One approach to provisioning fractional wave-
length capacity is to divide a wavelength into multiple sub-
channels using time-, frequency-, or code division multi-
plexing and then multiplex traffic on the wavelength, i.e.,
traffic grooming, However, optical processing and buffer
technologies are still not mature enough to achieve online
routing decisions at high speed. With the development of
MPLS (Multiprotocol Label Switching) and GMPLS (Gen-
eralized Multiprotocol Label Switching) standards (47–49)
it is possible to aggregate a set of IP packets for trans-
port over a single lightpath. Therefore, traffic grooming in
IP over WDM optical networks is performed at two layers,
namely IP traffic grooming and WDM traffic grooming. IP
traffic grooming is the aggregation of smaller granularity
IP layer traffic streams. It is performed at MPLS/GMPLS-
enabled IP routers by using transmitters and receivers.
This aggregated traffic streams are then sent to the opti-
cal layer where WDM traffic grooming (or wavelength level
traffic grooming) is performed by using optical add-drop
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Figure 20. Illustrative example of IP traffic grooming.

multiplexors (OADMs). The two-layered grooming reduces
the workload at both IP and optical layers.

IP Traffic Grooming Issues. The main cost in IP traffic
grooming is from the transmitters and receivers at the
end nodes rather than number of wavelengths, which was
the main cost for grooming ring network design. Minimiz-
ing the number of transmitters and receivers required is
equivalent to minimizing the number of lightpaths that are
needed, because each lightpath needs one transmitter and
one receiver. Figure 20 demcts an illustrative example that
shows how IP traffic grooming helps to reduce the number
of transmitters and receivers in a three node network.

Assume that each link has a capacity of 100 units. The
matrix in Fig. 20a is the original traffic matrix. It includes
the location and capacity of three requests. Figure 20a de-
picts one solution in the absence of IP traffic grooming,
and simply establishes a lightpath (connection) for each s-
d pair. It requires one transmitter and one receiver at each
node.

Figure 20b depicts another solution based on the fact
that the capacity requested by s-d pair (1, 3) is relatively
smaller. Thus, instead of reserving a separate lightpath
for it, the spare capacity along lightpath 1 → 2 and 2 →
3 can be reused to accommodate the traffic of s-d pair (1,
3). That is, the traffic from Node 1 to Node 2 and 3 both
take the route from Node 1 to Node 2. Node 2 receives and
analyzes the traffic, drops the traffic that is destined for it,
and forwards the remaining traffic (from Node 1 to Node 3)
along with its own traffic (from Node 2 to Node 3) to Node 3.
This add-and-drop procedure is performed by transmitters
and receivers at Node 2. In this scenario, the traffic carried
by the optical layer is represented by the matrix in Fig. 20b.

The scheme shown in Fig. 20b results into one less trans-
mitter and receiver in comparison with the scheme shown
in Fig. 20a. However, the lower size traffic request (1, 3)
takes a longer route in IP layer to avoid reserving an en-
tire wavelength for it. This tradeoff needs to be made in
order to alleviate the wavelength underutilization in the
the optical layer.

Approach to IP Grooming Problem. Let DN×N = {dst} de-
note the traffic matrix, where dst denotes the traffic capac-
ity required from source node s to destination node t, and
represent the capacity requirement of the systems.

The IP traffic grooming problem is described as follows.

Given a traffic matrix for a network, how to aggregate the
traffic requests for transporting, such that the total number
of transmitters (and receivers) required in the network is
minimized.

The Physical topology is represented by a graph GP (V,
E), with V being the set of nodes and E being the set of
physical links.TheVirtual topology (logical topology) is rep-
resented by a graph Gl(V, L) with nodes corresponding to
the nodes in the physical network and edges corresponding
to the lightpaths. Each lightpath may extend over several
physical links (spans). The link flow and link capacity for
link (m, n) (from node m to node n) are denoted by xmn and
umn , respectively.

Notice that, each request is assigned a dedicated light-
path, the virtual topology would be a full-connected net-
work if there is a request for each node pair. The desired
grooming network is the one with a minimum number of
transmitters and receivers, which is a solution with a min-
imum set of arcs in its virtual topology that is sufficient to
carry the given traffic.

For this problem to be meaningful, it is assumed that
each request has a capacity smaller than or equal to the
full-wavelength capacity. Note that, for a capacity require-
ment of more than a full wavelength, there has to be some
full wavelength paths assigned to this request and its re-
maining capacity need would be fulfilled using the traffic
grooming algorithm. The terms “link” and “arc” are used
interchangeably here.

This problem is similar to a capacitated multicommod-
ity flow design problem (50) with limited link capacities.
Therefore, this problem can be formulated as an ILP opti-
mization problem. It is assumed that a request from the
same s-d pair will always take the same route. Also, it is
assumed that each link has the same capacity that is given
by W×C, where W denotes the number of wavelengths car-
ried by a link and C denotes the full-wavelength capacity.

1. Notations:

1.1. Parameters:
* W: Maximum number of wavelengths in each

direction in a bidirectional fiber (technology-
dependent data).

* C: Maximum capacity of each wavelength. (It
is assumed that each wavelength has the same
capacity.)

* s, t = 1,2,. . . , N: Number assigned to each node
in the network.

* l = l,2,. . . ,L: Number assigned to each link in
the network.

* Lk
st : (data) For each s-d node pair, list all pos-

sible routes from source node s to destination
node t, excluding routes that pass through a
node more than once, and number them using
k as an index. That is, r3

1,6 indicates the third
route from Node 1 to Node 6.

* A
l,k
st : (binary data) takes the value of 1 if arc l is

on the kth from node s to t; zero otherwise.
* dst: Denotes the traffic capacity required from

source node s to destination node t.
1.2. Variables:
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* γk
st : Binary variable, route usage indicator,

takes a value of 1 if route rk
st is taken; zero oth-

erwise.
* ul: Integer variable, logical link usage indica-

tor, keeps an account of the number of light-
paths on arc l in the virtual topology.

Problem Formulation

1. Objective: The objective is to minimize the number of
arcs in the virtual topology, which reflects the mini-
mum number of lightpaths in the optical layer. Recall
that variable ul counts the number of lightpatns on arc
i in the virtual topology. If the capacity carried by arc
i exceeds the full wavelength capacity, multiple light-
paths between the same node pair are required. Thus,
the number of transmitters (and receivers) increase.

min
∑

l∈L

ul (1)

2. Fiber link capacity constraint: Let TC1 be the total ca-
pacity carried by link l, which is given by equation 2.
Constraint 3 guarantees that the aggregated capacity
on any arc does not exceed the total fiber capacity, which
is bounded by W × C.

TCl =
∑

(s,t),s �= t

∑

k

γk
stA

l,k
st dst (2)

TCl ≤ W × C (3)

3. Traffic routes constraint: Equations 4 and 5 ensure that
if a request from node s to t, occurs one and only one
route is assigned to the request. In another word, dst

≥ 0; set
∑

k
γk

st = 1. Otherwise, no traffic request occurs
from node s to node t, and none of the routes from node
s to node t will be taken; hence,

∑
k
γk

st = 0.
∑

k

γk
st ≤ dst (4)

NC
∑

k

γk
st ≥ dst (5)

4. Arc usage constraint: Recall that the arc usage indicator
ul , counts the number of lightpaths required on arc l
(logical link l) in order to carry the aggregated traffic
TC1 · ul = [TCl/C], which is obtained by using equations
6 and 7. For example, if C = 48 and TCi = 62, [62/48] =
2 lightpaths are required on logical link i from its start
node to its end node to its end node.

C × ul ≥ TCl (6)

C × ul ≤ TCl + C (7)

Notice that, from equations 3 and 6, the total number of
lightpaths on a logical link l is bounded by the number of
wavelengths on the optical fiber.

Additional constraints, such as the limited number of
transmitters on each node, can be easily added to this for-
mulation. This process helps to capture the cost on each
node in the networks.

The limitation of this exact ILP formulation is that
it enumerates all possible routers for each s-d pair and
searches for an optimal set of arcs in virtual topology. In a
fully connected network of N nodes, up to

∑N−2
h=0 Ph

N−2 pos-
sible routes exist for each s-d pair, where Pn

m is the per-
mutation operation. This search requires large computa-
tion time as the network size increases. The formulation
can be further simplified by adding a hop-length constraint
such that the number of possible routes is reduced to a
reasonable number; consequently, the computation time is
saved. However, this network design problem is still a spe-
cial case of multicommodity flow problem, which becomes
unmanageable even for moderata-sized networks. There-
fore, a heuristic approach would be desired for obtaining
“good” solutions in a reasonable amount of time that cap-
ture all constraints of the ILP solution.

Approximate Approach

For a network G(V, E), in the absence of IP traffic grooming,
the number of transmitters and receivers required at node
s, denoted by Txmax

s and Rxmax
s , respectively, can be derived

from matrix DN×N .

Txmax
s =

∑

t:(s,t)∈E

� dst

C
� (8)

Rxmax
s =

∑

t:(t,s)∈E

� dts

C
� (9)

where C denotes the full wavelength capacity that can
be used, because request dst requires at most [dst/C] trans-
mitters at node s to transmit traffic dts; likewise, it requires
at most [dst/C] receivers at node from nodes t to receive
traffic dst from node s.

From the perspective of network flows, the total amount
of outgoing traffic flows observed by node s is

∑
t �= s

dst and
the total amount of incoming flows to node s is

∑
t �= s

dts.
Hence, the minimum number of transmitters and receivers
ne network to carry the traffic in DN×N can be derived using
the following two equations:

Txmin
s = �

∑
t:(s,t)∈E

dst

C
� (10)

Rxmin
s = �

∑
t:(t,s)∈E

dts

C
� (11)

In general, Txmin
s and Rxmin

s are loose lower bounds. The
reason is that, to reduce the number of transmitters (and
receivers), some s-d pairs may have to take multiple hops
and hence increase the link load in the virtual topology.
This overhead load is not captured in equations 10 and 11,
and it is dependent on the traffic pattern.

Traffic Aggregation Algorithm

To develop a traffic aggregation heuristic approach, the ba-
sic idea is to merge the smaller traffic request onto big-
ger bundles to reduce the number of transmitters and re-
ceivers. Although the total numberof lightpaths required
in the network is reduced, the finer granularity requests
may take multiple-hop and longer routes. This process may
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introduce delay for lower-rate requests, and it would be af-
fordable in the future slim IP-over-WDM control plane. As
a matter of fact, this is a trade-off that has to be made to
reduce the overall network cost.

An element in traffic matrix can be reallocated by merg-
ing it with other traffic streams. Thus, no need exists to
establish a direct path for that s-d pair. An element in traf-
fic matrix can be aggregated if it is smaller then the full
capacity, i.e., has spare capacity on a wavelength channel
and allows other traffic streams to be merged on it. Each
element in the traffic matrix can be viewed as in one of the
three states:

� State 0: If it can be reallocated or be aggregated.
� State 1: If it cannot be reallocated but can be aggre-

gated.
� State 2: If it cannot be eliminated or aggregated. For

example, if dst = 0, no traffic exists to be reallocated
and no need exists to allocate traffic.

The goal of the traffic aggregation algorithm is to choose
a traffic stream dst that can be merged with some other
traffic streams dsn and dnt , so that dst can be carried using
a multipie-hop path and not burden the system to estab-
lish a new path for it. After selecting dst , the basic traffic
aggregation operation on traffic matrix D consists of the
following three steps:

1. dsn← dst + dsn.
2. dnt← dst + dnt .
3. dst←0.

After this operation, the traffic request between s-d pair
(s, t) is aggregated on s-d pairs (s, n) and (n, t). Let TR(Ta,t,n )
be the number of transmitters (equals to the number of
receivers) needed after merging dst with dsn and dnt . TR(T◦)
is called the upper bound, where T◦ is the original traffic
matrix.

The key here is to select dst and node n to reduce the
value of TR(Ts,t,n ). In experimenting with the ILP formu-
lation, described above, it is observed that the ILP solution
uses multi-hop routes for smaller requests, whereas the
bigger requests tend to use direct single-hop paths. This
observation is used to develop a heuristic solution. Figure
21 gives the traffic Aggregation algorithm. The resulting
new traffic matrix gives the structure of a virtual topol-
ogy and the required capacity on each physical link. The
idea is to integrate smaller traffic request, say dst , to those
bigger traffic requests, dsn and dnt , to saturate the exist-
ing wavelength paths before establishing a new one. This
would force some smaller granularity traffic to take longer
routes with multiple hops, while saving some lightpaths.

The algorithm starts by finding the s-d pair with min-
imum request capacity that is in state 0 (Step 2 in Fig.
21), say dst . Next it searches for a set of all eligible in-
termediate nodes, namely K (Step 4a in Fig. 21). Define
the index value of an item v in set K as index(v) = max(dsv ,
dvt ). The intermediate node n is selected from K to saturate
some wavelengths. Hence, if K is not empty, n is chosen as
the node with the maximum index value. One could choose

Figure 21. Approximate approach: traffic aggregation.

maximum or minimum to keep an order in which nodes are
explored. We choose maximum here. The algorithm then
updates the current traffic matrix after an intermediate
node is decided (Step 4e in Fig. 21). If K is empty, no eli-
gible intermediate node is found for this s-d pair, dst · state

is changed from 0 to 1, which means request dst cannot be
reallocated, but could be aggregated. The algorithm keeps
searching for the next s-d candidate for aggregation until
no eligible s-d pairs in State 0 can be found.

Complexity Analysis

One s-d pair is changed from State 0 to either State 1 or
State 2 in each step. Thus, the algorithm terminates after
at most N2 passes. Without any complex, the run time for
searching target in each loop is up to N2; it takes another
N loops to find the set K. Thus, the overall computation
complexity of this algorithm is O(N5). In practice one will
never see this complexity and the algorithm terminates
much faster. One way is to use effective data structures to
make the search more efficient and faster.

Example of Traffic Aggregation

Figure 22 illustrates an example of how the traffic aggre-
gation algorithm performs. Assume that each wavelength
has a capacity of OC-48 (2.5Gbps), and the minimum allo-
catable unit is OC-1. Thus, C = 48. Consider traffic matrix
that is composed of random combination of OC-1, OC-3,
and OC-12. An original traffic matrix includes all possible
s-d pairs, which is shown as the top-left matrix in Fig. 22.

The algorithm starts by finding the minimum eligible s-
d pair that can be reallocated, which is (1, 4) with d1,4 = 2 in
this example. Next it finds the possible intermediate nodes
to include into set K. It can be observed that K = 2,3 with
index(2) = 43 and index(3) = 37. Among the candidate nodes
in K, the one with the highest index value is chosen; that is,
n = 2. Next, the current traffic matrix is updated by remov-
ing d1,4 from the original position and aggregating it with
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Figure 22. An illustrative example of the traffic aggregation al-
gorithm.

d1,2 and d2,4, which results into the matrix on the top right
in Fig. 22. Next the algorithm selects d2,3 = 6 and completes
its processing by choosing n = 1. The algorithm continues
until no more relocatable s-d pair exists as shown in Fig.
22. The botton-left matrix shows the final results. Appli-
cation of equations 8 and 9 indicate that 12 transmitters
(and receivers) are required for the original traffic matrix.
After traffic aggregation, this number is reduced by 3.

Solutions and Resuits

The previously given ILP formulation is solved by using
CPLEX Linear Optimizer 7.0. The ILP formulation and the
traffic aggregation approach are applied to solve IP traffic
grooming problem for a six-node network, with W = 6, C =
48. Table 1 gives a traffic matrix with randomly generated
50 requests. The integer numbers indicates the request ca-
pacity in a unit of OC-1 (51.84 Mbps). The objective is to de-
sign a network with as few logical links as possible. Notice
that there are totally P0

4 + P1
4 + P2

4 + P3
4 + P4

4 = 65 routes
for each s-d pair in a six-node network, and this number
increases dramatically as the network size increases. It
would be a great burden and might be unnecessary as well
to obtain optimality by searching among all possible routes.
Experiments with different maximum hop-length as 3, 4,
and 5 are performed on this six-node network. The results
show that limiting the hop-length to 3 still yields close to
an optimal solution, whereas the number of all candidate
paths for each s-d pair is effectively reduced from 65 to
P0

4 + P1
4 + P2

4 = 17, which significantly reduces the size of
the feasible region of this ILP formulation;hence, it reduces
the computation complexity of solving the ILP optimization
problem.

The results obtained from solving ILP with hop length
= 3 and the traffic aggregation approach are shown in Fig.
23a and respectively.

According to Equations 10 and 11, at least nine trans-
mitters (receivers) are required. Figure 23a shows an opti-
mal solution consisting of 11 lightpaths by solving, the ILP
formulation with a maximum hop-length limit of 3. Fig-
ure 23b shows a solution with 12 transmitters (receivers)
using the traffic aggregation approach. Table 2 shows the
virtual topology routing assignments obtained by solving

Figure 23. Comparison of the ILP solution and the heuristic ap-
proach: an illustrative example, (a) Results obtained by solving
the ILP optimization problem with hop-length limit 3. (b) Results
obtained from traffic aggregation approach.

the ILP formulation and the traffic aggregation heuristic
algorithm.

Observations

Figure 23 also shows the similarity between the virtual
topology design obtained from solving ILP formulation and
the heuristic approach. More specifically, the ILP formula-
tion tends to keep bigger requests on shorter paths in vir-
tual topology and tries to integrate smaller traffic streams
onto bigger bundles. The ILP approach provides an optimal
solution by performing exhaustive search among all possi-
ble routes. The traffic aggregation heuristic algorithm also
yields a very good solution in this example by just perfon-
ning a local search, which takes much less computation
time. However, as an approximate approach, the traffic ag-
gregation heuristic cannot guarantee optimality.

The integration of the traffic helps to reduce the number
of transmitters and receivers. On the other hand, it also
introduces overhead traffic to the network and impacts,
the resource utilization. Besides, it adds potential delays
to the requests, which have been reallocated to take mul-
tiple hops in the virtual topology. From Table 2, it can be
observed that the average hop-length in the ILP solution is
80/50 = 1.6. The average hop-length in the traffic aggrega-
tion heuristic is 77/50 = 1.54, whereas without grooming,
given enough resource, the minimum average hop-length
is 1. The more one saves on transmitters and receivers, the
longer the average hop-length is, accordingly the longer is
the average delay. This trade-off is an unavoidable one that
would have to be faced.

The ILP approach becomes unmanageable quickly as
the size of the network increases. The reason is that the
number of all possible arcs in the corresponding fully con-
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Table 1. Requests Matrix for A six-Node Network

1 2 3 4 5 6
1 0 3 3+1+1 12+12 3+1+1 12+12
2 12+12+12+3 0 3 1+3 0 1+1+12
3 3 1 0 12+12 3+1+1 0
4 3 12 3+12+3+3 0 1 3+1+1+12
5 3 3+12 12 0 0 3+1
6 1+3 12 0 3+12 0 0

Table 2. Resulting Routes in Virtual Topologies

Node Requested ILP formulation Traffic aggregation
pair capacity Route on VT Route on VT
1-2 3 1-6-2 1-4-2
1-3 5 1-4-3 1-4-3
1-4 24 1-4 1-4
1-5 5 1-4-3-5 1-4-3-5
1-6 24 1-6 1-6
2-1 39 2-1 2-1
2-3 3 2-4-3 2-1-4-3
2-4 4 2-4 2-6-4
2-6 14 2-4-6 2-6
3-1 3 3-5-2-1 3-4-1
3-2 1 3-5-2 3-4-2
3-4 24 3-5-4 3-4
3-5 5 3-5 3-5
4-1 3 4-1 4-1
4-2 12 4-6-2 4-2
4-3 21 4-3 4-3
4-5 1 4-3-5 4-3-5
4-6 17 4-6 4-2-6
5-1 3 5-4-1 5-2-1
5-2 15 5-2 5-2
5-3 12 5-2-4-3 5-3
5-6 4 5-4-6 5-2-6
6-1 4 6-2-1 6-4-1
6-2 12 6-2 6-4-2
6-4 15 6-2-4 6-4

Table 3. Traffic Matrix for a 10-Node Network

1 2 3 4 5 6 7 8 9 10
1 0 5 8 11 3 8 5 7 8 10
2 3 0 8 4 0 5 1 2 3 1
3 9 3 0 7 3 10 11 8 0 6
4 6 0 8 0 2 5 5 2 1 1
5 0 6 10 4 0 2 11 10 5 2
6 11 3 4 4 3 0 2 6 8 3
7 0 2 10 2 11 5 0 1 6 0
8 0 5 6 2 3 1 11 0 5 0
9 4 5 11 8 8 2 3 1 0 5
10 0 9 9 3 7 10 1 2 1 0

nected network increases dramatically as the number of
nodes increases. The performance of the IP traffic aggre-
gation heuristic approach is studied in terms of wavelength
utilization in the following section.

EXAMPLE 2: LIGHT TRAIL NETWORK ARCHITECTURE
FOR GROOMING

The Light trail architecture concept has been proposed as
a novel architecture designed for carrying finer granular-
ity IP traffic. A light trail is a unidirectional optical trail
between the start node and the end node. It is similar to a
lightpath, with one important difference that the interme-
diate nodes can also access this unidirectional trail. More-
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Table 4. Resulting Light Trails Tlmax = 4

No. Light Trails Hops Accommodated s—d Pairs Load
1 2, 3, 4, 7, 9 4 (3,7) (3,4) (2,7) (2,9) (4,9) 23
2 3, 2, 6, 8, 10 4 (2,6) (2,8) (2,10) (3,6) (3,8) (3,10) 32
3 4, 3, 2, 1, 5 4 (4,1) (4,3) (4,5) (3,5) (1,5) (3,1) 34

(2,1)
4 4, 7, 6, 8, 10 4 (6,8) (6,10) (4,6) (4,7) (4,8) (4,10) 22
5 5, 1, 2, 3, 4 4 (1,2) (1,3) (1,4) (5,2) (5,3) (5,4) 48

(2,4)
6 5, 1, 6, 7, 9 4 (1,7) (1,9) (6,9) 21
7 5, 1, 6, 8, 10 4 (1,8) (1,10) (1,6) (5,6) 27
8 5, 8, 7, 9, 10 4 (9,10) (8,9) (5,9) (5,8) (5,7) (7,9) 44

(5,10)
9 9, 7, 4, 3, 2 4 (9,2) (9,3) (9,4) (7,3) (7,2) (3,2) 39
10 9, 7, 6, 1, 5 4 (7,6) (6,5) (9,1) (9,6) (6,1) 25
11 10, 8, 6, 2, 3 4 (10,3) (10,2) (8,3) (8,2) (6,3) (6,2) 44

(2,3)
12 10, 8, 6, 7, 4 4 (10,6) (10,4) (7,4) (6,4) (6,7) (8,4) 35

(8,6) (8,7)
13 10, 9, 7, 8, 5 4 (10,9) (10,8) (10,7) (10,5) (9,8) (9,7) 38

(9,5) (8,5) (7,8) (7,5)

Table 5. Local Best-Fit: Resulting Light Trails Tlmax = 4

No. Light Tails Hops Accommodated s—d Pairs Load
1 3, 2, 6, 8, 10 4 (3,10) (2,10) (2,8) (3,2) (6,10) (2,6) 44

(6,8) (3,8) (3,6)
2 10, 8, 6, 2, 3 4 (10,3) (8,6) (10,8) (6,2) (6,3) (8,2) 47

(8,3) (2,3) (10,2)
3 1, 6, 2, 3, 4 4 (1,4) (6,4) (2,4) (1,2) (3,4) (1,3) 47

(1,6)
4 1, 5, 8, 10, 9 4 (1,9) (10,9) (5,10) (1,5) (8,9) (5,9) 41

(1,8) (1,10)
5 2, 6, 8, 7, 9 4 (2,9) (2,7) (6,7) (7,9) (6,9) (8,7) 31
6 3, 4, 7, 8, 5 4 (3,5) (7,8) (4,5) (4,8) (8,5) (4,7) 38

(7,5) (3,7)
7 4, 3, 2, 6, 1 4 (4,1) (2,1) (4,6) (4,3) (3,1) (6,1) 42
8 4, 7, 9, 10 3 (4,10) (4,9) (9,10) 7
9 5, 8, 7, 4, 3 4 (5,3) (8,4) (7,4) (5,4) (5,8) (7,3) 38
10 9, 7, 6, 2, 1 4 (9,1) (9,6) (7,2) (9,7) (7,6) (9,2) 21
11 9, 7, 4, 3 3 (9,3) (9,4) 19
12 9, 10, 8, 5 3 (9,5) (9,8) (10,5) 16
13 10, 8, 6, 7, 4 4 (10,4) (10,6) (10,7) 14
14 1, 5, 8, 6, 7 4 (1,7) (5,6) (5,7) 18
15 5, 1, 2 2 (5,2) 6
16 6, 1, 5 2 (6,5) 3

over, light trail architecture, as detailed later on, does not
involve any active switching components. However, these
differences make the light trail an ideal candidate for traf-
fic grooming. In light trails, the wavelength is shared in
time by the nodes on the light trail. Medium access is ar-
bitrated by a control protocol among the nodes that have
data ready to transmit at the same time. In a simple al-
gorithm, upstream nodes have higher priorities over the
nodes downstream.

Current technologies that transport IP-centric traffic
in optical networks are often too expensive, because of
their reliance on an expensive optical and opto-electronic
approach. Consumers generate diverse granularity traf-
fic, and service providers need technologies that are af-
fordable and seamlessly upgradable. The exclusion of fast

switching at the packet/burst level, combined with the flex-
ible provisioning for diverse traffic granularity, makes the
light trails an attractive option to conventional circuit-and
burst-switched architecture.

Light Trail

A four-node light trail is depicted in Fig. 24. The light trail
starts from Node 1, passes through Node 2, Node 3, and
ends at Node 4. Each of the nodes 1, 2, and 3 are allowed
to transmit data to any of their respective downstream
nodes without a need for optical switch reconfiguration.
Every node receives data from upstream nodes, but only
a requested destination node(s) accepts the data packets,
whereas other nodes ignore them. An out-of-band control
signal carrying information pertaining to the setup, tear
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Figure 24. A light trail and possible traffic streams.

Figure 25. An example node structure in the light trail frame-
work.

down, and dimensioning of light trails is dropped and pro-
cessed at each node in the light trail. As a light trail is
unidirectional, a light trail with NT nodes can be used by

up to
NT (NT − 1)

2
optical connections along the trail. The

six paths for the four-node light trail are shown in Fig. 24.

Node Structure

Figure 25 provides a node structure that can be deployed in
a light trail framework. In the figure, the multiple wave-
lengths from the input link are demultiplexed and then
sent to corresponding light trail switches. A portion of the
signal power is directed to the local receiver, the remain-
ing signal power passes through an optical shutter. Such
a shutter can be realized using various technologies as
an AOTF (Acousto-Optic Tunable Filter). Thus, a node re-
ceives signals from all wavelengths. If a particular wave-
length is not being used by an upstream node (incoming
fiber has no signal), the local host can insert its own sig-
nal; otherwise, it does not use the trail. The local signal is
coupled with the incoming signal as shown in the figure.

Figure 26 depicts a connection of a four-node light trail
in a network and the corresponding ON/OFF switch config-
urations. The direction of communication is from Node 1
to Node 4. The optical shutter is set to the OFF state at the
start and end nodes of the light trail such that the signal is
blocked from traveling further. For an intermediate node
along the light trail, the optical shutter is set to the ON

state to allow the signal to pass through the node. A unidi-
rectional light trail is thereby obtained from the start node
to the end node. No switch reconfiguration is required after
the initial light trail setup. From the power loss within the

light trail, which mainly comes from the power splitting
at each node, the length of a light trail is limited and is
estimated in terms of hop-length. The expected length of a
light trail is 4 to 6 hops (51).

Light Trail Characteristics

As no need exists to dynamically configure any switches
when using light trails to carry IP bursts, it leads to an ex-
cellent provisioning time. Moreover, the major advantage
of using light trails for burst traffic is the improved wave-
length utilization. Utilization here is defined as the ratio
of capacity used over time for actual data transmission to
the total reserved capacity.

Multicasting in the optical layer is another salient fea-
ture of light trail architecture. Nodes in a light trail can
send the same quanta of information to a set of downstream
nodes without a need for a special processing or control ar-
bitration.

In general, a light trail offers a technologically exclusive
solution that enables several salient features and is prac-
tical. It exhibits a set of properties that distinguishes and
differentiates it from other platforms. The following four
characteristics are key properties:

� The light trail provides a way to groom traffic from
many nodes to share a wavelength path to transmit
their sub-wavelength capacity traffic.

� The light trail is built using mature components that
are configured in such a way that allows extremely
fast provisioning of network resources, which allows
for dynamic control for the fluctuating bandwidth re-
quirements on the nodes connected to a trail.

� The light trail offers a method to group a set of nodes
at the physical layer to create optical multicasting,
which is a key feature for the success of many appli-
cations.

� The maturity of components leads to the implemen-
tation of the light trail in a cost-effective manner re-
sulting in economically viable solutions for mass de-
ployment.

Light trail architecture brings up various issues in de-
signing optical networks for transporting IP-centric traffic.
These questions are as follows:

� How to is a set of light trails identified at the design
phase for the given traffic?

� How hard is this problem?
� What are the new constraints introduced by the light

trail architecture?
� How good can wavelength utilization be in light trail

networks?
� How is survivability achieves in light trail networks?

These questions are answered in the following discus-
sion.
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Figure 26. An example node configuration in the light trail framework.

Light Trail Design

To identify a set of light trails to carry the given traffic is
one key issue in setting up light trails in a WDM network.
The performance of the light trail in terms of wavelength
utilization depends on the locations of the light trail. The
goal of the design problem therefore is to develop an effec-
tive method to groom traffic in a light trail architecture and
to come up with a set of light trails. The light trail design
problem is stated as follows:

Given a graph G(V, E), where |V | = N, and traffic matrix
DN×N , define a minimum number of light trails to carry the
given traffic.

The design problem is expected to be a hard problem.
The approach to identify a set of light trail to be set up in a
network presented here consists of two steps. The first step
is called the traffic matrix preprocessing step. As stated ear-
lier, because of the power losses on the lines, a long light
trail may not be advisable. The length of a light trail is
limited and is specified in terms of hop-length, denoted by
Tlmax. A reasonable hop-length of a light trail is set to 5.
Therefore, in the first step, a single long hop traffic is re-
cursively divided into multiple hops.

The second step is to formulate the design problem and
to solve it as an ILP optimization problem, for a given net-
work topology and refined traffic matrix obtained from step
one. The objective is to find a minimum number of light
trails that is required for the system to carry the traffic.

Step I: Traffic Matrix Preprocessing. In preprocessing of
given traffic matrix, a single long hop traffic is divided into
multiple hops to satisfy the hop-length constraint. For a
given network physical topology G(V, E), with N nodes and
E links, one can apply Dijkstra’ s shortest path algorithm
to find the shortest path between all s-d pairs. This step re-
sults into a distance matrix HN×N = {hst}, where hst denotes
the physical distance from node s to node t.

The length of a light trail is a main constraint from the
loss both at nodes and over the links. Let Tlmax be the max-
imum length of a light trail. For traffic between an s-d pair
(i,j), where hst > Tlmax, it is not possible to accommodate
this traffic on a direct light trail. Thus, this traffic needs to
go through multiple hops. Here one light trail is counted
as one “hop”, which necessitates the first step in this ap-
proach, namely traffic matrix preprocessing.

Let DN×N = {dst} denote the estimated traffic matrix.
Traffic matrix preprocessing returns a modified traffic ma-
trix that satisfies DN×N = { dst : hst ≤ Tlmax, ∀ dst > 0 }. Fig-
ure 27 provides pseudo-code for the traffic matrix prepro-
cessing algorithm.

In this step, traffic on s-d pair (s, t) with hst > Tlmax is
reallocated on multiple hops. The goal is to find a node n
such that path from node s to node n forms the first hop,
which is less than Tlmax in distance. A next intermediate
node n is found recursively for a new source node. Among
all possible intermediate nodes, n is chosen to be as close to
destination node t as possible, as shown in step 1 in Fig. 27.
This is done to reduce the number of hops that the original
traffic has to take.

After the preprocessing of the traffic matrix, each
nonzero element in modified traffic matrix would have cor-
responding distance that is less than Tlmax, the maximum
length allowed for a light trail.

Step II: ILP Formulation: Given the network topology
Gp(V, E), and modified traffic matrix obtained from Step I,
the next step is to list all possible paths within the hop-
length limit for each s-d node pair, which can be accom-
plished by applying a breath first search for each node.
These eligible paths form a set of all possible light trails.
Among all possible choices, the next step is to choose an op-
timal set of paths to form the light trail network, such that
the total number of light trails is minimized. This problem
is formulated as an ILP optimization problem. It is also as-
sumed that each request cannot be divided into different
parts and transferred separately.

For the given directed graph Gp(V, E), N = |V |, let LT be
set of all the possible light trails within hop-length limit
Tlmax and Let T = 1, 2, . . . , |LT | be the number assigned to
each light trail in the LT.

Let C denote the full-wavelength capacity, represented
as an integer that is a multiple of the smallest capacity
requests. The smallest capacity request is denoted as 1.
The integer entry in traffic matrix DN×N , represented by
dst , denotes the requested capacity from node s to node t in
the units of the smallest capacity request.

A single fiber network with fractional wavelength capac-
ity is considered. Hence, dst ≤ C. In the absence of wave-
length converters, the wavelength continuity constraints
must be satisfied for light trail networks. The grooming
helps to increase the wavelength utilization and reduces
the total number of wavelengths that is required to sat-
isfy the traffic needs. The following notations are used in
problem formulation.

Variables.

� µτ
st : (binary variable) Route indicator takes the Value

of 1 if request (s, t) takes light trail τ; zero otherwise.
This also implies that nodes s and t are on trail τ and



26 Network Design: Algorithms and Examples

Figure 27. Light trail establishment step 1: Traffic matrix preprocessing.

s is t’ s upstream node.
� δτ : (binary variable) Light trail usage indicator takes

value of 1 if trail τ is used by any request; zero other-
wise.

ILP Formulation.

� Objective:

min
∑

τ

Cτ × δτ (12)

When Cτ = 1, the objective is to minimize the number
of light trails that is required in the network. When Cτ

is defined as the hop-length of light trail τ, the problem
becomes to minimize the total wavelength-links in the
networks, which represent the total reserved capac-
ity in the networks. This can be used to optimize the
wavelength capacity utilization, although that might
consume more light trails.

� Assignment constraint: Each request is assigned to
one and only one light trail.

∑

τ

µτ
st = 1 ∀ (s, t) : dst ∈D, dst > 0 (13)

� Light trail capacity constraint: The aggregated re-
quest capacity on a light trail should not exceed the
full-wavelength capacity.

∑

(s,t)

µτ
stdst ≤ C (14)

� Light trail usage constraint: If any of the s-d pair is
assigned on light trail τ, δτ is set to 1; otherwise, if
none of the s-d pairs picked light trail τ, δl = 0. Recall
that δτ is a binary variable.

δτ ≥µτ
st ∀ (s, t) : dst ∈D (15)

δτ ∈ {0, 1} (16)

Solution Considerations

The light trail design is a challenging problem for the fol-
lowing reasons.

First, to use a wavelength fully, one would like to groom
near full-wavelength capacity traffic onto the wavelength.
This is similar to a normal traffic grooming problem, which
is often formulated as a knapsack problem and is known

to be an NP-complete problem. However, it might be in-
feasible to simply set up a light trail for any set of traf-
fic requests that add up to C. For example, given that
d12 + d13 + d16 = C, it might not be possible to establish the
desired light trail because of the physical hop-length con-
straint. As a matter of fact, the light trail hop-length limit
introduces complexity to the problem.

Second, the ILP formulation of the light trail design
problem is similar to the bin packing problem, which is
an NP-hard problem. However, if light trails are treated
as the “bins,” and elements in the given traffic matrix as
the “items” in the bin packing problem, this problem differs
from a normal bin packing problem because of a potential
physical route constraint that an item cannot be put in
any of the given bins but only a subset of the bins. More
specifically, an s-d pair can be assigned to the routes that
satisfy 1) nodes s and t belong to the route and 2) node
s is the upstream node of node t along the route. Hence,
the approximate algorithms for solving normal bin pack-
ing problems cannot be directly applied here for solving the
light trail design problem.

Light Trail Design: Heuristic Approaches

As the study of Reference 52 proves that the light trail
design problem is NP-hard, the following heuristic algo-
rithms for light trail design is proposed. It is well known
that the first-fit and best-fit are two common and effective
heuristic algorithms for solving bin packing problems. In
the following, the best-fit algorithm is used to solve the
light trail design problem.

The Best-Fit Approach. Recall that, after traffic matrix
preprocessing, each request in the newly obtained traffic
matrix satisfies the light trail hop-length limit; that is, the
shortest hop-length for each s-d pair is no greater than
Tlmax.

The goal of the second step is to identify a set of light
trails for carrying the given traffic. To do this, first pick
the s-d pair that has the longest distance in the distance
matrix Hst . A light trail between this s-d pair is eventually
required.

Once an s-d pair with the longest physical hop-length is
found, the head and tail of a light trail is decided. The goal
now is to find the best eligible light trail between these two
end nodes, which is analogous to fully packing a “bin” in the
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bin packing problem. Two subproblems need to be solved.
First, selection of a path (within the hop-length limit) be-
tween these two nodes is required. Second, assignment of
requests to this light trail needs to be identified.

To find the best light trail between the known head and
tail nodes, an exhaustive search among all possible paths
between the two nodes is performed. Best-fit here tries to
pick up the path between the head and the tail nodes that
is the best among all paths available between the head and
the tail nodes. This search; is still local therefore, the final
results might not be globally optimal.

For each eligible path between the known head and tail
nodes, all possible s-d pairs along this path are sorted ac-
cording to their required capacities, before the routing de-
cision is made. There are two different ways of packing
them onto a path rather than doing it randomly. One is to
allocate the smallest requests first, which is called the in-
creasing packing order, and the other way is to allocate the
biggest requests first, which is called decreasing packing
order.

� Increasing packing order tries to allocate finer re-
quests first, so that the number of requests that can
be packed onto this path is maximized. Some capac-
ity might still be left on this light trail, but that is
not sufficient for the next smallest request. This ap-
proach grooms as many requests as possible onto the
light trail, thereby leaving the rest of the network
with fewer number of requests that still need to be
allocated. The expectation is that this contributes to
the saving on the total number of light trails that
are needed in the network. However, for each light
trail, the packing might not be the most efficient or
the spare capacity might not be minimized.

� Decreasing packing order tries to allocate bigger re-
quests first and leaves the light trail with minimum
spare capacity. However, as the big requests are allo-
cated first, the total number of requests that can be
carried by the light trail might be smaller than that of
the allocation in the Increasing packing order. There-
fore, it could leave more requests unallocated in the
network and more light trails might need to be set up
later on in order to carry all requests. The spare capac-
ity on each light trail is minimized in this approach
at the time of allocating the capacity.

It is not clear which approach works better and always
gives the minimum number of light trails required in the
network. It depends on the traffic patterns. A preferred
approach is to try both and choose the one that yields a
better solution for given data.

Algorithm Design. For the given graph,all possible paths
for each s-d pair can be computed. The paths informa-
tion is stored appropriately. The data structure called
KSPath[N][N][NRoutemax] contains the path information
for each route in the network.

For efficient usage, paths are sorted according to their
physical hop-length, such that KSPath[head][tail][1] con-
tains the shortest path information (hop-length, interme-

diate nodes along this path) head to tail, and so on.
Figure 28 gives the pseudo-code of the best-fit algo-

rithm. In this pseudo-code, seq is used to denote a route
among all valid routes from which head and tail are cho-
sen to be the trail. Also notice that only sub-wavelength
level requests are considered here. Therefore, by default, a
shortest path is chosen as the light trail to carry a given
request if no better path can be found. That is, initially, seq
= 1.

When there is a tie in route selection, the path that
can accommodate most requests is chosen. It is possible to
design and apply different criteria. As mentioned, sorting
AllRequest[ ] in different ways yields different algorithms,
namely, best-fit decreasing packing order and best-fit in-
creasing packing order.

Discussions. The proposed heuristic algorithm has two
steps, as shown in Fig. 27 and 28. Both the first step and the
second step would need the information of paths between
each s-d pairs. Therefore, one can first find out all possi-
ble paths for each s-d pairs. The worst-case complexity of
the exhaustive searching for each s-d pair is O(N3), The to-
tal running time for finding all possible routes is O(RN3),
where R is the number of s-d pairs (requests). In fact, in-
stead of searching for all paths, it is preferable to search
among the K-shortest path with K being big enough. This
could reduce the complexity to O(N(E +NlogN +KN)) for
all node pairs, which may be a promising choice for big
networks.

In best-fit packing of Step 2, for each s-d pair, the best-fit
route is chosen among all K paths. For path τ with nτ nodes,
there are a maximum of t = (nτ − 1)+ (nτ − 2)+ · · · + 1 =
O(n2

τ ) s-d pairs, where nτ is bounded by Tlmax. Hence,
t = O(Tl2max). The sorting takes O(tlogt) loops, and packing
takes another t loops. Thus the total complexity is O(tlogt)
loops for each path. There are K paths, and the same proce-
dure is performed on the selected best-fit path. Therefore,
a total of O(K(tlogt)) = O(K(Tl2maxlogTlmax)) loops is needed
for each s-d pair. At least one s-d pair is eliminated from
matrix R in Fig. 28 in each step and the program stops
when R is empty.

Algorithm Performance. To evaluate the performance of
the above ILP formulations and heuristic algorithms, ex-
periments are performed on a physical topology given in
Fig. 29. To simplify the problem, it is assumed that each
physical link is bidirectional with the same length.

Table 3 gives a randomly generated traffic matrix for
this example. The integer numbers indicate the requested
capacity in a unit of OC-1 (51.84 Mbps). An entire wave-
length capacity is OC-48. As aforementioned, only the frac-
tional wavelength capacity is considered for traffic groom-
ing in light trail networks. Intuitively, if every s-d pair re-
quires a capacity greater than half of the full wavelength
capacity, no two requests can be groomed on a light trail.
Thus, it is assumed that most s-d pairs request a small
fractional capacity of the full wavelength channel. Hence,
integer numbers between 0 and 11 are randomly generated
as requested capacities in the experiments. The resulting
traffic matrix is shown in Table 3.
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Figure 28. Light trail design step 2: best first approach.

Figure 29. A 10-node example network.

The CPLEX Linear Optimizer 7.0 is used to solve the
ILP formulation proposed. It is assumed that each candi-
date path can be used once; that is, u = 1. Assume that the
hop-length limit Tlmax = 4, from the topology it is observed
that all s-d pairs have paths within this hop-length limit.
Hence, the traffic matrix preprocessing does not make any
change in the given traffic matrix.

Table 4 presents the results obtained by solving the ILP
formulation with hop-length limit Tlmax = 4. It is observed
that W = 4 is sufficient on each link, although no constraint
is imposed on the number of wavelengths.

Table 4 shows the 13 light trails that are needed to carry
the given traffic. The traffic assignment obtained from solv-
ing the ILP formulation is also listed. For each light trail,
the summation of all traffic it carries is calculated and
shown in the right-most column in Table 4.

Table 5 depicts the results from solving the local best-fit
heuristic algorithm proposed above. In this example, lo-
cal best-fit increasing packing approach requires 16 light
trails.
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Discussions. An observation from the optimal solutions
obtained by solving ILP formations is that only the longest
candidate paths are chosen as light trails, because only
the number of light trails is being minimized. The program
stops searching further once the number of light trails does
not decrease, even though it is possible to substitute some
light trails with the other shorter paths.

The problem becomes unmanageable in case of the ILP
approach as the problem size increases. In such a sce-
nario, the use of relaxation techniques would be a pre-
ferred choice. When the traffic is uniform or the variation
among different requests are small enough that they can
be approximately treated as uniform traffic, DN×N = {ds,t =
d| ∀ (s, t)}. LP relaxation is a very effective means for ob-
taining fast solutions, which can be achieved by modifying
the light trail capacity constraint in the ILP formulation
as follow. The rest of the formulation remains the same.

∑

(s,t)

µτ
s,t ≤ �C/d � (17)

0 ≤ δτ ≤ 1 (18)

0 ≤ µτ
s,t ≤ 1 (19)

In this formulation, the coefficient matrix of variables is
totally unimodular. Hence, the LP relaxation still yields in-
teger solutions. This effect is for the same reason as noted
earlier in an LP to ILP in earlier article. Thus, this formu-
lation can be applied to solve the light trail design problem
where the traffic requests have similar capacities.

SUMMARY

The network design deals with the interconnection of var-
ious nodes and how to transmit information from one
node to another. We have addressed the issues in network
design. Four important factors, network topology, trans-
fer technologies, network management and control tech-
niques, and cost were identified and discussed. We also dis-
cussed analysis methods using graph theoretic models for
a network and issues in topology design and optimization.
We also introduced performance metrics such as blocking
probability, throughput, and delay and how to account for
them in the design of a network. An important issue to such
design is fault tolerance. Two example designs, a WDM-
based optical fiber network and a light trail network archi-
tecture, were presented considering all the factors together,
demonstrating the concepts presented, and analyzing the
trade-offs in the design, and the methods to resolve them.
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