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out the extensive calculations required for their design. These
advances in implementation and design capability can be ob-
tained at low cost because of the widespread availability of
inexpensive and powerful digital computers and their re-
lated devices.

The focus of discussion is the modern, state space-based
design of linear discrete-time control systems with an ap-
preciation for classical viewpoints and methods. To begin, we
present an overview of the classical approach to discrete-time
tracking system design. The key concepts, involving specifi-
cation of transient and steady state response requirements,
are also much a part of the modern approach.

Two important classes of control systems are the tracking
system and the regulator. A tracking system is one in which
the plant outputs are controlled so that they become and re-
main nearly equal to a set of externally applied reference sig-
nals. In a regulator, the objective is to bring the system-
tracking outputs near zero in an acceptable manner, often in
the face of disturbances. Thus regulation is a special case of
tracking, in which the externally applied reference signals
are zero.

In the classical approach, whether in the discrete-time do-
main or the continuous-time domain, the designer begins with
a lower-order controller and raises the controller order as nec-
essary to meet the feedback system performance require-
ments. The digital controller parameters are chosen to give
feedback system pole locations that result in acceptable zero-
input (transient) response. At the same time, requirements
are placed on the overall system’s zero-state response compo-
nents for representative discrete-time reference inputs, such
as steps or ramps.

In general, tracking control system design has two basic
concerns:

1. Obtaining acceptable zero-input response, that due to
initial conditions

2. Obtaining acceptable zero-state system response to ref-
erence inputs

In addition, if the plant to be controlled is continuous-time
and the controller is discrete-time, a third concern is:

3. Obtaining acceptable between-sample response of the
continuous-time plant

Using the superposition theorem, the zero-input response,
and the individual zero-state response contributions of each
input can be dealt with separately. The first concern of
tracking system design is met by selecting a controller that
places all of the overall system poles at desired locations in-
side the unit circle on the complex plane. Having designed a
feedback structure to achieve the desired character of zero-
input response, additional design freedom can then be used
to obtain good tracking of reference inputs.

The first two concerns of discrete-time tracking system de-
sign are the subject of this chapter. The third concern, how-DISCRETE TIME SYSTEMS DESIGN METHODS
ever, is beyond our scope but is covered thoroughly in Ref. 1.

This article discusses fundamental concepts in discrete-time
control system design. The rapid advancements in digital sys- CLASSICAL CONTROL SYSTEM DESIGN METHODS
tem technology have radically altered the boundaries of con-
trol system design options. Currently, it is routinely practica- The tools of classical linear discrete-time control system de-

sign, which parallel the tools for continuous-time systems, areble to design very complicated digital controllers and to carry
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then

TE(z) = E(z)

R(z)
= 1

1 + KG(z)H(z)

Compensator
Gc(z)

R(z) Y(z)Plant
Gp(z)

+

–

Assuming that all the closed-loop poles of the system are in-
Figure 1. Cascade compensation of a unity feedback system. side the unit circle on the z plane, the steady-state error to a

power-of-time input is given by the final value theorem:

the z-transform, stability testing, root locus, and frequency
response methods.

The standard classical control system design problem is to
limit
k→∞

e(k) = limit
z→1

(1 − z−1)E(z) = limit
z→1

(1 − z−1)R(z)

1 + KG(z)H(z)
(2)

determine the transfer function Gc(z) of a compensator that
Similar to continuous-time systems, there are three referenceresults in a feedback tracking system with prescribed perfor-
inputs for which steady-state errors are commonly defined.mance requirements. The basic system configuration for this
They are the step (position), ramp (velocity), and parabolicproblem is shown in Fig. 1. There are many variations on this
(acceleration) inputs. The step input has the formbasic theme, including situations where the system structure

is more involved, where there is a feedback transmittance
r(kT ) = A u(kT )H(z), and where there are disturbance inputs to be consid-

ered. Usually, these disturbances are undesirable inputs that
or, in the z domain,the plant should not track.

The character of a system’s zero-input response is deter-
mined by its pole locations, so the first concern of tracking R(z) = Az

z − 1system design is met by choosing a compensator Gc(z) that
results in acceptable pole locations for the overall transfer

The ramp input is given byfunction:

r(kT ) = AkTu(kT )
T(z) = Y (z)

R(z)
= Gc(z)Gp(z)

1 + Gc(z)Gp(z)
or

Root locus is an important design tool because, with it, the
effects on closed-loop system pole location of varying design R(z) = ATz

(z − 1)2
parameters are quickly and easily visualized.

The second concern of tracking system design is obtaining and the parabolic input is given by
acceptable closed-loop zero-state response to reference inputs.
For the discrete-time system shown in Fig. 2, the open-loop
transfer function may be expressed as r(kT ) = 1

2
A(kT )2u(kT )

orKG(z)H(z) = K(z + α1)(z + α2) . . . (z + αl )

(z − 1)n(z + β1)(z + β2) . . . (z + βm )

= KN(z)

(z − 1)nD(z)

(1)
R(z) = T2

2
Az(z + 1)

(z − 1)3

If n is nonnegative, the system is said to be type n. Table 1 summarizes steady-state errors using Eqs. (1) and (2)
The error between the input and the output of the system for various system types for power-of-time inputs.

is There are two basic ways of approaching classical discrete-
time control. In the sampled data approach, discrete-time sig-
nals are represented by continuous-time impulse trains soE(z) = R(z) − Y (z)H(z)

that all signals in a plant and controller model are continu-
but ous-time signals. This was appealing in the early days of digi-

tal control when digital concepts were new and most design-
Y (z) = KE(z)G(z) ers had backgrounds that were solidly in continuous-time

control. Currently, however, there is little to recommend this
complexity. In the conventional approach, which is used here,
discrete-time signals are represented as sequences of
numbers.

Root Locus Design Methods

We now present an overview of classical discrete-time control
system design using an example. Similar to continuous-time

R(z)
E(z)

Y(z)K G(z)

H(z)

+

–

systems, a root locus plot consists of a pole–zero plot of the
open-loop transfer function of a feedback system, upon whichFigure 2. A discrete-time control system.
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Table 1. Steady-State Errors to Power-of-Time Inputs

Steady-State Error Steady-State Error Steady-State Error to
to Step Input to Ramp Input Parabolic Input

System
Type R(z) �

Az
z 
 1

R(z) �
ATz

(z 
 1)2 R(z) �
ATz

(z 
 1)2

A

1 � K
N(1)
D(1)

0 � �

AT

K
N(1)
D(1)

1 0 �

AT2

K
N(1)
D(1)

2 0 0

· · · ·
· · · ·
· · · ·
n 0 0 0

is superimposed the locus of the poles of the closed-loop trans- function G(s) relates the applied voltage to the drive motor
armature and the tape speed at the recording and playbackfer function as some parameter is varied. For the configura-
heads. The delay term accounts for the propagation of speedtion shown in Fig. 2 where the constant gain K is the parame-
changes along the tape over the distance of physical separa-ter of interest, the overall transfer function of this system is
tion of the tape drive mechanism and the recording and play-
back heads. The pole term in G(s) represents the dynamics of
the motor and tape drive capstan. Tape position is sensed by

T(z) = KG(z)

1 + KG(z)H(z)

a recorded signal on the tape itself.
and the poles of the overall system are the roots of It is desired to design a digital controller that results in

zero steady-state error to any step change in desired tape po-1 + KG(z)H(z) = 0
sition. Also, the system should have a zero-input (or tran-

which depend on the parameter K. The rules for constructing sient) response that decays to no more than 10% of any initial
the root locus of discrete-time systems are identical to the value within a 1/30 s interval, which is the video frame rate.
rules for plotting the root locus of continuous-time systems. The sampling period of the controller is chosen to be T � 1/
The root locus plot, however, must be interpreted relative to 120 s in order to synchronize the tape motion control with the
the z plane. 1/60 s field rate (each frame consists of two fields of the re-

Consider the block diagram of the commercial broadcast corded video). As shown in Fig. 3(b), the diagram of Fig. 3(a)
has been rearranged to emphasize the discrete-time inputvideotape-positioning system shown in Fig. 3(a). The transfer

Figure 3. Videotape-positioning system. (a) Block dia-
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R(z) and the discrete-time samples P(z) of the tape position.
The open-loop transfer function of the system is

G(z) = Z
[

1 − e−(1/120)s

s
40e−(1/120)s

s + 40
1
s

]

= Z
{

[1 − e−(1/120)s]e−(1/120)s
[−1/40

s
+ 1

s2 + 1/40
s + 40

]}

= (1 − z−1)z−1
[−z/40

z − 1
+ z/120

(z − 1)2
+ z/40

z − 0.72

]

= 0.00133(z + 0.75)

z(z − 1)(z − 0.72)

The position error signal, in terms of the compensator’s z-
transfer function Gc(z), is given by

E(z) = R(z) − Y (z) =
[
1 − Gc(z)Gp(z)

1 + Gc(z)Gp(z)

]
R(z)

= 1
1 + Gc(z)Gp(z)

R(z)

For a unit step input sequence we have

E(z) = 1
1 + Gc(z)Gp(z)

� z
z + 1

�

Assuming that the feedback system is stable, we obtain

limit
k→∞

e(k) = limit
z→1

(1 − z−1)E(z) = limit
z→1

1
1 + Gc(z)Gp(z)

Provided that the compensator does not have a zero at z � 1,
the system type is 1 and, therefore according to Table 1, the
steady-state error to a step input is zero. For the feedback
system transient response to decay at least by a factor 1/10
within 1/30 s, the desired closed loop poles must be located
such that a decay of at least this amount occurs every 1/120
s steps. This implies that the closed-loop poles must lie within
a radius c of the origin on the z plane, where

c4 = 0.1, c = 0.56

Similar to continuous-time systems, one usually begins with
the simplest compensator consisting of only a gain K. The
feedback system is stable for 0 � K � 95; but as shown in

K=
1000

K = 1000

K=100

0.72

0.72

Unit
 circle

Unit
 circle

–0.75

–0.75

Circle of
radius
 0.56

K    10

K    95

0.00133

0.00133

Re

Re

Im

Im

Gc(z) = K
Gp(z) = 
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z (z – 1) (z – 0.72)

R(z) P(z)E(z)

(a)
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(c)

+
–

Fig. 4, this compensator is inadequate because there are al-
Figure 4. Constant-gain compensator. (a) Block diagram. (b) Rootways poles at distances from the origin greater than the re-
locus for positive K. (c) Root locus for negative gain.quired c � 0.56 regardless of the value of K. As shown in Fig.

5(a), another compensator with z-transfer function
the feedback system z-transfer function is

Gc(z) = K(z − 0.72)

z T(z) = Gc(z)Gp(z)

1 + Gc(z)Gp(z)
= 0.2(z + 0.75)

z3 − 0.6z2 − 0.2z + 0.15
which cancels the plant pole at z � 0.72 is tried. The root

As expected, the steady-state error to a step input is zero:locus plot for this system is shown in Fig. 5(b). For K � 90,
the design is close to meeting the requirements, but it is not
quite good enough. However, if the compensator pole is moved limit

z→1

z3 − 0.6z2 − 0.4z
z3 − 0.6z2 − 0.2z + 0.15

= 0
from the origin to the left as shown in Fig. 6, the root locus is
pulled to the left and the performance requirements are met. The steady-state error to a unit ramp input is

For the compensator with z-transfer function

Gc(z) = 150(z − 0.72)

z + 0.4
(3) limit

z→1

1
120

(z2 + 0.4z)

z3 − 0.6z2 − 0.2z + 0.15
= 1

30
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Figure 7. Root locus plot as a function of the compensator pole lo-
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Figure 5. Compensator with zero at z � 0.72 and pole at z � 0. (a)
Block diagram. (b) Root locus for positive K.

A root locus plot in terms of positive a is shown in Fig. 7, from
which it is seen that choices of a between 0.4 and 0.5 give a
controller that meets the performance requirements.For a compensator with a z-transfer function of the form we

Classical discrete-time control system design is an itera-obtain
tive process just like its continuous-time counterpart. Increas-
ingly complicated controllers are tried until both the steady-
state error and transient performance requirements are met.

Gc(z) = 150(z − 0.72)

z + a
Root locus is an important tool because it easily indicates

The feedback system has the z-transfer function: qualitative closed-loop system pole locations as a function of
a parameter. Once feasible controllers are selected, root locus
plots are refined to show quantitative results.T(z) = Gc(z)Gp(z)

1 + Gc(z)Gp(z)
= 0.2(z + 0.75)

z3 − z2 + 0.2z + 0.15 + a(z2 − z)

Frequency Domain Methods

Frequency response characterizations of systems have long
been popular because of the ease and practicality of steady-
state sinusoidal response methods. Furthermore, frequency
response methods do not require explicit knowledge of system
transfer function models.

For the videotape-positioning system, the open loop z-
transfer function, which includes the compensator given by
Eq. (3), is

Gc(z)Gp(z) = (150)(0.00133)(z+ 0.75)

z(z + 0.4)(z − 1)

Substituting z � ej�T, we obtain

Gc(e jωT )Gp(e jωT ) = 0.1995(e jωT + 0.75)

e jωT (e jωT + 0.4)(e jωT − 1)
(4)

which has the frequency response plots shown in Fig. 8. At
the phase crossover frequency (114.2 rad/s) the gain margin is
about 11.5 dB, and at the gain crossover frequency (30 rad/s)
the phase margin is about 66.5�s.

For ease of generating frequency response plots and to
gain greater insight into the design process, the frequency do-

Gp(z) = 
0.00133 (z + 0.75)
z (z – 1) (z – 0.72)

R(z) P(z)E(z)

(a)

(b)
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–0.75 –0.4
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Gc(z) = 

z + 0.4

Im

main methods such as Nyquist, Bode, Nichols, and so on, for
discrete-time systems can be developed using the w trans-Figure 6. Compensator with zero at z � 0.72 and pole at z � 
0.4.

(a) Block diagram. (b) Root locus for positive K. form. This is because in the w plane the wealth of tools and
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6. Finally, transform the controller Gc(w) to Gc(z) ac-
cording to the mapping

w = z − 1
z + 1

Control system design for discrete-time systems using Bode,
Nyquist, or Nichols methods can be found in Refs. 2 and 3.
Frequency response methods are most useful in developing
models from experimental data, in verifying the performance
of a system designed by other methods, and in dealing with
those systems and situations in which rational transfer func-
tion models are not adequate.

The extension of the classical single-input/single-output
control system design methods to the design of complicated
feedback structures involving many loops, each of which
might include a compensator, is not easy. Put another way,
modern control systems require the design of compensators
having multiple inputs and multiple outputs. Design is itera-
tive, and it can involve considerable trial and error. Therefore
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when there are many design variables, it is important to deal
Figure 8. Frequency response plots of the videotape-positioning efficiently with those design decisions that need not be itera-
system. tive. The powerful methods of state space offer insights about

what is possible and what is not. They also provide an excel-
lent framework for general methods of approaching and ac-
complishing design objectives.techniques that were developed for continuous-time systems

are directly applicable to discrete-time systems as well. The
w transform is given by EIGENVALUE PLACEMENT WITH STATE FEEDBACK

Consider a linear, step-invariant nth-order system described
by the state equations

w = z − 1
z + 1

, z = w + 1
1 − w

xxx(k + 1) = AxAxAx(k) + BuBuBu(k)which is a bilinear transformation between the w plane and
the z plane.

where x(k) is an n vector, and u(k) is an r vector. When theThe general procedure for analyzing and designing dis-
state x(k) of this system is available and is used for feedback,crete-time systems using the w transform is summarized as
the input vector u(k) is given the formfollows:

uuu(k) = ExExEx(k) + ρρρ(k)

1. Replace each z in the open-loop transfer function
where �(k) is a vector of external inputs as shown in Fig. 9,G(z)H(z) with
and E is a gain matrix. The state equation for the plant with
feedback becomes

z = w + 1
1 − w

xxx(k + 1) = (AAA + BEBEBE)xxx(k) + BρBρBρ(k)

to obtain G(w)H(w). If the plant is completely controllable, the eigenvalues of the
2. Substitute w � j� into G(w)H(w) and generate fre- feedback system, those of A � BE, can be placed at any de-

quency response plots in terms of the real frequency �, sired locations selected by the designer by appropriately
such as Nyquist, Bode, Nichols, and so on. The w plane choosing the feedback gain matrix E. This is to say that the
can be thought of as if it were the s plane.

3. Determine the stability margins, crossover frequencies,
bandwidth, closed-loop frequency response, or any other
desired frequency response characteristics.

4. If it is necessary, design a compensator Gc(w) to satisfy
the frequency domain performance requirements.

5. Convert critical frequencies � in the w plane to frequen-
cies � in the z domain according to

x(k + 1) = Ax(k) + Bu(k)

Plant

E

+
+

(k)ρ u(k)

Figure 9. State feedback.
ω = 2

T
tan−1 ν
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designer can freely choose the character of the overall sys- Letting
tem’s transient performance. When the plant state vector is
not available for feedback, as is usually the case, an observer EvEvEvi = δδδi

can be designed to estimate the state vector. As we shall see
later, the observer state estimate can be used for feedback in we obtain
place of the state itself.

vvvi = (λiIII − AAA)−1 BδBδBδi

Eigenvalue Placement for Single-Input Systems
If �i is not an eigenvalue of A, the inverse matrix exists. IfIf a single-input plant is in controllable canonical form, find-
the eigenvalues �i are distinct, the eigenvectors are linearlying the feedback gains for arbitrary eigenvalue placement is
independent. Choosing the �i to give n linearly independentespecially simple because, in that form, each element of the
eigenvectors, we obtainfeedback gain vector determines one coefficient of the feed-

back system’s characteristic equation. In general, however, EEE[vvv1vvv2 . . .vvvn] = EVEVEV = � = [δδδ1δδδ2 · · ·δδδn]
the plant is not in controllable form. One way for calculating
the state feedback gain for eigenvalue placement for plants

and the desired feedback gain matrix isthat are not in controllable canonical form is to transform the
plant to controllable form, calculate the state feedback gain

EEE = �VVV −1 (6)
for the transformed system, and then transform the state
feedback gain of the transformed system back to the original

For the previous example, choosing �1 � 1 and �2 � 1, wesystem (see Ref. 1).
obtainThere are a number of other methods for finding the state

feedback gain vector of single-input plants. Two of these
eee† = [−1.5 0]methods are summarized below. Additional ones can be found

in Refs. 1 and 4–8. The state feedback gain vector is given by
which is the same result obtained using Ackermann’sAckermann’s formula:
formula.

The results of the above development can be extended toeee† = − jjj†
nMMM−1

c �c(AAA) (5)
situations where A � BE is required to have repeated eigen-
values as discussed in Ref. 1.where j†

n is the transpose of the nth-unit coordinate vector

Eigenvalue Placement with Multiple Inputsjjj†
nnn = [0 0 . . . 0 1]

If the plant for eigenvalue placement has multiple inputs and
Mc is the controllability matrix of the system, and �c(A) is the if it is completely controllable from one of the inputs, then
desired characteristic equation with the matrix A substituted that one input alone can be used for feedback. If the plant is
for the variable z. not completely controllable from a single input, a single input

For example, for the completely controllable system can usually be distributed to the multiple ones in such a way
that the plant is completely controllable from the single input.
For example, for the system

[
x1(k + 1)

x2(k + 1)

]
=

[
1 −1
3 0

][
x1(k)

x2(k)

]
+

[
1
2

]
u(k)

it is desired to place the feedback system eigenvalues at z �
0, 
0.5. Then,

�c(z) = z(z + 0.5) = z2 + 0.5z

and




x1(k + 1)

x2(k + 1)

x3(k + 1)


 =




−0.5 0 1
0 0.5 2
1 −1 0







x1(k)

x2(k)

x3(k)




+




1 0
0 −2

−1 1




[
u1(k)

u2(k)

]

we let�c(AAA) = AAA2 + 0.5AAA

Using Ackermann’s formula, the state feedback gain vector is u1(k) = 3µ(k)

and

u2(k) = µ(k)

eee† = −[0 1]

[
1 −1
2 3

]−1 {[
−2 −1

3 −3

]
+ 0.5

[
1 −1
3 0

]}

= [−1.5 0]
Thus

Yet another method for calculating E is as follows. If �i is an
eigenvalue of (A � BE), then there exists an eigenvector vi

such that

(AAA + BEBEBE)vvvi = λivvvi




x1(k + 1)

x2(k + 1)

x3(k + 1)


 =




−0.5 0 1
0 0.5 2
1 −1 0







x1(k)

x2(k)

x3(k)


 +




3
−2

2


 µ(k)
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which is a controllable single input system. If the desired ei- will place the feedback system eigenvalues arbitrarily, pro-
vided that the matrix I � EC
1D is nonsingular. If it is singu-genvalues are located at z1 � 
0.1, z2 � 
0.15, and z3 � 0.1,

Ackermann’s formula gives lar, a small change in the feedback gain matrix E which cor-
responds to small changes in the desired feedback system
eigenvalue locations eliminates the singularity. If the nth-or-eee† = [0.152 0.0223 0.2807]
der system has more than n outputs, only n of these can be
linearly independent, so excess linearly dependent outputand hence the feedback gain matrix for the multiple input
equations can simply be ignored when recovering a system’ssystem is
state from its output. To improve a feedback system’s reliabil-
ity and its performance in the presence of noise, one may wish
instead to combine linearly dependent outputs with other out-EEE =

[
0.4559 0.0669 0.8420
0.1520 0.0223 0.2807

]
puts rather than ignore them.

When the nth-order plant does not have n linearly inde-
Equation (6) can also be applied to multiple input systems. pendent measurement outputs, it still might be possible to
Continuing with the example, if for each eigenvector, we select a feedback matrix E in
choose �1 � 3 and �2 � 1, then

uuu(k) = EEE
{
yyy(k) − DuDuDu(k)

} + ρρρ(k) = ECxECxECx(k) + ρρρ(k)

to place all of the feedback system eigenvalues, those of (A �
BEC), acceptably. Generally, however, output feedback alone

vvv1 =




6.5871
4.5506

−0.3652


 , vvv2 =




6.9304
4.8442

−0.5744


 , vvv3 =




5.5076
3.4772
0.3046




does not allow arbitrary feedback system eigenvalue place-
ment.

and therefore
Pole Placement with Feedback Compensation

We now present another viewpoint for placing the feedback
system poles using a transfer function approach. Although

EEE =
[

3 3 3
1 1 1

]
VVV −1 =

[
0.4559 0.0669 0.8420
0.1520 0.0223 0.2807

]

our discussion is limited to single-input and single-output
plants, the results can be generalized to the case of plantswhich agrees with the previous results.
with multiple inputs and multiple outputs. Similar to output
feedback, pole placement with feedback compensation as-Eigenvalue Placement with Output Feedback
sumes that the measurement outputs of a plant, not the state

It is the measurement vector of a plant, not the state vector, vector, are available for feedback.
that is available for feedback. We now consider what eigen- For an nth-order, linear, step-invariant, discrete-time sys-
value placement can be performed with output feedback tem described by the transfer function G(z), arbitrary pole
alone. With enough linearly independent outputs, the plant placement of the feedback system can be accomplished with
state can be recovered from the outputs and inputs and the an mth-order feedback compensator as shown in Fig. 10.
state feedback results applied. With a single plant input and Let the numerator and denominator polynomials on G(z)
only a few outputs, the designer’s options for placing feedback be Np(z) and Dp(z), respectively. Also, let the numerator and
system eigenvalues could be (and often are) severely limited. denominator of the compensator transfer function H(z) be
Multiple plant inputs can also be used to advantage for eigen- Nc(z) and Dc(z), respectively. Then, the overall transfer func-
value placement with output feedback, but it still may not be tion of the system is
possible to achieve an acceptable design. If the nth-order
plant with state and output equations

T(z) = G(z)

1 + G(z)H(z)
= Np(z)Dc(z)

Dp(z)Dc(z) + Np(z)Nc(z)
= P(z)

Q(z)
xxx(k + 1) = AxAxAx(k) + BuBuBu(k)

yyy(k) = CxCxCx(k) + DuDuDu(k)

has n linearly independent outputs, that is, if the output cou-
pling matrix C has n linearly independent rows, then the
plant state can be recovered from the plant inputs and the
measurement outputs:

xxx(k) = CCC−1{yyy(k) − DuDuDu(k)}

The output feedback

uuu(k) = ExExEx(k) + ρρρ(k) = ECECEC−1{yyy(k) − DuDuDu(k)} + ρρρ(k)

or

H(z) = 
Nc(z)

Dc(z)

Plant with feedback T(z)

Feedback
compensator

Plant

G(z) = 
P(z) Y(z)Np(z)

Dp(z)–
+

uuu(k) = (III + ECECEC−1DDD)−1ECECEC−1yyy(k) + (III + ECECEC−1DDD)−1ρρρ(k) Figure 10. Pole placement with feedback compensation.



DISCRETE TIME SYSTEMS DESIGN METHODS 651

which has closed-loop zeros in P(z) that are those of the plant, Therefore, the compensator
in Np(z), together with zeros that are the poles of the feedback
compensator, in Dc(z).

For a desired set of poles of T(z), given with an unknown
H(z) = 0.325z − 0.00265

z + 0.1185
multiplicative constant by the polynomial Q(z), we obtain

will place the closed-loop poles where desired.
As far as feedback system pole placement is concerned, aDp(z)Dc(z) + Np(z)Nc(z) = Q(z) (7)

feedback compensator of order n � 1 (where n is the order of
the plant) can always be designed. It is possible, however,The desired polynomial Q(z) has the form
that a lower-order feedback controller may give acceptable
feedback pole locations even though those locations are con-

Q(z) = α0(z
n+m + βn+m−1zn+m−1 + · · · + β1z + β0) strained and not completely arbitrary. This is the thrust of

classical control system design, in which the increasingly
where the �’s are known coefficients but the �0 is unknown. higher-order controllers are tested until satisfactory results
In general, for a solution to exist there must be at least as are obtained.
many unknowns as equations: For the plant given by Eq. (9), for example, a zeroth-order

feedback controller of the form
n + m + 1 ≤ 2m + 2

H(z) = K
or

gives overall closed-loop poles at z � 0.1428 and z � 0.5 for
K � 1/6, which might be an adequate pole placement design.m ≥ n − 1 (8)

QUADRATIC OPTIMAL CONTROLwhere n is the order of the plant and m is the order of the
compensator. Equation (8) states that the order of the feed-

We have shown in the previous section that provided theback controller is at least one less than the order of the plant.
plant is completely controllable, a feedback gain matrix E canIf the plant transfer function has coprime numerator and de-
always be determined so that all of the eigenvalues of thenominator polynomials (that is, plant pole–zero cancellations
feedback system can be placed arbitrarily. It can be easilyhave been made), then a solution is guaranteed to exist.
shown that for a single-input plant, the feedback gain vectorFor example, consider the second-order plant
is unique. For multiple-input plants, however, there are many
feedback gain matrices that lead to the same set of feedback
eigenvalues. The process of selecting an optimum feedbackG(z) = (z + 1)(z + 0.5)

z(z − 1)
= Np(z)

Dp(z)
(9)

gain matrix from among the many possible gain matrices is
the subject of this section.According to Eq. (8), a first-order feedback compensator of the

The approach of selecting the optimal gain matrix isform
termed optimal regulation, in which the plant feedback is cho-
sen to minimize a scalar performance measure that weights
the control input and the error from zero of the plant state atH(z) = α1z + α2

z + α3
= Nc(z)

Dc(z)
each step.

places the three closed-loop poles of the feedback system at Principle of Optimality
any desired location in the z plane by appropriate choice of

The discrete-time, linear-quadratic, optimal control problem�1, �2, and �3. Let the desired poles of the plant with feedback
is to find the inputs u(0), u(1), . . ., u(N � 1) to the plantbe at z � 0.1. Then,
with linear state equations

Q(z) = α0(z − 0.1)3 = α0(z3 − 0.3z2 + 0.03z − 0.001) (10)
xxx(k + 1) ≡ AAA(k)xxx(k) + BBB(k)uuu(k)

In terms of the compensator coefficients, the characteristic such that a scalar quadratic performance measure (or cost
equation of the feedback system is function)

J = xxx†(N)PPP(N)xxx(N) +
N−1∑
k=0

[xxx†(k)QQQ(k)xxx(k) + uuu†(k)RRR(k)uuu(k)]

is minimized. The matrix P(N), the matrices Q(0), Q(1), . . .,
Q(N � 1), and the matrices R(0), R(1), . . ., R(N � 1) are

Dp(z)Dc(z) + Np(z)Nc(z)

= z(z − 1)(z + α3) + (z + 1)(z + 0.5)(α1z + α2)

= (α1 + 1)z3 + (1.5α1 + α2 + α3 − 1)z2

+ (0.5α1 + 1.5α2 − α3)z + 0.5α2
(11) each taken to be symmetric because each defines a quadratic

form. Each is assumed to be positive semidefinite, which
Equating coefficients in Eqs. (10) and (11) and solving for the means that the contribution to J by each of the individual
unknowns gives terms is never negative.

The solution to the linear-quadratic optimal control prob-
α0 = 1.325, α1 = 0.325, α2 = −0.00265, α3 = 0.1185 lem is obtained by applying the principle of optimality, a tech-
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Table 2. Procedure for Backward-in-Time Calculation of Optimal
Quadratic Regulator Gains

For the plant

x(k � 1) � A(k)x(k) � B(k)u(k)

with state feedback

u(k) � E(k)x(k)

and performance measure

J � x†(N)P(N)x(N) � �N�1

i�0
[x†(i)Q(i)x(i) � u†(i)R(i)u(i)]

begin with i � 1 and the known P(N)

1. E(N � i) � �[B†(N � i)P(N � 1 � i)B(N � i) � R(N � i)]�1

� B†(N � i)P(N � 1 � i)A(N � i)
2. P(N � i) � [A(N � i) � B(N � i)E(N � i)]†P(N � 1 � i)

� [A(N � i) � B(N � i)E(N � i)]
� E†(N � i)R(N � i)E(N � i) � Q(N � i)

3. Increment i and repeat steps 1, 2, and 3 until E(0) and (if desired) P(0)
have been calculated.

The minimum performance measure is

min
u(0), . . ., u(N � 1) �J�� x†(0)P(0)x(0)

nique developed by Richard Bellman in the 1950s in connec- ing at N and proceeding backward is always the same inde-
pendent of the value of N. The procedure summarized in Ta-tion with his invention of dynamic programming. To apply

the principle of optimality, one begins at the next-to-last step ble 3 for calculating the optimal regulator gain can be easily
adapted to the steady-state regulator gain by replacing stepsN � 1 and finds the last input u(N � 1) that minimizes the

cost of control from step N � 1 to step N, J(N � 1, N), as a 5, 6, and 7 with the following single step 5:
function of the beginning state for that step, x(N � 1). Then
the input u(N � 2) is found that minimizes J(N � 2, N) when 5. Form
u(N � 1) is as previously determined. One proceeds in this
manner finding one control vector at a time, from the last to EEE = −[BBB†WWW11WWW

−1
21 BBB + RRR]−1BBB†WWW11WWW

−1
21 AAA

the first, as a function of the system’s state. This results in a
recursive calculation of the optimal feedback gains for the lin- which gives a steady-state gain matrix.
ear-quadratic regulator as given in Table 2. Beginning with
known N, P(N), Q, and R, the last feedback gain matrix

STEP-INVARIANT DISCRETE-TIME OBSERVER DESIGNE(N � 1) is calculated. Using E(N � 1), the matrix P(N � 1)
is computed. Then all of the indices are stepped backward one

In 1964, David Luenberger of Stanford University put forthstep and, with P(N � 1), the feedback gain matrix E(N � 2)
the idea of observers, systems that recursively estimate theis calculated. Using E(N � 2), we can calculate P(N � 2). The
state of other systems. It was soon realized that observerscycle is continued until E(0) is found. A formidable amount of
offer a powerful, unified framework for feedback control sys-algebraic computation is required; the user should therefore
tem design.have digital computer aid for all but the lowest-order

problems.
Full-Order Observers

Closed-Form Solution for Optimal Gain
When the plant state vector is not entirely available for feed-

When the matrices A, B, Q, and R are constants, it is possible back, as is usually the case, the state is estimated with an
to generate an analytical expression for the optimal gain from observer, and the estimated state can be used in place of the
which the numerical value can be calculated for any point of actual state for feedback (see Refs. 9, 10).
time. A closed-form solution for the optimal gain E(N � 1) is For an nth-order step-invariant discrete-time plant,
summarized in Table 3. Derivation of this procedure along
with detailed numerical examples can be found in Ref. 1. xxx(k + 1) = AxAxAx(k) + BuBuBu(k)

yyy(k) = CxCxCx(k) + DuDuDu(k)
(12)

Steady-State Regulation

another nth-order system, driven by the inputs and outputsFor a completely controllable, step-invariant plant and con-
of the plant, of the formstant cost weighting matrices Q and R, the optimum feedback

gains, from E(N) backward, are not changed if the final step
ξξξ (k + 1) = FξFξFξ (k) + GyGyGy(k) + HuHuHu(k) (13)N is changed. This is to say that the sequence of gains start-
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or

xxx(k) − ξξξ (k) = (AAA − GCGCGC)k[xxx(0) − ξξξ (0)] = FFFk[xxx(0) − ξξξ (0)]

then the system in Eq. (13) is a full-order state observer of
the plant in Eq. (12), if the matrix G can be chosen so that
all the eigenvalues of F � A � GC are inside the unit circle
in the complex plane. The observer error, then, approaches
zero with step regardless of the initial values of x(0) and
�(0). That is, the observer state �(k) will approach the plant
state x(k). The full-order observer relations are summarized
in Table 4. If all n of the observer eigenvalues (eigenvalues
of F) are selected to be zero, then the characteristic equation
of F is

λn = 0

and since every matrix satisfies its own characteristic equa-
tion, then

FFFn = 000

At the nth step, the error between the plant state and the
observer state is given by

xxx(n) − ξξξ (n) = FFFn[xxx(0) − ξξξ (0)]

so that

xxx(n) = ξξξ (n)

and the observer state equals the plant state. Such an ob-
server is termed deadbeat. In subsequent steps, the observer
state continues to equal the plant state.

There are several methods for calculating the observer
gain matrix g for single-output plants. Similar to the situa-
tion with state feedback, if a single-output plant is in observ-
able canonical form, finding the elements of the observer gain
vector g for arbitrary eigenvalue placement is simple, because
each element of the observer gain vector determines one coef-

Table 3. Procedure for Calculation of Optimal
Regulator Gains

For the nth-order plant

x(k � 1) � Ax(k) � Bu(k)

with state feedback

u(k) � E(k)x(k)

and performance measure

J � x†(N)P(N)x(N) � �N�1

i�0
[x†(i)Qx(i) � u†(i)Ru(i)]

begin with i � 1 and the known P(N)

1. Form the matrix

H � �A† � QA�1BR�1B† QA�1

A�1BR�1B† A�1�
2. Find the eigenvalues and the corresponding eigenvectors of H

3. Generate the matrix W from eigenvectors such that

W�1HW � D � �� 0
0 ��1�

where � is the diagonal matrix of eigenvalues outside the unit
circle on the z plane

4. Partition W into four n � n submatrices as

W � �W11 W12

W21 W22
�

5. Form

G(i) � ��i[P(N)W22 � W12]�1[W11 � P(N)W21]��i

6. Form

P(N � i) � [W11 � W12G(i)][W21 � W22G(i)]�1

7. Form

E(N � i) � �[B†P(N � 1 � i)B � R]�1B†P(N � 1 � i)A

where

P(N � 1 � i) � [W11 � W12G(i � 1)][W21 � W22G(i � 1)]�1

ficient of the observer characteristic equation. Usually, how-
ever, the plant is not in observable canonical form. One way
of designing an observer for a completely observable single-is termed a full-order state observer of the plant, provided that
output plant that is not in observable form is to change thethe error between the plant state and the observer state,

xxx(k + 1) − ξξξ (k + 1) = AxAxAx(k) + BuBuBu(k) − FξFξFξ (k) − GyGyGy(k) − HuHuHu(k)

= AxAxAx(k) + BuBuBu(k) − FξFξFξ (k) − GCxGCxGCx(k)

− GDuGDuGDu(k) − HuHuHu(k)

= (AAA − GCGCGC)xxx(k) − FξFξFξ (k)

+ (BBB − GDGDGD − HHH)uuu(k)

is governed by an autonomous equation. When F and G are
chosen as

FFF = AAA − GCGCGC (14)

HHH = BBB − GDGDGD (15)

so that the error satisfies

xxx(k + 1) − ξξξ (k + 1) = (AAA − GCGCGC)[xxx(k) − ξξξ (k)]

Table 4. Full-Order State Observer Relations

Plant Model

x(k � 1) � Ax(k) � Bu(k)
y(k) � Cx(k) � Du(k)

Observer

�(k � 1) � F�(k) � Gy(k) � Hu(k)

where

F � A � GC
H � B � GD

Observer Error

x(k � 1) � �k � 1) � F[x(k) � �(k)]
x(k) � �(k) � Fk[x(0) � �(0)]
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plant to the observable form, design an observer in that form, Reduced-Order State Observers
and then convert back to the original system realization.

If a completely observable nth-order plant has m linearly in-
Another method of observer design for single-output plants

dependent outputs, a reduced-order state observer, of order
that does not require transforming the system to observable

n � m, having an output that observes the plant state can
canonical form is to use Ackermann’s formula. Provided that

be constructed.
(A, c†) is completely observable, the eigenvalues of F � A �

For the plant described by Eq. (12), when an observer’sgc† can be placed arbitrarily by choice of g according to Acker-
state

mann’s formula:
ξξξ (k + 1) = FξFξFξ (k) + GyGyGy(k) + HuHuHu(k)

ggg = �0(AAA)MMM−1
0 jjjn (16)

estimates a linear combination Mx(k) of the plant state rather
provided that (A, c†) is completely observable. In Eq. (16), than the state itself, the error between the observer state and
�0(A) is the desired characteristic equation of the observer the plant state transformation is given by
eigenvalues with the matrix A substituted for the variable z,
M0 is the observability matrix MxMxMx(k + 1) − ξξξ (k + 1)

= MAxMAxMAx(k) + MBuMBuMBu(k) − FξFξFξ (k) − GyGyGy(k) − HuHuHu(k)

= (MAMAMA − GCGCGC)xxx(k) − FξFξFξ (k) + (MBMBMB − GDGDGD − HHH)uuu(k)

where M is m � n. For the observer error system to be auton-
omous, we require

FMFMFM = MAMAMA − GCGCGC

HHH = MBMBMB − GDGDGD
(17)

so that the error is governed by

MxMxMx(k + 1) − ξξξ (k + 1) = FFF[MxMxMx(k) − ξξξ (k)]

MMM0 =




ccc†

. . .

ccc†AAA
. . .

ccc†AAA2

. . .

.

.

.

. . .

ccc†AAAn




For a completely observable plant, the observer gain matrix
g can always be selected so that all the eigenvalues of F are

and jn is the nth-unit coordinate vector inside the unit circle on the complex plane. Then the observer
error

MxMxMx(k) − ξξξ (k) = FFFk[MxMxMx(0) − ξξξ (0)]

will approach zero asymptotically with step and then

ξξξ (k) → MxMxMx(k)

If the plant outputs, which also involve linear transformation
of the plant state, are used in the formulation of a state ob-
server, the dynamic order of the observer can be reduced. For
the nth-order plant given by Eq. (12) with the m rows of C
linearly independent, an observer of order n � m with n out-
puts

jjjn =




0
. . .

0
. . .

0
. . .

.

.

.

. . .

1




Another popular form of a full-order observer which is viewed
as an error feedback system can be obtained by expressing

WWW ′(k) =
[

000
III

]
ξξξ (k) +

[
III
000

]
y(k) +

[
DDD
000

]
uuu(k)

the observer Eqs. (13), (14), and (15) in the form
observes

ξξξ (k + 1) = (AAA − GCGCGC)ξ (k) + GyGyGy(k) + (BBB − GDGDGD)uuu(k)

= AξAξAξ (k) + BuBuBu(k) + GGG[yyy(k) − www(k)]
WWW ′(k) →

[
CCC
MMM

]
xxx(k) = NxNxNx(k)

where

Except in special cases, the rows of M and the rows of C are
www(k) = CξCξCξ (k) + DuDuDu(k) linearly independent. If they are not so, slightly different ob-

server eigenvalues can be chosen to give linear independence.
Here, the observer consists of a model of the plant driven by Therefore, the observer output
the input u(k) and the error between the plant output y(k)
and the plant output that is estimated by the model w(k). www(k) = NNN−1www′(k)
This form of a full-order observer is similar to the Kalman–
Bucy filter (see Ref. 1). observes x(k).
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Figure 11. Eigenvalue placement with
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full-order state observer feedback.

Eigenvalue Placement with Observer Feedback A tracking system in which the plant outputs are con-
trolled so that they become and remain nearly equal toWhen observer feedback is used in place of plant state feed-
externally applied reference signals r(k) is shown in Fig.back, the eigenvalues of the feedback system are those the
12(a). The outputs y(k) are said to track or follow the refer-plant would have if the state feedback were used and those of
ence inputs.the observer. This result is known as the separation theorem

As shown in Fig. 12(b), a linear, step-invariant controllerfor observer feedback. For a completely controllable and com-
of a multiple-input/multiple-output plant is described by twopletely observable plant, an observer of the form
transfer function matrices: one relating the reference inputs
to the plant inputs, and the other relating the output feed-ξξξ (k + 1) = FξFξFξ (k) + GyGyGy(k) + HuHuHu(k) (18)
back vector to the plant inputs. The feedback compensator is

www(k) = LξLξLξ (k) + NNN[y(k) − DuDuDu(k)] (19) used for shaping the plant’s zero-input response by placing
the feedback system eigenvalues at desired locations as was

with feedback to the plant given by discussed in the previous subsections. The input compensator,
on the other hand, is designed to achieve good tracking of the

uuu(k) = EwEwEw(k) (20) reference inputs by the system outputs.
The output of any linear system can always be decomposedcan be designed such that the overall feedback system eigen-

into two parts: the zero-input component due to the initialvalues are specified by the designer. The design procedure
conditions alone, and the zero-state component due to the in-proceeds in two steps. First, the state feedback is designed
put alone. That is,to place the n-state feedback system eigenvalues at desired

locations as if the state vector were accessible. Second, the
state feedback is replaced by feedback of an observer estimate yyy(k) = yyyzero input(k) + yyyzero state(k)

of the same linear transformations of the state. As an exam-
ple of eigenvalue placement with observer feedback, Figure Basically, there are three methods for tracking system design:
11 shows eigenvalue placement with full order state observer.
The eigenvalues of the overall system are those of the state

1. Ideal tracking system designfeedback and those of the full-order observer.
2. Response model design

3. Reference model designTRACKING SYSTEM DESIGN

Ideal Tracking System DesignThe second concern of tracking system design, that of ob-
taining acceptable zero-state system response to reference in-

In this first method, ideal tracking is obtained if the measure-puts, is now discussed. It is assumed that the first concern of
ment output equals the tracking input:tracking system design—namely, satisfactory zero-input re-

sponse by feedback system eigenvalues placement—has been
achieved. yyyzero state(k) = rrr(k)
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An input compensator or a reference input filter, as shown in
Fig. 12(d), with transfer function matrix G(z), for which

ρρρ(z) = GGG(z)RRR(z)

gives

YYY (z) = TTT (z)GGG(z)RRR(z)

Ideal tracking is achieved if

TTT(z)GGG(z) = III

where I is the identity matrix with dimensions equal to the
number of reference inputs and tracking outputs. This is to
say that ideal tracking is obtained if the reference input filter
is an inverse filter of the plant with feedback. Reference input
filters do not change the eigenvalues of the plant with feed-
back which are assumed to have been previously placed with
output or observer feedback.

When a solution exists, ideal tracking system design
achieves exact zero-state tracking of any reference input. Be-
cause it involves constructing inverse filters, the ideal
tracking system design may require unstable or noncausal
filters. An ideal tracking solution can also have other undesir-
able properties, such as unreasonably large gains, high oscil-
latory plant control inputs, and the necessity of canceling
plant poles and zeros when the plant model is not known ac-
curately.

Response Model Design

When ideal tracking is not possible or desirable, the designer
can elect to design response model tracking, for which

TTT (z)GGG(z) = ���(z)

where the response model z-transfer function matrix �(z)
characterizes an acceptable relation between the tracking
outputs and the reference inputs. Clearly, the price one pays
for the added design freedom of a reference model can be de-
graded tracking performance. However, performance can be
improved by increasing the order of the reference input filter.
Response model design is a generalization of the classical de-
sign technique of imposing requirements for a controller’s
steady-state response to power-of-time inputs.
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The difficulty with the response model design method is in
selecting suitable model systems. For example, when two orFigure 12. Controlling a multiple-input/multiple-output plant. (a)
more reference input signals are to be tracked simultane-The output y(k) is to track the reference input r(k). (b) A tracking
ously, the response model z-transfer functions to be selectedsystem using the reference inputs and plant outputs. (c) Representing

a controller with a feedback compensator and an input compensator. include not only those relating plant tracking outputs and the
(d) Feedback compensator combined with plant to produce a plant- reference inputs they are to track, but also those relating un-
with-feedback transfer function matrix T(z). wanted coupling between each tracking output and the other

reference inputs.

The tracking outputs y(k) have initial transient errors due to
Reference Model Tracking System Designany nonzero plant initial conditions; after that they are equal

to the reference inputs r(k), no matter what these inputs are. The awkwardness of the practical response model perfor-
As shown in Fig. 12(c), if the plant with feedback has the mance design arises because of the difficulty in relating per-

z-transfer function matrix T(z) relating the tracking output to formance criteria to the z-transfer functions of response mod-
the plant inputs, then els. An alternative design method models the reference input

signals r(k) instead of the system response. This method,
termed the reference model tracking system design, allowsYYY (z) = TTT (z)ρρρ(z)
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the designer to specify a class of representative reference in-
puts that are to be tracked exactly, rather than having to
specify acceptable response models for all the possible inputs.

In the reference model tracking system design, additional
external input signals r(k) to the composite system are ap-
plied to the original plant inputs and to the observer state
equations so that the feedback system is, instead of being de-

Fictitous
autonomous

reference signal
model

Plant with
observer
feedback

Observer of the
signal model

r(k)  y(k) –

scribed by Eqs. (18), (19), and (20), described by Eq. (12) and
Figure 13. Observing a reference signal model.

ξξξ (k + 1) = FξFξFξ (k) + GyGyGy(k) + HuHuHu(k) + JrJrJr(k) (21)

www(k) = LξLξLξ (k) + NNN[yyy(k) − DuDuDu(k)] (22)
In the reference model tracking system design, the concept of
an observer is used in a new way; it is the plant with feedbackwith
that is an observer of the fictitious reference input model sys-
tem as shown in Fig. 13. When driven by r(k), the state of theuuu(k) = EwEwEw(k) + PrPrPr(k) (23)
composite system observes

Then, the overall composite system has the state equations
x′x′x′(k) → MσMσMσ (k)

where M satisfies, according to Eq. (17),

M	M	M	 − A′MA′MA′M = B′
B′
B′
 (25)

The plant tracking output y(k) observes

[
xxx(k + 1)

ξξξ (k + 1)

]
=

[
AAA + BENCBENCBENC BELBELBEL

GCGCGC + H ′ENCH ′ENCH ′ENC FFF + H ′ELH ′ELH ′EL

] [
xxx(k)

ξξξ (k)

]

+
[

BPBPBP
H ′PH ′PH ′P + JJJ

]
rrr(k)

= A′x′A′x′A′x′(k) + B′rB′rB′r(k)

yyy(k) = C′x′C′x′C′x′(k) + D′rD′rD′r(k) → C′MσC′MσC′Mσ (k) + D′rD′rD′r(k)

and the output equation becomes
and for

yyy(k) → rrr(k)

yyy(k) = [CCC + ENCENCENC DELDELDEL]xxx′(k) + DPrDPrDPr(k)

= C′x′C′x′C′x′(k) + D′rD′rD′r(k)

it is necessary thatwhere

C′MσC′MσC′Mσ (k) + D′rD′rD′r(k) = rrr(k) (26)H ′H ′H ′ = HHH + GDGDGD

Equations (25) and (26) constitute a set of linear algebraicExamining the composite state coupling matrix A� above
equations where the elements of M, P, and J are unknowns.shows that the coupling of external inputs r(k) to the feedback
If, for an initial problem formulation, there is no solution tosystem does not affect its eigenvalues. The input coupling ma-
the equations, one can reduce the order of the reference signaltrix B� has matrices P and J which are entirely arbitrary and
model and/or raise the order of the observer used for plantthus can be selected by the designer. Our objective is to select
feedback until an acceptable solution is obtained.P and J such that the system output y(k) tracks the reference

The autonomous reference input model has no physical ex-input r(k).
istence; the actual reference input r(k) likely deviates some-Consider the class of reference signals which are generated
what from the prediction of the model. The designer dealsby the autonomous state variable model of the form
with representative reference inputs, such as constants and
ramps, and, by designing for exact tracking of these, obtains
acceptable tracking performance for other reference inputs.

σσσ (k + 1) = 	σ	σ	σ (k)

rrr(k) = 
σ
σ
σ(k)
(24)

The output of this reference input model system may consist SIMULATION
of step, ramp, parabolic, exponential, sinusoidal, and other
common sequences. For example, the model One of the most important control system design tools is sim-

ulation—that is, computer modeling of the plant and control-
ler to verify the properties of a preliminary design and to test
its performance under conditions (e.g., noise, disturbances,
parameter variations, and nonlinearities) that might be diffi-
cult or cumbersome to study analytically. It is usually
through simulation that difficulties with between-sample

[
σ1(k + 1)

σ2(k + 1)

]
=

[
2 1

−1 0

] [
σ1(k)

σ2(k)

]

r(k) = [1 0]

[
σ1(k)

σ2(k)

]

plant response are covered and solved.
produces the sum of an arbitrary constant plus an arbitrary When a continuous-time plant is simulated on a digital
ramp: computer, its response is computed at closely spaced discrete

times. It is plotted by joining the closely spaced calculated
r(k) = σ1(0) + σ1(0)k response values with straight line segments in approximation
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of continuous curve. A digital computer simulation of discrete-
time control of a continuous-time system involves at least two
sets of discrete-time calculations. One runs at a high rate for
simulation of the continuous-time plant. The other runs at a
lower rate (say once every 10 to 50 of the former calculations)
to generate new control signals at each discrete control step.
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