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ADAPTIVE CONTROL

According to Webster’s dictionary, to adapt means “to change (oneself) so that one’s behavior will conform to
new or changed circumstances.” The words “adaptive systems” and “adaptive control” were used as early as
1950 (1). The design of autopilots for high-performance aircraft was one of the primary motivations for active
research on adaptive control in the early 1950s. Aircraft operate over a wide range of speeds and altitudes,
and their dynamics are nonlinear and conceptually time-varying. For a given operating point, specified by the
aircraft speed (Mach number) and altitude, the complex aircraft dynamics can be approximated by a linear
model of the form (2)

where Ai, Bi, Ci, and Di are functions of the operating point i. As the aircraft goes through different flight
conditions, the operating point changes, leading to different values for Ai, Bi, Ci, and Di. Because the output
response y(t) carries information about the state x as well as the parameters, one may argue that in principle,
a sophisticated feedback controller should be able to learn about parameter changes by processing y(t) and
use the appropriate gains to accommodate them. This argument led to a feedback control structure on which
adaptive control is based. The controller structure consists of a feedback loop and a controller with adjustable
gains as shown in Fig. 1. The way the controller parameters are adjusted on line leads to different adaptive
control schemes.

Gain Scheduling
The approach of gain scheduling is illustrated in Fig. 2. The gain scheduler consists of a lookup table

and the appropriate logic for detecting the operating point and choosing the corresponding value of the control
parameter vector θ. For example, let us consider the aircraft model in Eq. (1) where for each operating point i,
i = 1, 2, . . ., N, the parameters Ai, Bi, Ci, and Di are known. For each operating point i, a feedback controller
with constant gains, say θi, is designed to meet the performance requirements for the corresponding linear
model. This leads to a controller, say C(θ), with a set of gains {θ1, θ2, . . ., θi, . . ., θN} covering N operating points.
Once the operating point, say i, is detected, the controller gains can be changed to the appropriate value of θi
obtained from the precomputed gain set. Transitions between different operating points that lead to significant
parameter changes may be handled by interpolation or by increasing the number of operating points. The two
elements that are essential in implementing this approach are a lookup table to store the values of θi and the
plant auxiliary measurements that correlate well with changes in the operating points.

Direct and Indirect Adaptive Control
A wide class of adaptive controllers is formed by combining an on-line parameter estimator, which provides

estimates of unknown parameters at each time instant, with a control law that is motivated from the known-
parameter case. The way the parameter estimator, also referred to as the adaptive law, is combined with the
control law gives rise to two different approaches. In the first approach, referred to as indirect adaptive control
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2 ADAPTIVE CONTROL

Fig. 1. Controller structure with adjustable controller gains.

Fig. 2. Gain scheduling.

(shown in Fig. 3), the plant parameters are estimated online and used to calculate the controller parameters.
This approach has also been referred to as explicit adaptive control, because the design is based on an explicit
plant model.

In the second approach, referred to as direct adaptive control (shown in Fig. 4), the plant model is
parametrized in terms of the controller parameters, which are estimated directly without intermediate cal-
culations involving plant parameter estimates. This approach has also been referred to as implicit adaptive
control, because the design is based on the estimation of an implicit plant model.

The principle behind the design of direct and indirect adaptive control shown in Figs. 3 and 4 is conceptu-
ally simple. The design of C(θc) treats the estimates θc(t) (in the case of direct adaptive control) or the estimates
θ(t) (in the case of indirect adaptive control) as if they were the true parameters. This design approach is
called certainty equivalence and can be used to generate a wide class of adaptive control schemes by combining
different on-line parameter estimators with different control laws.

The idea behind the certainty equivalence approach is that as the parameter estimates θc(t) and θ(t)
converge to the true ones θ∗

c and θ∗, respectively, the performance of the adaptive controller C(θc) tends to that
achieved by C(θ∗

c) in the case of known parameters.
Model Reference Adaptive Control
Model reference adaptive control (MRAC) is derived from the model-following problem or model reference

control (MRC) problem. The structure of an MRC scheme for a LTI, single-input single-output (SISO) plant is
shown in Fig. 5. The transfer function Wm(s) of the reference model is designed so that for a given reference
input signal r(t) the output ym(t) of the reference model represents the desired response the plant output y(t)
should follow. The feedback controller, denoted by C(θ∗

c), is designed so that all signals are bounded and the
closed-loop plant transfer function from r to y is equal to Wm(s). This transfer function matching guarantees
that for any given reference input r(t), the tracking error e1 � y − ym, which represents the deviation of the
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Fig. 3. Indirect adaptive control.

Fig. 4. Direct adaptive control.

plant output from the desired trajectory ym, converges to zero with time. The transfer function matching is
achieved by canceling the zeros of the plant transfer function G(s) and replacing them with those of Wm(s)
through the use of the feedback controller C(θ∗

c). The cancellation of the plant zeros puts a restriction on the
plant to be minimum-phase, that is, have stable zeros. If any plant zero is unstable, its cancellation may easily
lead to unbounded signals.

The design of C(θ∗
c) requires the knowledge of the coefficients of the plant transfer G(s). When θ∗ is

unknown we use the certainty equivalence approach to replace the unknown θ∗
c in the control law with its

estimate θc(t) obtained using the direct or the indirect approach. The resulting control schemes are known
as MRAC and can be classified as indirect MRAC of the structure shown in Fig. 3 and direct MRAC of the
structure shown in Fig. 4.
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Fig. 5. Model reference control.

Adaptive Pole Placement Control
Adaptive pole placement control (APPC) is derived from the pole placement control (PPC) and regulation

problems used in the case of LTI plants with known parameters. In PPC, the performance requirements are
translated into desired locations of the poles of the closed-loop plant. A feedback control law is then developed
that places the poles of the closed-loop plant at the desired locations. The structure of the controller C(θ∗

c) and
the parameter vector θ∗

c are chosen so that the poles of the closed-loop plant transfer function from r to y are
equal to the desired ones. The vector θ∗

c is usually calculated using an algebraic equation of the form

where θ∗ is a vector with the coefficients of the plant transfer function G(s).
As in the case of MRC, we can deal with the unknown-parameter case by using the certainty equivalence

approach to replace the unknown vector θ∗
c with its estimate θc(t). The resulting scheme is referred to as

adaptive pole placement control (APPC). If θc(t) is updated directly using an on-line parameter estimator, the
scheme is referred to as direct APPC. If θc(t) is calculated using the equation

where θ(t) is the estimate of θ∗ generated by an on-line estimator, the scheme is referred to as indirect APPC.
The structure of direct and indirect APPC is the same as that shown in Figs. 3 and 4, respectively, for the
general case. The design of APPC schemes is very flexible with respect to the choice of the form of the controller
C(θc) and of the on-line parameter estimator.

Design of On-Line Parameter Estimators
As we mentioned in the previous sections, an adaptive controller may be considered as a combination of

an on-line parameter estimator with a control law that is derived from the known-parameter case. The way this
combination occurs and the type of estimator and control law used give rise to a wide class of different adaptive
controllers with different properties. In the literature of adaptive control the on-line parameter estimator has
often been referred to as the adaptive law, update law, or adjustment mechanism.

Some of the basic methods used to design adaptive laws are

(1) Sensitivity methods
(2) Positivity and Lyapunov design
(3) Gradient method and least-squares methods based on estimation error cost criteria

The sensitivity method is one of the oldest methods used in the design of adaptive laws and is briefly
explained below.
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Sensitivity Method. This method became very popular in the 1960s (3), and it is still used in many
industrial applications for controlling plants with uncertainties. In adaptive control, the sensitivity method is
used to design the adaptive law so that the estimated parameters are adjusted in a direction that minimizes a
certain performance function. The adaptive law is driven by the partial derivative of the performance function
with respect to the estimated parameters multiplied by an error signal that characterizes the mismatch between
the actual and desired behavior. This derivative is called the sensitivity function, and if it can be generated
online, then the adaptive law is implementable. In most earlier formulations of adaptive control, the sensitivity
function cannot be generated online, and this constitutes one of the main drawbacks of the method. The use
of approximate sensitivity functions that are implementable leads to adaptive control schemes whose stability
properties are either weak or cannot be established.

Positivity and Lyapunov Design. This method of developing adaptive laws is based on the direct
method of Lyapunov and its relationship to positive real functions. In this approach, the problem of designing
an adaptive law is formulated as a stability problem where the differential equation of the adaptive law is
chosen so that certain stability conditions based on Lyapunov theory are satisfied. The adaptive law developed
is very similar to that based on the sensitivity method. The only difference is that the sensitivity functions in
the approach are replaced with ones that can be generated online. In addition, the Lyapunov-based adaptive
control schemes have none of the drawbacks of the MIT rule-based schemes.

The design of adaptive laws using Lyapunov’s direct method was suggested by Grayson (4) and Parks
(5) in the early 1960s. The method was subsequently advanced and generalized to a wider class of plants by
Phillipson (6), Monopoli (7), and others (8,9,10,11).

Gradient and Least-Squares Methods Based on Estimation Error Cost Criteria. The main draw-
back of the sensitivity methods used in the 1960s is that the minimization of the performance cost function led
to sensitivity functions that are not implementable. One way to avoid this drawback is to choose a cost function
criterion that leads to sensitivity functions that are available for measurement. A class of such cost criteria is
based on an error, referred to as the estimation error (12), that provides a measure of the discrepancy between
the estimated and actual parameters. The relationship of the estimation error with the estimated parameters
is chosen so that the cost function is convex, and its gradient with respect to the estimated parameters is im-
plementable. Several different cost criteria may be used, and methods such as the gradient and least-squares
may be adopted to generate the appropriate sensitivity functions.

On-Line Parameter Estimation

The purpose of this section is to present the design and analysis of a wide class of schemes that can be used for
on-line parameter estimation. The essential idea behind on-line estimation is the comparison of the observed
system response y(t) with the output of a parametrized model ŷ(θ,t) whose structure is the same as that of the
plant model. The parameter vector θ(t) is adjusted continuously so that ŷ(θ,t) approaches y(t) as t increases. The
on-line estimation procedure involves three steps: In the first step, an appropriate parametrization of the plant
model is selected. The second step involves the selection of the adjustment law, referred to as the adaptive law,
for generating or updating θ(t). The third and final step is the design of the plant input so that the properties
of the adaptive law imply that θ(t) approaches the unknown plant parameter vector θ∗ as t → ∞.

We start by considering the SISO plant
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where x ε Rn and only y, u are available for measurement. Note that the plant equation can also be written as
an nth-order differential equation

The constants ai, bi are the plant parameters. We can express yn as

where

We can avoid the use of differentiators by filtering with our nth-order stable filter 1/�(s) to obtain

where

In a similar way we can express the plant dynamics as follows:

where W(s) is an appropriate proper stable transfer function and θ∗
λ, φλ are defined similarly to θ∗, φ.

In Eqs. (5), (6) the unknown vectors θ∗, θ∗
λ appear linearly in equations where all the other terms are

known a priori or can be measured online. We use these parametric models to estimate the unknown vectors
θ∗ or θ∗

λ by using the following approaches.
SPR–Lyapunov Design Approach. We start by rewriting Eq. (6) as follows (for simplicity we drop

the subscript λ):

where φ = L− 1(s)ψand L(s) is chosen so that L− 1(s) is a proper transfer function and W(s)L(s) is a proper strictly
positive real (SPR) transfer function. Let θ(t) denote the estimate of θ∗ at time t. Then the estimated value of z
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based on θ(t) is given by

and the estimation error is given by

Let

denote the normalized estimation error, where n2
s is the normalizing signal, which we design to satisfy

Typical choices for ns that satisfy this condition are n2
s = ψTPψ for any P = PT > 0, and the like. When ψ ε L ∞,

the condition is satisfied with m = 1, that is, ns = 0, in which case ε = ε1. We express ε in terms of the parameter
error θ̃ = θ − θ∗:

For simplicity, let us assume that L(s) is chosen so that WL is strictly proper and consider the following state
space representation of Eq. (8):

where Ac, Bc, and Cc are the matrices associated with a state-space representation that has a transfer function
W(s)L(s) = CT

c(sI − Ac)− 1Bc.
Let us now consider the following Lyapunov-like function for the differential equation (9):

where �= �T > 0 is a constant matrix and Pc = PT
c > 0 satisfies the algebraic equations

for some vector q, matrix Lc = LT
c > 0, and small constant ν > 0. The existence of Pc = PT

c > 0 satisfying the
above equations is guaranteed by the SPR property (12) of W(s)L(s) = CT

c(sI − Ac)− 1Bc. The time derivative of
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V is given by

We now need to choose θ̃ = θ̇ as a function of signals that can be measured so that the indefinite terms in V̇ are
canceled out. Because e is not available for measurement, θ̇ cannot depend on e explicitly.

We know that PcBc = Cc, which implies that eTPcBc = eTCc = ε. Therefore

The choice for θ̇ = θ̇ to make V̇ ≤ 0 is now obvious, namely, for

we have

Using the above inequality, we can prove the following theorem.

Theorem 1. The adaptive law in Eq. (4) guarantees that:

(i) θ, ε ε L ∞.
(ii) ε, εns, θ̇ ε L 2, independent of the boundedness of φ.

(iii) If ns, φ, φ̇ ε L ∞, and φ is perstistently exciting (PE)—that is, there exist positive constant α1, α0, T0 such
that

—then θ(t) → θ∗ exponentially fast.

The proof of the theorem can be found in Ref. 12.
Gradient Method. In this method, we consider the parametric model in Eq. (5). Similar to the previous

subsection, we define θ(t) to be the on line estimate of θ∗ and the normalized estimation error as

where ẑ= θT(t)φ and m2 = 1 + n2
s and n2

s is chosen so that φ/m ε L ∞. The adaptive law is designed to minimize
the performance index J(·), i.e.,
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which gives

Different choices for the performance index lead to different adaptive laws.
Let us consider the simple quadratic cost function (instantaneous cost function)

Applying the gradient method, the minimizing trajectory θ(t) is generated by the differential equation

where �= �T > 0 is a scaling matrix that we refer to as the adaptive gain. We have

The following theorem holds:

Theorem 2. The adaptive law in Eq. (18) guarantees that:

(i) ε, εnsθ, θ̇ ε L ∞.
(ii) ε, εns, θ̇ ε L 2, independent of the boundedness of φ.

(iii) If ns, φ ε L ∞ and φ is PE, then θ(t) → θ∗ exponentially fast.

The proof of the theorem can be found in Ref. 12.
Least Squares. Let θ(t), ε, ẑ be defined as above, and let m2 = 1 + n2

s, θ(t) be the estimate of θ∗ at time
t, and m satisfy φ/m ε L ∞. We consider the following cost function:

where Q0 = QT
0 > 0, β ≥ 0, θ0 = θ(0), which includes discounting of past data and a penalty on the initial estimate

θ0 of θ∗. Because z/m, φ/m ε L ∞, we have that J(θ) is a convex function of θ over Rn at each time t. Hence, any
local minimum is also global and satisfies

which yields the so-called nonrecursive least-squares algorithm
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where

We can show that P, θ satisfy the differential equations

We refer to Eqs. (22) and (23) as the continuous-time recursive least-squares algorithm with forgetting factor.
The stability properties of the least-squares algorithm depend on the value of the forgetting factor β.

In the identification literature, Eqs. (22) and (23) with β = 0 are referred to as the pure least-squares
algorithm and have a very similar form to the Kalman filter. For this reason, the matrix P is usually called
the covariance matrix. The pure least-squares algorithm has the unique property of guaranteeing parameter
convergence to constant values as described by the following theorem:

Theorem 3. The pure least-squares algorithm guarantees that:

(i) ε, εns, θ, θ̇, P ε L ∞.
(ii) ε, εns, θ̇ ε L 2.

(iii) limt→∞ θ(t) = θ̄, where θ̄ is a constant vector.
(iv) If ns, φ ε L ∞ and φ is PE, then θ(t) converges to θ∗ as t → ∞.

The proof of the theorem can be found in 12.
Bilinear Parametric Model. As will be shown in the next sections, a certain class of plants can be

parametrized in terms of their desired controller parameters, which are related to the plant parameters via
a Diophantine equation. Such parametrizations and their related estimation problem arise in direct adaptive
control and, in particular, direct MRAC, which is discussed in the next section.

In these cases θ∗ appears in the form

where ρ∗ is an unknown constant, z, ψ, z0 are signals that can be measured, and W(s) is a known proper transfer
function with stable poles. Because the unknown parameters ρ∗, θ∗ appear in a special bilinear form, we refer
to Eq. (24) as the bilinear parametric model.

Known Sign of ρ∗. The SPR–Lyapunov design approach and the gradient method with an instantaneous
cost function discussed in the linear parametric case extend to the bilinear one in a rather straightforward
manner.

Let us start with the SPR–Lyapunov design approach. We rewrite Eq. (24) in the form
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where z1 = L− 1(s)z0, φ = L− 1(s)ψ, and L(s) is chosen so that L− 1(s) is proper and stable and WL is proper and
SPR. The estimate ẑ of z and the normalized estimation error are generated as

where ns is designed to satisfy

and ρ(t), θ(t) are the estimates of ρ∗, θ∗ at time t, respectively. Letting ρ̇ � ρ − ρ∗, θ̃ � θ − θ∗, it follows from
Eqs. (25) to (27) that

Now ρ∗θ∗Tφ − ρθTφ = ρ∗θ∗Tφ − ρ∗θTφ + ρ∗θTφ − ρθTφ = −ρ∗θ̃Tφ − ρ̇θTφ, and therefore,

By choosing

we can see that the following theorem holds.

Theorem 4. The adaptive law in Eq. (30) guarantees that:

(i) ε, θ, ρ ε L ∞.
(ii) ε, εns, θ̇, ρ̇ ε L 2.

(iii) If φ, φ̇ ε L ∞, φ is PE, and ξ ε L 2, then θ(t) converges to θ∗ as t → ∞.
(iv) If ξ ε L 2, the estimate ρ converges to a constant ρ̄ independent of the properties of φ.

The proof of the theorem can be found in Ref. 12. The case where the sign of ρ∗ is unknown is also given
in Ref. 12.

Model Reference Adaptive Control

Problem Statement. Consider the SISO LTI plant described by
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where Gp(s) is expressed in the form

where Zp, Rp are monic polynomials and kp is a constant referred to as the high-frequency gain.
The reference model, selected by the designer to describe the desired characteristics of the plant, is

described by

which is expressed in the same form as Eq. (32), that is,

where Zm(s), Rm(s) are monic polynomials and km is a constant.
The MRC objective is to determine the plant input up so that all signals are bounded and the plant output

yp tracks the reference model output ym as close as possible for any given reference input r(t) of the class defined
above. We refer to the problem of finding the desired up to meet the control objective as the MRC problem. In
order to meet the MRC objective with a control law that is implementable (i.e., a control law that is free of
differentiators and uses only measurable signals), we assume that the plant and reference model satisfy the
following assumptions:

Plant Assumptions.

P1. Zp(s) is a monic Hurwitz polynomial of degree mp.
P2. An upper bound n on the degree np of Rp(s) is known.
P3. The relative degree n∗= np − mp of Gp(s) is known.
P4. The sign of the high-frequency gain kp is known.

Reference Model Assumptions.

M1. Zm(s), Rm(s) are monic Hurwitz polynomials of degree qm, pm, respectively, where pm ≤ n.
M2. The relative degree n∗

m = pm − qm of Wm(s) is the same as that of Gp(s), that is, n∗
m = n∗.

MRC Schemes: Known Plant Parameters. In addition to assumptions P1 to P4 and M1, M2, let us
also assume that the plant parameters, that is, the coefficients of Gp(s), are known exactly. Because the plant
is LTI and known, the design of the MRC scheme is achieved using linear system theory.

We consider the feedback control law
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where

c∗
0, θ∗

3 ε R1, θ∗
1, θ∗

2 ε Rn − 1 are constant parameters to be designed, and λ(s) is an arbitrary monic Hurwitz
polynomial of degree n − 1 that contains Zm(s) as a factor, i.e., �(s) = �0(s)Zm(s), which implies that λ0(s) is
monic, Hurwitz, and of degree n0 = n − 1 − qm. The controller parameter vector

is to be chosen so that the transfer function from r to yp is equal to Wm(s).
The input–output properties of the closed-loop plant are described by the transfer function equation

where

We can now meet the control objective if we select the controller parameters θ∗
1, θ∗

2, θ∗
3, c∗

0 so that the
closed-loop poles are stable and the closed-loop transfer function Gc(s) = Wm(s) is satisfied for all s ε C. Choosing

and using �(s) = �0(s)Zm(s), the matching equation Gc(s) = Wm(s) becomes

Equating the coefficients of the powers of s on both sides of Eq. (38), we can express it in terms of the algebraic
equation

where θ̄∗= [θ∗T
1, θ∗T

2, θ∗
3]T; S is an (n + np − 1) × (2n − 1) matrix that depends on the coefficients of Rp, kpZp,

and � and p is an n + np − 1 vector with the coefficients of �Rp − Zp�0Rm. The existence of θ̄∗ to satisfy Eq. (39)
and, therefore, Eq. (38) will very much depend on the properties of the matrix S. For example, if n > np, more
than one θ̄∗ will satisfy Eq. (39), whereas if n = np and S is nonsingular, Eq. (39) will have only one solution.

Lemma 1. Let the degrees of Rp, Zp, �, �0 and Rm be as specified in Eq. (34). Then

(i) The solution θ̄∗ of Eq. (38) or (39) always exists.
(ii) In addition, if Rp, Zp are coprime and n = np, then the solution θ̄∗ is unique.
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The proof of the lemma can be found in Ref. 12.
MRAC for SISO Plants. The design of MRAC schemes for the plant in Eq. (31) with unknown parame-

ters is based on the certainty equivalence approach and is conceptually simple. With this approach, we develop
a wide class of MRAC schemes by combining the MRC law, where θ∗ is replaced by its estimate θ(t), with
different adaptive laws for generating θ(t) online. We design the adaptive laws by first developing appropriate
parametric models for θ∗, which we then use to pick up the adaptive law of our choice from the preceding
section.

Let us start with the control law

whose state-space realization is given by

where θ = [θT
1, θT

2, θ3, c0]T and ω= [ωT
1, ωT

2, yp, r]T, and search for an adaptive law to generate θ(t), the estimate
of the desired parameter vector θ∗.

It can be seen that under the above control law, the tracking error satisfies

where ρ∗ = 1/c∗
0, θ∗= [θ∗T

1, θ∗T
2, θ∗

3, c∗
0]T. The above parametric model may be developed by using the matching

Eq. (38) to substitute for the unknown plant polynomial Rp(s) in the plant equation and by canceling the Hurwitz
polynomial Zp(s). The parametric model in Eq. (42) holds for any relative degree of the plant transfer function.

A linear parametric model for θ∗ may also be developed from Eq. (42). Such a model takes the form

where

The main equations of several MRAC schemes formed by combining Eq. (41) with an adaptive law based
on Eq. (42) or (43). The following theorem gives the stability properties of the MRAC scheme.

Theorem 5. The closed-loop MRAC scheme in Eq. (41), with θ(t) adjusted with any adaptive law with nor-
malization based on the model in Eq. (42) or (43) as described in the preceding section, has the following
properties:

(i) All signals are uniformly bounded.
(ii) The tracking error e1 = yp − ym converges to zero as t → ∞.
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(iii) If the reference input signal r is sufficiently rich of order 2n, ṙ ε L ∞, and Rp, Zp are coprime, then the
tracking error e1 and parameter error θ̃ = θ − θ∗ converge to zero for the adaptive law with known sgn(kp).

The proof of the theorem can be found in Ref. 12.

Adaptive Pole Placement Control

In the preceding section we considered the design of a wide class of MRAC schemes for LTI plants with stable
zeros. The assumption that the plant is minimum-phase, that is, it has stable zeros, is rather restrictive in
many applications. A class of control schemes that is popular in the known-parameter case are those that
change the poles of the plant and do not involve plant zero–pole cancellations. These schemes are referred
to as pole placement schemes and are applicable to both minimum- and nonminimum-phase LTI plants. The
combination of a pole placement control law with a parameter estimator or an adaptive law leads to an adaptive
pole placement control (APPC) scheme that can be used to control a wide class of LTI plants with unknown
parameters.

Problem Statement. Consider the SISO LTI plant

where Gp(s) is proper and Rp(s) is a monic polynomial. The control objective is to choose the plant input up so
that the closed-loop poles are assigned to those of a given monic Hurwitz polynomial A∗(s). The polynomial
A∗(s), referred to as the desired closed-loop characteristic polynomial, is chosen according to the closed-loop
performance requirements. To meet the control objective, we make the following assumptions about the plant:

P1. Rp(s) is a monic polynomial whose degreen n is known.
P2. Zp(s), Rp(s) are coprime, and degree(Zp) < n.

Assumptions P1 and P2 allow Zp, Rp to be non-Hurwitz, in contrast to the MRC case, where Zp is required
to be Hurwitz. If, however, Zp is Hurwitz, the MRC problem is a special case of the general pole placement
problem defined above with A∗(s) restricted to have Zp as a factor.

In general, by assigning the closed-loop poles to those of A∗(s), we can guarantee closed-loop stability and
convergence of the plant output yp to zero provided there is no external input. We can also extend the PPC
objective to include tracking, where yp is required to follow a certain class of reference signals ym, by using the
internal model principle as fol8lows: The reference signal ym ε L ∞ is assumed to satisfy

where Qm(s), the internal model of ym, is a known monic polynomial of degree q with nonrepeated roots on the
jω axis and satisfies

P3. Qm(s), Zp(s) are coprime.

For example, if yp is required to track the reference signal ym = 2 + sin 2t, then Qm(s) = s(s2 + 4) and
therefore, according to assumption P3, Zp(s) should not have s or s2 + 4 as a factor.
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In addition to assumptions P1 to P3, let us also assume that the coefficients of Zp(s), Rp(s), i.e., the plant
parameters are known exactly.

We consider the control law

where P(s), L(s), M(s) are polynomials [with L(s) monic] of degree q + n − 1, n − 1, q + n − 1, respectively, to
be found, and Qm(s) satisfies Eq. (45) and assumption P3.

Applying Eq. (46) to the plant in Eq. (44), we obtain the closed-loop plant equation

whose characteristic equation

has order 2n + q − 1. The objective now is to choose P, L such that

is satisfied for a given monic Hurwitz polynomial A∗(s) of degree 2n + q − 1. It can be seen that assumptions
P2 and P3 guarantee that L, P satisfying Eq. (49) exist and are unique. The solution for the coefficients of L(s),
P(s) of Eq. (49) may be obtained by solving the algebraic equation

where Sl is the Sylvester matrix of QmRp, Zp of dimension 2(n + q) × 2(n + q),

and l, p, a∗ are the vectors whose entries are the coefficients of L(s), P(s) and A∗(s), respectively. The coprimeness
of QmRp, Zp guarantees that Sl is nonsingular; therefore, the coefficients of L(s), P(s) may be computed from
the equation

The tracking error e1 = yp − ym is given by
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For zero tracking error, Eq. (51) suggests the choice of M(s) = P(s) to null the first term. The second term in Eq.
(51) is nulled by using Qmym = 0. Therefore, the pole placement and tracking objective are achieved by using
the control law

which is implemented using n + q − 1 integrators to realize C(s) = P(s)/Qm(s)L(s). Because L(s) is not necessarily
Hurwitz, the realization of Eq. (52) with n + q − 1 integrators may have a transfer function, namely C(s), with
poles outside C− . An alternative realization of Eq. (52) is obtained by rewriting it as

where � is any monic Hurwitz polynomial of degree n + q − 1. The control law (53) is implemented using 2(n
+ q − 1) integrators to realize the proper stable transfer functions (� − LQm)/�, P/�.

APPC. The APPC scheme that meets the control objective for the unknown plant is formed by com-
bining the control law in Eq. (53) with an adaptive law based on the parametric model in Eq. (5). The adap-
tive law generates on-line estimates θa, θb of the coefficient vectors θ∗

a of Rp(s) = sn + θ∗T
aαn − 1(s) and θ∗

b
of Zp(s) = θ∗T

bαn − 1(s), respectively, to form the estimated plant polynomials R̂p(s, t) = sn + θT
aαn − 1(s), Ẑp(s,

t) = θT
bαn − 1(s). The estimated plant polynomials are used to compute the estimated controller polynomials L̂(s,

t), P̂(s, t) by solving the Diophantine equation

for L̂, P̂ pointwise in time, or the algebraic equation

for β̂l, where Ŝl is the Sylvester matrix of R̂pQm, Ẑp; β̂l contains the coefficients of L̂, P̂; and α∗
l contains the

coefficients of A∗(s). The control law in the unknown-parameter case is then formed as

Because different adaptive laws may be picked up from the section “On-Line Parameter Estimation” above, a
wide class of APPC schemes may be developed.

The implementation of the APPC scheme requires that the solution of the polynomial Eq. (54) for L̂, P̂ or
of the algebraic Eq. (55) for β̂l exists at each time. The existence of this solution is guaranteed provided that
R̂p(s, t)Qm(s), Ẑp(s, t) are coprime at each time t, that is, the Sylvester matrix Ŝl(t) is nonsingular at each time t.

Theorem 6. Assume that the estimated plant polynomials R̂pQm, Ẑp are strongly coprime at each time t. Then
all the signals in the closed-loop APPC scheme are u.b., and the tracking error converges to zero asymptotically
with time.

The proof of the theorem can be found in Ref. 12. The assumption that the estimated polynomials are
strongly coprime at each time t is restrictive and cannot be guaranteed by the adaptive law. Methods that relax
this assumption are given in Ref. 12.
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Adaptive Control of Nonlinear Systems

In the previous sections we dealt with the problem of designing controllers for linear time-invariant systems.
In this section, we show how the techniques of adaptive control of linear systems can be extended or modified
for nonlinear systems. Although the techniques presented can be applied to a variety of nonlinear systems, we
will concentrate our attention on adaptive state feedback control of SISO feedback-linearizable systems.

Feedback-Linearizable Systems in Canonical Form. We start with an nth-order SISO feedback-
linearizable system in canonical form, whose dynamics are as follows:

where y, u ε R are the scalar system output and input, respectively, f , g are smooth vector fields, and x �
[x1, x2, . . ., xn]T is the state vector of the system. In order for the system in Eq. (57) to be controllable and
feedback-linearizable we assume that

A1. A lower bound ε∗ for g(x) [i.e., |g(x)| >ε∗ > 0 ∀x ε Rn] and the sign of g(x) are known.

The control objective is to find the control input u that guarantees signal boundedness and forces y to
follow the output ym of the reference model

where A is a Hurwitz n × n matrix, r ε L ∞, and therefore xm ε L ∞. In order to have a well-posed problem, it is
assumed that the relative degree of the reference model is equal to n. If e � ym − y is the tracking error, then
its nth time derivative satisfies

Let h̄(s) = sn + k1sn − 1 + ··· + kn be a Hurwitz polynomial (here s denotes the d/dt operator). Also let ε � [e,
ė, . . ., e(n − 1)]T. Under assumption A1, the system Eq. (57) is a feedback-linearizable system. Therefore, if we
know the vector fields f and g, we can apply the static feedback

where k � [kn, kn − 1, . . ., k1]T. Then the error system in Eq. (59) becomes

which implies that e, ε ε L ∞ and therefore all closed-loop signals are bounded, and limt→∞ e(t) = 0.
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In many cases, the vector fields f and g are not completely known and thus adaptive versions of the
feedback law (60) have to be applied. For instance, using the usual assumption of linear parametrization, if the
vector fields f and g are of the form

where θi, i = 1, 2, are vectors with unknown constant parameters, one may replace the feedback law in Eq. (60)
with the certainty-equivalent one [the certainty-equivalent feedback-linearizing (CEFL) controller]

where θ̂i, i = 1, 2, are the estimates of the unknown parameter vectors θi, i = 1, 2. These estimates are generated
by an on-line adaptive law. We next propose the following adaptive laws for updating θ̂i:

where �i, i = 1, 2, are symmetric positive definite matrices and φ̄1 = bcφ
τ
f , φ̄2 = −ubcφ

τ
g, bc = [0, . . ., 0, 1]τ. The

next theorem summarizes the properties of the proposed control law.

Theorem 7. Consider the system in Eq. (57) and the feedback control law in Eqs. (62) and (63). Let assumption
A1 hold. Then, if θ̂T

2(t)φg(x(t)) �= 0 for all t, all the closed-loop signals are bounded and the tracking error
converges to asymptotically to zero.

Parametric-Pure-Feedback Systems. Let us now try to extend the results of the previous section to
nonlinear systems that take the form

where u, zi ε R, f ij, gnj are smooth functions, and θ ε Rp is the vector of constant but unknown system parameters.
Let us rewrite Eq. (64) as

where f i1(·) = f i0(·) − zi+1. Systems of the form in Eq. (65) are called parametric-pure-feedback (PPF) systems
(13,14). Note that the above class of systems includes as a special case the system in Eq. (57) of the previous
section.
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The control objective is to force the system output y to asymptotically track a reference signal ym. We
assume that the first n − 1 time derivatives of ym are known. Also it will be assumed that ym and its first n −
1 time derivatives are bounded and smooth signals.

Let us now assume that the parameter vector θ is known and construct a control law that meets the
control objectives. Before we design the feedback law, we will transform the system in Eq. (64) into a suitable
form. The procedure we will follow is based on the backstepping integrator principle (13).

Step 0. Let ζ1 � z1 − ym. Let also c1, . . ., cn be positive constants to be chosen later.
Step 1. Using the chain-of-integrators method, we see that, if z2 were the control input in the z1 part of Eq.

(65) and θ were known, then the control law

would result in a globally asymptotically stable tracking, since such a control law would transform the z1
part of Eq. (65) as follows:

However, the state z2 is not the control. We therefore define ζ2 to be the difference between the actual z2
and its desired expression in Eq. (66):

Step 2. Using the above definition of ζ2, the definition of ζ1, and the z1 part of Eq. (65), we find that

Step 2. Using the above definitions of ζ1, ζ2, we have that

where ϑ(2) is a (p + p2)-dimensional vector that consists of all elements that are either of the form θ2,i or
of the form θ2,iθj, where by θ2,i we denote the ith entry of the vector θ. In the system (69) we will think of
z3 as our control input. Therefore, as in step 1, we define the new state ζ3 as
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Substituting Eq. (70) into Eq. (69) yields

Step i (2 < i ≤ n − 1). Using the definitions of ζ1, . . ., ζi and working as in the previous steps, we may express
the derivative of ζi as

where the vector ϑ(i) contains all the terms of the form θi1θi2 ··· θi with 1 ≤ j ≤ i. Defining now ζi+1 as

we obtain that

Step n.Using the definitions of ζ1, . . ., ζn − 1 and working as in the previous steps, we may express the derivative
of ζn as follows:

where the vector ϑ contains all the terms of the form θi1θi2 ··· θij with 1 ≤ j ≤ n, Ym � [ym, ẏm, ÿm, . . .,
y(n − 1)

m]T, and [γ0(z1, . . ., zn) + ϑTγ1(z1, . . ., zn)] is given by

Using the definitions of ζ1, . . ., ζn, and rearranging terms, we may rewrite Eq. (75) as follows:
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Using the above methodology, we have therefore transformed the system in Eq. (65) into the following
one:

The above system is feedback-linearizable if the following assumption holds.

A1. γ0(z) + ϑTγ1(z) �= 0 for all z.

Note now that in the case where θ (and thus ϑ) is known, a controller that meets the control objective is
the controller of the form

Under the above control law, the closed-loop dynamics become

It can be shown that the matrix A0 is a stability matrix, provided that ci > 2.

Theorem 8. The control law in Eq. (79) guarantees that all the closed-loop signals are bounded and that the
tracking error converges to zero exponentially fast, provided that the design constants ci satisfy ci > 2.

In the case where the vector θ is not known, the certainty-equivalence principle can be employed in order
to design an adaptive controller for the system. However, the problem of designing parameter estimators for
the unknown parameters is not as easy as it was in the linear case. This can be seen from the fact that
the “states” ζi, i > 1, are not available for measurement, since they depend on the unknown parameters. To
overcome this problem a recursive design approach similar to the approach above can be constructed. The
difference between this approach [called adaptive backstepping (13)] and the approach presented above is the
following: in the approach presented above the “states” ζi, i > 1, depend on the unknown vector of parameters
θ; in the new approach they are appropriately redefined so they depend on the parameter estimate vector θ̂.
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Then the derivatives of ζi, i > 1, depend on the derivatives of the parameter estimates θ̂. In order to overcome
this problem, the adaptive backstepping approach makes use of the so-called tuning functions (13).

Next we present the adaptive controller that results from applying the adaptive backstepping procedure
to the system in Eq. (65) for the case where

A2. θTf i2(·) are independent of zi+1 and θTgn2 = 0.

Also for simplicity, and without loss of generality, we will assume that f i1(·) = 0. The case where assumption
A2 is not valid will be treated in the next subsection. The adaptive controller that results from applying the
adaptive backstepping procedure is recursively defined as follows:

• Control law:

• Parameter update law:

• Tuning functions:

• Regressor vectors:

Here ci > 2, κi are positive design constants, and �= �T > 0 is a positive definite design matrix. The next
theorem summarizes the properties of the above control law.

Theorem 9. Suppose that assumptions A1′, A2 hold. Then the above adaptive control law guarantees that all
the closed-loop signals are bounded and that the tracking error converges asymptotically to zero.

The proof of the theorem can be found in Ref. 13.
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A Control Law That Overcomes the Loss-Of-Controllability Problem. A significant problem that
arises in adaptive control of linear-in-the-parameters feedback-linearizable systems is the computation of
the feedback control law when the identification model becomes uncontrollable although the actual system
is controllable; so far, there is no known solution to this problem. For instance, for the case of the system
in Eq. (57) the parameter estimation techniques used in adaptive control cannot guarantee, in general, that
|θ̂2(t)Tφg(x(t))|> 0 for each time t, that is, they cannot guarantee that the identification model is controllable.
Also, for the case of PPF systems presented in the previous subsection, the adaptive backstepping techniques
guarantee global stability only in the case where assumption A2 is valid. Such restrictions are made because
the computation of the adaptive control law depends on the existence of the inverse of the matrix that consists
of the estimated input vector fields (or the Lie derivatives of the output functions along those vector fields).
Even in the case of known parameters where the inverse of the corresponding matrix exists (this is trivially
satisfied for feedback-linearizable systems), the inverse of the estimate of this matrix might not exist at each
time due to insufficiently rich regressor signals, large initial parameter estimation errors, and so on.

We next show how one can overcome the problem where the estimation model becomes uncontrollable, by
appropriately using switching adaptive control. We will apply the switching adaptive control methodology to
the PPF system of the previous subsection, by removing assumption A2.

Consider the Lyapunov function for the PPF system of the previous subsection.

By differentiating V with respect to time, we obtain that

Let us define

Note now that, using the definition of ζi, we can rewrite the ζi’s as follows:

where ϕ̄i and w̄i are appropriately defined known functions. Therefore, we have that

where ϑ̄ is defined to be the vector whose entries are the elements ϑiϑj, and β0, β1 are—appropriately defined—
known functions.

We are now ready to present the proposed controller. The control input is chosen as follows:
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where:

• One has

where ˆ̄ϑ denotes the estimate of ϑ̄.
• k(·) is a positive design function satisfying k(ζ1, ·) = 0 iff ζ1 = 0 and

• � is a continuous-switching signal that is used to switch from control u1 to control u2 and vice versa:

• s is hysteresis-switching variable defined as follows:

where s− (t) � limτ→t− s(τ), where τ ≤ t.

The parameter estimates ˆ̄ϑ are updated using the following smooth projection update law (15)

where � is a symmetric positive definite design matrix and PC is defined as follows (15):
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where

where 0 < δ < 1, q ≥ 2, and ρj are positive design constants.
The following theorem summarizes the properties of the control law in Eq. (83, 84, 85, 86, 87, 88, 89).

Theorem 10. Consider the system in Eq. (65) and the control law in Eqs. (83, 84, 85, 86, 87, 88, 89). Let
assumption A1′ hold. Moreover assume that the following hold:

C1. K > 1; k(·) satisfies Eq. (85).

C2. ρj are sufficiently small. Moreover, ˆ̄ϑ(0) ε C, where

Then for any compact X0 ⊂ Rn and for any positive constant c̄ the following holds: there exist a positive
constant K∗ such that, for any initial state x0 ε X0, the control law in Eqs. (83, 84, 85, 86, 87, 88, 89) with K > K∗
guarantees that all the closed-loop signals are bounded and, moreover, that the tracking error ζ1 converges in
finite time to the residual set

The idea of using switching adaptive controllers of the form presented above was first introduced in Ref.
16, where the proposed methodology was applied to systems of the form in Eq. (57). The controller of Ref. 16
was extended in Ref. 17 for PPF systems of the form in Eq. (65).
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