
RECONFIGURABLE COMPUTING

INTRODUCTION

Although reconfigurable fabrics can in principle be con-
structed from any type of technology, in practice, most con-
temporary designs are made using commercial field pro-
grammable gate arrays (FPGAs). An FPGA is an inte-
grated circuit containing an array of logic gates in which
the connections can be configured by downloading a bit-
stream to its memory. FPGAs can also be embedded in in-
tegrated circuits as intellectual property cores. More de-
tailed surveys on reconfigurable computing are available
in the literature (2–5).

Microprocessors offer an easy-to-use, powerful, and flex-
ible implementation medium for digital systems. Their
utility in computing applications makes them an over-
whelming first choice, and parallel interconnections of mi-
croprocessors can be extremely powerful. Moreover, it is
relatively easy to find software developers, and micropro-
cessors are widely supported by operating systems, soft-
ware engineering tools, and libraries. Unfortunately, their
generality does not make them the best choice for a large
class of applications that need to be optimized for perfor-
mance, power, board area.

Application-specific integrated circuits (ASICs) and FP-
GAs are able to arrange computations in a spatial rather
than temporal fashion and greater levels of parallelism
than a microprocessor can be achieved. Thus, perfor-
mance improvements of several orders of magnitude can
be achieved. Also, the absence of caches and instruction de-
coding can result in the same amount of work being done
with less chip area and lower power consumption (6). As an
example, in a cryptographic key search problem, a single
FPGA with 96 parallel RC4 encryption engines operating
at 50 MHz achieved a speedup of 58 over a 1.5-GHz Pen-
tium 4 implementation (7).

An example involving the implementation of a finite im-
pulse response (FIR) filter is shown in Fig. 1. The recon-
figurable computing solution is significantly more parallel
than the microprocessor-based one. In addition, it should
be apparent that the reconfigurable solution avoids the
overheads associated with instruction decoding, caching,
register files, and speculative execution, and unnecessary
data transfers as well as control hardware can be omitted.

Compared with ASICs, FPGAs offer very low non-
recurrent engineering (NRE) costs, which is often a more
important factor than the fact that FPGAs have higher
units costs and many applications do not have the very high
volumes required to make ASICs a cheaper proposition. As
integrated circuit feature sizes continue to decrease, the
NRE costs associated with ASICs continue to escalate, in-
creasing the volume at which it becomes cheaper to use an
ASIC (see Fig. 2). Reconfigurable computing will be used
in increasingly more applications, as ASICs become only
cost effective for the highest performance or highest vol-
ume applications.

Additional benefits of reconfigurable computing are that
its technology provides a shorter time to market than

ASICs (associated FPGA fabrication time is essentially
zero), making many fabrication iterations within a sin-
gle day possible. This benefit allows more complex algo-
rithms to be deployed and makes possible problem-specific
customizations of designs. FPGA-based designs are inher-
ently less risky in terms of technical feasibility and cost, as
shorter design times and lower upfront costs are involved.
As its name suggests, FPGAs also offer the possibility of
modifications to the design in the field, which can be used to
provide bug fixes, modifications to adapt to changing stan-
dards, or to add functionality, all of which can be achieved
by downloading a new bitstream to an existing reconfig-
urable computing platform. Reconfiguration can even take
place while the system is running, this being known as run-
time reconfiguration [e.g., (8)]. Runtime reconfiguration is
explained in more detail later in this article.

In the next section, we introduce the basic architecture
of common reconfigurable fabrics, followed by a discussion
of applications of reconfigurable computing and system ar-
chitectures. Runtime reconfiguration and design methods
are then covered. Finally,we discuss multichip systems and
end with a conclusion.

RECONFIGURABLE FABRICS

A block diagram illustrating a generic fine-grained island-
style FPGA is given in Fig. 3 (9). Products from companies
such as Xilinx (10) Altera (11), and Actel (12) are commer-
cial examples. The FPGA consists of a number of logic cells
that can be interconnected to other logic and input/output
(I/O) cells via programmable routing resources. Logic cells
and routing resources are configured via bit-level program-
ming data, which is stored in memory cells in the FPGA.
A logic cell consists of user-programmable combinatorial
elements, with an optional register at the output. They are
often implemented as lookup tables (LUTs) with a small
number of inputs, 4-input LUTs being shown in Fig. 3. Us-
ing such an architecture, subject to FPGA-imposed limita-
tions on the circuit’s speed and density, an arbitrary circuit
can be implemented. The complete design is described via
the configuration bitstream which specifies the logic and
I/O cell functionality, and their interconnection.

Current trends are to incorporate additional embedded
blocks so that designers can integrate entire systems on
a single FPGA device. Apart from density, cost, and board
area benefits, this process also improves performance be-
cause more specialized logic and routing can be used and
all components are on the same chip. A contemporary
FPGA commonly has features such as carry chains to en-
able fast addition; wide decoders; tristate buffers; blocks
of on-chip memory and multipliers; embedded micropro-
cessors; programmable I/O standards in the input/output
cells; delay locked loops; phase locked loops for clock de-
skewing, phase shifting and multiplication; multi-gigabit
transceivers (MGTs); and embedded microprocessors. Em-
bedded microprocessors can be implemented either as soft
cores using the internal FPGA resources or as hardwired
cores.

In addition to the architectural features described, intel-
lectual property (IP) cores, implemented using the logic cell

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright © 2007 John Wiley & Sons, Inc.

2 Reconfigurable Computing

Figure 1. Illustration of a microprocessor based FIR filter vs. a reconfigurable computing solution. In the microprocessor, operations are
performed in the ALU sequentially. Furthermore, instruction decoding, caching, speculative execution, control generation and so on are
required. For the reconfigurable computing approach using an FPGA, spatial composition is used to increase the degree of parallelism.
The FPGA implementation can be further parallelized through pipelining.

Figure 2. Cost of technology vs. volume. The crossover volume for which ASIC technology is cheaper than FPGAs increases as feature
size is reduced because of increased non-recurrent engineering costs.

Figure 3. Architecture of a basic island-style FPGA with four-input logic cells. The logic cells, shown as gray rectangles are connected to
programmable routing resources (shown as wires, dots, and diagonal switch boxes) (source: Reference (9) and (76)).

Reconfigurable Computing 3

resources of the FPGA, are available from vendors and can
be incorporated into a design.These IP cores include bus in-
terfaces, networking components, memory interfaces, sig-
nal processing functions, microprocessors and so on and
can significantly reduce development time and effort.

The bit-level organization of the logic and routing re-
sources in island-style FPGAs is extremely flexible but
has high implementation overhead as a result. Tradeoffs
exist in the granularity of the logic cells and routing re-
sources. Fine-grained devices have the best flexibility; how-
ever, coarse-grained elements can trade some flexibility for
higher performance and density (13). With modern tech-
nologies, the speed of the routing resource is a limiting
factor and trends have been to increase the functionality
of the logic cells (e.g., use logic cells with larger numbers
of inputs to reduce interconnect requirements). For datap-
ath oriented applications such as in digital signal process-
ing, coarse-grained architectures such as Pipewrench (14)
and RaPID (15) employ bus-based routing and word-based
functional units to utilize silicon resources more efficiently.

Companies such as M2000 (16) and eASIC (l7) provide
reconfigurable fabric in the form of an IP block that can
be embedded in an ASIC design. Fully synthesizable em-
bedded cores have also been proposed (18). Such fabrics
enable post-fabrication changes and allow the flexibility
and performance benefits associated with reconfigurable
computing to be enjoyed in ASICs. They will be increas-
ingly important in future systems for adding functionality,
fixing bugs, monitoring, and debugging after fabrication.

APPLICATIONS

Reconfigurable computing has found widespread applica-
tion in the form of “custom computing-machines” for high-
energy physics (19), genome analysis (20), signal process-
ing (21, 22), cryptography (7, 23), financial engineering (24)
and other domains (25). It is unique in that the flexibility of
the fabric allows customization to a degree not feasible in
an ASIC. For example, in an FPGA-based implementation
of RSA cryptography (23), a different hardware modular
multiplier for each prime modulus was employed (i.e., the
modulus was hardwired in the logic equations of the de-
sign). Such an approach would not be practical in an ASIC
as the design effort and cost is too high to develop a differ-
ent chip for different moduli. This led to greatly reduced
hardware and improved performance, the implementation
being an order of magnitude faster than any reported im-
plementation in any technology at the time.

Another important application is logic emulation (26,
27) where reconfigurable computing is used not only for
simulation acceleration, but also for prototyping of ASICs
and in-circuit emulation. In-circuit emulation allows the
possibility of testing prototypes at full or near-full speed,
allowing more thorough testing of time-dependent applica-
tions such as networks. It also removes many of the depen-
dencies between ASIC and firmware development, allow-
ing them to proceed in parallel and hence shortening devel-
opment time. As an example, it was used in Reference (28)
for the development of a two-million-gate ASIC containing
an IEEE 802.11 medium access controller and IEEE 802.1

la/b/g physical layer processor. Using a reconfigurable pro-
totype of the ASIC on a commodity FPGA board, the ASIC
went through one complete pass of real-time beta testing
before tape-out.

Digital logic, of course, maps extremely well to fine-
grained FPGA devices. The main design issues for such
systems lie in partitioning of a design among multiple
FPGAs and dealing with the interconnect bottleneck be-
tween chips. The Cadence Palladium II emulator (29) is a
commercial example of a logic emulation system and has
256-million-gate logic capacity and 74-GB memory capac-
ity. It uses custom ASICs optimized for logic emulation
and is 100–10,000 times faster than software-based reg-
ister transfer language simulation. Further discussion of
interconnect time-multiplexing and system decomposition
is given later in this article.

Hoang (20) implemented algorithms to find minimum
edit distances for protein and DNA sequences on the
Splash 2 architecture. Splash 2 can be modeled in terms
of both bidirectional and unidirectional systolic arrays. In
the bidirectional algorithm, the source character stream
is fed to the leftmost processing element (PE), whereas
the target stream is fed to the rightmost PE. Compar-
ing two sequences of length m and n requires at least
2 × max(m + 1, n + 1) processors, and the number of steps
required to compute the edit distance is proportional to the
size of the array. The unidirectional algorithm is suited for
comparing a single source sequence against multiple tar-
get sequences. The source sequence is first loaded as in the
bidirectional case, and the target sequences are fed in one
after the other and processed as they pass through the PEs
(which results in virtually 100% utilization of processors,
so that the unidirectional model is better suited for large
database searches).

The BEE2 system (22),described in the next section,was
applied to the radio astronomy signal processing domain,
which included development of a billion-channel spectrom-
eter, a 1024-channel polyphase filter banks, and a two-
input, 1024-channel correlator. The FPGA-based system
used a 130-nm technology FPGA and performance was
compared with 130-and 90-nm DSP chips as well as a 90-
nm microprocessor. Performance in terms of computational
throughput per chip was found to be a factor of 10 to 34 over
the DSP chip in 130-nm technology and 4 to 13 times bet-
ter than the microprocessor. In terms of power efficiency,
the FPGA was one order of magnitude better than the DSP
and two orders of magnitude better than the microproces-
sor. Compute throughput per unit chip cost was 20–307%
better than the 90-nm DSP and 50–500% better than the
microprocessor.

SYSTEM ARCHITECTURES

Reconfigurable computing machines are constructed by in-
terconnecting one or more FPGAs. Functionally, we can
view FPGA-based systems as consisting of two compo-
nents, reprogrammable FPGAs providing logic implemen-
tation and field programmable interconnect chips (FPICs)
providing connectivity among FPGAs. The FPICs, in turn,
could be implemented as ASICs or using FPGAs. Most sys-

4 Reconfigurable Computing

tems include other elements, such as microprocessors and
storage, and can be treated as processing elements and
memory that are interconnected. Obviously, the arrange-
ment of these elements affects the system performance and
routability.

The simplest topology involves FPGAs directly con-
nected in a ring, mesh, or other fixed pattern. FPGAs serve
as both logic and interconnect, providing direct commu-
nication between adjacent devices. Such an architecture
is predicated on locality in the circuit design and further
assumes that the circuit design maps well to the planar
mesh. This architecture fits well for applications with reg-
ular local communications (30). However, in general, high
performance is hard to obtain for arbitrary communication
patterns because the architecture only provides direct com-
munications between neighboring FPGAs and two distant
FPGAs may need many other devices as “hops” to commu-
nicate, resulting in long and widely variable delays. Fur-
thermore, FPGAs, when used as interconnects, often result
in poor timing characteristics.

A major change in the architecture of FPGA-based sys-
tems was the concept of a partial crossbar interconnect, as
in Realizer (26) and BORG (31). This scheme is common in
logic emulation systems. Interconnection through FPICs
implies that all pairs of FPGAs are neighbors, resulting in
predictable interconnect delays, better timing characteris-
tics, and better overall system performance (32, 33). Figure
4, from Reference (26) depicts a reconfigurable computing
system designed for logic emulation. Arrays of reconfig-
urable processors and FPICs, both implemented using FP-
GAs, reside on the emulation modules. The user inputs the
emulated design netlist and commands from the worksta-
tion. The workstation and control processor personalize the
emulation module, which are used in place of the emulated
chip. Thus, the target system can function properly before
the actual chip is available. Furthermore, testing and de-
sign change can be made by modifying software instead of
reworking hardware.

Figure 5 depicts the SPLASH 2 architecture (34). Each
board contains 16 FPGAs, X1 through X16. The blocks M1
through M16 are local memories of the FPGAs. A simplified
36-bit bus crossbar, with no permutation of the bit-lines
within each bus, interconnects the 16 FPGAs. Another 36-
bit bus connects the FPGAs in a linear systolic fashion. The
local memories are dual ported with one port connecting to
the FPGAs and the other port connecting to the external
bus. It is interesting to note that the crossbar was added to
the SPLASH 2 machine, the original SPLASH 1 machine
only having the linear connections. SPLASH 2 has been
successfully used for custom computing applications such
as search in genetic databases and string matching (20).

Other designs have used a hierarchy of interconnect
schemes, differing in performance. The use of multi-gigabit
transceivers (MGT) available on contemporary FPGAs al-
lows high bandwidth interconnection using commodity
components. An example is the Berkeley Emulation En-
gine 2 (BEE2) (22), designed for reconfigurable computing
and illustrated in Fig. 6. Each compute module consists
of five FPGAs (Xilinx XC2VP70) connected to four double
data rate 2 (DDR2) dual inline memory modules (DIMMs)
with a maximum capacity of 4GB per FPGA. Four FP-

GAs are used for computation and one for control. Each
PPGA has two PowerPC 405 processor cores. A local mesh
connects the computation FPGAs in a 2-D grid using low-
voltage CMOS (LVCMOS) parallel signaling. Off-module
communications are of via 18 (two from the control FPGA
and four from each of the compute FPGAs) Infiniband
4X channel-bonded 2.5-Gbps connectors that operate full-
duplex, which corresponds to a 180-Gbps off-module full-
duplex communication bandwidth. Modules can be inter-
connected in different topologies including tree, 3-D mesh,
or crossbar. The use of standard interfaces allows standard
network switches such as Infiniband and 10-Gigabit Eth-
ernet to be used. Finally, a 100 base-T Ethernet connection
to the control FPGA is present for out-of-band communica-
tions, monitoring, and control.

Commercial machines such as the Cray XD1 (35), SRC
SRC-7 (36), and Silicon Graphics RASC blade (37), have
a similar interconnect structure to the BEE2 in that they
are parallel machines employing high performance micro-
processors tightly coupled to a relatively small number of
FPGA devices per node. Nodes are interconnected via high
speed switches and for specialized applications, such ma-
chines can have orders of magnitude performance improve-
ment over conventional architectures. Switching topolo-
gies can be altered via configuration of the switching fabric.

RUNTIME RECONFIGURATION

A reconfigurable computing system can have its functional-
ity updated during execution, resulting in reduced resource
requirements. A runtime reconfigurable system partitions
a design temporally so that the entire design does not need
to be resident in the FPGA at any given moment (38, 39).
Configuration and execution can be overlapped to improve
performance in the presence of reconfiguration latency. Us-
ing this technique, designs that are larger than the physi-
cal hardware resources can be realized in an efficient man-
ner.

Dharma, a time-sharing FPGA architecture, was pro-
posed that contains a functional block and an interconnect
network (40). The interconnect and the logic can be time-
shared. The authors proposed that emulated design topol-
ogy be levelized in a folded pipeline manner; this topology
simplifies the architecture and provides predictable inter-
connect delay (Fig. 7).

Single context, partially reconfigurable, and multiple
context architectures have been proposed. In a single
context system, any changes to the functionality of the
FPGA involves reloading the entire bitstream; early FP-
GAs were of this type. This scheme has the disadvantage of
long reconfiguration time. Partial reconfiguration, as sup-
ported by the Xilinx Virtex FPGAs (10), allows portions
of the FPGA to be changed via a memory mapped scheme,
whereas the other portions of the FPGA continue function-
ing. Compared with a single context scheme, area overhead
is associated in providing this feature. Multiple context
architectures, such as NEC’s Dynamically Reconfigurable
Processor (DRP) (41), allow a number of complete configu-
rations to be stored in the fabric simultaneously and thus
reconfiguration can be achieved in a small number of cy-

Reconfigurable Computing 5

Figure 4. Example of a logic emulation system. Arrays ofFPGAs and FPICs reside on the emulation modules. The user inputs the
emulated design netlist and commands from the workstation. The workstation and control processor personalize the emulation modules,
which are used in place of the emulated chip.

Figure 5. SPLASH2 architecture. Each board contains 16 FPGAs, XI through XI6. The blocks Ml through Ml6 are local memories of the
FPGAs. A simplified 36-bit bus crossbar, with no permutation of the bit-lines within each bus, interconnects the 16 FPGAs. Another 36-bit
bus connects the FPGAs in daisy-chain fashion. The local memories are dual ported with one port connecting to the FPGAs and the other
port connecting to the external bus.

cles. This architecture has the shortest context switch time,
however, a larger area overhead is associated with imple-
mentation of this scheme.

The logical unit of reconfiguration could be at a num-
ber of levels including the application, instruction, task,
block, or sub-block level. An example of application-level
reconfiguration could simply involve loading a runtime-
dependent bitstream to support a particular coding stan-
dard in a video coding application. The Dynamic Instruc-
tion Set Computer (DISC) (42) supported demand-driven
modification of the instruction set through partial reconfig-
uration. The commercial Stretch processor (43) combines

reconfigurable fabric with a processor to support the exe-
cution of custom instructions implemented on a reconfig-
urable fabric. Furthermore, the fabric can be reconfigured
at runtime and the design environment is software-centric,
with programming of the processor being in Stretch C.

An operating system for guarantee-based scheduling of
hard real-time tasks has been proposed (44). Under control
of software running on a microprocessor, task circuits can
be scheduled online and placed in a suitable free space in a
hardware task area. Communications between tasks and
I/O are done though a task communication bus, and termi-
nation of a task frees the reconfigurable resources used. It

6 Reconfigurable Computing

Figure 6. BEE2 Compute Module block diagram. Compute modules can be interconnected via the Infiniband IB4X connectors, either
directly or via a 10-Gigabit Ethernet switch. The 100-Base T Ethernet can be used for control, monitoring, or data archiving.

Figure 7. Dynamic Architecture for FPGA-based systems. The architecture contains a functional block and an interconnect network.
The interconnect and the logic can be time shared. The emulated design topology is levelized in a folded pipeline manner. The levelized
topology simplifies the architecture with predictable interconnect delay.

was shown that hardware in the hardware task area can
be shared by tasks and the overheads associated with its
implementation on a partially configurable platform were
acceptably low.

A pipeline stage is often a convenient block-level unit
for reconfiguration. In incremental pipeline reconfigura-
tion (45), an application with S pipeline stages can be im-
plemented in an FPGA with fewer than S physical pipeline
stages. This is done by adding one pipeline stage and re-
moving one pipeline stage in each stage of the computation.
Execution and computation can be overlapped.

Runtime reconfiguration can be done at even lower lev-
els. A crossbar switch which employs runtime reconfigu-
ration of the FPGA’s routing resources has been described
(46). This scheme was able to achieve density, switch up-

date latency and performance higher than possible using
conventional means.

Tools have been developed to support runtime reconfig-
uration. For example, JBits (47) is a set of Java classes that
provide an application programming interface to the Xil-
inx FPGA bitstream. The interface operates on either bit-
streams generated by Xilinx design tools or on bitstreams
read back from actual hardware and allows the FPGA logic
and routing resources to be modified.

DESIGN METHODS

Hardware description languages (HDLs) such as the Very
High Speed Integrated Circuit Hardware Description Lan-

Reconfigurable Computing 7

guage (VHDL) and Verilog are commonly used to specify
the logic of a reconfigurable system. Descriptions in these
languages have the advantage of being vendor neutral, so
the same description can be synthesized for different tar-
gets such as different FPGA devices, different FPGA ven-
dors, and ASICs. For this reason, these languages are often
the target language for higher level tools that offer higher
levels of abstraction.

Module generators and libraries are commonly deployed
to promote reuse. For example, vendors such as Altera and
Xilinx have parameterized libraries of components that
can be used in a design. These libraries are generated so
that a circuit optimized for the particular application can
be produced. As an example, a parameterized floating point
library might allow the wordlength of the exponent and
mantissa to be specified as well as whether denormalized
numbers are supported. The module generator then gener-
ates a netlist or VHDL-based floating point adder that can
be included in a design.

A high level language can be directly mapped to a netlist
or HDL. As an example, Luk and Page described a simple
compilation process (8, 49) from a high level language with
explicit parallel extensions to a register transfer language
(RTL) description. Parallel execution of statements is im-
plemented via parallel processes, and these can commu-
nicate via channels through which a single-word message
can be passed. Variables in the user program are mapped
to registers, all expressions are implemented as combina-
tional logic, and multiplexers are used in the case a reg-
ister has multiple sources. A datapath that matches the
dataflow graph of the input source description is gener-
ated using this strategy. The clocking scheme employed is
a global, synchronous one, and a convention that each as-
signment takes exactly one clock cycle is followed. A start
signal is used to feed the clock and to enable each register
that corresponds to a variable, and a finish signal is gen-
erated for the assignment in the following clock cycle. To
execute statements sequentially, the start and finish sig-
nals of adjacent statements are simply connected together,
creating a one-hot distributed control scheme. Conditional
statements and loops are formed by asserting one of sev-
eral possible start signals that correspond to alternative
basic blocks in a program. Completion of conditional or loop
constructs and synchronization of parallel blocks are im-
plemented by combining relevant finish signals using the
appropriate combinatorial logic. An example showing the
translation of a simple code fragment to control and data-
path is shown in Fig. 8.

Commercial tools that can compile standard program-
ming languages such as Java, C, or C++ [e.g., (49)] are avail-
able. Examples include Handel-C from Celoxica (50) and
Catapult C from Mentor Graphics (51). The use of tradi-
tional programming languages improves productivity as
low level details are handled by the compiler. This is anal-
ogous to C versus assembly language for software devel-
opment. Another difference with potentially large implica-
tion is that, using these tools, software developers can also
design reconfigurable computing applications. Domain-
specific languages such as MATLAB/Simulink (52) offer
even greater improvements in productivity because they
are interactive, include a large library of primitive rou-

tines and toolkits, and have good graphing capabilities.
Indeed, many designs for communications and signal pro-
cessing are first prototyped in MATLAB and then con-
verted to other languages for implementation. Tools such
as the MATCH compiler (53) and Xilinx System Generator
can translate a subset of MATLAB/Simulink directly to an
FPGA design.

The availability of embedded operating systems such
as Linux for microprocessors on an FPGA provides a fa-
miliar software development environment for program-
mers, greatly facilitating program development through
the availability of a large range of open-source libraries
as well as high quality development tools. Such tools can
greatly speed up the development time and improve the
quality of embedded systems. Hardware/software codesign
tools such as Altera’s Nios II C-to-Hardware acceleration
compiler enable time-critical functions in a C program to be
converted to a hardware accelerator that is tightly coupled
to a microprocessor within the FPGA (54).

Issues developing with the mapping of algorithms to
hardware are more generally discussed by Isshiki and Dai
(55), who focus on the differences between implementing
bit-serial versus bit-parallel modules (e.g., adders and mul-
tipliers) on FPGA architectures. Although latency is larger
for bit-serial modules, the reduction in area frequently
makes area-time products significantly lower for such im-
plementations. More specifically, such advantages as the
following can be obtained: 1) For bit-parallel modules, the
I/O pin limitation is a major problem, and the large size
of the module cluster can result in unused space and un-
derutilized logic resources; 2) bit-serial modules are easier
to partition as cell-to-cell connections are sparse and do
not cause I/O problems; and 3) high fanout nets can impair
routability of bit-parallel modules. Leong and Leong (56)
generalized further with a design methodology that can
translate a dataflow description with signals of different
wordlengths to a digit serial design.

MULTICHIP SYSTEMS

Special care must be taken in the design of large and mul-
tichip reconfigurable systems. In this section, we describe
some theoretic results relevant to the major architectural
and issues associated with such designs.

Interconnect Organization

A classic Clos network (57) contains three stages: inputs,
intermediate switches, and outputs, as shown in Fig. 9. It
can be used to interconnect pins in a reconfigurable com-
puting system,and its input and output stages are symmet-
ric. Suppose the first stage has r n× m crossbar switches,
the second stage has m r × r switches, and the third stage
has r m × n switches, let us denote the network as c(n,m,r).
For any two-pin net interconnect requirement, the network
c(n, m, r) can achieve complete routability if m is not less
than n. The routing method can be described by recursive
operations (58). In the first iteration, we reduce the net-
work to c(n − 1, m − 1, r). In the ith iteration, we reduce
the network to c(n − i, m − i, r). When n − i = 1, we have
r 1 × (m − n + 1) switches in the first stage, m − n + 1 r × r

8 Reconfigurable Computing

Figure 8. Hardware compilation example. The C program is translated into a datapath (top) and control (bottom). Execution of statements
in the while loop are controlled by s1 and s2; s0 and s3 correspond to the start signals of the statements before and after the while loop.

Figure 9. Clos network. A Clos network contains three stages: inputs, intermediate switches, and outputs. The input and output stages
are symmetric. In the figure, the first-stage has r n × m switches, the second-stage has m r × r switches, and the third-stage has r m × n
switches.

switches in the second stage, and r(m − n + 1) × 1 switches
in the third stage. In other words, only one input exists in
each first-stage switch and one output in each third-stage
switch. In this case, one second-stage r × r switch is enough
to route the r inputs of r first-stage switches to the r outputs
of r third-stage switches, thus completing the interconnect.

The reduction from c(n − i, m − i, r) to c(n − i − 1, m − i −
1, r) can be derived by a maximum matching algorithm.
The matching algorithm selects disjoint signals from dif-
ferent input switches to different output switches. One
second-stage switch is then used to route the selected sig-
nals. From Hall’s theorem, the maximum matching and

routing can always reduce the network to c(n − i − 1, m −
i − 1, r).

Conceptually, the routing problem can also be formu-
lated as edge coloring on a bipartite graph G(V1, V2, E) (31).
The node sets V1 and V2 represent the switches in the input
and output stages, respectively. An edge in E represents
a two-pin net interconnect requirement between the cor-
responding input and output switches. In Reference (31),
Chan and Schlag assigned colors to the edges of the bi-
partite graph. Edges of the same color are bundled into
one group and the corresponding set of nets are routed by
one switch in the second stage. The work of Reference (59)

Reconfigurable Computing 9

was then used to find a minimum edge coloring solution in
O(|E|logn).

The three-stage Clos network can be folded into a two-
stage network (Fig. 10) so that the inputs and outputs are
mixed in the first stage. Thus, the corresponding bipartite
graph G(V1, V2, E) constructed above for edge coloring is
also folded with V1 and V2 merged into one set.

To find the routing assignment, the folded edge color-
ing graph can be unfolded back to a bipartite graph using
an Euler path search. The Euler path traverses every edge
exactly once and defines the edge direction according to
the direction of the traversal. We then recover the origi-
nal bipartite graph by splitting the node set back into two
sets V1 and V2 and unfold the edges such that all edges
are directed from V1 to V2. We can find the minimum edge
coloring solution of the unfolded bipartite graph and apply
the solution back to the folded routing problem.

In practice, the first-level crossbar of the Clos network
is replaced with FPGAs to save board space (Fig. 11).
Routability is worse than an ideal Clos network. Even with
a true Clos network, complete routability of multipin nets
is not guaranteed, which is an important practical consid-
eration because in microelectronic design, many multipin
nets typically exist.

In an attempt to solve the multipin net and routability
problem, we can introduce extra connections among FPIDs
as shown in Fig. 12. However, extra FPID interconnections
also incur extra delay. We can also expand the fanout width
of FPGAs so that each FPGA I/O pin is connected to more
than one FPIC (60, 61). The fanout width expansion im-
proves routability without significant additional delay. The
multiple appearances of I/O pins increase the probability
that a signal connection can be made in a single stage,
which is especially critical for multipin nets. However, the
additional fanouts increase the needed pin count of FPICs.
Thus, we need to find a balanced fanout distribution that
reduces the interconnect delay with a minimal pin require-
ment.

A tree-structured network can simplify the mapping
process for certain applications. In Reference (62), an ex-
ample of a tree-structured network is illustrated for a Very
Large Scale Simulator (VLSS). The VLSS tree structure
has all logic components located at the leaves and intercon-
nect switches at the internal nodes. The machine covers a
capacity of eight million gates. Each branch is an 8-bit bus.
The higher up the level of the tree, the less parallelism the
signal distribution can achieve. Therefore, a partitioning
process is designed to minimize the high level interconnect
and maximize the parallel operation.

Interconnect Multiplexing

Time multiplexing is an effective method for tackling the
scalability problem in interconnecting large designs. The
time-sharing method can be extended from traditional bus
organization (27, 62) to network sharing (63) and further
to function block sharing (40).

Interconnect can be time shared as a bus (27, 62). If n
communication lines exist between two FPGAs, they can
be reduced to a single line by storing logical outputs in
shift registers and time-multiplexing the communication

in phases. Such a scheme was employed in the virtual wires
logic emulation system (27), which is efficient because in-
terconnects are normally capable of being clocked at much
higher rates than the critical path of the rest of the system,
and all logical wires are not simultaneously active. This
scheme can greatly reduce the complexity of the intercon-
necting network or printed circuit board in a multi-FPGA
system.

Li and Cheng (63) proposed that a dynamic network be
viewed as overlapping L conventional FPICs together but
sharing the same I/O pins. A dynamic routing architec-
ture can increase the routability and shorten interconnect
length. Each switching network is a full crossbar,which can
be reconfigured to provide any connections among I/O pins.
The select lines are used to activate only one switching net-
work at a time; thus the I/O pins are dynamically connected
according to the configuration of this active switching net-
work. By dynamically reconfiguring the FPICs, L logic sig-
nals can time-share the same interconnect resources.

Memory Allocation

Interconnect schemes should also consider how memory
is connected to the FPGAs. Although combining memory
with logic in the same FPGA is the most desirable method
for reducing routing congestion and signal delay, separate
components can supply much larger capacity at higher den-
sity and lower price. Figure 13 demonstrates three differ-
ent ways of allocating the memories in a Clos network (31,
64). The memory may be attached directly to a local FPGA
(Fig. 13a), attached to the second-stage switches of the Clos
network via a host interface (Fig. 13b), or attached to the
first-stage switches of the Clos network (Fig. 13c). The first
method provides good performance for local memory ac-
cess. However, for the case of nonlocal memory access, the
routability and delay are concerns. The second method is
slower than the first method for local memory accesses but
provides better routability. The third is the most flexible as
the memory is attached to the network and the routabil-
ity is high. However, every logic-to-memory communication
must go through the second interconnect stage.

Bus Buffer Insertion

In FPGAs, signal propagation is inherently slow because of
its programmable interconnect feature. However, the delay
of long routing wires can be drastically reduced by buffer
insertion. The principle at work is that by inserting buffers
we can decouple capacitive effects of components and in-
terconnect driven by the buffers and thereby improve RC
delay.

Given a routing topology for a net and timing require-
ments for its sinks, an efficient optimal buffer insertion
algorithm was proposed in Reference 65. Experimental re-
sults show dramatic improvement versus the unbuffered
solution. Thus, it is advantageous to have abundant buffers
in FPGAs. However, each possible buffer and its pro-
grammable switch adds capacitance to the wires, which in
turn will contribute to delay. Thus, a balance point needs to
be identified to trade off between the additional delay and
capacitance of the buffers versus the improvement they
can provide.

10 Reconfigurable Computing

Figure 10. Folded Clos network. The three-stage Clos network is folded into a two-stage network so that the inputs and outputs are
mixed in the first stage.

Figure 11. Variations of the Clos network. The first level crossbar of the Clos network is replaced with FPGAs to save board space.
Routability is worse than an ideal Clos network.

Reconfigurable Computing 11

Figure 12. Variations of Clos network. The fanout width of FPGAs is expanded so that each FPGA I/O pin is connected to more than one
FPIC. The fanout width expansion improves routability without significant additional delay.

For a multisourced bus, the problem of buffer insertion
becomes more complicated, because the optimization for
one source may sacrifice the delay of others. Furthermore,
the direction of the buffer needs to be arbitrated by a con-
troller. Instead of using such a controller, a novel approach
is to use a patented open collector bus repeater (66). When
idle, the two ends of the repeater are set to high. When
the repeater senses the pull-down action on one side, it
presents the signal on the other side until the pull-down
action is released from the originated signal. The bus re-
peater eliminates the need for a direction control signal,
resulting in a simpler design and better use of resources.

System Decomposition

To decompose a system into multiple devices,Yeh et al. (67)
proposed an algorithm based on the relationship between
uniform multi-commodity flow and min-cut partitioning.
Yeh et al. construct a flow network wherein each net ini-
tially corresponded an edge with flow cost one. Two random
modules in the network were chosen and the shortest path
(i.e., path with lowest cost) between them was computed.
A constant � <1 was added to the flow for each net in the
shortest path, and the cost for every net in the path was
incremented. Adjusting the cost penalizes paths through
congested areas and forces alternative shortest paths. This
random shortest path computation is repeated until every
path between the chosen pair of modules passes through at
least one “saturated” net. The set of saturated nets induces
a multi-way partitioning in which two modules belong to
the same cluster if and only if there is a path of unsaturated
nets between them.

For each of these clusters, the flux (defined as the cut-
size between the cluster and its complement, divided by
the size of the cluster) is computed and the clusters are
sorted based on their flux value. Yeh et al. began with a
single cluster equal to the entire netlist, and then peeled
off the clusters with lowest flux. This approach was attrac-
tive because the saturated nets are good candidates to be
cut in a partitioning solution. As peeled clusters can be very
small, a second phase may be used to make the multi-way
partitioning more balanced. This approach, with its sub-
sequent speedup by Yeh (68), is well-suited for large-scale
multi-way partitioning instances.

The system prototyping phase may also explore netlist
transformations such as logic replication and retiming to
minimize cut size (I/O usage) or system cycle time. Such
transformations are needed as inter-device delays can be
relatively large and because devices are often I/O-limited.
In Reference (69), Liu et al. proposed a partitioning algo-
rithm that permits logic replication to minimize both cut
size and clock cycle of sequential circuits. Given a netlist
G = (V, E), their approach chooses two modules as seeds s
and t, then constructs a “replication graph” that is twice
the size of the original circuit. This graph has the spe-
cial property that a type of directed minimum cut yields
the replication cut (i.e., a decomposition of V into S, T,
and R = V − S − T where s ∈ S, t ∈ T and R is the replicated
logic) that is optimal. A directed version of the Fiduccia-
Mattheyses algorithm is used to find a heuristic directed
minimum cut in the replication graph. Cong et al. (70)
present an efficient algorithm for the performance-driven
multi-way circuit partitioning problem that considers the
different local and global interconnect delay introduced by
the partitioning.

Alpert and Kahng (71) survey the FPGA partition-
ing literature in the context of major graph partitioning
paradigms. The current partitioning problems are 1) low
usage rate of FPGA gate capacity because I/O pin limit, 2)
low clock rate because of interconnect delay between mul-
tiple FPGAs and 3) long CPU time for the mapping process.

System Planning and Design Changes

For a given system decomposition to be implemented on
a multi-FPGA prototyping architecture, all connections
within each device and between devices must be routable.
Chan et al. (72) invoke much literature on routability pre-
diction in gate arrays, as well as theoretical concepts, such
as the Rent parameter, to obtain a fast routability esti-
mate for arbitrary netlists and FPGA architectures. Their
method ascribes one of three levels of routable (easily
routable, marginally routable, or unroutable) to a netlist
based on various parameters. Specifically, combining a
wirelength estimator due to Feuer, the average number
of pins-per-cell, and the estimated Rent parameter yields
a relatively accurate routability predictor. The utility of
these parameters is contrasted with that of other criteria
such as El Gamal’s channel width requirement (73) or the

12 Reconfigurable Computing

Figure 13. Memory organization, (a) Memory is attached directly to a local FPGA. (b) Memory is attached to the second-stage switches
of the Clos network via a host interface, (c) Memory is attached to the first-stage switches of the Clos network.

Reconfigurable Computing 13

average pins-per-net ratio.
In addition to routability, connections must also

meet system timing constraints. Selvidge et al. (74) ex-
tend the original virtual wires (27) concept in their
TIERS (Topology-IndEpendent Routing and Scheduling)
approach. The problem formulation assumes that an as-
signment from a multiple-FPGA partitioning (i.e., a design
graph) to a target topology graph has already been made.
The objective is to assign “links” (i.e., signal nets) to chan-
nels between devices; as with the Virtual Wires concept,
specific timeslices for a channel can be assigned to multi-
ple links as long as no two links need to transmit signals at
the same time. The TIERS algorithm uses a greedy method
to order the links and then routes each link in the sched-
uled order while reserving channel resources; factors of up
to 2.5 improvement in system cycle time are achieved.

Chang, et al. (75) address the combined issues of
routability and system timing by applying layout-driven
logic resynthesis techniques. For a given wire that cannot
be routed, “alternative wires” and alternative functions are
identified, such that the given unroutable wire can be re-
moved from the circuit and replaced with a new wire (or
wires) or new logic without affecting functionality. Cheng
et al. estimate that between 30% and 50% of wires have so-
called “triple-wire alternatives” (i.e., replacements consist-
ing of three or fewer wires). Their method first routes the
wires that do not have any alternatives then replaces any
unroutable wire with available alternatives. System tim-
ing can be improved by replacing long wires with shorter
alternatives.

CONCLUSION

Reconfigurable computing offers a middle ground between
software-based systems and ASIC implementations, and
is often able to combine important benefits of both. Im-
plementations are able to avoid overheads such as unnec-
essary data transfers, decoding and control mandatory in
microprocessors, and designs can be optimized on a basis
specific to an application, a problem instance or even an
execution. Using this technology, it is possible to achieve
size, performance, cost, or power improvements over more
conventional computing technologies.

ACKNOWLEDGMENTS

The authors would like to thank Y M. Lam for his help in
preparing this manuscript and Prof. Wayne Luk (Imperial
College) for his proofreading of this article.

BIBLIOGRAPHY

1. Estrin, G. Reconfigurable Computer Origins: The UCLA
Fixed-plus-variable (F+V) Structure computer. IEEE Ann.
Hist. Comput. 2002, 24 (4), pp 3–9.

2. Compton, K.; Hauck, S. The roles of FPGAs in Repro-
grammable Systems. Proc. IEEE 1998, 86, (4), pp 615–639.

3. Bondalapati, K.; Prasanna, V. Reconfigurable Computing Sys-
tem. Proc. IEEE 2002, 90 (7), pp 1201–1217.

4. Compton, K.; Hauck, S. Reconfigurable Computing: A Survey
of System and Software. ACM Comput.Surv. 2002, 34 (2), pp
171–210.

5. Todman, T.; Constantinides, G.; Wilton, S.; Mencer, O.; Luk,
W.; Cheung, P. Reconfigurable Computing: architectures and
design methods. IEE Proc. Comput. Digit. Tech. 2000, 152, (2),
pp 193–205.

6. DeHon,A. The Density Advantage of Configurable Computing.
IEEE. Computer 2000, 33 (4), pp 41–49.

7. Tsoi, K. H.; Lee, K. H.; Leong, P.H.W. A Massively Parallel RC4
Key Search Engine; Proc. of the 10th Annual IEEE Symposium
on Field-Programmable Custom Computing Machines FCCM;
Washington, DC, IEEE Computer Society, 2002, pp 13–21.

8. Liang, J.; Tessier, R.; Goecket, D. A Dynamically-
reconfigurable, Power-efficient Turbo Decoder; 2004, pp
91–100.

9. Betz, V.; Rose, J.; Marquardt, A. Eds. Architecture and CAD
for Deep-Submicron FPGAs; Kluwer Academic Publisher: Dor-
drecht, the Netherlands, 1999.

10. Xilinx.http://www.xilinx.com (accessed 2006).
11. Altera.http://www.altera.com (accessed 2006).
12. Actel.http://www.actel.com (accessed 2006).
13. Ahmed, E.; Rose, J. The Effect of LUT and Cluster Size on

Deep-submicron FPGA Performance and Density Proc. of the
2000 ACM/SIGDA Eighth International Symposium on Field
Programmable Gate Arrays ACM Press: New York, 2000; pp
3–12.

14. Goldstein, S. C.; Schmit, H.; Budiu, M.; Cadambi, S.; Moe, M.;
Taylor, R. R. Piperench: A Reconfigurable Architecture and
Compiler. Computer 2000, 33 (4), pp 70–77.

15. Ebeling, C.; Cronquist, D. C.; Franklin, P. Rapid - Recon-
figurable Pipelined Datapath; Proc. of the 6th International
Workshop on Field-Programmable Logic, Smart Applications,
New Paradigms and Compilers; London, UK, Springer-Verlag:
l996, pp 126–135.

16. M2000. FPC06: http://www.m2000.fr (accessed 2006).
17. eASIC. http://www.easic.com (accessed 2006).
18. Wilton, S.; Kafafi, N.; Wu, J.; Bozman, K.; Aken’Oven, V.; Saleh,

R. Design Considerations for Soft Embedded Programmable
Logic Core. IEEE Solid Circuits 2005, 40 (2), pp 485–497

19. Moll, L.; Vuillemn, J.; Boucard, P.; High-energy Physics on
DECPeRLe-1 Programmable Active Memory; Proc. of the 1995
ACM Third International Symposium on Field-programmable
Gate Arrays; New York, (FPGA 95), ACM Press: 1995, pp
47–52.

20. Hoang, D. T. Searching Genetic Database on Splash, IEEE
Workshop on FPGAs for Custom Computing Machines, Napa,
CA, April 1993, pp 185–191.

21. Ting, L.-K.;Woods, R.; Cowan, C. F. N. Virtex FPGA Implemen-
tation of a Pipelined Adaptive LMS Predictor for Electronic
Support Measure Receivers. IEEE Trans. VLSI Syst. 2005, 13
(1), pp 86–95.

22. Chang, C.; Wawrzynek, J.; Brodersen, R. W. BEE2: A high-end
Reconfigurable Computing System. IEEE Des. Test 22 (2), pp
114–125.

23. Shand, M.; Vuillemin, J.; Fast Implementations of RSA Cryp-
tography: Proc. 11th Symposium on Computer Arithmetic,
1993, pp 252–259.

24. Zhang, G. L.; Leong, P. H. W.; Ho, C. H.; Tsoi, K. H.; Cheung,
C. C. C.; Lee, D. -U.; Cheung, R. C. C.; Luk, W. Reconfigurable

14 Reconfigurable Computing

Acceleration for Monte Carlo based financial simulation: Proc.
International Conference on Field Programmable Technology
(ICFPT). 2005, pp 215–222.

25. Vuillemin, J.; Patrice, B.; Didier, R.; Shand, M.; Herve, T.;
Philippe, B. Programmable Active Memories: Reconfigurable
System Come of Age. IEEE Trans. VLSI Syst. 1996, 4 (1), pp
56–59.

26. Butts, M.; Batcheller, J.; Varghese, J.; An Efficient Logic Em-
ulation System. IEEE Trans. Very Large Scale Integr. (VLSI)
Syst. 1993, pp 171–173.

27. Babb, J.; Tessier, R.; Dahl, M.; Hanono, S. Z.; Hoki, D. M.;
Agarwal, A. Logic Emulation with Virtual Wires. IEEE Trans.
Computer-Aided Design 1997, 16 (6), p 609.

28. de Souza, L.; Ryan, P.; Crawford, J.; Wong, K.; Zyner, G.; Mc-
Dermott, T. Prototyping for the Concurrent Development of
an IEEE 802.11 Wireless LAN Chaipset: Proc. International
Conference on Field-Programmable Logic and its Applications
LNCS 2778, Springer, 2003, pp 51–60.

29. Cadence. http://www.cadence.com/datasheets/
lncisivePalladiumllds.pdf (accessed 2006). Palladium Data
Sheet, 2005, pp 1–8.

30. Bertin, P.; Roncin, D.; Vuillemin, J. Introduction to Pro-
grammable Active Memories. DEC Memo 3 1989, pp 1–9.

31. Chan, P. K.; Schlag, M. D. F. Architectural Tradeoffs in Field-
programmable Devices Based Computing System; EEE Work-
shop on FPGAs for Custom Computing Machines; l993, pp
152–161

32. Mohsen, A. Programmable Interconnects Speed System Ver-
ification. IEEE Circuits Devices Mag, 1993, 9 (3), pp 37–
42.

33. Slimane-Kadi, M.; Brasen, D.; Saucier, G. A Fast-FPGA Pro-
totyping System That Uses Inexpensive High-performance
FPIC. ACM Int. Workshop on FPGAs, Berkeley, CA, 1994, pp
1.3. 1–11.

34. Arnold, J. M.; Buell, D. A.; Davis, E. G. SPLASH 2; 4th An-
nual ACM Symposium on Parallel Algorithms and Architec-
tures (SPAA 9Z); 1992, pp 316–322.

35. Cray. http://www.cray.com/downloads/Cray XDl Datasheet.pdf
(accessed 2006). Cray XDl Datasheet.

36. SRC Computers. http://www.srccomp.com (accessed 2006).
37. SGI. http://www.sgi.com/products/rasc/ (accessed 2006).
38. Villasenor, J.; Mangione-Smith, W. H. Configurable Comput-

ing. Scientif. Amer. 1997, pp 67–71.
39. Becker, J.; Hubner, M. Run-time Reconfigurability and Other

Future Trendy; Proc. of the 19th Annual Symposium on Inte-
grated Circuits and Systems Design (SBCCI 06); ACM Press:
New York, 2006, pp 9–11.

40. Bhat, N. B.; Chaudhary, K.; Kuh, E. S. Performance-
oriented Fully Routable Dynamic Architecture for a Field-
programmable Logic Device. Memorandum No. UCB/ERL
M93/42, Electronics Research Lab., College of Engineering,
UC Berkeley, 1993, pp. 1–21.

41. NEC Electronics. http://www.necel.com/drp/in/index.html (ac-
cessed 2006).

42. Wirthlin, M. J.; Hutchings, B. L. A Dynamic Instruction Set
Computing; Proc. of the IEEE Symposium on FPGA’s for Com-
puting Machines Washington, DC, IEEE Computer Society,
1995, pp 99–107.

43. Stretch, Inc. http://www.stretchinc.com (accessed 2006).
44. Steiger, C.; Walder, H.; Platzner, M. Operting System for Re-

configurable Embedded Platforms: Online Scheduling of Real-
time Task. IEEE Trans. Comput. 2004, 53 (11), pp 1393–1407.

45. Schmit, H. Incremental Reconfiguration for Pipelined Applica-
tions; Proc. of the 5th IEEE Symposium on FPGA-Based Cus-
tom Computing Machines Washington, DC, IEEE Computer
Society, 1997, pp 47–55.

46. Young, S.; Alfke, P.; Fewer, C.; McMillan, S.; Blodget, B.; Levi,
D. A High I/O Reconfigurable Crossbar Switch; Proc. of the
11th Annual IEEE Symposium on Field-Programmable Cus-
tom Computing Machines (FCCM 03); Washington, DC, IEEE
Computer Society, 2003, pp 3–10.

47. Guccione, S.; Levi, D.; Sundarajan, P. A Java-based Inter-
face for Reconfigurable Computing; Second Annual Mili-
tary and Aerospace Applications of Programmable Devices
and Technologies Conference (MAPLD); September 1999. cite-
seer.ist.psu.edu/681383.html.

48. Luk,W.; Page, I. Compiling Occam into FPGAs. FPGAs. Abing-
don, EE &CS books: 1991; pp 271–283.

49. Page, I. Constructing Hardware/Software System From a Sin-
gle Description. VLSI Signal Processing, 1996, 12,pp 87–
107.

50. Celoxica. http://www.celoxica.com (accessed 2006).
51. Mentor Graphics. http://www.mentor.com/products/esl/high

level synthesis/catapult synthesis/index.cfm (accessed
2006).

52. Mathworks, Inc. http://www.mathworks.com (accessed 2006).
53. Haldar, M.; Nayak, A.; Choudhary, A.; Banerjee, P. A System

for Synthesizing Optimized FPGA Hardware from MATLAB;
Proc. of the 2001 IEEE/ACM International Conference on
Computer-aided Design (ICCAD) Piscataway, NJ, IEEE Press:
2001, pp 314–319.

54. Lau, D.; Pritchard, O.; Molson, P. Automated Generation
of Hardware Accelerators with Direct Memory Access from
ANSI/ISO Standard C Functions, Proc. of the 14th Annual
IEEE symposium on Field-Programmable Custom Computing
Machines (FCCM’06), Washington, DC, IEEE Computer Soci-
ety, 2006, pp 45–56.

55. Isshiki,T.; Dai,W. M. High-level Bit-serial Datapath Synthesis
for Multi-FPGA System; International Workshop on FPGAs;
1995, pp 167–174.

56. Leong, M. P.; Leong, P. H. W. A Variable-Radix Digit-serial
Design Methodology and Application to the Discrete Cosine
Transform. IEEE Trans. VLSI System 2003, 11 (1), pp 90–
104.

57. Clos, C. A Study of Nonblocking Switching Networks. Bell Sys-
tem Tech. J. 1953, 32,pp 406–424.

58. Benes, V.E. Mathematical Theory of Connecting Networks and
Telephone Traffic; Academic Press: New York, 1965.

59. Cole, R.; Hopcroft, J. On Edge Coloring Bipartite Graphs.
SIAM J.Computing 1982, 11,pp 540–546.

60. Richards, G. W.; Hwang, F. K.A Two-stage Rearrangeable
Broadcast Switching Network. IEEE Trans. Commun. 1985,
COM- 33(10), pp 1025–1035.

61. I-Cube, Using FPID Devies in FPGA-based Prototyping. Ap-
plication Note 1994, pp 1–11.

62. Wei, Y. C.; Cheng, C. K.; Wurman, Z. Multiple-level Partition-
ing: An Application to the Very Large-Scale HardWare Simu-
lator. IEEE J. Solid State Circuits 1991, pp 706–716.

63. Li, J.; Cheng, C. K.. Routability Improvement Using Dynamic
Interconnect Architecture. IEEE FPGAs for Custom Comput-
ing Machines 1995, Apr, pp 13.2.–7.

64. Chan, P. K.; Schlag, M. D. F.; Martin, M. BORG: A Reconfig-
urable Prototyping Board Using Field-programmable Gate Ar-
rays. Int. Workshop on FPGA; Berkeley CA, 1992, pp 47–51.

Reconfigurable Computing 15

65. Lillis, J.; Cheng, C. K.;Lin,T.T. OptimalWire Sizing and Buffer
Insertion for Low Power and a Generalized Delay Model.
IEEE/ACM Int. Conf. on Computer-Aided Design; 1995, pp
138–143.

66. Hsieh,W. J.; Jenq,Y. C.; Horng, C. S.; Lofstrom, K. Input/output
I/O Bidirectional Buffer for Interfacing I/O Parts of a Field
Programmable Interconnection Device with Array Ports of a
Cross-point Switch. US Patent no 5,428,800, 1992, pp 1–13.

67. Yeh, C. W.; Cheng, C. K.; Lin, T.T. A Probabilistic
Multicommodity-flow Solution to Circuit Clustering Prob-
lems. IEEE Int. Conf. on Computer-Aided Design; 1992, pp
428–431.

68. Yeh, C. W. On the Acceleration of Flow-oriented Circuit Clus-
tering. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.
1995, pp 1305–1308.

69. Liu, L. T.; Kuo, M. T.; Cheng, C. K.; Hu, T.C. Performance-
driven Partitioning Using a Replication Graph Approach.
ACM/IEEE Design Automation Conf; June 1995, pp 206–
210.

70. Cong, J.; Lim, S. K.; Wu, C. Performance driven Multi-level
and Multiway Partitioning with Retiming; Proc. of the 37th
Conference on Design Automation (DAC 00); New York, ACM
press: 2000, pp 274–279.

71. Alpert, C. J.; Kahng, A.B. Recent Directions in Netlist Par-
titioning: A Survey. Integration, The VLSI. 1995, August,pp
1–81.

72. Chan, P. K.; Schlag, M. D. F.; Zien, J. Y. On routability Predic-
tion for Field-programmable Gate Arrays; IEEE Design Au-
tomation Conf.; Dallas, 1993, pp 326–330.

73. El Gamal, A. Two-dimensional Stochastic Model for Inter-
connections in Master Slice Integrated Circuits. IEEE Trans.
CAS. 1981, 28 (2), pp 127–138.

74. Selvide, C.; Agarwal, A.; Dahl, M.; Babb, J. TIERS: Topology
Independent Pipelined Routing and Scheduling; Int. Symp. on
FPGA; 1995, pp 25–31.

75. Chang, S. C.; Cheng, K. T.; Woo, N. S.; Marek-Sadowska, M.
Layout Driven Logic Synthesis for FPGA; Proc. ACM/IEEE
Design Automation Conference. 1994, pp 308–313.

76. Leong, M. P. FPGA Design Methodologies for High Perfor-
mance Applications. PhD dissertation, The Chinese Univer-
sity of Hong Kong, 2001.

CHENG CHUNG-KUAN

ANDREW B. KAHNG

PHILIP H.W. LEONG

Dept. of Computer Science and
Engineering, University of
California, La Jolla,
California

Dept. of Computer Science and
Engineering, The Chinese
University of Hong Kong,
Shatin, Hong Kong

