
BILINEAR SYSTEMS

An electrical circuit or other engineering system often com-
municates with its external environment by input signals
that control its behavior and output signals; it is then called
a control system. If the components of a control system all
obey Ohm’s Law or one of its analogs, such as Hooke’s Law,
the system is called linear. In linear control systems, the
effect of the controls is additive and the output measure-
ment is linear. They are discussed in the article in this
encyclopedia on MULTIVARIABLE SYSTEMS.

What distinguishes a bilinear system (BLS) is that al-
though it is linear in its state variables, some control signal
u(t) exerts its effect multiplicatively. BLS may be given as
mathematical models of circuits or plants or may be cho-
sen by a designer to obtain better system response than is
possible with a linear system. Their study is a first step to-
ward nonlinear control theory. Industrial process control,
economics, and biology provide examples of BLS with mul-
tiplicative controls such as valve settings, interest rates,
and neural signals, respectively. This topic of research be-
gan in the early 1960s with independent work in the USSR
and in the USA; see the surveys of Bruni et al. (1) and
Mohler (2, 3) for historical development and reviews of the
early literature.

Notation in This Article. The symbol R means the real
numbers and Rn the n-dimensional real linear space; C
means the complex plane, with R(s) the real part of s ∈ C.
The bold symbols a–h, x, z will represent elements (col-
umn vectors) of Rn; ẋ′ (x transposed) is a row vector; x∗.
is the complex conjugate transpose of x. Given a vec-
tor function x(t) = col[x1(t), . . . , xn(t)], its time derivative is
ẋ(t)def= dx(t)/dt. Capital letters A, B, F, X are square matri-
ces and I the identity matrix diag (1, 1, . . . , 1). The trace of
matrix A is the sum of its diagonal elements, written tr(A);
det(A) is its determinant. i–n are integers; r, s, t are real
scalars, as are lowercase Greek letter quantities. German
type g, sl, . . . will be used for Lie algebras.

Control Systems: Facts and Terminology

The following discussion is a brief reminder of state-space
methods; see Sontag (4). The state variables in an electrical
circuit are currents through inductors and voltages across
capacitors; in mechanics, they are generalized positions
and momenta; and in chemistry, they are concentrations
of molecules. The state variables for a given plant consti-
tute a vector function depending on time x(t). Knowledge of
an initial state x(0), of future external inputs, and the first-
order vector differential equation that describes the plant
determine the trajectory {x(t), t ≥ 0}. For the moment, we
will suppose that the plant elements, such as capacitors,
inductors, and resistors, are linear (Ohm’s Law) and con-
stant in value. The circuit equations can usually be com-
bined into a single first-order vector differential equation,

with interaction matrix F and a linear output function.
Here is a single-input single-output example, in which the
coefficient vector g describes the control transducer, the
output transducer is described by the row vector h′, and
v = v(t) is a control signal:

ẋ = Fx + vg, y = h′x (1)

or written out in full,

dxi

dt
=

n∑
j=1

(Fi jx j) + vgi, i = 1, . . . , n; y =
n∑

i=1

hixi (1’)

(It is customary to suppress in the notation the time-
dependence of x, y and often the control v.)

As written, equation 1 has constant coefficients, and
such a control system is called time-invariant, which
means that its behavior does not depend on where we
choose the origin of the independent variable t; the system
can be initialized and control v exerted at any time. When
the coefficients are not constant, that is, made explicit in
the notation, e.g.,

ẋ = F (t)x + vg(t), y = h′(t)x

which is called a time-variant linear system.
For both linear and bilinear systems, we will need the

solution of ẋ = Fx, which for a given initial condition x(0)
is x(t) = eFtx(0). The matrix exponential function is defined
by

eFt = I + Ft + F 2t2

2
+ . . . + Fktk

k!
+ . . . (2)

it is the inverse Laplace transform of the matrix (sI − F )−1

and can be computed by numerical methods described by
Golub and Van Loan (5). Its most familiar use in electrical
engineering is to solve equation 1

x(t) = eFtx(0) +
∫ t

0

e(t−r)Fv(r)gdr

The polynomial

PF (s) def= det(sI − F ) = (s − λ1)(s − λ2) · · · (s − λn)

is called the characteristic polynomial of F, and its roots
are called the eigenvalues of F. The entries in the matrix
eFt are linear combinations of terms like

tmi eλit , i = 1, . . . , n

If the eigenvalues are distinct, the integers mi van-
ish, but if λi is a multiple eigenvalue, mi may be
positive. For a given F, the matrices {exp(Ft), t ∈ R}
are a group under matrix multiplication: exp((r + t)F ) =
exp(rF )exp(tF ), (exp(tF ))−1 = exp(−tF ).

For different applications, different restrictions may be
placed on the class U of admissible control signals. In this
article, U will usually be the class of piecewise constant
(PWC) signals. The value of a control at an instant of tran-
sition between pieces need not be defined; it makes no dif-
ference. If there is a single number µ > 0 that is an upper
bound for all admissible controls, call the class Uµ as a re-
minder.
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2 Bilinear Systems

A control system, linear or not, is said to be controllable
on its state space if for any two states x̄, x̂, a time
T > 0 exists and a control in U for which the trajectory
starting at x(0) = |x̄ ends at x(T ) = x̂. For time-invariant
linear systems, there is a simple and useful condition
necessary for controllability. Stated for equation 1, this
Kalman rank condition is

rank(g, Fg, . . . , Fn−1g) = n

If it is satisfied, the matrix-vector pair {F, g} is called a
controllable pair. If the controls are not bounded, this con-
dition is sufficient for controllability, but if they are in some
Uµ, the control may be small compared with Fx for large x
and have an insufficient effect.

BILINEAR SYSTEMS: WHAT, WHY, WHERE?

Precisely what are BLS and why should one use bilinear
systems in control engineering? This section will give some
answers to those questions, starting with a formal defini-
tion, and give some examples.

Definition. A bilinear system is a first-order vector dif-
ferential equation ẋ = p(x, u) in which x is a state vector;
u is a control signal (scalar or vector); and the components
of p(x, u) are polynomials in (x, u) that are linear in x, u
separately, but jointly quadratic, with constant real coeffi-
cients. Restating that, for any real numbers α, β

p(αx, βu) ≡ αβ p(x, u) + α p(x, 0) + β p(0, u)

The (optional) output is linear, y = h′x.
To begin with, BLS are simpler and better understood

than most other nonlinear systems. Their study involves a
constant interplay between two profitable viewpoints: look-
ing at BLS as time-invariant nonlinear control systems and
as time-variant linear systems.

Another answer is that BLS are useful in designing con-
trol systems that use a very small control signal to modu-
late a large current of electricity of fluid, apply brakes, or
change rates of growth.

A third answer is that the usual linearization of a non-
linear control system near an equilibrium point can be im-
proved by using a BLS approximation; thus,

ẋ = a(x) + ug(x), with a(xe) = 0; let

A = ∂a
∂x

|x=xe, b = q(xe), B = ∂q
∂x

|x=xe

Translating the origin so that xe = 0, to first order in x
and u separately:

ẋ = Ax + u(Bx + b), y = h′x (3)

Although some results will be stated for equation 3,
usually we will suppose that b = 0; such BLS are called
homogeneous bilinear systems, and for later reference,
they are given here in both their single-input and k-input
versions

ẋ = Ax + uBx (4)

ẋ = Ax +
k∑

j=1

ujBjx (5)

(We will see later how to recover facts about equation 3
from the homogeneous case.) If A = 0 in equations 4 or 5,
the BLS is called symmetric:

ẋ =
k∑

j=1

Bjx (5’)

As a control system, equation 4 is time-invariant, and we
need to use controls that can start and stop when we wish.
The use of PWC controls not only is appropriate for that
reason but also allows us to consider switched linear sys-
tems as BLS, and in that case, only a discrete set of control
values such as {−1, 1} or {0, 1} is used.

Later we will be concerned with state-dependent feed-
back controls, u = u(x), which may have to satisfy condi-
tions that guarantee that differential equations like ẋ =
Ax + u(x)Bx have well-behaved solutions.

Discrete time bilinear systems (DBLS) are described by
difference equations, rather than ordinary differential
equations. DBLS applications have come from the discrete-
time dynamics common in economic and financial model-
ing, in which the control is often an interest rate. DBLS also
are used for digital computer simulation of continuous time
systems like equation 3: Using Euler’s point-slope method
with a time-step τ, for times k = 0, 1, 2, . . . , the discrete-time
system is

x(k + 1) = (I + τA)x(k) + τu(k)(Bx(k) + b) (6)

with output y(k) = h′x(k). DBLS will be discussed briefly
at appropriate places below. Their solutions are obtained
by recursion from their initial conditions using their dif-
ference equations.

Some Application Areas

Reference (2) lists early applications of BLS to nuclear
reactors, immunological systems, population growth, and
compartmental models in physiology. For a recently ana-
lyzed BLS from a controlled compartmental model, see the
work on cancer chemotherapy by Ladzewicz and Schättler
(6) and its references.

Using linear feedback u = Kx in a BLS results in a
quadratic autonomous system. Recently some scientifically
interesting quadratic systems, exhibiting chaotic behavior,
have been studied by decomposing them into BLS of this
type. Čelikovský and Vaněček (7) have studied the third-
order Lorenz system as a BLS with output feedback:

ẋ = Ax + uBx, u(x) = x1, with σ > 0, ρ > 0, β > 0, and

A =
(−σ σ 0

ρ −1 0
0 0 −β

)
, B =

(
0 0 0
0 0 −1
0 1 0

)

For small ρ all eigenvalues of A are negative, but for ρ > 1
one becomes positive and B generates a rotation. This de-
scription seems to be characteristic of several such exam-
ples of strange attractors and bounded chaos, including the
Rössler attractor.
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In electrical engineering, BLS viewpoints can be used
to discuss switched and clocked circuits, in which the con-
trol takes on only a discrete set of values like {0, 1} and
the plant is linear in each switched condition. The solu-
tions are then easy to compute numerically. Sometimes the
duty cycle of a switch is under control, as in motors and
DC-to-DC power conversion systems. A simple example is
a conventional ignition sparking system for automobiles,
in which the primary circuit can be modeled by assigning
x1 to voltage across capacitor of value C, x2 to current in
the primary coil of inductance L. The control is a distrib-
utor or electronic switch, either open (infinite resistance)
or closed (small resistance R) with duty cycle specified by
the crankshaft rotation and timing controls. Then with a
battery of emf V,

ẋ1 = − 1
C

x2 − u

C
(x1 − V ), ẋ2 = − 1

L
x1, u =

{
1/R, closed

0, open

Other automotive BLS include mechanical brakes and
controlled suspension systems, among the many applica-
tions discussed in Reference 3.

One advantage of piecewise constant control in BLS
is that the solutions, being piecewise linear, are readily
computed. For that reason, in aerospace and process en-
gineering, control designs with gain scheduling (see GAIN

SCHEDULING) are an area where BLS methods should be
useful; such control schemes change the F matrix and equi-
librium point to permit locally linear control. Recent work
on hybrid systems (finite-state machines interacting with
continuous plants) also falls into the category of switched
linear systems.

STABILIZATION I: CONSTANT CONTROLS

This section will introduce an important engineering de-
sign goal, stability, and the beginning of a running dis-
cussion of stabilization. Stabilization is an active area of
research, in an effort to find good design principles.

A matrix F is called a Hurwitz matrix if all n of
the eigenvalues of F lie in the left half of the com-
plex plane; i.e., R(λi) < − ε < 0. Then ẋ = Fx is said to be
exponentially stable (ES); as time increases, all solutions
are bounded and ||x(t)|| < ||x(0)||e−tε. If even one eigenvalue
lies in the right half plane, almost all solutions will grow
unboundedly and the system is called unstable. Multi-
ple imaginary eigenvalues λ = jω can give tmcos(ωt) (reso-
nance) terms that also are unstable. Warning: Even if the
time-varying eigenvalues of a time-variant linear differ-
ential equation all lie in the left half plane, that does not
guarantee stability!

If A is a Hurwitz matrix, equation 4 is ES when u = 0.
Suppose that A is not Hurwitz or that ε is too small; finding
a feedback control u such that equation 4 is ES with a
desirable ε is called stabilization.

The problem of stabilization of BLS and other non-
linear control systems is still an active area of engi-
neering research. In this section, we consider only the
use of constant controls u = µ in equation 4; the result
of applying this feedback is a linear dynamical system
ẋ = (A + µB)x. To find a range of values for µ that will

stabilize, the BLS is somewhat difficult, but for small
n one can find PA+µB(λ) and test possible values of µ

by the Routh–Hurwitz stability test for polynomials (see
STABILITY THEORY, ASYMPTOTIC). For n = 2

PA+µB(λ) = λ2 − (tr(A) + µtr(B))λ + det(A + µB), so
tr(A) + µtr(B) < 0 and det(A + µB) > 0

(7)

guarantee stability. Graphing these two expressions
against µ is an appropriate method for finding good val-
ues of µ. A complete set of conditions A and B that are
necessary and sufficient for stabilizability of second-order
BLS with constant feedback were given by Chabour et al.
(8).

Other criteria for stabilization by constant control have
been found, such as this one from Luesink and Nijmeijer
(9). Suppose the eigenvalues of A are λi, i = 1,. . . ,n, and the
eigenvalues of B are λ̂i. If there is some nonsingular matrix
P, real or complex, for which P−1AP and P−1BP are simul-
taneously upper triangular, then the eigenvalues of A + µB

are λi + µλ̂i, i = 1, . . . , n. If some real µ satisfies the n linear
inequalities R(λi + µλ̂i) < 0, it will be the desired constant
control. For more about such triangularizable BLS, see the
section below on “The Lie Algebra of a BLS.”

SOLUTIONS OF BILINEAR SYSTEMS

From one viewpoint a BLS with a specific nonconstant
control history {u(t), t ≥ 0} should be thought of as a time-
variant linear differential equation. We will use the single-
input case of equation 4 as an example, with A + u(t)B as
time-variant matrix. The solution depends on the initial
time t0 at which the state is x(t0), and is of the form x(t) =

(t, t0)x(t0), where 
(t, t0) is called a transition matrix.
For more about the general theory of these matrices, see
MULTIVARIABLE SYSTEMS, Chap. 9 of Kailath 10, or vol. 1,
Chap. 4 of Reference 3. Once having written that expres-
sion for x(t), it can be observed that 
 must satisfy the
matrix differential equation


̇ = (A + u(t)B)
, 
(t0, t0) = I

It has the composition property, also called the semigroup
property 
(t, t1)
(t1, t0) = 
(t, t0).

However, as a control system, equation 4 is time-
invariant, by definition. Then the most convenient fami-
lies of admissible controls for BLS are the PWC and other
piecewise-defined controls; such a control can be specified
by its values on an interval of definition of duration τ, for
instance {u(t), t ∈ (t0, t0 + τ)}. From the time-invariance of
the system, a basic interval of definition, (0,τ), can be used
without any loss. Given a particular control signal u on
(0,τ), its time shift by σ can be denoted uσ(t) = u(t − σ), on
(σ, τ + σ), as is usual in system theory.

The concatenation of two controls u and v with respec-
tive durations τ1 and τ2 is written u o v and is another
admissible control with duration τ1 + τ2:

(u ◦ v)(t) =
{

u(t), t ∈ [0, τ1)
vτ1 (t), t ∈ [τ1 < t ≤ τ2]

For the general multi-input BLS of equation 5, the control
is a k-component vector u = [u1, . . . , uk], and the transition
matrix satisfies 
̇ = (A +∑k

j=1 ujBj)
. Concatenation is
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defined in the same way as for scalar controls: u o v is u
followed by the translate of v.

The time-invariance of the BLS leads to useful proper-
ties of the transition matrices. The transition matrix de-
pends on the control u and its starting time, so the matrix

 should be labeled accordingly as 
(u; t, t0), and the state
trajectory corresponding to u is

x(t) = 
(u; t, t0)x(0)

Given two controls and their basic intervals
{u, 0 < t < σ} and {v, 0 < t < τ}, the composition prop-
erty for BLS transition matrices can be written in a nice
form that illustrates concatenation (u followed by the
translate of v)


(vσ ; τ, σ)
(u; σ, 0) = 
(u ◦ v; τ, 0) (8a)

A transition matrix always has an inverse, but it is not
always a transition matrix for the BLS. However, if the BLS
is symmetric (5’) and the admissible controls U are sign-
symmetric (i.e., if u ∈U, then −u ∈U), the transition matrix

(u; τ, 0) resulting from control history {u(t), 0 ≤ t ≤ τ} has
an inverse that is again a transition matrix, obtained by
using the control that reverses what has been done before,
u∗

τ (t) = −u(τ − t), τ ≤ t ≤ 2τ;


(u∗
τ ; 2τ, τ)
(u; τ, 0) = I (8b)

An asymmetric BLS, ẋ = (A + u1B + · · · + ukBk)x, is like a
symmetric one in which one of the matrices B0 = A has a
constant “control” u0 ≡ 1, whose sign cannot be changed.
The controllability problem for asymmetric BLS involves
finding ways around this obstacle by getting to I some other
way.

From a mathematical viewpoint, the set of transition
matrices for equation 4 is a matrix semigroup with identity
element I. See the last section of this article.

MORE ABOUT TRANSITION MATRICES

Transition matrices for BLS have some additional proper-
ties worth mentioning. For instance, in the rare situation
that A, B1,. . . ,Bk all commute, the transition matrix has a
comforting formula


(u; τ, 0) = e
At+
∫ t

0

∑k

i=1
ui(s)Bids

Warning: If the matrices do not commute, this formula is
invalid!

The solution of a single-input inhomogeneous BLS like
equation 3, ẋ = Ax + u(Bx + b), is much like the solution
of a linear system. If 
(u; t, 0) is the solution of the homo-
geneous matrix system


̇ = A
 + uB
, 
(0) = I

then for equation 3 with initial condition x(0),

x(t) = 
(u; t, 0)x(0) +
∫ t

0


(u; t, s)u(s)bds

One advantage of using piecewise constant controls is
that they not only approximate other signals, but suggest
a construction of the transition matrix. For a PWC control

u given by m constant pieces {u(t) = u(τk−1), τk−1 ≤ t < τk}
on intervals that partition {0 ≤ t < τm = T }, the transition
matrix for Ẋ = (A + uB)X is clearly


(u; T, 0) =
∏m

k=1
e(A+u(τk−1)B)τk (9)

This idea can be carried much further with more anal-
ysis: More general (measurable) inputs can be approxi-
mated by PWC controls, and in analogy to the definition
of an integral as a limit of sums, the solution to equation 4
for measurable inputs can be written as (in an appropri-
ate sense) the limit of products like equation 9, called a
product-integral.

The representation given by equation 9 generalizes to
the multi-input BLS equation 5 in the obvious way. With
equation 9, one can also easily verify the composition and
(for A = 0) inverse properties. To emphasize that exponen-
tial formulas for noncommuting matrices have surprising
behavior, here is a standard example in which you should
notice that A2 = 0 and B2 = 0.

A =
(

0 1
0 0

)
and B =

(
0 0
1 0

)
; AB − BA =

(
1 0
0 −1

)
;

eAteBt =
(

1 t

0 1

)(
1 0
t 1

)
=
(

1 + t2 1
t 1

)
, but

e(A+B)t = exp
(

0 t

t 0

)
=
(

cosh(t) sinh(t)
sinh(t) cosh(t)

)

OBSERVABILITY AND OBSERVERS

This section is concerned with BLS that have an output
measurement y with m < n components, so that x(t) is
not directly available. For many purposes in control (sta-
bilization, prediction of future outputs, and optimization),
it is necessary 1) to ensure that different states can be dis-
tinguished and 2) to obtain estimates of x(t) from avail-
able information. An important question is whether an
input–output history

HT = {u(t), y(t)|0 ≤ t ≤ T }
will uniquely determine the initial or final state.

Let C be an m × n matrix (think of it as m row vectors);
its null-space {x|Cx = 0} is denoted by C⊥ . The BLS is the
m-output system given by

ẋ = (A + uB)x, y = Cx. (10)

The initial state is not known, only the history HT .
Suppose that u(t), t ≥ 0, is given. Call two states x, x̂ ∈ Rn

u-indistinguishable on the interval (0, T) if the two cor-
responding outputs are equal on that interval, i.e., if
C
(u; t, 0)x = C
(u; t, 0)x̂, 0 ≤ t ≤ T . This relation, written
x ∼ ux̂, is transitive, reflexive, and symmetric (an equiva-
lence relation) so it partitions the state space into disjoint
sets (see Chap. 5 of Reference 4); it is also linear in the
state. Therefore we need only be concerned with the set of
states u-indistinguishable from the origin, namely,

Iu
def={x|x ∼ u0} = {x|C
(u; t, 0)x = 0, 0 ≤ t ≤ T }

which is a linear subspace called the u-unobservable sub-
space of the BLS; the u-observable subspace is the quotient
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space Ou = Rn
/Iu. That can be rephrased as Rn = Iu⊕Ou.

If Iu = 0, we say that the given system is u-observable. In
Grasselli and Isidori (11) u-observability is given the name
observability under single experiment.

If two states x, z are u-indistinguishable for all admis-
sible u, we say they are indistinguishable and write x ∼ z.
The set of unobservable states is the linear subspace

I = {x|C
(u; t, 0)x = 0 for all u ∈ U}
Its quotient subspace (complement) O = Rn

/I is called the
observable subspace, and the system is called observable if
I = 0. The unobservable subspace is invariant for the BLS;
trajectories that begin in I remain there. If the largest in-
variant linear subspace of C⊥ is 0, the BLS is observable;
this is also called observability under multiple experi-
ments, because to test it one would have to have dupli-
cate systems, each initialized at x(0) but using its own
control u.

Theorem 1 of Reference 11 states that for PWC controls
and piecewise continuous controls, the BLS is observable
if and only if a u exists for which it is u-observable. The
proof constructs a universal input ũ that distinguishes all
states from 0 by concatenating at most n + 1 inputs: ũ =
u0o · · · o un. At the kth stage in the construction, the set of
states indistinguishable from 0 is reduced in dimension by
a well-chosen uk . The test for observability that comes out
of this analysis is that the rank of the matrix �(C; A, B) is
n, where

�(C; A, B) = col[C, CA, CB, CA2, CAB, CBA, CB2, . . .]

That is, �(C; A, B) contains C and all matrices obtained by
repeated multiplications on the right by A and B. This is
the first theorem on the existence of universal inputs, and
the idea has been extended to other nonlinear systems by
Sontag and Sussmann.

The simplest situation in which to look for observabil-
ity criteria is for a system with input zero, an autonomous
time-invariant linear system ẋ = Ax, y = Cx. It is no sur-
prise that the Kalman rank criterion for observability is
appropriate for such systems. The (time-invariant) observ-
ability Gramian is W = col[C, CA, . . . , C(A)n−1]; we say {C,
A} is an observable pair if rank(W) = n, and that is both
necessary and sufficient for linear system observability.

How can we extend this to the case where the input
is unknown? To derive the answer, from williamson (12),
choose our admissible controls to be polynomials in t of
degree n on any fixed time interval. Assume x(0) �= 0. It
is still necessary that rank(W) = n, to preserve observ-
ability when u = 0. Repeatedly differentiate y = Cx at
t = 0 (not that one would do this in practice) to obtain
Y

def= col{y0, ẏ0, . . . , y
(n−1)
0 }. If ẏ0 = CAx(0) + u(0)CBx(0) = 0

for some u(0), the information from ẏ0 would be lost; this
gives a necessary condition that CB = 0; continuing this
way, necessarily CAB = 0, and so on. All the necessary con-
ditions for observability can be summarized as

rank(W) = n and c′AkB = 0, 0 ≤ k ≤ n − 2 (11)

To show the sufficiency of these conditions for observability,
just note that no matter what control u is used, it and its
derivatives do not appear in any of the output derivatives,
so Y = Wx(0) and x(0) = W−1Y from the rank condition.

State Observers

Given a u-observable system with A, B known, it is pos-
sible to estimate the initial state (or current state) from
the history HT . The theory of time-variant linear systems
(see Reference 10 or vol. 1 of Reference 3) shows that Ou is
the range of the time-variant version of the observability
Gramian,

WT
def=
∫ T

0


′(u; t, 0)C′C
(u; t, 0)

If rank(WT ) = n, the initial state can be recovered; in our
notation

x(0) = W−1
T (T )

∫ T

0


′(u; t, 0)C′y(t)dt

The current state can be obtained from 
(u; t, 0)x(0) or by
more efficient means. Even though observability may fail
for any constant control, it still may be possible, using some
piecewise constant control u, to achieve u-observability.
Frelek and Elliott (13) pointed out that the Gramian could
be optimized in various ways (e.g., by minimizing its con-
dition number) with PWC controls, using a finite sequence
of u values, to permit accurate recovery of the entire state
or certain preferred state variables. The larger the linear
span of the trajectory, the more information is acquired
about x(0).

One recursive estimator of the current state is an
asymptotic state observer. There are many variations on
this idea; see KALMAN FILTERS AND OBSERVERS. A state ob-
server can be regarded as a simplification of the Kalman
filter in which no assumptions about noise statistics are
made, nor is a Riccati equation used, and so can be ex-
tended to nonlinear systems for which no Kalman filter
can be found.

The asymptotic state observer to be described is suffi-
ciently general for BLS. For a given control system, it is
a model of the plant to be observed, with state vector de-
noted by z and an input proportional to the output error.
(Grasselli and Isidori (14) showed that there is nothing
to be gained by more general ways of introducing an er-
ror term.) To show how this works, we generalize slightly
to allow an inhomoge-neous BLS. Here are the plant, ob-
server, and error equations; K is an n × m gain matrix at
our disposal.

ẋ = Ax + u(Bx + b), y = Cx (12a)

ż = Az + u(Bz + b) + uK(y − Cz); let e = z − x (12b)

ė = (A + uB − uKC)e (12c)

Observer design for linear systems is concerned with find-
ing K for which the observer is convergent, meaning that
‖e(t)‖ → 0, under some assumptions about u. (Observabil-
ity is more than what is needed for the error to die out; a
weaker concept, detectability, will do. Roughly put, a sys-
tem is detectable if what cannot be observed is asymptot-
ically stable.) At least three design problems can be posed
for equation 12.
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1. Design an observer that will converge for all choices
of (unbounded) u in U. This requires only the condi-
tions of equation 11, replacing B with B − KC, but
then the convergence depends only on the eigenval-
ues of A; using the input has gained us no informa-
tion.

2. Assume that u is known and fixed; in which case, the
methods of finding K for observers of time-variant
linear systems are employed, such as Riccati-type
equations. There is no advantage to the BLS form
in this problem.

3. Design a control and simultaneously choose K to get
best convergence. Currently, this is a difficult nonlin-
ear programming problem, although Sen (15) shows
that a random choice of the values of PWC u should
suffice; from the invariance of the problem under di-
lation (zooming in toward the origin), it seems likely
that a periodic control would be a good choice. This
observer design problem is much like an identifica-
tion problem for a linear system, but identification
algorithms are typically not bilinear.

Using digital computer control, one is likely to have not
a continuous history H but the history of a PWC input ud

and a sampled output

Hd = {(ud(t1), y(t1)), (ud(t2), y(t2)), . . .}
and the BLS can be dealt with as a discrete-time BLS. Us-
ing only a, finite sequence of N > n values, the initial state
z [or current state x(tN )] can be estimated by the least-
squares method, which at best projects z onto the closest ẑ

in the observable subspace:

ẑ = arg min
z

N∑
k=1

‖y(tk) − C
(ud ; tk, 0)z‖2

CONSEQUENCES OF NONCOMMUTIVITY

The noncommutativity of the coefficient matrices A, B of
a BLS is crucial to its controllability, raising questions
that suggest for their answers some interesting mathemat-
ical tools: Lie algebras and Lie groups, named for Norwe-
gian mathematician Sophus Lie, pronounced “lee.” See the
Reading List at the end of this article for books about them.

Lie Brackets

If A and B do not commute, then solving equation 4 is
more interesting and difficult. In addition to A, B, we will
need AB − BA, which is written [A, B] and is called the
Lie bracket of A and B. To see how this matrix might come
into the picture, and obtain a geometric interpretation of
the Lie bracket, consider the two-input BLS with piecewise
constant controls

ẋ = uAx + vBx; u, v ∈ {−1, 0, 1} (13a)

Starting at any x(0), use a control with four control seg-
ments (u, v), each of small duration τ > 0:

{1, 0}, {0, 1}, {−1, 0}, {0, −1} on intervals (13b)

{0, τ}, {τ, 2τ}, {2τ, 3τ}, {3τ, 4τ}, respectively (13c)

The final state is (using the Taylor series of Eq. (7) for the
exponential and keeping only terms up to degree 2)

x(4τ) = 7e−Bτe−AτeBτeAτx(0)

= (I + τ2[A, B] + τ3(higher order terms) + · · · )x(0)

(13d)

The Lie Algebra of a BLS

In much the same way that controllability of the lin-
ear system equation 1 is related to the linear span of
{g, Fg, · · · , Fn−1g}, controllability of BLS is related to a lin-
ear space of matrices generated from A and B by repeated
bracketing, called the Lie algebra of the BLS. A survey of
Lie algebra facts is given in Belinfante and Kolman (16).

The primary concern of this subsection is homogeneous
BLS of the types given in equations 4 and 5. To make clear
what is being discussed, we need a definition.

Definition. A linear space g over a field K (usually the
real or complex numbers) with a multiplication g × g → g:
{X, Y} → [X, Y ] ∈ g will be called a Lie algebra if it satisfies
the properties

1. [X, αY ] = α[X, Y ] = [αX, Y ], α ∈ K.
2. [X, Y ] + [X, X] = 0.
3. [X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y ]] =

0 (Jacobi identity).

In mathematical writing,Lie algebras are usually given ab-
stractly, by relations among their elements, and only then
does one represent the elements by matrices acting on some
vector space. In contrast, the Lie algebras of control theory
have specified generators. (In this article, the Lie algebras
are all matrix Lie algebras; for nonlinear vector field Lie
algebras, see CONTROLLABILITY AND OBSERVABILITY.)

The Lie algebra generated by a BLS is constructed as
follows. Let Mn denote the linear space of all n × n real
matrices; its dimension is r2. A real linear subspace g⊂Mn

that is closed under the bracket [X, Y ] = XY − YX is called a
(real) matrix Lie algebra. The space Mn itself can be iden-
tified with a Lie algebra of dimension n2 over R called the
general linear algebra gl(n, R).

Two matrix Lie algebras g, ĝ are said to be equivalent if
their elements are related by a common similarity transfor-
mation X̂ = P−1XP . This definition is justified by the iden-
tity

P−1[A, B]P = [P−1AP, P−1BP]

For homogeneous BLS with system matrices A and B as
in equation 4, we generate a Lie algebra in the following
way, based on the theory of free Lie algebras. {A, B}LA is
the subspace of Mn containing A and B and closed under
the Lie bracket and linear span operations. It is not hard to
compute {A, B}LA, using the properties 1–3 of Lie brackets.
Start with two generators A and B, we write down a tree
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of brackets as a data structure T (A, B):

B A

[A, B]
[A, [A, B]] [B, [B, A]]

[A, [A, [A, B]]] [B, [A, [A, B]]] [A, [B, [B, A]]] [B, [B, [B, A]]]
...

...
...

...

The tree’s indicated structure depends only on the defi-
nition of a Lie algebra; T (A, B) is built level by level, brack-
eting each terminal leaf by A and by B; as shown it has al-
ready been pruned of obviously linearly dependent leaves
by the identities [X, Y ] = −[Y, X] and [X, X] = 0. By us-
ing the Jacobi identity, more leaves can be pruned; e.g.,
note that [B, [A, [A, B]]] = −[A, [B, [B, A]]] at level 4 before
building level 5, and so forth. It is a known feature of Lie
algebras that all higher order Lie brackets generated by A
and B can be obtained from those in this tree using the Ja-
cobi identity. The linear span of the members of T (A, B) is
the desired Lie algebra g = {A, B}LA. As our matrices are in
Mn there can be no more than n2 of them that are linearly
independent; working with the specific matrices A, B more
dependencies can be found (the Cayley-Hamilton Theorem
provides them) so the construction of the tree stops when
the matrices at some level are linearly dependent on their
ancestors.

In this process, we find enough matrices to obtain the
dimension l and a basis B for the linear space g; we shall
write it as an array B = {C1, . . . , Cl}. As we assume A and B
are not linearly dependent, it is convenient to take C1 = A,
C2 = B, C3 = [A, B]. If the entries of A and B are rational
numbers, symbolic algebra computer programs can gener-
ate T (A, B) and produce B.

It is known that generic pairs A, B will generate a tree
of matrices whose span is Mn. In other words, if you fill
out the entries with randomly chosen real numbers, then
for almost all sample pairs, {A, B}LA = gl(n, R). However,
control systems have structural relationships among their
components that may lead to smaller Lie algebras.

For example,here are some properties of generators that
are preserved under bracketing and linear combination,
and the name of the Lie subalgebra g⊂ gl(n, R) with the
given property and largest dimension d.

� Commutativity: g is called abelian and has d = 2.
� Zero trace: the special linear algebra sl(n, R) has d =

n2 − 1.
� Skew-symmetry: the orthogonal algebra so(n, R) has

d = n(n − 1)/2.
� Simultaneously triangularizable over R or C: solvable

Lie algebras have d ≤ n(n + 1)/2.

In the stabilizability criterion of Reference 9 discussed
above, solvable Lie algebras were mentioned; they are char-
acterized by the property that the sequence of Lie algebras

g1 = [g, g], fg2 = [g, g1], . . . , g j+1 = [g, g j], . . .

terminates at the trivial Lie algebra {0}.
For multi-input BLS like equation 5 or symmetric sys-

tems (5’), a similar (if harder to diagram) tree construction

can be carried out. If the dimension n is low and there
are many independent matrices A, B1, . . . , Bk, only a few
brackets may be needed to obtain the basis B of the Lie
algebra.

One of the more useful ideas in computing with Lie
brackets is to notice that [A, X] is a linear operation on
the matrix X; define adA(X) def= [A, X] and powers of adA

recursively: ad0
A(X) = X, adk

A(X) = [A, adk−1
A (X)], k > 0. This

simplifies the discussion of an important part of the tree
T(A, B) because its leftmost leaves adk

A(B) are used in an im-
portant rank condition (the ad-condition, discussed in the
“Controllabity Conditions” section below). There are many
useful formulas involving adA, such as

etadA (B) = etABe−tA

Accessibility and the Lie Rank Condition. What “state
space” is most appropriate for a bilinear system? For in-
homogeneous systems, Rn is appropriate. However, for ho-
mogeneous BLS, a trajectory starting at 0 can never leave
it, and 0 can never be reached in finite time; the state space
may as well be punctured at 0. This punctured n-space is
denoted by Rn\0 or Rn

0, and it is of interest in understand-
ing controllability. For n = 1, it is the union of two open
half-lines; in the scalar BLS ξ = uξ, the state can never
change sign. For n = 2, the punctured plane is not simply
connected. For n ≥ 3 the puncture has negligible effect.

In some applications, other unusual state spaces may be
appropriate. There is an n-dimensional generalization of
our scalar example, the diagonalizable BLS, which are (up
to similarity) given by ẋi = uixi, i = 1, . . . , n. If the initial
state is on a coordinate half-axis, a quadrant of a coordi-
nate plane, . . . , or on one of the 2n orthants, the state must
stay there forever. Other BLS that live this way on positive
orthants occur rather often, and their controllability prop-
erties will be discussed in the “Positive Systems” section
below. In economics, chemistry, ecology, and probability ap-
plications, the state variables are usually positive and the
dynamical model must respect that; bilinear systems and
quadratic systems are the simplest models needed in such
applications.

Sometimes all we need to establish or can establish will
be a property weaker than controllability but still very use-
ful: if the set of states {
(u; t, 0)x, t > 0} has an open inte-
rior, the BLS is said to satisfy the accessibility condition at
x. If that condition is satisfied for all initial states, we
say the BLS has the accessibility property on its state
space. Controllable systems have this property, always, but
it is not enough to ensure controllability, as is shown in
our next example, which will also motivate the concept of
strong accessibility, which means that {
(u; t, 0)x} has an
open interior at each t.

Example I. On R2
0 consider a BLS

ẋ = (I + uJ)x, I =
(

1 0
0 1

)
, J =

(
0 −1
1 0

)
In polar coordinates, this system becomes ṙ = r, θ̇ = u

and its trajectories are, for constant control values, expand-
ing spirals, clockwise or counterclockwise. Starting at r0, θ0
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at the set of states that can be reached at τ, any fixed pos-
itive time, it is a circle with radius r(τ) = eτr0, which is not
an open set, so the BLS does not have the strong accessibil-
ity property. No state with r(τ) < r0 can be reached, which
establishes that the system is not controllable. The set
{r(t), θ(t)|0 < t < τ} is the open annulus {(r, θ)|r0 < r < r0e

τ},
so the control system does have the accessibility property.

Reverse the roles of the two generators. The BLS be-
comes ẋ = (J + uI)x; in polar coordinates ṙ = ur, θ̇ = 1. At
later time T, the radius is arbitrary but θ(T ) = 2πT + θ0.
This system has the accessibility property (but not strong
accessibility) and is controllable. If the trajectory misses
a target state, it takes 2π seconds before it has a second
chance. This peculiar state of affairs reflects the fact that
our state space is punctured at the origin, and as we re-
marked before, it is topologically a cylinder.

Sometimes it is easy to see from the structure or known
symmetries of generators that a given system cannot have
the accessibility property; the most obvious of these, for
equation 5, are 1) the dimension of {A, B}LA is less than
n2 − 1 or 2) A and B are simultaneously triangularizable.

How can we guarantee accessibility on Rn
0? For

a given homogeneous BLS, e.g., equation 4 whose
Lie algebra is g = {A, B}LA, construct the n × l matrix
Bx def= [C1x, C2x, . . . , Clx], where l is the dimension of g. De-
fine the Lie rank ρ(x) as the dimension of the linear span
of {Xx|X ∈ g}, or more constructively, ρ(x) = rank(Bx).

For homogeneous BLS, a necessary and sufficient condi-
tion for the accessibility property is the Lie rank condition
introduced by J. Kučera (17):

ρ(x) = n, for all x �= 0 (14)

If ρ(x(0)) = k, then ρ(x(t)) = k, t ∈ R. If at some point x the
BLS can move in ρ(x) directions, this must remain true at
all points that the trajectories can reach from x. (Consider
the “diagonal” systems mentioned above, for example.) Due
to the radial scaling properties of BLS, the Lie rank actu-
ally needs to be checked only on the unit sphere and is
the same at antipodal points. If g satisfies the condition
in equation 14, it is called transitive on Rn

0; see the “Ma-
trix Groups” section to see why the word transitive is used.
To check a BLS for transitivity, find the n × n minors of Bx;
these are nth degree polynomials. If 0 is their only common
zero, the Lie rank is n. This algebraic task is performed by
symbolic algebra; see the book by Elliott in the Reading
List.

For symmetric systems (Eq. 5’), transitivity of the Lie al-
gebra generated by {B1, . . . , Bk} is necessary and sufficient
for controllability on Rn

0; the “Matrix Groups” section will
explain why. For asymmetric systems (Eq. 4) and (Eq. 5)
transitivity is necessary but far from sufficient; that can
be seen from Example I. Its Lie algebra is the span of I
and J, det(x, Jx) = x2

1 + x2
2 so ρ(x) = 2; but all paths have

‖x(t)‖ = et‖x(0)‖.
At each state x ∈ Rn

0, the set hx
def={X ∈ g|Xx = 0} is a lin-

ear subspace of g and contains the Lie bracket of any two
of its elements, so it is called the isotropy Lie algebra at x;
it is the same, up to similarity equivalence, at all points
reachable from x by trajectories of the BLS. Transitivity
of the Lie algebra g on state space Rn

0 also means that for

every state x the quotient space of its isotropy subalgebra
hx in g satisfies g/hx � Rn

0.
Returning once more to Example I, g = {αI +

βJ |α, β ∈ R}, so

Bx = {Ix, Jx} =
(

x1 −x2

x2 x1

)
, det(Bx) = x2

1 + x2
2

As, x2
1 + x2

2 �= 0, the equation αIx + βJx = 0 has the
unique solution α = 0, β = 0; therefore, the isotropy alge-
bra is {0}; on R2

0 the Lie rank is ρ(x) = 2.
Those interested in computability will notice that the

Lie rank criterion (Eq. 14) is computationally of exponen-
tial complexity as n increases, but as a negative criterion, it
can be easily checked by choosing a random state x ∈ Rn

0; if
ρ(x) < n, the system cannot have the accessibility property
nor controllability. However, if ρ(x) = n, there still may be
states, as in our diagonal-system example, which cannot be
reached from x.

Proving accessibility or establishing useful tests was
made easier through the work of Boothby and Wilson
(18), which lists, for each state-space dimension n, the
(transitive Lie algebras) and provides a rational algorithm
to determine whether a homogeneous BLS has a Lie al-
gebra on the list. This list was completed recently by the
independent work of Kramer (19) with an additional Lie
algebra known as spin (9, 1).

Example II. Another Lie algebra helps relate linear and
bilinear systems; its system theoretic interpretation was
pointed out by Brockett (20).

aff (n, R) =
{

X ∈ Mn+1|X =
(

X x
0′ 0

)
, X ∈Mn, x ∈ Rn

}
The appropriate state space will be an n-dimensional

hyperplane

P = {z ∈ Rn+1|zn+1 = 1}
To see what is happening, consider first a linear system on
Rn, ẋ = Ax + u(t)b. Now on Rn let

z =

⎛
⎝ x1

...
zn+1

⎞
⎠ , A =

(
A 0
0′ 0

)
, B =

(
0 b
0′ 0

)

with żn+1 = 0 and zn+1(0) = 1. On Rn+1, the bilinear system
ż = Ax + u(t)Bx has aff (n, R) for its Lie algebra but on P
and is equivalent to the linear system we started with. Note
that

adA(B) =
(

0 Ab
0′ 0

)
, ad2

A(B) =
(

0 A2b
0′ 0

)
, etc.

Brackets containing the factor B twice will vanish. The hy-
perplane zn+1 = 1 is invariant, and the BLS is controllable
on that hyperplane under the usual Kalman rank condition
that rank{b, Ab, . . .} = n.

The controllability properties of inhomogeneous BLS
like equation 3 ẋ = Ax + u(Bx + b) can be studied using
the idea and notation of Example II. This BLS system can,
using n + 1 coordinates, be given as a homogeneous BLS
with an invariant hyperplane,

ż = Az + u(t)Bz, where A =
(

A 0
0′ 0

)
, B =

(
B b
0′ 0

)
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A Left Inverse System. A problem closely related to ob-
servability can be posed at this point: left invertibility of
a single-input single-output BLS ẋ = Ax + uBx, y = c′x.
In the terminology of Hirschorn (21), this system is called
left invertible if the output history on some interval [0, T)
uniquely determines the input history on [0,T).

The relative order α of the BLS is the least positive in-
teger k such that

c′adk
A(B) �= 0 (15)

or α = ∞ if all c′adk−1
A B = 0, k > 0. The BLS is invertible if

α < ∞ and c′adk−1
A Bx(0) �= 0. Invertibility fails if and only if

every control results in the same output.
The conditions of Hirschorn (Eq. 15) and Williamson

(Eq. 11) are interestingly related when one takes into ac-
count that in the system-inverse problem x(0) is known.
Assume that the Williamson condition holds, i.e., the rank
of W is n and c′AkB = 0, 0 ≤ k ≤ n − 2. They do not force
B = 0, because we can have c′An−1B �= 0. Now evaluating
the Hirschorn conditions, in turn

c′B = 0; c′[A, B] = c′AB = 0; c′[A, [A, B]] = c′A2B = 0; . . .

but c′adn−1
A B = c′An−1B �= 0; so the relative order is α = n.

Reference 21 points out, in this case the inverse system
becomes an observer, tracking x(t) when y(α) is supplied as
its input.

CONTROLLABILITY PROBLEMS

Criteria for Controllability. The necessary conditions for
controllability of homogeneous BLS begin with the Lie
rank condition (Eq. 14). Using it is made easier by the list
of transitive Lie algebras in References 18–19. A necessary
condition for controllability given by Elliott (22) is that con-
trollable homogeneous BLS on Rn

0, n > 2 have the strong
accessibility property. (The peculiarity of Example I occurs
because the punctured plane is not simply connected.)

For inhomogeneous BLS like equation 3, at x = 0, the
Kalman rank condition on {b, Ab, . . .} is a sufficient condi-
tion for local controllability with unbounded controls; as
that rank condition is an open one in the space of coeffi-
cients, for sufficiently small x, the Bx term does no harm.
There is usually a family of possible equilibria correspond-
ing to solutions of (A + µB)x = −µb and at each of these
one can make such a test. In the first paper on BLS, Rink
and Mohler (23) assumed such local controllability condi-
tions to show controllability with bounded control u of

ẋ = Ax +
m∑

k=1

(Bkx + bk)uk

provided that the equilibrium set, for admissible u, is con-
nected and all eigenvalues of A +∑m

k=1 ukBk can be made
strictly stable and strictly unstable using admissible con-
stant values of u. This use of bilinear terms to make up for
the deficiencies of linear control methods, when controls
are bounded, is emphasized by Mohler.

For equation 4, in Cheng et al. (24), the ad-condition

rank(Ax, Bx, adA(B)x, . . . , adn2−1
A (B)x) = n on Rn

0 (16)

plus the hypothesis that A is similar to a skew-symmetric
matrix are shown sufficient for controllability with
bounded control. A partial converse is that controllability
of equation 4 for arbitrarily small bounds on the controls
implies that all eigenvalues of A are imaginary.

Many papers on controllability and stabilization cite Ju-
rdjevic and Quinn (25). For BLS their condition specializes
as follows, for piecewise continuous signals. If A has eigen-
vaiues that are purely imaginary and distinct and the Lie
rank condition is satisfied, then ẋ = Ax + uBx is control-
lable. This extends to multiple-input BLS immediately. A
stabilization result using the ad-condition is also obtained.

For symmetric systems, the Lie rank condition is a suffi-
cient condition for controllability, which is connected to the
fact that in that case the transition matrices constitute a
Lie group (discussed below).

For asymmetric BLS, the set of transition matrices is
only a semigroup, meaning that it may not contain the in-
verses of some transition matrices. A broad principle of
controllability theory is that you must be able to get back
to an open neighborhood of the state where you started,
somehow.

Several conditions sufficient for controllability of BLS
were given by Jurdjevic and Kupka (26), for unbounded
controls. Here is a sample. Assume that the eigenvalues of
B are simple and real, in the order q1 > q2 . . . > qn; choose
coordinates so that B = diag(q1, . . . , qn). Then if the num-
bers qi − qj are all distinct, if the elements of A satisfy
Ai j �= 0 for all i, j such that |i − j| = 1, and if A1nAn1 < 0,
then ẋ = (A + uB)x is controllable on Rn\0. Jurdjevic and
Sallet (27) and others have extended the approach of Ref-
erence 24 to nonhomogeneous BLS like equation 3, in the
m-input case.

Positive Systems. There are several ways in which BLS
models arise that involve positive variables. As a simple
example, diagonal systems

ẋi = uixi, i = 1, . . . , n, xi > 0 on the orthant

Rn
+ = {x ∈ Rn|xi > 0, i = 1, . . . , n}

can obviously be transformed by the substitution xi =
exp(zi) to the system of coordinate-translations żi = ui.

Controllability for systems of a more interesting nature
that have positive orthants as their natural state spaces
was studied by Boothby (28). Here the BLS is

ẋ = Ax + uBx on Rn
+ (17)

under the hypothesis that the n × n matrix A is
essentially positive: ai j > 0, i �= j, written A > 0. It is well
known and easy to show that, for A > 0, if x(0) ∈ Rn

+, then
x(t) ∈ Rn

+, t > 0.
The conditions on B used in Reference 28 are that B is

nonsingular and diagonal; B = diag[β1, . . . , βn]; and for all
i �= j, βi − βj �= 0, which is an invertibility condition for adB.
If none of the eigenvalue differences is repeated, {A, B}LA

is sl(n, R) if the trace of A is zero, gl(n, R) otherwise, so the
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Lie rank condition is satisfied. Controllability and noncon-
trollability results are established for several families of A,
B pairs, especially for n = 2.

Bacciotti (29) completed the study for n = 2. He assumes
the same conditions: A > 0; B is diagonal and nonsingular,
with no repeated eigenvalues; and β2 > 0 (if not, reverse the
sign of the control). Then for the BLS ẋ = Ax + uBx:

1. If β1 > 0, the BLS is completely controllable on Rn
+.

2. If β1 < 0 but δ = (β2a11 − β1a22)2 + 4β1β2a12a21 > 0 and
β1a22 − β2a11 > 0, then the BLS is completely control-
lable on Rn

+. In any other case, controllability fails.

Sachkov (30) gives answers for m-input problems
(Eq. 5) with m = n − 1 or m = n − 2, using an idea that
has been successful in other controllability problems: if the
symmetric system ẋ =∑m

i=1 uiBix is controllable on hyper-
surfaces V (x) = ν that fill up the (simply connected) state
space Rn

+, and if tne zero-control trajectories of equation
5 can cross all the hypersurfaces in both directions, then
equation 5 is globally controllable on Rn

+.

Stabilization II. At this point it is appropriate to look at
stabilization by state feedback controls that are not con-
stant. For BLS the usual way of attacking this has been
by quadratic Lyapunov functions. Given a vector differ-
ential equation ẋ = f(x), f (0) = 0, the basic idea behind
Lyapunov’s Direct Method is to find a family of nested
smooth hypersurfaces around 0, such as concentric ellip-
soids, which the trajectories enter and never leave. For ex-
ample, let us start with a test for stability of the differen-
tial equation ẋ = Ax. Choose a symmetric matrix Q that is
positive definite, which means that all its eigenvalues are
positive and is easy to check by the criterion that each of
the n leading minor determinants of Q is positive:

Q11 > 0,

∣∣∣Q11 Q12

Q12 Q22

∣∣∣ > 0, . . . , det(Q) > 0

Let V (x) = x′Qx, whose level surfaces are ellipsoids; then
along trajectories of the differential equation, V̇ = x′(QA +
A′Q)x. If (QA + A′Q) is negative definite (all eigenvalues
negative), then V̇ < 0, which is what we wanted. There are
various recipes for choosing Q, such as solving a linear Lya-
punov equation QA + A′Q = −I for Q and testing for pos-
itive definiteness afterward.

One of the applications of BLS is to controlled
switched linear systems

ẋ = Aux, Au ∈A

where A is (in the simplest version) a finite family of n × n

matrices indexed by an integer valued control u(t) that can
be assigned in any way that enforces some delay between
different values. A basic question is to find conditions are
needed to ensure that the switched system will be ES for
arbitrary control sequences. Necessarily all theAu are Hur-
witz; otherwise a fixed u would not provide ES. Agrachev
and Liberzon (31) showed that it is sufficient to also impose
the condition that the Lie algebra generated by the Au ∈A
is solvable, as in Reference 9. In the coordinates (real or
complex) in which the matrices are triangular, their com-
mon Lyapunov function is x∗x.

Returning to equation 4, suppose A has all its eigenval-
ues on the imaginary axis. Then there is a positive defi-
nite Q for which QA + A′Q = 0; by a change of variables,
Q = I.That is the assumption in Reference 25,which there-
fore uses the Lyapunov function V (x) = x′x; the the ad-
condition on A and B (Eq. 16) is assumed to hold. The
proposed feedback control is u(x) = −x′Bx; so along the
trajectories of the closed-loop system ẋ = Ax − (x′Bx)Bx,
we have V̇ = −(x′Bx)2 ≤ 0 ∀ x �= 0. From the ad-condition,
trajectories cannot remain in the set {x′Bx = 0|x �= 0},
and V (x(t)) → 0 as t → ∞. However, looking at the one-
dimensional case, one sees that for the differential equa-
tion ξ̇ = −ξ3, the approach to the origin is of order t−1/2,
and that this is also true for the n-dimensional problem
using quadratic feedback. Using the same hypotheses and
nearly the same short proof as in Reference 25, the reader
can verify that the bounded feedback u = −x′Bx/x′x pro-
vides exponential stability.

In linear system work, the choice of feedback control
is linear, u = c′x. Applied to BLS ẋ = Ax + uBx, this re-
sults in a quadratic system, such as the Lorenz system,
and is the topic of References 6 and 7. Reference 7 is con-
cerned with linear feedback for a class of BLS in which B
generates a rotation and, for some constant µ, A + µB has
real eigenvalues of mixed sign. For n = 2, after a similarity
transformation

A + µB = diag(λ1, λ2); λ1 > 0, λ2 < 0, B = βJ

Using a constant control γ > µ, the BLS can be globally
“practically stabilized”; i.e., the trajectory eventually en-
ters a ball of radius of order 1/γ. For n = 3, the same type of
system [now with λ3 < 0, B ∈ so (3)] can be globally asymp-
totically stabilized given certain polynomial inequalities
in the λi and B. Given some simpler inequalities, such as
tr(A) < 0 but allowing λ1 > 0, the system is practically sta-
bilized by a family of linear feedbacks with parameter γ.

Stabilization of homogeneous BLS in the plane has been
fully analyzed; it is not necessary that A have imaginary
eigenvalues. Bacciotti and Boieri (32) using constant, lin-
ear, and quadratic feedbacks, and Reference 8 using feed-
backs differentiable except perhaps at 0, have given com-
plete classifications of the possibilities for stabilizability of
equation 4 on R2

0. The methods of analysis in these papers
include Lyapunov functions, center manifolds, and proper-
ties of plane curves, depending on the various cases. These
cases are specified by the determinants and traces of A and
B, diagonalizability, and a few other structural features. In
Reference 8, a feedback control, useful even when A is not
stable, is u = x′Rx/x′Tx where matrices R, T are found
on a case by case basis. These controls are homogeneous
of degree zero, and if not constant are discontinuous at 0
but differentiate for x �= 0. The stabilized trajectories typi-
cally approach the origin in a spiraling fashion, often with
large excursions; over each revolution the distance to 0 de-
creases in a constant ratio. In that sense they generalize
the constant controls; the signum controls are essentially
homogeneous of degree zero, and there may be other pos-
sibilities.

Recent work on more general problems of nonlinear sys-
tem stabilization suggests that a time-periodic feedback
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will be needed for three or more dimensions, in order to
bring into play the higher order Lie brackets of A and B.

A Note on Optimal Control. At the time that work be-
gan on BLS one of the motivations for such studies (2, 17)
was their application to optimal control; see OPTIMAL CON-

TROL. Reference 9 treats optimal control of a BLS arising
in cancer chemotherapy. Case studies for vehicle control
and nuclear reactor control were summarized in Reference
3, vol. 2; its bibliography lists some studies of biological
and ecological systems with BLS models, in which there
is some evidence that certain biosystems switch behaviors
optimally; see the paper of Oster (33) on bees.

The most studied cost was the time-to-target; that is,
given an initial state and a target (a state or closed set),
use controls in some admissible class of bounded controls
Uµ to find the trajectory connecting the initial state and
the target in least elapsed time [See Jurdjevic’s book (34)].
In linear system versions of this problem, it was known
that the set accessible from a given state was the same for
Uµ as for the set of PWC controls with values in {−µ, µ},
called bang-bang controls. One formulation of the bang-
bang principle is “the set attainable for bounded controls
can be obtained by using only the extreme values of the
controls.” It holds true for BLS in which all matrices com-
mute. The computation of time-optimal controls, as well
as the first attempts at studying controllability (17), as-
sumed that one could simplify their solution to the prob-
lem of finding optimal switching times (open-loop) or find-
ing hypersurfaces on which the control would switch val-
ues. However, early on it was discovered by Sussmann (35)
that the bang-bang principle did not apply to bilinear sys-
tems in general. A value between the extremes may be re-
quired. There are examples of simply formulated optimal
control problems for which the control may have to switch
infinitely often in a finite time interval.

MATRIX GROUPS

The set of all n × n nonsingular matrices equipped with the
usual matrix multiplication, identity I, and inverse consti-
tutes a group, called GL(n,R) where GL stands for “general
linear.”A subgroup of GL(n,R) is called a matrix group; the
matrix groups we need for BLS are matrix Lie groups.

The derivation of the results of References 17 and 23
other nonlocal results for BLS depends not only on Lie alge-
bras, but also the corresponding matrix Lie groups. Begin
by considering the k-input symmetric homogeneous BLS
of equation 5, where it is assumed that the matrices Bi are
linearly independent. Again write u = (u1, . . . , uk). The Lie
algebra of this BLS is {B1, . . . , Bk}LA. We let {
} be the set
of transition matrices for this BLS, i.e., the solutions of the
matrix system


̇ =
(

k∑
1

uiBi)
, 
(0, 0

)
= I (18)

As {
} contains I and is closed under composition [eq. 8a]
and inverse [eq. 8b], we see that it constitutes a group, in
fact a subgroup of GL(n,R). As all matrices in {
} have

positive determinants, {
} actually lies in GL+(n, R).
On the other hand, corresponding to any matrix Lie al-

gebra g, a Lie group we shall call G(g) can be constructed,
consisting of all products of exponentials of matrices in g;
see Reference 16 or Rossmann’s book in the Reading List. If
a basis of g is {C1, . . . , Cl}, in a neighborhood of the identity
G(g) has coordinates {exp(C1t1), . . . , exp(C1tl)} → (t1, . . . , tl).
(Thus, g is the tangent space to G at I.) Using elements
of G to translate this coordinate patch anywhere on the
group, it can be observed that G(g) has an atlas of coordi-
nate charts that are related by differentiable transforma-
tions where they overlap, like a geographic atlas, and on
which the group multiplication and inverse are differen-
tiable functions. Lie groups occur in many applications of
mathematics to classical mechanics, quantum mechanics,
chemistry, and the control of robots and aerospace vehicles.

At this point we can note that the mathematics of con-
trollability for symmetric BLS is rather simple. If a matrix
Lie group G has the property that given any two states x
and z in Rn

0, X ∈ G exists such that Xx = z, then G is called
transitive on Rn

0 and g is a transitive Lie algebra.
In Reference 20, it was shown that G({B1, . . . , Bk}LA) =

{
}; that is, all matrices in the Lie group can be obtained as
transition matrices. This is a simple version of the Chow
Theorem of nonlinear control. Its meanings for BLS are
that, once the Lie algebra has been identified, the structure
of the group of transition matrices is completely known;
and that any matrix M ∈ G({B1, . . . , Bk}LA) can be written
as a product

M = et1B1es1B2 . . . etkB1eskB2

for some finite sequence of reals {t1, s1, . . . , tk, sk}. Thus, a
few generators are as good as l of them.

Some examples of Lie groups are useful; in some of those
listed below, the identity det(eA) = etr(A) is relevant:

Lie algebra g G ⊂ GL(n, R)
gl(n, R) = Mn GL+(n, R) = {Q|det(Q) > 0}
sl(n, R) = {X|tr(X) = 0} SL(n, R) = {Q|det(Q) = 1}
so(n) = {X|X′ = −X} SO(n) = {Q|Q′Q = I}

and if J2 = −I and θ is irrational,

{X|X = diag{J, θJ} ∈M4} R̃ ⊂ GL(4, R)

where R̃ is a densely wound curve that fills up a 2-torus,
so it is not a closed (Lie) subgroup of GL(4, R).

Any element Z ∈ G is a product of exponentials of ele-
ments of the corresponding Lie algebra g but not necessar-
ily an exponential of any such element; the standard coun-
terexample is Z = diag(−e, −e−1) ∈ SL(2, R). Here −I =
exp(J), diag(e, e−1) = exp(diag(1, −1)), but their product Z
is not the exponential of any real matrix.

For asymmetric systems ẋ = (A + uB)x, in GL(n, R) the
set of transition matrices S = {
(u; t, 0)|u ∈U, t ≥ 0} con-
tains I and is closed under multiplication but not un-
der matrix inversion; it is a matrix semigroup. Example
I showed an uncontrollable system for which S is a semi-
group but with the accessibility property. Here is another
two-dimensional example with bounded controls, show-
ing that controllability and stabilizability are possible for
semigroups acting on R2

0.
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Figure 1. Phase portrait and path from p to q for Example III.
From p use u = 1 to reach the x2 axis; then use u = −1; switch to
u = 1 at the arc of the spiral that leads to q.

Example III. Consider this BLS with u = ±1 and
0.5 > α > 0:

ẋ = Ax + uBx; A =
(

1 + α −1
1 α − 1

)
, B =

(
−1 −1
1 1

)
;

A − B =
(

2 + α 0
0 α − 2

)
, A + B =

(
α −2
2 α

) (19)

As tr(A ± B) = 2α, for either choice of control this is not a
stable system. Paths with u = 1 are spirals that provide
rotations. With u = −1 the paths are hyperbolas, which
near the coordinate axes permit movement toward the ori-
gin x2-axis) or away from it (x1-axis). System l9 is control-
lable, because dilations and rotations of arbitrary extent
are possible. Furthermore, system 19 satisfies the condi-
tions tr B = 0, tr A > 0, and tr AB �= 0 of Th. 2.2.3 of Ref-
erence 33, so it can be stabilized with a feedback control
u(x) = x′Rx/x′x.

Other Aspects of Bilinear System Theory.

Discrete-Time Systems. There is a large literature on
DBLS on most of the topics we have covered, sometimes
employing very different mathematical tools and some-
times highly parallel to continuous-time systems. To em-
phasize this we use a “successor” (time-shift) notation;
instead of x(t + 1) = (A + uB)x(t), for DBLS, we use xs =
(A + uB)x.

The observability theory of discrete-time bilinear sys-
tems is very much like that of the continuous version, with
the same criteria, e.g., equation 11 to assure observabil-
ity for all u. Inverting an observaole discrete-time system
requires no time-derivatives of the output y = c′x.

When the DBLS is obtained by sample-and-hold opera-
tions with interval δ on a continuous-time system like equa-
tion 4, the sampled system is

xs = eδ(A+uB) (20)

If the BLS is observable to begin with, observability
is preserved when the sampling interval δ is sufficiently
small; the condition (the same as for linear systems) is that

δ(λ − µ) is not of the form 2kπi for any pair of eigenvalues
λ, µ of A and integer k.

However, Sontag (36) has shown that for a controllable
BLS (eq. 4), the sampled system (eq. 20) will be control-
labile if this condition is imposed: δ(λ + λ′ − µ − µ′) �= 2kπ,
k �= 0 for any four eigenvalues of A.

The discretization of an uncontrollable BLS can be arti-
factually controllable,. depending on the BLS and the nu-
merical method used. For the Euler discretization shown
in equation 6, here is a two-dimensional example. The BLS
is ẋ = u(2J + I)x, which has A = 0, B = 2J + I, and is not
controllable. The system can move back and forth along one
spiral trajectory through x(0). The discrete-time approxi-
mation is xs = x + τuBx. This DBLS is controllable on R2

0;
the trajectories move on the tangent lines to the spiral.

Control and optimal control problems for DBLS xs =
Ax + Bxu are investigated in Swamy and Tarn (37); in
the optimal control area, the case that B has rank one
is notable, because it can be reduced to a linear system
problem by the factorization B = bc′. Perform the optimiza-
tion, with whatever cost, for the linear system xs = Ax + vb

and obtain the optimal control v∗ then in the DBLS, let
u = v∗/(c′x),

so

xs = Ax + bc′x
v∗

c′x

when c′x �= 0, and perturb the computation slightly to avoid
its vanishing.This “division controller” reflects the fact that
the discrete motion can avoid the hyperplane c′x = 0.

Controllability with bounded controls is associated (as it
is in continuous-time systems) with zero-control motion on
an ellipsoid and an accessibility condition. For the DBLS
xs = Ax + uBx, Reference 24 has a DBLS version of the ad-
condition obtained from the Jacobian of the map from the
input history to output history

rank{Ax, AmBx, Am−1BAx, . . . , ABAm−1x, BAmx} = n

on Rn
0, where m need be no larger than n2 − 1. When the

rank condition holds, the condition for controllability with
controls bounded by any positive constant is that A is sim-
ilar to an orthogonal matrix. As a partial converse, it was
shown that requiring controllability for inputs with arbi-
trarily small bounds implies the spectrum of A lies on the
unit circle, and that the DBLS ad-condition is sufficient for
controllability when some power of A is orthogonal.

The solution of a DBLS xs = (A + uB)x is given by the
right-to-left ordered product


(u; t, 0)x(0) = (�0
k=t(A + u(k)B))x(0)

The set of states attainable from x(0) may be pathological.
For example take

A =
(

cos(απ) −sin(απ)
sin(απ) cos(απ)

)
, B = I

For α rational, S is a finite set of rays and for α irrational,
a dense set of rays.

For linear systems, the realization of an input–output
map as a system on a state space is essentially the same in
continuous and discrete time, using the concept of Hankel
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matrix ⎛
⎝ c′b c′Ab c′A2b · · ·

c′Ab c′A2b c′A3b · · ·
...

...
...

...

⎞
⎠

For discrete-time bilinear systems, realization theory
involves a different looking but highly analogous Hankel
matrix; Isidori (38), Fliess (39), and Tarn and Nonoyama
(40) introduced variations on this idea. The situation dif-
fers from linear systems in that the input–putput map is
u → c′
(u; k, 0), with the single output a row vector, or it
may be multiplied on the right by the initial state. Discrete-
time bilinear systems were then, like linear systems, used
as examples of adjoint systems in category theory, with the
Hankel matrix being the fundamental description. A cat-
egory, loosely speaking, is a collection of objects and maps
between them; for instance, the category Lin has linear
spaces and linear maps. A machine (adjoint system) in a
category has input, state, and output objects; dynamics
(iterated maps on the state space) and input and output
maps; and Hankel matrices. The category of discrete sets
underlies automata theory; Lin leads to discrete-time lin-
ear system theory, etc., and discrete-time bilinear systems
“occur naturally”; see Arbib and Manes (41). Continuous-
time dynamics does not fit into category theory.

Transforming Nonlinear Systems to Bilinear Form. As an
application of BLS ideas to nonlinear control theory, con-
sider the nonlinear system

ż1 = −z1 + (z2 + z2
1)u

ż2 = z2 + 3z2
1 + (z1 − 2z1z2 − 2z3

1)u

This was cooked by using the one-to-one coordinate trans-
formation x1 = z1, x2 = z2 + z2

1, from the BLS ẋ = Ax + uBx
where

A =
(−1 0

0 1

)
, B =

(
0 1
1 0

)
The Lie algebra of the BLS is sl(2, R). The matrices A,B are
the Jacobians at 0 of the nonlinear vector functions in the
first system, so the BLS is also the classic “linearization”
of the nonlinear system, but what we have here is not an
approximation but a system equivalence. The Lie algebra
of nonlinear vector fields (see CONTROLLABILITY AND OBSERV-

ABILITY, Section “Nonlinear Finite-Dimensional Systems”)
generated by our example is also sl(2, R).

It has been shown by Sedwick and Elliott (42) that given
a familyF of real-analytic nonlinear vector fields on Rn that
vanish at 0, if F and the family F1 of their linear terms iso-
morphically generate a transitive Lie algebra, then a real-
analytic coordinate transformation exists that transforms
F system to its equivalent BLS F1, and that can be found
by solving linear partial differential equations. Of Lie alge-
bras not on that list, the compact and the semisimple ones
also permit this linearization, but all others either fail to
have differentiable transformations or do not have any, as
far as is known; and nonlinear systems axe prone to have
infinite-dimensional Lie algebras.

A Note on Volterra Series. The connection between BLS
and the Volterra series representation of input–output

maps is surveyed in Reference 1. Volterra series are used
extensively in the identification of nonlinear systems, espe-
cially in biological work, because algorithms exist to evalu-
ate the first few terms purely from input–output data when
no state-space model is known. The series is

y(t) = W0(t) +∑∞
n=1

∫ t

0 · · · ∫ σn−1

0
Wn(t, σ1, . . . , σn)u(σ1) · · · u(σn)dσ1 · · · dσn

Treat our usual system ẋ = Ax + u(t)Bx, as if it were inho-
mogeneous to get the integral equation

x(t) = eAtx(0) +
∫ t

0

u(t1)eA(t−t1)Bx(t1)dt1

then the Volterra kernels are easily observed, by iteration,
to be

W0(t) = c′eAtx(0)
W1(t, σ1) = c′eA(t−σ1)BeAσ1 x(0)
W2(t, σ1, σ2) = c′eA(t−σ1)BeA(σ1−σ2)BeAσ2 x(0)

For bounded u, the series converges on any time interval
and represents the solution. The Volterra series has a finite
number of terms precisely when the system’s Lie algebra
g is nilpotent, which means that all brackets with a suf-
ficiently high number of factors must vanish. Several ap-
proximation theorems for analytic nonlinear systems have
been based on this approach.

For an account of this theory in its general form for an-
alytic systems, see Isidori (43); the book is also a source
for many other topics omitted here, such as Fliess func-
tional expansions and continuous-time realization theory.
Also see NONLINEAR CONTROL SYSTEMS:ANALYTICAL METHODS.

Systems on Lie Groups; Quantum Systems. The transition
matrices for Eq. (14) satisfy


̇ = A
 +
k∑

i=1

Bi
 (20)

with the initial condition 
(0) = I. It is also worthwhile
to look at equation 20 as a control system on GL(n,R) or
on one of its Lie subgroups such as (if A and the Bi are
skew-symmetric) SO(3), the group of rigid-body rotations.

Such control systems are also called bilinear and have
inspired much work such as References 20 and 26 and es-
pecially Reference 34. The controllability problem for sys-
tems on Lie groups is closely related to the study of matrix
semigroups; see Lawson (44) for a survey of this area.

Typical applications have been to the angular atti-
tude control of spacecraft (satellites) and undersea vehi-
cles. A new application in which electronic engineers have
been active is in quantum control; see QUANTUM SYSTEMS.
D’Alessandro and Dahleh (45) and much subsequent work
by D’Alessandro on quantum bits has made the study of
BLS on complex Lie groups an attractive subject of study.
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Further Reading

The following books and articles are listed more or less in the order
of the topics of this article.

Lipschutz, S., Schaum’s Outline of Linear Algebra, 2nd ed.;
McGraw-Hill: New York, 1991. (Fine self-study text for stu-
dents and as a refresher; the accounts of the Cayley–Hamilton
theorem, the Jordan canonical form, and quadratic forms will
be helpful in studying BLS.)

Bellman, R., Introduction to Matrix Analysis SIAM: Philadelphia,
PA, 1995. (This is a reprint of the 1965 Second Edition, by pop-
ular demand, a true classic. Covers exponential matrices, pos-
itive matrices, and much more.)

Rossmann, W., Lie Groups: An Introduction Through Linear
Groups, ser., Oxford Grad. Texts Math., 5; Oxford University
Press: Oxford: 2005. (This book’s emphasis on matrix groups
makes it well suited for the study of bilnear control systems.)

Varadarajan, V. S., Lie Groups, Lie Algebras, and Their Represen-
tations (GTM 102); Springer-Verlag: New York: 1988. (Well-
known and respected graduate text.)

Jurdjevic, V.; Sussmann, H. J., Controllability on Lie Groups. J.
Diff. Equations 1972, 12, pp 313–329.(A foundational paper on
modern nonlinear control. State space generalized to groups
and group manifolds.)

Jurdjevic, V., Geometric Control Theory; Cambridge University
Press: New York, 1996.

Eilliott, D. L., Bilinear Control Systems; Kluwer Academic Pub-
lishers: Dordrecht. In Press.
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