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which have explicit formulation for a specified physical
system.

For the discrete-time setting, a nonlinear dynamical sys-
tem is described by either a difference equationCHAOS, BIFURCATIONS, AND THEIR CONTROL

xxxk+1 = fff (xxxk, k; ppp), k = 0, 1, . . . (3)
NONLINEAR DYNAMICS

or a mapUnlike linear systems, many nonlinear dynamical systems do
not show orderly, regular, and long-term predictable re- F : xxxk → ggg(xxxk, k; ppp), k = 0, 1, . . . (4)
sponses to simple inputs. Instead, they display complex, ran-
dom-like, seemingly irregular, yet well-defined output behav-

where notation is similarly defined. Repeatedly iterating theiors. This dynamical phenomenon is known as chaos.
discrete map F backward yieldsThe term chaos, originating from the Greek word ����,

was designated as ‘‘the primeval emptiness of the universe xxxk = F(xxxk−1) = F(F(xxxk−2)) = · · · = Fk(xxx0)
before things came into being of the abyss of Tartarus, the
underworld. . . . In the later cosmologies Chaos generally

where the map can also be replaced by a function, f , if thedesignated the original state of things, however conceived.
system is given via a difference equation, leading toThe modern meaning of the word is derived from Ovid, who

saw Chaos as the original disordered and formless mass, from
which the maker of the Cosmos produced the ordered uni-

xxxk = fff ◦◦◦ · · · ◦◦◦ fff︸ ︷︷ ︸
k times

(xxx0) = fff k(xxx0)

verse’’ (1). There also is an interpretation of chaos in ancient
Chinese literature, which refers to the spirit existing in the

where ‘‘	’’ denotes composition operation of functions or map-center of the universe (2). In modern scientific terminology,
pings.chaos has a fairly precise but rather complicated definition by

The dynamical system of Eq. (1) is said to be nonautono-means of the dynamics of a generally nonlinear system. For
mous when the time variable, t, appears separately in the sys-example, in theoretical physics, ‘‘chaos is a type of moderated
tem function f (e.g., a system with an external time-varyingrandomness that, unlike true randomness, contains complex
force input); otherwise, it is said to be autonomous and is ex-patterns that are mostly unknown’’ (3).
pressed asBifurcation, as a twin of chaos, is another prominent phe-

nomenon of nonlinear dynamical systems: Quantitative
ẋxx = fff (xxx; ppp), t ∈ [t0,∞) (5)change of system parameters leads to qualitative change of

system properties such as the number and the stability of sys-
Classification of Equilibriatem response equilibria. Typical bifurcations include trans-

critical, saddle-node, pitchfork, hysteresis, and Hopf bifurca- For illustration, consider a general two-dimensional autono-
tions. In particular, period-doubling bifurcation is a route to mous system
chaos. To introduce the concepts of chaos and bifurcations as
well as their control (4,5), some preliminaries on nonlinear
dynamical systems are in order.

{
ẋ = f (x, y)

ẏ = g(x, y)
(6)

Nonlinear Dynamical Systems
with given initial conditions (x0, y0), where f and g are two

A nonlinear system refers to a set of nonlinear equations, smooth nonlinear functions that together describe the vector
which can be algebraic, difference, differential, integral, func- field of the system.
tional, and abstract operator equations, or a certain combina- The path traveled by a solution of Eq. (6), starting from
tion of these. A nonlinear system is used to describe a physi- the initial state (x0, y0), is a solution trajectory, or orbit, of the
cal device or process that otherwise cannot be well defined by system and is sometimes denoted by �t(x0, y0). For autono-
a set of linear equations of any kind. The term dynamical mous systems, two different orbits will never cross each other
system is used as a synonym of mathematical or physical sys- (i.e., never intersect) in the x-y plane. This x-y coordinate
tem, in which the output behavior evolves with time and/or plane is called the (generalized) phase plane (phase space in
other varying system parameters (6). the higher-dimensional case). The orbit family of a general

In general, a continuous-time dynamical system can be de- autonomous system, corresponding to all possible initial con-
scribed by either a differential equation ditions, is called solution flow in the phase space.

Equilibria, or fixed points, of Eq. (6), if they exist, are the
solutions of two homogeneous equations:ẋxx = fff (xxx, t; ppp), t ∈ [t0,∞) (1)

or a map f (x, y) = 0 and g(x, y) = 0

An equilibrium is denoted by (x, y). It is stable if all theF : xxx → ggg(xxx, t; ppp), t ∈ [t0,∞) (2)
nearby orbits of the system, starting from any initial condi-
tions, approach it; it is unstable if the nearby orbits are mov-where x � x(t) is the state of the system, p is a vector of

variable system parameters, and f and g are continuous (or ing away from it. Equilibria can be classified, according to
their stabilities, as stable or unstable node or focus, saddledifferentiable) nonlinear functions of comparable dimensions,
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Figure 1. Classification of two-dimensional equilib-
ria: Stabilities are determined by Jacobian eigen-
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point and center, as summarized in Fig. 1. The type of equilib- some constant tp � 0. The minimum value of such tp is called
the ( fundamental) period of the periodic solution, while theria is determined by the eigenvalues, �1,2, of the system Jacob-
solution is said to be tp-periodic.ian

A limit cycle of a dynamical system is a periodic solution
of the system that corresponds to a closed orbit in the phase
space and possesses certain attracting (or repelling) proper-J :=

[
fx fy

gx gy

]
ties. Figure 2 shows some typical limit cycles for the two-di-
mensional case: (a) an inner limit cycle, (b) an outer limit

with f x :� �f /�x, f y :� �f /�y, and so on, all evaluated at (x, y). cycle, (c) a stable limit cycle, (d) an unstable limit cycle, and
If the two Jacobian eigenvalues have real parts R ��1,2� � 0, (e) and (f) saddle limit cycles.
the equilibrium (x, y) at which the linerization was taken, is
said to be hyperbolic. Limit Sets and Attractors

The most basic problem in studying the general nonlinear dy-
Theorem 1 (Grobman-Hartman) If (x, y) is a hyperbolic namical system of Eq. (1) is to understand and/or to solve for
equilibrium of the nonlinear dynamical system of Eq. (6), then the system solutions. The asymptotic behavior of a system
the dynamical behavior of the nonlinear system is qualita- solution, as t � 
, is called the steady state of the solution,
tively the same as (i.e., topologically equivalent to) that of its while the solution trajectory between its initial state and the
linearized system, steady state is the transient state.

For a given dynamical system, a point x� in the state space
is an �-limit point of the system state orbit x(t) if, for every
open neighborhood U of x�, the trajectory of x(t) will enter U

[
ẋ
ẏ

]
= J

[
x
y

]
at a (large enough) value of t. Consequently, x(t) will repeat-
edly enter U infinitely many times, as t � 
. The set of allin a neighborhood of the equilibrium (x, y).
such �-limit points of x(t) is called the �-limit set of x(t) and
is denoted �x. An �-limit set of x(t) is attracting if there existsThis theorem guarantees that for the hyperbolic case, one
an open neighborhood V of �x such that whenever a systemcan study the linearized system instead of the original nonlin-
orbit enters V then it will approach �x as t � 
. The basin ofear system, with regard to the local dynamical behavior of the
attraction of an attracting set is the union of all such opensystem within a (small) neighborhood of the equilibrium (x,
neighborhoods. An �-limit set is repelling if the nearby sys-y). In other words, there exist some homeomorphic maps that
tem orbits always move away from it. An attractor is an �-transform the orbits of the nonlinear system into orbits of its
limit set having the property that all orbits nearby have it aslinearized system in a (small) neighborhood of the equilib-
their �-limit sets.

rium. Here, a homeomorphic map (or a homeomorphism) is a For a given map, F, and a given initial state, x0, an �-limit
continuous map whose inverse exists and is also continuous. set is obtained from the orbit �Fk(x0)� as k � 
. This �-limit
However, in the nonhyperbolic case the situation is much set, �x, is an invariant set of the map, in the sense that
more complicated, where such local dynamical equivalence F(�x) ��x. Thus, �-limit sets include equilibria and periodic
does not hold in general. orbits.

Periodic Orbits and Limit Cycles Poincaré Maps

A solution orbit, x(t), of the nonlinear dynamical system of Assume that the general n-dimensional nonlinear autono-
mous system of Eq. (5) has a tp-periodic limit cycle, 	, and letEq. (1) is a periodic solution if it satisfies x(t � tp) � x(t) for
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Figure 2. Periodic orbits and limit cycles.

(a) (b) (c)

(d) (e) (f)

x* be a point on the limit cycle and  be an (n � 1)-dimen- Homoclinic and Heteroclinic Orbits
sional hyperplane transversal to 	 at x*, as shown in Fig. 3.

Let x* be a hyperbolic equilibrium of a diffeomorphism P :
Here, the transversality of  to 	 at x* means that  and the

Rn � Rn, which can be of either unstable, center, or saddle
tangent line of 	 at x* together span the entire n-dimensional

type; !t(x) be a solution orbit passing through x*; and �x* be
space (hence, this tangent line of 	 cannot be tangent to  at

the �-limit set of !t(x). The stable manifold of �x*, denotedx*). Since 	 is tp-periodic, the orbit starting from x* will re-
Ms, is the set of such points x* that satisfy !t(x*) � �x* as

turn to x* in time tp. Any orbit starting from a point, x, in a
t � 
; the unstable manifold of �x*, Mu, is the set of points

small neighborhood U of x* on  will return and hit 	 at a x* satisfying !t(x*) � �x* as t � �
.
point, denoted P(x), in the vicinity V of x*. Therefore, a map

Suppose that  s(x*) and  u(x*) are cross sections of the
P : U � V can be uniquely defined by  , along with the solu-

stable and unstable manifolds of !t(x), respectively, which in-
tion flow of the autonomous system. This map is called the

tersect at x*. This intersection always includes one constant
Poincaré map associated with the system and the cross sec-

orbit, !t(x) � x*. A nonconstant orbit lying in the intersection
tion  . For different choices of the cross section  , Poincaré

is called a homoclinic orbit and is illustrated in Fig. 4(a). For
maps are similarly defined. Note that a Poincaré map is only

two equilibria, x1 � x2, of either unstable, center, or saddle
locally defined and is a diffeomorphism—namely, a differenti-

type, an orbit lying in  s(x1) �  u(x2), or in  u(x1) �  s(x2), is
able map that has an inverse and the inverse is also differ-

called a heteroclinic orbit. A heteroclinic orbit is dipicted in
entiable. If a cross section is suitably chosen, the orbit will

Fig. 4(b), which approaches one equilibrium as t � 
 but con-
repeatedly return and pass through the section. The Poincaré

verges to another equilibrium as t � �
.
map together with the first return orbit is particularly impor-

It is known that if a stable and an unstable manifold inter-
tant, which is called the first return Poincaré map. Poincaré

sect at a point, x0 � x*, then they will do so at infinitely many
maps can also be defined for nonautonomous systems in a

points, denoted �xk�

k��
 counted in both forward and backward

similar way, where, however, each return map depends on
directions, which contains x0. This sequence, �xk�, is a homo-

the initial time in a nonuniform fashion.

(a)

x*
x1 x2

(b)

P (x)

Γ

Σ

x

x*

Figure 3. Schematic illustration of the Poincaré map and cross Figure 4. Schematic illustration of homoclinic and heteroclinic
orbits.section.
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and, by changing variables if necessary, assume the origin,
x � 0, is an equilibrium of the system satisfying f (0, t) � 0.
Lyapunov stability theory concerns various stabilities of the
zero equilibrium of Eq. (7).

Stability in the Sense of Lyapunov. The equilibrium x � 0 of
Eq. (7) is said to be stable in the sense of Lyapunov if for any

Γ

" � 0 and any initial time t0 � 0, there exists a constant, � �
Figure 5. Illustration of a Šil’inkov-type homoclinic orbit. �(", t0) � 0, such that

‖xxx(t0)‖ < δ ⇒ ‖xxx(t)‖ < εεε, ∀t ≥ t0 (8)

clinic orbit in which each xk is called a homoclinic point. This Here and throughout, � � � denotes the standard Euclidean
special structure is called a homoclinic structure, in which the norm of a vector.
two manifolds usually do not intersect transversally. Here, It should be emphasized that the constant � in the preceed-
two manifolds are said to intersect transversally if their tan- ing equation generally depends on both " and t0. It is particu-
gent planes together span the entire space (hence, these two larly important to point out that, unlike autonomous systems,
tangent planes cannot coincide at the intersection). This one cannot simply assume the initial time t0 � 0 for a nonau-
structure is unstable in the sense that the connection can be tonomous system in a general situation. The stability is said
destroyed by very small perturbations. If they intersect trans- to be uniform, with respect to the initial time, if this constant,
versally, however, a transversal homoclinic point will imply � � �("), is indeed independent of t0 over the entire time inter-
infinitely many other homoclinic points. This eventually leads val of interest.
to a picture of stretching and folding of the two manifolds. Asymptotic Stability. In both theoretical studies and appli-
Such complex stretching and folding of manifolds are key to cations, the concept of asymptotic stability is of most impor-
chaos, which generally implies the existence of a complicated tance.
Smale horseshoe map and is supported by the following math- The equilibrium x � 0 of Eq. (7) is said to be asymptotically
ematical theory (7). stable if there exists a constant, � � �(t0) � 0, such that

Theorem 2 (Smale-Birkhoff) Let P : Rn � Rn be a diffeo- ‖xxx(t0)‖ < δ ⇒ ‖xxx(t)‖ → 0 as t → ∞ (9)
morphism with a hyperbolic equilibrium x*. If the cross sec-
tions of the stable and unstable manifolds,  s(x*) and  u(x*), This asymptotical stability is said to be uniform if the existing
intersect transversally at a point other than x*, then P has a constant � is independent of t0, and is said to be global if the
horseshoe map embedded within it. convergence (�x� � 0) is independent of the starting point

x(t0) over the entire domain on which the system is defined
(e.g., when � � 
).For three-dimensional autonomous systems, the case of an

equilibrium with one real eigenvalue, �, and two complex con-
jugate eigenvalues, � � j�, is especially interesting. For ex- Orbital Stability. The orbital stability differs from the Lya-

punov stabilities in that it concerns the structural stability ofample, the case with � � 0 and � � 0 gives a Šil’nikov type of
homoclinic orbit, which is illustrated in Fig. 5. a system orbit under perturbation.

Let !t(x0) be a tp-periodic solution of the autonomous sys-
temTheorem 3 (Šil’nikov) Let !t be the solution flow of a

three-dimensional autonomous system that has a Šil’nikov-
xxx(t) = fff (x), xxx(t0) = xxx0 (10)type homoclinic orbit 	. If ��� � ���, then !t can be extremely

slightly perturbed to !̃t, such that !̃t has a homoclinic orbit 	̃,
and let 	 be the closed orbit of !t(x0) in the phase space—near 	, of the same type, and the Poincaré map defined by a
namely,cross section, transversal to 	̃, has a countable set of Smale

horseshoes.
� = {yyy|yyy = ϕt (xxx0), 0 ≤ t < tp}

Stabilities of Systems and Orbits The solution trajectory !t(x0) is said to be orbitally stable if for
any " � 0 there exits a � � �(") � 0, such that for any x̃0Stability theory plays a central role in both dynamical sys-
satisfyingtems and automatic control. Conceptually, there are different

types of stabilities, among which Lyapunov stabilities and the
orbital stability are essential for chaos and bifurcations d(x̃xx0, �) := inf

yyy∈�
‖x̃xx0 − yyy‖ < δ

control.
the solution !t(x̃0) of the autonomous system satisfies

Lyapunov Stabilities. In the following discussion of Lyapu-
nov stabilities for the general nonautonomous system of d(ϕt( x̃xx0), �) < ε, ∀t ≥ t0

Eq. (1), the parameters are dropped since they do not affect
the concept and consequence. Thus, consider the general non- Lyapunov Stability Theorems. Two cornerstones in the Lya-
autonomous nonlinear system punov stability theory for dynamical systems are the Lyapu-

nov first (or indirect) method and the Lyapunov second (or
xxx = fff (xxx, t), xxx(t0) = xxx0 (7) direct) method.
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The Lyapunov first method, known also as the Jacobian or Theorem 6 (Lyapunov Second Method) (for continuous-
time autonomous systems)local linearization method, is applicable only to autonomous

systems. This method is based on the fact that the stability Let x � 0 be an equilibrium for the autonomous system of
Eq. (10). This zero equilibrium is globally (over the domain Dof an autonomous system, in a neighborhood of an equilib-

rium, is essentially the same as its linearized model operating � Rn containing the origin) and asymptotically stable if there
exists a scalar-valued function V(x) defined on D such thatat the same point, and under certain conditions local system

stability behavior is qualitatively the same as that of its lin- (1) V(0) � 0; (2) V(x) � 0 for all x � 0 in D ; and (3) V̇(x) � 0
for all x � 0 in D .earized model (in some sense, similar to the Grobman-Hart-

man theorem). The Lyapunov first method provides a theoret-
In the preceding two theorems, the function V is called aical justification for applying linear analysis and linear

Lyapunov function, which is generally not unique for a givenfeedback controllers to nonlinear autonomous systems in the
system. Similar stability theorems can be established for dis-study of asymptotic stability and stabilization. The Lyapunov
crete-time systems (by properly replacing derivatives with dif-second method, on the other hand, which originated from the
ferences).concept of energy decay (i.e., dissipation) associated with a

To this end, it is important to remark that the Lyapunovstable mechanical or electrical system, is applicable to both
theorems only offer sufficient conditions for determining theautonomous and nonautonomous systems. Hence, the second
asymptotic stability. Yet the power of the Lyapunov secondmethod is more powerful, also more useful, for rigorous stabil-
method lies in its generality: It works for all kinds of dynami-ity analysis of various complex dynamical systems.
cal systems (linear and nonlinear, continuous-time and dis-For the general autonomous system of Eq. (10), under the
crete-time, autonomous and nonautonomous, time-delayed,assumption that f : D � Rn is continuously differentiable in
functional, etc.), and it does not require any knowledge of thea neighborhood, D , of the origin in Rn, the following theorem
solution formula of the underlying system. In a particular ap-of stability for the Lyapunov first method is convenient to use.
plication, the key is to construct a working Lyapunov function
for the system, which can be technically difficult if the systemTheorem 4 (Lyapunov First Method) (for continuous-
is higher-dimensional and structurally complicated.time autonomous systems)

In Eq. (10), let

CHAOS
JJJ0 = ∂ fff

∂xxx

∣∣∣∣
xxx=xxx=0 Nonlinear systems have various complex behaviors that

would never have been anticipated in (finite-dimensional) lin-
be the Jacobian of the system at the equilibrium x � 0. Then ear systems. Chaos is a typical behavior of this kind. In the
(1) x* � 0 is asymptotically stable if all the eigenvalues of J0 development of chaos theory, the first evidence of physical
have negative real parts; and (2) x � 0 is unstable if one of chaos was Edward Lorenz’s discovery in 1963. The first un-
the eigenvalues of J0 has a positive real part. derlying mechanism within chaos was observed by Mitchell

Feigenbaum, who in 1976 found that ‘‘when an ordered sys-
Note that the region of asymptotic stability given in this tem begins to break down into chaos, a consistent pattern of

theorem is local. It is important to emphasize that this theo- rate doubling occurs’’ (3).
rem cannot be applied to nonautonomous systems in general,
not even locally. For the general nonautonomous system of What Is Chaos?
Eq. (7), the following criterion can be used. Let

There is no unified, universally accepted, rigorous definition
of chaos in the current scientific literature. The term chaos
was first formally introduced into mathematics by Li and

K ={g(t) : g(t0) = 0,

g(t) is continuous and nondecreasing on [t0,∞)}
Yorke (8). Since then, there have been several different but
closely related proposals for definitions of chaos, among which
Devaney’s definition is perhaps the most popular one (9). ItTheorem 5 (Lyapunov Second Method) (for continuous-
states that a map F : S � S, where S is a set, is said to betime nonautonomous systems)
chaotic ifLet x � 0 be an equilibrium of the nonautonomous system

of Eq. (7). The zero equilibrium of the system is globally (over
1. F is transitive on S: For any pair of nonempty open setsthe domain D � Rn containing the origin), uniformly (with

U and V in S, there is an integer k � 0 such thatrespect to the initial time), and asymptotically stable if there
Fk(U) � V is nonempty.exist a scalar-valued function V(x, t) defined on D � [t0, 
)

2. F has sensitive dependence on initial conditions: Thereand three functions �( � ), �( � ), �( � ) � K , such that (1) V(0,
is a real number � � 0, depending only on F and S, sucht0) � 0; (2) V(x, t) � 0 for all x � 0 in D and all t � t0; (3) �
that in every nonempty open subset of S there is a pair(�x�) � V(x, t) � �(�x�) for all t � t0; and (4) V̇(x, t) � ��(�x�)
of points whose eventual iterates under F are separatedfor all t � t0.
by a distance of at least �.

In this theorem, the uniform stability is usually necessary 3. The periodic points of F are dense in S.
since the solution of a nonautonomous system may depend
sensitively on the initial time. As a special case for autono- Another definition requires the set S be compact but drops

condition 3. There is a belief that only the transitive propertymous systems, the preceding theorem reduces to the fol-
lowing. is essential in this definition. Although a precise and rigorous
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mathematical definition of chaos does not seem to be avail- pending on the direction (but not the position) of the initial
state vector, the n Lyapunov exponents, �1 � � � � � �n, de-able anytime soon, some fundamental features of chaos are

well received and can be used to signify or identify chaos in scribe different types of attractors. For example, for some
nonchaotic attractors (limit sets),most cases.

Features of Chaos

A hallmark of chaos is its fundamental property of extreme
sensitivity to initial conditions. Other features of chaos in-
clude the embedding of a dense set of unstable periodic orbits
in its strange attractor, positive leading (maximal) Lyapunov
exponent, finite Kolmogorov-Sinai entropy or positive topolog-

λi < 0, i = 1, . . ., n ⇒ stable equilibrium

λ1 = 0, λi < 0, i = 2, . . ., n ⇒ stable limit cycle

λ1 = λ2 = 0, λi < 0, i = 3, . . ., n ⇒ stable two-torus

λ1 = · · · = λm = 0,

λi < 0, i = m + 1, . . ., n ⇒ stable m-torus

ical entropy, continuous power spectrum, positive algorithmic
Here, a two-torus is a bagel-shaped surface in three-dimen-complexity, ergodicity and mixing (Arnold’s cat map), Smale
sional space, and an m-torus is its geometrical generalizationhorseshoe map, a statistical-oriented definition of Šhil’nikov,
in (m � 1)-dimensional space.as well as some unusual limiting properties (4).

It is now well known that one and two-dimensional contin-
uous-time autonomous dynamical systems cannot produceExtreme Sensitivity to Initial Conditions. The first hallmark
chaos. For a three-dimensional continuous-time autonomousof chaos is its extreme sensitivity to initial conditions, associ-
system, the only possibility for chaos to exist is that the threeated with its bounded (or compact) region of orbital patterns.
Lyapunov exponents areIt implies that two sets of slightly different initial conditions

can lead to two dramatically different asymptotic states of the
system orbit after some time. This is the so-called butterfly (+, 0,−) := (λ1 > 0, λ2 = 0, λ3 < 0) and λ3 < −λ1

effect and says that a single flap of a butterfly’s wings in
Intuitively, this means that the system orbit in the phaseChina today may alter the initial conditions of the global
space expands in one direction but shrinks in another direc-weather dynamical system, thereby leading to a significantly
tion, thereby yielding many complex (stretching and folding)different weather pattern in Argentina at a future time. In
dynamical phenomena within a bounded region. The discrete-other words, for a dynamical system to be chaotic it must
time case is different, however. A prominent example is thehave a (large) set of such ‘‘unstable’’ initial conditions that
one-dimensional logistic map, discussed in more detail later,cause orbital divergence within a bounded region.
which is chaotic but has (the only) one positive Lyapunov ex-
ponent. For four-dimensional continuous-time autonomousPositive Leading Lyapunov Exponents. Most sensitive depen-
systems, there are only three possibilities for chaos to emerge:dence on initial conditions of a chaotic system possesses an

exponential growth rate. This exponential growth is related
1. (�, 0, �, �): �1 � 0, �2 � 0, �4 � �3 � 0; leading to chaosto the existence of at least one positive Lyapunov exponent,

usually the leading (largest) one. Among all main characteris- 2. (�, �, 0, �): �1 � �2 � 0, �3 � 0, �4 � 0; leading to
tics of chaos, the positive leading Lyapunov exponent is per- ‘‘hyperchaos’’
haps the most convenient one to verify in engineering applica- 3. (�, 0, 0, �): �1 � 0, �2 � �3 � 0, �4 � 0; leading to a
tions. ‘‘chaotic two-torus’’ (this special orbit has not been

To introduce this concept, consider an n-dimensional, dis- experimentally observed).
crete-time dynamical system described by xk�1 � f (xk) via a
smooth map f . The ith Lyapunov exponent of the orbit Simple Zero of the Melnikov Function. The Melnikov theory
�xk�


k�0, generated by the iterations of the map starting from of chaotic dynamics deals with the saddle points of Poincaré
any given initial state x0, is defined to be maps of continuous solution flows in the phase space. The

Melnikov function provides a measure of the distance be-
tween the stable and unstable manifolds near a saddle point.λi(xxx0) = lim

k→∞
1
k

ln |µi(Jk(xxxk) . . . J0(xxx0))|, i = 1, . . ., n (11)
To introduce the Melnikov function, consider a nonlinear

oscillator described by the Hamiltonian systemwhere Ji( � ) � f �( � ) is the Jacobian and �i( � ) denote the ith
eigenvalue of a matrix (numbered in decreasing order of mag-
nitude). In the continuous-time case, ẋ � f (x), the leading
Lyapunov exponent is defined by




ṗ = −∂H
∂q

+ ε f1

q̇ = ∂H
∂ p

+ ε f2

λ(xxx0) = lim
t→∞

1
t

ln ‖xxx(t;xxx0)/xxx0‖
where f :� [f 1(p, q, t), f 2(p, q, t)]� has state variables (p(t),
q(t)), " � 0 is small, and H � H(p, q) � EK � EP is the Hamil-which is usually evaluated by numerical computations. All

Lyapunov exponents depend on the system initial state x0, ton function for the undamped, unforced (when " � 0) oscilla-
tor, in which EK and EP are the kinetic and potential energyand reflect the sensitivity with respect to x0.

Lyapunov exponents are generalizations of eigenvalues of of the system, respectively. Suppose that the unperturbed
(unforced and undamped) oscillator has a saddle-node equilib-linear systems and provide a measure for the mean conver-

gence or divergence rate of neighboring orbits of a dynamical rium (e.g., the undamped pendulum) and that f is tp-periodic
with phase frequency �. If the forced motion is described insystem. For an n-dimensional continuous-time system, de-
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the three-dimensional phase space (p, q, �t), then the Melni- C be a covering of S by countably many balls of radii d1, d2,
� � � , satisfying 0 � dk � " for all k. For a constant # � 0,kov function is defined by
consider  


k�1 d#
k for different coverings, and let infC  d#

k be the
smallest value of the sum over all possible such coverings. In
the limit " � 0, this value will diverge if # � h but tends to

F(d∗) =
∫ ∞

−∞
[∇H( p, q)] fff ∗ dt (12)

zero if # � h for some constant h � 0 (need not be an integer).
This value, h, is called the Hausdorff dimension of the set S.where (p, q) are the solutions of the unperturbed homoclinic
If such a limit exists for # � h, then the Hausdorff measureorbit starting from the saddle point of the original Hamilto-
of the set S is defined to benian system, f* � f (p, q, �t � d*), and $H � [�H/�p, �H/�q].

The variable d* gives a measure of the distance between the
stable and unstable manifolds near the saddle-node equi-
librium.

µh(S) := lim
ε→0

inf
C

∞∑
k=1

dρ

k

The Melnikov theory states that chaos is possible if the
two manifolds interset, which corresponds to the fact that the There is an interesting conjecture that the Lyapunov expo-
Melnikov function has a simple zero: F(d*) � 0 at a single nents ��k� (indicating the dynamics) and the Hausdorff dimen-
point, d*. sion h (indicating the geometry) of a strange attractor have

the relation
Strange Attractors. Attractors are typical in nonlinear sys-

tems. The most interesting attractors, very closely related to
chaos, are the strange attractors. A strange attractor is a h = k + 1

λk+1

k∑
i=1

λi, λ1 ≥ λ2 ≥ · · · ≥ λn

bounded attractor that exhibits sensitive dependence on ini-
tial conditions but cannot be decomposed into two invariant

where k is the largest integer that satisfies  k
i�1 �i � 0. Thissubsets contained in disjoint open sets. Most chaotic systems

formula has been mathematically proved for large families ofhave strange attractors; however, not all strange attractors
three-dimensional continuous-time autonomous systems andare associated with chaos.
of two-dimensional discrete-time systems.Generally speaking, a strange attractor is not any of the

A notion that is closely related to the Hausdorff dimensionstable equilibria or limit cycles, but rather consists of some
is fractal. Fractal was first coined and defined by Mandelbrotlimit sets associated with Cantor sets and/or fractals. In other
in the 1970s to be a set with Hausdorff dimension strictlywords, it has a special and complicated structure that may
greater than its topological dimension (which is always anpossess a noninteger dimension (fractals) and has some of the
integer). Roughly, a fractal is a set that has a fractionalproperties of a Cantor set. For instance, a chaotic orbit usu-
Hausdorff dimension and possesses certain self-similarities.ally appears to be ‘‘strange’’ in that the orbit moves toward a
An illustration of the concept of self-similarity and fractal iscertain point (or limit set) for some time but then moves away
given in Fig. 13. There is a strong connection between fractalfrom it for some other time. Although the orbit repeats this
and chaos. Chaotic orbits often possess fractal structures inprocess infinitely many times it never settles anywhere. Fig-
the phase space. For conservative systems, the Kolmogorov-ure 6 shows a typical Chua circuit attractor (2,4,6) that has
Arnold-Moser (KAM) theorem implies that the boundary be-such strange behavior.
tween the region of regular motion and that of chaos is frac-
tal. However, some chaotic systems have nonfractal limit sets,Fractals. An important concept that is related to Lyapunov
and many fractal structures are not chaotic.exponent is the Hausdorff dimension. Let S be a set in Rn and

Finite Kolmogorov-Sinai Entropy. Another important feature
of chaos and strange attractors is quantified by the Kolmo-
gorov-Sinai (KS) entropy, a concept based on Shannon’s infor-
mation theory.

The familiar statistical entropy is defined by

E = −c
∑

k

Pk ln(Pk)

where c is a constant and Pk is the probability of the system
state being at the stage k of the process. According to Shan-
non’s information theory, this entropy is a measure of the
amount of information needed to determine the state of the
system. This idea can be used to define a measure for the
intensity of a set of system states, which gives the mean loss
of information on the state of the system when it evolves with
time. To do so, let x(t) be a system orbit and partition its m-
dimensional phase space into cells of a small volume, "m. Let
Pk0

. . .ki
be the joint probability that x(t � 0) is in cell k0,Figure 6. A typical example of stranger attractor: The double scroll

of Chua’s circuit response. x(t � ts) is in cell k1, . . ., x(t � its) is in cell ki, where ts � 0
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is the sampling time. Then Shannon defined the information For example, a pendulum controlled by a proportional-deriva-
tive controller can behave chaotically when the tracking sig-index to be
nal is periodic, with energy dissipation, even for the case of
small controller gains. In addition, chaos has been found in
many engineering applications, such as design of control cir-

In :=
∑

k0 ,...,kn

Pk0 ...kn
ln

(
Pk0 ...kn

)
cuits for switched-mode power conversion equipment, high-

which is proportional to the amount of the information needed performance digital robot controllers, second-order systems
to determine the orbit, if the probabilities are known. Conse- containing a relay with hysteresis, and various biochemical
quently, I n�1 � I n gives additional information for predicting control systems.
the next state if all preceding states are known. This differ- Chaos also occurs frequently in discrete-time feedback con-
ence is also the information lost during the process. The KS trol systems due to sampling, quantization, and roundoff ef-
entropy is then defined by fects. Discrete-time linear control systems with dead-zone

nonlinearity have global bifurcations, unstable periodic or-
bits, scenarios leading to chaotic attractors, and crises of cha-
otic attractors changing to periodic orbits. Chaos also exists in
digitally controlled systems, feedback types of digital filtering
systems (either with or without control), and even the linear
Kalman filter when numerical truncations are involved.

EKS := lim
ts→0

lim
ε→0

lim
n→∞

1
nts

n−1∑
i=0

(Ii+1 − Ii)

= − lim
ts→0

lim
ε→0

lim
n→∞

1
nts

∑
k0 ,...,kn−1

Pk0 ...kn−1
ln

(
Pk0 ...kn−1

) (13)

Many adaptive systems are inherently nonlinear, and thus
This entropy, EKS, quantifies the degree of disorder: (1) EKS � bifurcation and chaos in such systems are often inevitable.
0 indicates regular attractors, such as stable equilibria, limit The instances of chaos in adaptive control systems usually
cycles, and tori; (2) EKS � � implies totally random dynamics come from several possible sources: the nonlinearities of the
(which has no correlations in the phase space); and (3) 0 � plant and the estimation scheme, external excitation or dis-
EKS � � signifies strange attractors and chaos. turbances, and the adaptation mechanism. Chaos can occur

It is interesting to note that there is a connection between in typical model-referenced adaptive control (MRAC) and self-
the Lyapunov exponents and the KS entropy: tuning adaptive control (STAC) systems, as well as some

other classes of adaptive feedback control systems of arbitrary
order that contain unmodeled dynamics and disturbances. InEKS ≤

∑
i

λ+
i

such adaptive control systems, typical failure modes include
convergence to undesirable local minima and nonlinear self-

where ���
i � are positive Lyapunov exponents of the same oscillation, such as bursting, limit cycling, and chaos. In indi-

system. rect adaptive control of linear discrete-time plants, strange
system behaviors can arise due to unmodeled dynamics (or

Chaos in Control Systems
disturbances), bad combination of parameter estimation and
control law, and lack of persistency of excitation. For exam-Chaos is ubiquitous. Chaotic behaviors have been found in

many typical mathematical maps such as the logistic map, ple, chaos can be found in set-point tracking control of a lin-
ear discrete-time system of unknown order, where the adap-Arnold’s circle map, Hénon map, Lozi map, Ikeda map, Ber-

noulli shift; in various physical systems, including the Duffing tive control scheme is either to estimate the order of the plant
or to track the reference directly.oscillator, van der Pol oscillator, forced pendula, hopping ro-

bot, brushless dc motor, rotor with varying mass, Lorenz Chaos also emerges from various types of neural networks.
Similar to biological neural networks, most artificial neuralmodel, and Rössler system. They are also found in electrical

and electronic systems (such as Chua’s circuit and electric networks can display complex dynamics, including bifurca-
tions, strange attractors, and chaos. Even a very simple recur-power systems), digital filters, celestial mechanics (the three-

body problem), fluid dynamics, lasers, plasmas, solid states, rent two-neuron model with only one self-interaction can pro-
duce chaos. A simple three-neuron recurrent neural networkquantum mechanics, nonlinear optics, chemical reactions,

neural networks and fuzzy systems, economic and financial can also create period-doubling bifurcations leading to chaos.
A four-neuron network and multineuron networks, of course,systems, biological systems (heart, brain, and population

models), and various Hamiltonian systems (4). have higher chances of producing complex dynamical patterns
such as bifurcations and chaos. A typical example is cellularChaos also exists in many engineering processes and, per-

haps unexpectedly, in both continuous-time and discrete-time neural networks, which have very rich complex dynamical be-
haviors.feedback control systems. For instance, in the continuous-

time case, chaos has been found in very simple dynamical sys- Chaos has also been experienced in some fuzzy control sys-
tems. The fact that fuzzy logic can produce complex dynamicstems such as a first-order autonomous feedback system with

a time-delay feedback channel, surge tank dynamics under a is more or less intuitive, inspired by the nonlinear nature of
the fuzzy systems. This has been justified not only experimen-simple liquid level control system with time-delayed feedback,

and several other types of time-delayed feedback control sys- tally but also both mathematically and logically. Chaos has
been observed, for example, from a coupled fuzzy control sys-tems. Chaos also exists in automatic gain control loops, which

are very popular in industrial applications, such as in many tem. The change in the shapes of the fuzzy membership func-
tions can significantly alter the dynamical behavior of a fuzzyreceivers of communication systems. Most fascinating of all,

very simple pendula can display complex dynamical phenom- control system, potentially leading to the occurrence of chaos.
Many specific examples of chaos in control systems can beena; in particular, pendula subject to linear feedback controls

can exhibit even richer bifurcations and chaotic behaviors. given. Therefore, controlling chaos is not only interesting as
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a subject for scientific research but also relevant to the objec-
tives of traditional control engineering. Simply, it is not an
issue that can be treated with ignorance or neglect.

BIFURCATIONS

Associated with chaos is bifurcation, another typical phenom-
enon of nonlinear dynamical systems that quantifies the
change of system properties (such as the number and the sta-
bilities of the system equilibria) due to the variation of system

0

x
x2 = p

p

t

parameters. Chaos and bifurcation have a very strong connec-
Figure 8. The saddle-node bifurcation.tion; often they coexist in a complex dynamical system.

Basic Types of Bifurcations
has an equilibrium x1 � 0 at p0 � 0 and an equilibrium curve

To illustrate various bifurcation phenomena, it is convenient x2 � p at p � 0, where x21 � �p is stable and x22 � ��p is
to consider the two-dimensional, parametrized, nonlinear dy- unstable for p � p0 � 0. This bifurcation, as shown in Fig. 8,
namical system is called the saddle-node bifurcation.

Pitchfork Bifurcation. The one-dimensional system

{
ẋ = f (x, y; p)

ẏ = g(x, y; p)
(14)

ẋ = f (x; p) = px − x3

where p is a real and variable system parameter.
Let (x, y) � (x(t; p0), y(t; p0)) be an equilibrium of the sys- has an equilibrium x1 � 0 at p0 � 0 and an equilibrium curve

tem when p � p0, at which f (x, y; p0) � 0 and g(x, y; p0) � 0. x2 � p at p � 0. Since x1 � 0 is unstable for p � p0 � 0 and
If the equilibrium is stable (respectively, unstable) for p � p0 stable for p � p0 � 0, and since the entire equilibrium curve
but unstable (respectively, stable) for p � p0, then p0 is a bi- x2 � p is stable for all p � 0 at which it is defined, this situa-
furcation value of p, and (0, 0, p0) is a bifurcation point in the tion, as depicted in Fig. 9, is called the pitchfork bifurcation.
parameter space, (x, y, p). A few examples are given next to Note, however, that not all nonlinear parametrized dynam-
distinguish several typical bifurcations. ical systems have bifurcations. A simple example is

Transcritical Bifurcation. The one-dimensional system ẋ = f (x; p) = p − x3

which has an entire stable equilibrium curve x � p1/3 andẋ = f (x; p) = px − x2

hence does not have any bifurcation.
has two equilibria: x1 � 0 and x2 � p. If p is varied, then there
are two equilibrium curves, as shown in Fig. 7. Since the Ja- Hysteresis Bifurcation. The dynamical system
cobian at zero for this one-dimensional system is simply J �
p, it is clear that for p � p0 � 0, the equilibrium x1 � 0 is
stable, but for p � p0 � 0 it changes to be unstable. Thus,

{
ẋ1 = −x1

ẋ2 = p + x2 − x3
2(x1, p0) � (0, 0) is a bifurcation point. In the figure, the solid

curves indicate stable equilibria and the dashed curves, the
has equilibriaunstable ones. (x2, p0) is another bifurcation point. This type

of bifurcation is called the transcritical bifurcation.
x1 = 0 and p − x2 + x3

2 = 0

Saddle-Node Bifurcation. The one-dimensional system
According to different values of p, there are either one or
three equilibrium solutions, where the second equation givesẋ = f (x; p) = p − x2

0

x

t

p

x
x2 = p

0 p

t

Figure 9. The pitchfork bifurcation.Figure 7. The transcritical bifurcation.
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where R � � � denotes the real part of the complex eigenval-
ues. Then

1. p � p0 is a bifurcation point of the system.
2. For close enough values p � p0, the equilibrium x � 0

is asymptotically stable.
3. For close enough values p � p0, the equilibrium x � 0

is unstable.
4. For close enough values p � p0, the equilibrium x � 0

is surrounded by an emerging limit cycle of magnitude
O(��p � p0�).

–p0 p0

x2

p

Figure 10. The hysteresis bifurcation.
Graphical Hopf Bifurcation Theorem. The Hopf bifurcation

can also be analyzed in the frequency-domain setting (10). In
this approach, the nonlinear parametrized autonomous sys-
tem of Eq. (15) is first rewritten in the following Lur’e form:a bifurcation point at p0 � 	2�3/9, but three equilibria for

�p0� � 2�3/9.
The stabilities of the equilibrium solutions are shown in

Fig. 10. This type of bifurcation is called the hysteresis bifur-
cation.




ẋxx = A(p)xxx + B(p)uuu

yyy = −C(p)xxx

uuu = ggg(yyy; p)

(16)

Hopf Bifurcation and Hopf Theorems. In addition to the bi-
where the matrix A(p) is chosen to be invertible for all valuesfurcations described previously, called static bifurcations, the
of p, and g � C4 depends on the chosen matrices A, B, andparametrized dynamical system of Eq. (14) can have another

type of bifurcation, the Hopf bifurcation (or dynamical bifur-
cation).

Hopf bifurcation corresponds to the situation where, as the
parameter p is varied to pass the critical value p0, the system
Jacobian has one pair of complex conjugate eigenvalues mov-
ing from the left-half plane to the right, crossing the imagi-
nary axis, while all the other eigenvalues remain to be stable
(with negative real parts). At the moment of the crossing, the
real parts of the eigenvalue pair are zero, and the stability of
the existing equilibrium changes to opposite, as shown in Fig.
11. In the meantime, a limit cycle will emerge. As indicated in
the figure, Hopf bifurcation can be classified as supercritical
(respectively, subcritical), if the equilibrium is changed from
stable to unstable (respectively, from unstable to stable). The
same terminology of supercritical and subcritical bifurcations
applies to other non-Hopf types of bifurcations.

Consider the general nonlinear, parametrized autonomous
system

ẋxx = fff (xxx; p), xxx(t0) = xxx0 (15)

where x � Rn, p is a real variable parameter, and f is differ-
entiable. The most fundamental result on the Hopf bifurca-
tion of this system is the following theorem, which is stated
here for the special two-dimensional case.

Theorem 7 (Poincaré-Andronov-Hopf) Suppose that the
two-dimensional system of Eq. (15) has a zero equilibrium,
x � 0, and assume that its associate Jacobian A � 
f /
x�x�x�0

has a conjugate pair of purely imaginary eigenvalues, �(p0)
and �*(p0) for some p0. Also assume that

p = p0

y y

x x

x x

x x

x x

p
p

y y

y y

y y

p > p0

p = p0

p < p0

Figure 11. Two types of Hopf bifurcations illustrated in the phase
plane. (a) supercritical; (b) subcritical.

d�{λ(p)}
dp

∣∣∣∣
p=p0

> 0
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C. Assume that this system has an equilibrium solution, y,
satisfying

yyy(t; p) = −H(0; p)g( yyy(t; p); p)

where

H(0; p) = −C(p)A−1(p)B(p)
P = –1+   2  1(  )

{   (  ;p)}¬ λ ω

ω

ω

θ ξ

∼   (  ;p)λ ω ∼

{   (  ;p)}

0–1

λ ω ∼

   (  ;p)λ ω ∼

∼
∼ 1(  )2 ωθ ξ

Let J(p) � 
g/
y�y�y and let �̂ � �̂( j�; p) be the eigenvalue of
Figure 12. The frequency-domain version of the Hopf bifurcationthe matrix [H( j�; p) J(p)] that satisfies
theorem.

λ̂( jω0; p0) = −1 + j0, j =
√

−1
The graphical Hopf bifurcation theorem (for SISO systems)

Then fix p � p̃ and let � vary. In so doing, a trajectory of the formulated in the frequency domain, based on the generalized
function �̂(�; p̃), the ‘‘eigenlocus,’’ can be obtained. This locus Nyquist criterion, is stated as follows (10).
traces out from the frequency �0 � 0. In much the same way,
a real zero eigenvalue (a condition for the static bifurcation) Theorem 8 (Graphical Hopf Bifurcation Theorem)
is replaced by a characteristic gain locus that crosses the Suppose that when � varies, the vector �1(�̃) � 0. Assume also
point (�1 � j 0) at frequency �0 � 0. that the half-line, starting from �1 � j 0 and pointing to the

For illustration, consider a single-input single-output direction parallel to that of �1(�̃), first intersects the locus of
(SISO) system. In this case, the matrix [H( j�; p) J(p)] is the eigenvalue �̂( j �; p̃) at the point
merely a scalar, and

P̂ = λ̂(ω̂; p̃) = −1 + ξ1(ω̃)θ2

at which � � �̂ and the constant � � �(�̂) � 0, as shown iny(t) ≈ y + �
{ n∑

k=0

yke jkωt
}

Fig. 12. Suppose, furthermore, that the preceding intersection
is transversal—namely,

where y is the equilibrium solution and the complex coeffi-
cients, �yk�, are determined as follows. For the approximation
with n � 2, first define an auxiliary vector det




�{ξ1( jω̂)} I {ξ1( jω̂)}
�

{
d

dω
λ̂(ω; p̃)

∣∣
ω=ω̂

}
I

{
d

dω
λ̂(ω; p̃)

∣∣
ω=ω̂

}
 �= 0

ξ1(ω̃) = −lllT[H( jω̃; p̃)]hhh1

lllTrrr
(17)

where I � � � is the imaginary part of the complex eigenvalue.
Then

where p̃ is the fixed value of the parameter p, l� and r are
the left and right eigenvectors of [H( j�̃; p̃) J(p̃)], respectively, 1. The nonlinear system of Eq. (16) has a periodic solution
associated with the eigenvalue �̂( j �̃; p̃), and (output) y(t) � y(t; y). Consequently, there exists a

unique limit cycle for the nonlinear equation ẋ � f (x),
in a ball of radius O(1) centered at the equilibrium x.hhh1 =

[
D2

(
zzz02 ⊗ rrr + 1

2
rrr∗ ⊗ zzz22

)
+ 1

8
D3 rrr ⊗ rrr ⊗ rrr∗

]
2. If the total number of counterclockwise encirclements of

the point p1 � P̂ � �1(�̃), for a small enough  � 0, is
in which * denotes the complex conjugate, �̃ is the frequency equal to the number of poles of [H(s; p) J(p)] that have
of the intersection between the �̂ locus and the negative real positive real parts, then the limit cycle is stable.
axis that is closest to the point (�1 � j 0), � is the tensor
product operator, and Period-Doubling Bifurcations to Chaos

There are several routes to chaos from a regular state of a
nonlinear system, provided that the system is chaotic in
nature.

It is known that after three Hopf bifurcations a regular
motion can become highly unstable, leading to a strange at-
tractor and, thereafter, chaos. It has also been observed that
even pitchfork and saddle-node bifurcations can be routes to
chaos under certain circumstances. For motion on a normal-
ized two-torus, if the ratio of the two fundamental frequen-
cies �1/�2 � p/q is rational, then the orbit returns to the same
point after a q-cycle; but if the ratio is irrational, the orbit
(said to be quasiperiodic) never returns to the starting point.
Quasiperiodic motion on a two-torus provides another com-
mon route to chaos.

D2 = ∂2ggg(y; p̃)

∂y2

∣∣∣∣
y=y

D3 = ∂3ggg(y; p̃)

∂y3

∣∣∣∣
y=y

zzz02 = −1
4

[1 + H(0; p̃)J( p̃)]−1G(0; p̃)D2rrr ⊗ rrr∗

zzz22 = −1
4

[1 + H(2 jω̃; p̃)]−1H(2 jω̃; p̃)D2rrr ⊗ rrr

y0 = zzz02 p̃ − p0

y1 = rrr|p̃ − p0
1/2

y2 = zzz22 p̃ − p0
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Period-doubling bifurcation is perhaps the most typical
route that leads system dynamics to chaos. Consider, for ex-
ample, the logistic map

xk+1 = pxk(1 − xk) (18)

where p � 0 is a variable parameter. With 0 � p � 1, the
origin x � 0 is stable, so the orbit approaches it as k � �.
However, for 1 � p � 3, all points converge to another equilib-
rium, denoted x. The dynamical evolution of the system be-
havior, as p is gradually increased from 3.0 to 4.0 by small
steps, is mostly interesting, which is depicted in Fig. 13. The
figure shows that at p � 3, a (stable) period-two orbit is bifur-

λ

–3.00

–2.00

–1.00

0.00

1.00

4.003.633.25
p

2.882.50

cated out of x, which becomes unstable at that moment, and,
Figure 14. Lyapunov exponent � versus parameter p for the logisticin addition to 0, there emerge two (stable) equilibria:
map. Reprinted from J. Argyris, G. Faust, and M. Haase, An Explora-
tion of Chaos, 1994, Fig. 5.4.8.(b), p. 172, with kind permission from
Elsevier Science–NL, Amsterdam, The Netherlands.x1,2 = (1 + p ±

√
p2 − 2p − 3)/(2p)

Figure 14 shows the Lyapunov exponent � versus the pa-When p continues to increase to the value of 1 � �6 �
rameter p, in the interval [2.5, 4]. This figure corresponds to3.544090 . . ., each of these two points bifurcates to the other
the period-doubling diagram shown in Fig. 13.two, as can be seen from the figure. As p moves consequently

The most significant discovery about the phenomenon ofthrough the values 3.568759 . . ., 3.569891 . . ., � � � , an in-
period-doubling bifurcation route to chaos is Feigenbaum’sfinite sequence of bifurcations is generated by such period
observation in 1978: The convergence of the period-doublingdoubling, which eventually leads to chaos:
bifurcating parameters has a geometric rate, p� � pk � ��k,
where

period 1 → period 2 → period 4

→ · · · → period 2k → · · · → chaos
pk+1 − pk

pk+2 − pk+1
→ δ = 4.6692 . . . (k → ∞)

It is also interesting to note that certain regions (e.g., the This is known as a universal number for a large class of cha-
three windows magnified in the figure) of the logistic map otic dynamical systems.
show self-similarity of the bifurcation diagram of the map,

Bifurcations in Control Systemswhich is a typical fractal structure.

Not only chaos but also bifurcations can exist in feedback and
adaptive control systems. Generally speaking, local instability
and complex dynamical behavior can result from feedback
and adaptive mechanisms when adequate process informa-
tion is not available for feedback transmission or for parame-
ter estimation. In this situation, one or more poles of the lin-
earized closed-loop transfer function may move to cross over
the stability boundary, thereby causing signal divergence as
the control process continues. However, this sometimes may
not lead to global unboundedness, but rather, to self-excited
oscillations or self-stabilization, creating very complex dy-
namical phenomena.

Several examples of bifurcations in feedback control sys-
tems include the automatic gain control loop system, which
has bifurcations transmitting to Smale horseshoe chaos and
the common route of period-doubling bifurcations to chaos.
Surprisingly enough, in some situations even a single pendu-
lum controlled by a linear proportional-derivative controller
can display rich bifurcations in addition to chaos.

Adaptive control systems are more likely to produce bifur-

0.0
2.8 3.0 1+  6

3.56994
1+  8

4.0

0.5

1.0

xn

α

cations than a simple feedback control system due to changes
of stabilities in adaptation. The complex dynamics emergingFigure 13. Period doubling of the logistic system with self-similarity.
from an adaptive control system are often caused by estima-Reprinted from J. Argyris, G. Faust, and M. Haase, An Exploration
tion instabilities. It is known that certain prototypes ofof Chaos, 1994, Fig. 9.6.6, p. 66f, with kind permission from Elsevier

Science–NL, Amsterdam, The Netherlands. MRAC systems can experience various bifurcations.
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Bifurcation theory has been employed for analzying com- However, recent research effort has shown that not only
plex dynamical systems. For instance, in an MRAC system, a (short-term) prediction but also control of chaos are possible.
few pathways leading to estimator instability have been iden- It is now well known that most conventional control methods
tified via bifurcation analysis: and many special techniques can be used for controlling chaos

(4,11,12). In this pursuit, whether the purpose is to reduce
‘‘bad’’ chaos or to introduce ‘‘good’’ ones, numerous control1. A sign change in the adaptation law, leading to a rever-
strategies have been proposed, developed, tested, and appliedsal of the gradient direction as well as an infinite linear
to many case studies. Numerical and experimental simula-drift.
tions have demonstrated that chaotic physical systems re-2. The instability caused by high control gains, leading to
spond quite well to these controls. In about the same time,global divergence through period-doubling bifurcations.
applications are proposed in such diverse fields as biology,

3. A Hopf bifurcation type of instability, complicated by a medicine, physiology, chemical engineering, laser physics,
number of nonlocal phenomena, leading to parameter electric power systems, fluid mechanics, aerodynamics, cir-
drift and bursting in a bounded regime through a se- cuits and electronic devices, and signal processing and com-
quence of global bifurcations.

munication. The fact that researchers from vast scientific and
engineering backgrounds are joining together and aiming at

Both instabilities of types 1 and 2 can be avoided by gain one central theme—bringing order to chaos—indicates that
tuning or simple algorithmic modifications. The third instabil- the study of nonlinear dynamics and their control has pro-
ity, however, is generally due to the unmodeled dynamics and gressed into a new era. Much has been accomplished in the
a poor signal-to-noise ratio, and so cannot be avoided by sim- past decade, yet much more remains a challenge for the
ple tuning methods. This instability is closely related to the future.
presence of a degenerate set and a period-two attractor. Similar to conventional systems control, the concept of

Similarly, in the discrete-time case, a simple adaptive con- ‘‘controlling chaos’’ first means to suppress chaos in the sense
trol system can have rich bifurcation phenomena, such as pe- of stabilizing chaotic system responses, often unstable peri-
riod-doubling bifurcation (due to high adaptive control gains) odic outputs. However, controlling chaos has also encom-
and Hopf and global bifurcations (due to insufficient exci- passed many nontraditional tasks, particularly those of creat-
tation). ing or enhancing chaos when it is useful. The process of chaos

Like the omnipresent chaos, bifurcations exist in many control is now understood as a transition between chaos and
physical systems (4). For instance, power systems generally order and, sometimes, the transition from chaos to chaos, de-
have various bifurcation phenomena. When consumers’ de- pending on the application at hand. In fact, the notion of
mands for power reach peaks, the stability of an electric

chaos control is neither exclusive of, nor conflicting with, the
power network may move to its margin, leading to serious

purposes of conventional control systems theory. Rather, itoscillations and stability bifurcations, which may quickly re-
targets at better managing the dynamics of a nonlinear sys-sult in voltage collapse. As another example, a typical double
tem on a wider scale, with the hope that more benefits maypendulum can display bifurcations as well as chaotic motions.
be derived from the special features of chaos.Some rotational mechanical systems also have similar behav-

ior. Even a common road vehicle driven by a pilot with driver
Why Chaos Control?steering control can have Hopf bifurcation when its stability

is lost, which may also develop chaos and even hyperchaos. A
There are many practical reasons for controlling or orderinghopping robot, or a simple two-degree-of-freedom flexible ro-
chaos. First, ‘‘chaotic’’ (messy, irregular, or disordered) systembot arm, can response strange vibrations undergoing period
response with little useful information content is unlikely todoubling, which eventually lead to chaos. An aircraft stalling
be desirable. Second, chaos can lead systems to harmful orfor flight below a critical speed or over a critical angle of at-
even catastrophic situations. In these troublesome cases,tack can cause various bifurcations. Dynamics of a ship can
chaos should be reduced as much as possible or totally sup-exhibit stability bifurcation according to wave frequencies
pressed. Traditional engineering design always tries to reducethat are close to the natural frequency of the ship, which cre-
irregular behaviors of a system and, therefore, completelyates oscillations and chaotic motions leading the ship to cap-
eliminates chaos. Such ‘‘overdesign’’ is needed in the afore-size. Simple nonlinear circuits are rich sources of different
mentioned situations. However, this is usually accomplishedtypes of bifurcations as well as chaos. Other systems that
at the price of loosing great benefits in achieving high perfor-have bifurcation properties include cellular neural networks,
mance near the stability boundaries, or at the expense of radi-lasers, aeroengine compressors, weather systems, and biologi-
cally modifying the original system dynamics.cal population dynamics, to name just a few.

Ironically, recent research has shown that chaos can actu-
ally be useful under certain circumstances, and there is grow-
ing interest in utilizing the very nature of chaos (4). For ex-CONTROLLING CHAOS
ample, it has been observed (13) that a chaotic attractor
typically has embedded within it a dense set of unstable limitUnderstanding chaos has long been the main focus of re-
cycles. Thus, if any of these limit cycles can be stabilized, itsearch in the field of nonlinear dynamics. The idea that chaos
may be desirable to select one that characterizes maximalcan be controlled is perhaps counterintuitive. Indeed, the ex-
system performance. In other words, when the design of atreme sensitivity of a chaotic system to initial conditions once
dynamical system is intended for multiple uses, purposelyled to the impression and argument that chaotic motion is in

general neither predictable nor controllable. building chaotic dynamics into the system may allow for the
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desired flexibilities. A control design of this kind is certainly Chaos Control: An Example
nonconventional. To appreciate the challenge of chaos control, consider the one-

Fluid mixing is a good example in which chaos is not only dimensional logistic map of Eq. (18) with the period-doubling
useful but actually necessary (14). Chaos is desirable in many bifurcation route to chaos as shown in Fig. 13. Chaos control
applications of liquid mixing, where two fluids are to be thor- problems in this situation include, but are not limited to, the
oughly mixed while the required energy is minimized. For following:
this purpose, it turns out to be much easier if the dynamics
of the particle motion of the two fluids are strongly chaotic, Is it possible (and, if so, how) to design a simple (e.g., lin-
since it is difficult to obtain rigorous mixing properties other- ear) controller, uk, for the given system in the form
wise due to the possibility of invariant two-tori in the flow.
This has been one of the main subjects in fluid mixing, known xk+1 = pxk(1 − xk) + uk
as ‘‘chaotic advection.’’ Chaotic mixing is also important in
applications involving heating, such as plasma heating for a such that
nuclear fusion reactor. In such plasma heating, heat waves
are injected into the reactor, for which the best result is ob- 1. The limiting chaotic behavior of the period-doubling bi-
tained when the heat convection inside the reactor is chaotic. furcation process is suppressed?

Within the context of biological systems, the controlled bio-
2. The first bifurcation is delayed to take place, or some

logical chaos seems to be important with the way a human
bifurcations are changed either in form or in stability?

brain executes its tasks. For years, scientists have been try-
3. When the parameter p is currently not in the bifurcat-ing to unravel how our brains endow us with inference,

ing range, the asymptotic behavior of the system be-thoughts, perception, reasoning, and, most fascinating of all,
comes chaotic?emotions such as happiness and sadness. It has been sug-

gested that the human brain can process massive information
Many of such nonconventional control problems emergingin almost no time, for which chaotic dynamics could be a fun-
from chaotic dynamical systems have posed a real challengedamental reason: ‘‘the controlled chaos of the brain is more
to both nonlinear dynamics analysts and control engineers—than an accidental by-product of the brain complexity, includ-
they have become, in effect, motivation and stimuli for theing its myriad connections,’’ but rather, ‘‘it may be the chief
current endeavor devoted to the new research direction inproperty that makes the brain different from an artificial-in-
control systems: controlling bifurcations and chaos.telligence machine’’ (15). The idea of anticontrol of chaos has

been proposed for solving the problem of driving the system
Some Distinctive Features of Chaos Controlresponses of a human brain model away from the stable direc-

tion and, hence, away from the stable (saddle-type) equilib- At this point, it is illuminating to highlight some distinctive
rium. As a result, the periodic behavior of neuronal popula- features of chaos control theory and methodology, in contrast
tion bursting can be prevented (16). Control tasks of this type to other conventional approaches regarding such issues as ob-
are also nontraditional. jectives, perspectives, problem formulations, and perfor-

mance measures.Other potential applications of chaos control in biological
systems have reached out from the brain to elsewhere, partic-
ularly to the human heart. In physiology, healthy dynamics 1. The targets in chaos control are usually unstable peri-
has been regarded as regular and predictable, whereas dis- odic orbits (including equilibria and limit cycles), per-

haps of high periods. The controller is designed to stabi-ease, such as fatal arrhythmias, aging, and drug toxicity, is
lize some of these unstable orbits or to drive thecommonly assumed to produce disorder and even chaos. How-
trajectories of the controlled system to switch from oneever, recent laboratory studies have seemingly demonstrated
orbit to another. This interorbit switching can be eitherthat the complex variability of healthy dynamics in a variety
chaos � order, chaos � chaos, order � chaos, or orderof physiological systems has features reminiscent of deter-
� order, depending on the application of interest. Con-ministic chaos, and a wide class of disease processes (includ-
ventional control, on the other hand, does not normallying drug toxicities and aging) may actually decrease (yet not
investigate such interorbit switching problems of a dy-completely eliminate) the amount of chaos or complexity in
namical system, especially not those problems that in-physiological systems (decomplexification). Thus, in contrast
volve guiding the system trajectory to an unstable orto the common belief that healthy heartbeats are completely
chaotic state by any means.regular, a normal heart rate may fluctuate in a somewhat

2. A chaotic system typically has embedded within it aerratic fashion, even at rest, and may actually be chaotic (17).
dense set of unstable orbits and is extremely sensitiveIt has also been observed that, in the heart, the amount of
to tiny perturbations in its initial conditions and systemintracellular Ca� is closely regulated by coupled processes
parameters. Such a special property, useful for chaosthat cyclically increase or decrease this amount, in a way sim-
control, is not available in nonchaotic systems and isilar to a system of coupled oscillators. This cyclical fluctuation
not utilized in any forms in conventional controls.in the amount of intracellular Ca� is a cause of afterdepolar-

izations and triggered activities in the heart—the so-called 3. Most conventional control schemes work within the
arrhythmogenic mechanism. Medical evidence reveals that state space framework. In chaos control, however, one
controlling (but not completely eliminating) the chaotic ar- more often deals with the parameter space and phase
rhythmia can be a new, safe, and promising approach to regu- space. Poincaré maps, delay-coordinates embedding,

parametric variation, entropy reduction, and bifurca-lating heartbeats (18,19).
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tion monitoring are some typical but nonconventional dynamical systems, including such complex phenomena as de-
generate bifurcations and hyperchaos in the system dynamicstools for design and analysis.
when a controller is involved. Unless suppressing complex dy-4. In conventional control, the terminal time for the con-
namics in a process is the only purpose for control, under-trol is usually finite (e.g., the elementary concept of
standing and utilizing the rich dynamics of a controlled sys-‘‘controllability’’ is typically defined using a finite and
tem are very important for design and applications.fixed terminal time, at least for linear systems and af-

fine-nonlinear systems). However, the terminal time for
chaos control is usually infinite to be meaningful and Representative Approaches to Chaos Control
practical, because many nonlinear dynamical behaviors,

There are various conventional and nonconventional controlsuch as equilibrium states, limit cycles, attractors, and
methods available for bifurcations and chaos control (4, 11,chaos, are asymptotic properties. In addition, in chaos
12). To introduce a few representative ones, only three catego-control, a target for tracking is not limited to constant
ries of methodologies are briefly described in this section.vectors in the state space but often is an unstable peri-

odic orbit of the given system.
Parametric Variation Control. This approach for controlling5. Depending on different situations or purposes, the per-

a chaotic dynamical system, proposed by Ott, Grebogi, andformance measure in chaos control can be different from
Yorke (13,20) and known as the OGY method, is to stabilizethose for conventional controls. Chaos control generally
one of its unstable periodic orbits embedded in an existinguses criteria like Lyapunov exponents, Kolmogorov-Si-
chaotic attractor, via small time-dependent perturbations ofnai entropy, power spectra, ergodicity, and bifurcation
the key system parameter. This methodology utilizes thechanges, whereas conventional controls normally em-
special feature of chaos that a chaotic attractor typicallyphasize robustness of the system stability or control
has embedded within it a dense set of unstable periodicperformance, optimality of control energy or time, abil-
orbits.ity of disturbances rejection, etc.

To introduce this control strategy, consider a general con-
6. Chaos control includes a unique task—anticontrol, re- tinuous-time parametrized nonlinear autonomous system

quired by some unusual applications such as those in
biomedical engineering mentioned previously. This ẋxx(t) = fff (xxx(t), p) (19)
anticontrol tries to create, maintain, or enhance chaos
for improving system performance. Bifurcation control where, for illustration, x � [x y z]� denotes the state vector,
is another example of this kind, where a bifurcation and p is a system parameter accessible for adjustment. As-
point is expected to be delayed in case it cannot be sume that when p � p* the system is chaotic, and it is desired
avoided or stabilized. This delay can significantly ex- to control the system orbit, x(t), to reach a saddle-type unsta-
tend the operating time (or system parameter range) for ble equilibrium (or periodic orbit), �. Suppose that within a
a time-critical process such as chemical reaction, volt- small neighborhood of p*, that is,
age collapse of electric power systems, and compression
of stall of gas turbine jet engines. These are in direct p∗ − �pmax < p < p∗ + �pmax (20)
contrast to traditional control tasks, such as the text-
book problem of stabilizing an equilibrium position of a

where �pmax � 0 is the maximum allowable perturbation, bothnonlinear system.
the chaotic attractor and the target orbit � do not disappear

7. Due to the inherent association of chaos and bifurca- (i.e., within this small neighborhood of p*, there are no bifur-
tions with various related issues, the scope of chaos con- cation points of the periodic orbit �). Then let P be the under-
trol and the variety of problems that chaos control deals lying Poincaré map and � be a surface of cross section of �.
with are quite diverse, including creation and manipu- For simplicity, assume that this two-dimensional hyperplane
lation of self-similarity and symmetry, pattern forma- is orthogonal to the third axis and thus is given by
tion, amplitudes of limit cycles and sizes of attractor
basins, and birth and change of bifurcations and limit

	 = {[αβγ ]T ∈ R3 : γ = z0 (a constant)}
cycles, in addition to some typical conventional tasks,
such as target tracking and system regulation.

Moreover, let � be the coordinates of the surface of cross sec-
tion; that is, a vector satisfying

It is also worth mentioning an additional distinctive fea-
ture of a controlled chaotic system that differs from an uncon-

ξk+1 = P(ξk, pk)
trolled chaotic system. The controlled chaotic system is gener-
ally nonautonomous and cannot be reformulated as an

whereautonomous system by defining the control input as a new
state variable, since the controller is physically not a system
state variable and, moreover, it has to be determined via de- pk = p∗ + �pk, �pk ≤ �pmax

sign for performance specifications. Hence, a controlled cha-
otic system is intrinsically much more difficult to design than At each iteration, p � pk is chosen to be a constant.

Many distinct unstable periodic orbits within the chaoticit appears (e.g., many invariant properties of autonomous sys-
tems are no longer valid). This observation raises the ques- attractor can be determined by the Poincaré map. Suppose

that an unstable period-one orbit �*f has been selected, whichtion of extending some existing theories and techniques from
autonomous system dynamics to nonautonomous, controlled, maximizes certain desired system performance with respect
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to the dynamical behavior of the system. This target orbit sat-
isfies

ξ ∗
f = P(ξ ∗

f , p∗)

The iteration of the map near the desired orbit are then ob-
served, and the local properties of this chosen periodic orbit
are obtained. To do so, the map is first locally linearized,
yielding a linear approximation of P near �*f and p*, as

ξk+1 ≈ ξ ∗
f + Lk(ξk − ξ ∗

f ) + vvvk(pk − p∗) (21)

or
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�ξk+1 ≈ Lk�ξk + vvvk�pk (22)
Figure 15. Schematic diagram for the parametric variation control
method.

where

For this case of a saddle-node equilibrium target, this control
procedure is illustrated by Fig. 15.

Now suppose that �k has approached sufficiently close to

�ξk = ξk − ξ ∗
f , �pk = pk − p∗,

Lk = ∂P(ξ ∗
f , p∗)/∂ξk, vvvk = ∂P(ξ ∗

f , p∗)/∂ pk

�*f , so that Eq. (21) holds. For the next iterate, �k�1, to fall onto
the local stable manifold of �*f , the parameter pk � p* � �pkThe stable and unstable eigenvalues, �s,k and �u,k satisfying
has to be so chosen that��s,k� � 1 � ��u,k�, can be calculated from the Jacobian Lk. Let

Ms and Mu be the stable and unstable manifolds whose direc-
tions are specified by the eigenvectors es,k and eu,k that are gggT

uuu,k�ξk+1 = gggT
uuu,k(ξk+1 − ξ ∗

f ) = 0

associated with �s,k and �u,k, respectively. If gs,k and gu,k are
This simply means that the direction of the next iteration isthe basis vectors defined by
perpendicular to the direction of the current local unstable
manifold. For this purpose, taking the inner product of Eq.
(22) with gu,k and using Eq. (23) lead togggT

sss,k eeesss,k = gggT
uuu,k eeeuuu,k = 1,

gggT
sss,k eeeuuu,k = gggT

uuu,k eeesss,k = 0

�pk = −λuuu,k

gggT
uuu,k�ξk

gggT
uuu,kvvvk

(24)

then the Jacobian Lk can be expressed as

where it is assumed that g�
u,kvk � 0. This is the control for-

mula for determining the variation of the adjustable systemLk = λuuu,k eeeuuu,k gggT
uuu,k + λsss,k eeesss,k gggT

sss,k (23)
parameter p at each step, k � 1, 2, � � � . The controlled orbit
thus is expected to approach �*f at a geometric rate.

To start the parametric variation control scheme, one may Note that this calculated �pk is used to adjust the parame-
open a window covering the target equilibrium and wait until ter p only if ��pk� � �pmax. When ��pk� � �pmax, however, one
the system orbit travels into the window (i.e., until �k falls should set �pk � 0. Also, when �k�1 falls on a local stable man-
close enough to �*f ). Then the nominal value of the parameter ifold of �*f , one should set �pk � 0 because the stable manifold
pk is adjusted by a small amount �pk using a control formula might lead the orbit directly to the target.
given below in Eq. (24). In so doing, both the location of the Note also that the preceding derivation is based on the as-
orbit and its stable manifold are changed, such that the next sumption that the Poincaré map, P, always possesses a stable
iteration, represented by �k�1 in the surface of cross section, is and an unstable direction (saddle-type orbits). This may not
forced toward the local stable manifold of the original equilib- be the case in many systems, particularly those with high pe-
rium. Since the system has been linearized, this control action riodic orbits. Moreover, it is necessary that the number of ac-
usually is unable to bring the moving orbit to the target at cessible parameters for control is at least equal to the number
one iteration. As a result, the controlled orbit will leave the of unstable eigenvalues of the periodic orbit to be stabilized.
small neighborhood of the equilibrium again and continue to In particular, when some of such key system parameters are
wander chaotically as if there was no control on it at all. How- unaccessible, the algorithm is not applicable or has to be mod-
ever, due to the semi-attractive property of the saddle-nose ified. Also, if a system has multiattractors the system orbit
equilibrium, sooner or later the orbit returns to the window may never return to the opened window but move to another
again, but generally is closer to the target due to the control nontarget limit set. In addition, the technique is successful
effect. Then the next cycle of iteration starts, with an even only if the control is applied after the system orbit moves into

the small window covering the target, over which the localsmaller control action, to nudge the orbit toward the target.
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linear approximation is still valid. In this case, the waiting For simplicity, assume that Gk � Ck with the goal orbit gk �
Gk, k � 1, 2, � � � . Let C � ��

k�1 Ck, and denote the basin oftime can be quite long for some chaotic systems. While this
algorithm is effective, it generally requires good knowledge of entrainment for the goal by
the equations governing the system, so that computing �pk by
Eq. (24) is possible. In the case where only time-series data B = {xxx0 ∈ Rn : lim

k→∞
‖xxxk − gggk‖ = 0}

of the system are available, the delay-coordinate technique
may be used to construct a faithful dynamical model for con- Once a near entrainment is obtained in the sense that
trol (20,21).

‖xxxk − gggk‖ ≤ ε

Entrainment and Migration Controls. Another representative
approach for chaos control is the entrainment and migration for some small  � 0, another form of control can be applied
control. Originally an open-loop strategy, this approach has (i.e., to use migration-goal dynamics between different con-
lately been equipped with the closed-loop control technique vergent regions, which allows the system trajectory to travel
and has been applied to many complex dynamical systems, from one attractor to another). This is the entrainment-migra-
particularly those with multiattractors. The entrainment and tion control strategy.
migration control strategy results in a radical but systematic To describe the entrainment-goal control more precisely,
modification of the behavior of the given dynamical system, consider a discrete-time system of the form
thereby allowing to introduce a variety of new dynamical mo-
tions into the system (22,23). This approach can handle a xxxk+1 = fff k(xxxk), xxxk ∈ Rn

multiattractor situation effectively, as opposed to the para-
Let the goal dynamics be �gk� and Sk be a switching functionmetric variation control method.
defined by Sk � 1 at some desired steps k but Sk � 0 other-Entrainment means that an otherwise chaotic orbit of a
wise. The controlled dynamical system is suggested assystem can be purposely ‘‘entrained’’ so that its dynamics, in

both amplitude and phase, asymptotically tends to a prespeci-
fied set or region (e.g., a periodic orbit or an attractor). The xxxk+1 = fff k(xxxk) + αkSk[ gggk+1 − fff k( gggk)]
basic formulation of entrainment control is based on the exis-

where 0 � �k � 1 are constant control gains determined bytence of some convergent regions in the phase space of a dy-
the user. The control is initiated, with Sk � 1, if the systemnamical system. For a general smooth discrete-time system,
state has entered the basin B; that is, when the system state
enters the basin B at k � kb, the control is turned on for k �xxxk+1 = fff k(xxxk), k = 0,1, . . .

kb. With �k � 1, it gives
or continuous-time system,

gggk+1 − fff k(gggk) = xxxk+1 − fff k(xxxk) = 0, k ≥ kb (25)
ẋxx(t) = fff (xxx(t)), xxx(0) = xxx0

The desired goal dynamics is then achieved: gk�1 � f (gk) for
the convergent regions are defined to be all k � kb. Clearly, in this approach,

uuuk = αkSk[ gggk+1 − fff k( gggk)]C( fff k) = {xxx ∈ Rn : ∂ fi(xxx)/∂xj − δijµi(xxx) = 0,

µi(xxx) < 1 for all i = 1, . . ., n}
is an open-loop controller, which is directly added to the right-
hand side of the original system.or

A meaningful application of the entrainment control is for
multiattractor systems, to which the parametric variation
control method is not applicable. Another important applica-
tion is for a system with an asymptotic goal gk � g, an equilib-

C( fff ) = {xxx ∈ Rn : ∂ fi(xxx)/∂xj − δijλi(xxx) = 0,

�{λi(xxx)} < 0 for all i = 1, . . ., n}
rium of the given system. In this case, the basin of entrain-

where �i( � ) and �i( � ) are the eigenvalues of the Jacobians of ment is a convex region in the phase space:
the nonlinear maps f k and f , respectively, and �ij � 1 if i � j
but �ij � 0 if i � j. Be = {x0 ∈ Rn : ‖xxx0 − ggg‖ < r( ggg)}

If these convergent regions exist, the system orbits—say,
�xk� in the discrete case—can be forced by a suitably designed where
external input to approach (a limit set of) the desired goal
dynamics, �gk�, in the sense that r( ggg) = max

r
{r : ‖xxx0 − ggg‖ < r ⇒ lim

k→∞
‖xxxk − ggg‖ = 0}

The entrainment-migration control method is straightfor-lim
k→∞

‖xxxk − gggk‖ = 0

ward, easily implementable, and flexible in design. However,
it requires the dynamics of the system be accurately describedIn other words, the system is entrained to the goal dynamics.

One advantage of the entrainment control is that the goal by either a map or a differential equation. Also, in order for
the system state to be entrained to the given equilibrium, thedynamics can have any topological characteristics, such as

equilibrium, periodic, knotted, and chaotic, provided that the equilibrium must lie in a particular subset of the convergent
region. This can be a technical issue, particularly for higher-target orbit �gk� is located in some goal region �Gk� satisfying

Gk � Ck � 0�, where Ck (k � 1, 2, � � � ) are convergent regions. dimensional systems. In addition, due to the open-loop na-
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ture, process stability is not guaranteed in most cases. The on its own. This is important for automation, reducing the
dependence on individual operator’s skills and avoiding hu-main disadvantage of this approach is that it generally em-

ploys sophisticated controllers, which may even be more com- man errors in monitoring the control.
A shortcoming of feedback control methods that employplicated than the given system.

tracking errors is the explicit or implicit use of reference sig-
nals. This has never been a problem in conventional feedbackEngineering Feedback Controls. From a control theoretic

point of view, if only suppression of chaos is concerned, chaos control of nonchaotic systems, where reference signals are al-
ways some designated, well-behaved ones. However, in chaoscontrol may be considered as a special deterministic nonlinear

control problem and so may not be much harder than conven- control, quite often a reference signal is an unstable equilib-
rium or unstable limit cycle, which is difficult (if not impossi-tional nonlinear systems control. However, this remains to be

a technical challenge to conventional controls when a single ble) to be physically implemented as a reference input. This
critical issue has stimulated some new research efforts (forcontroller is needed for stabilizing the chaotic trajectory to

multiple targets of different periods. instance, to use another auxiliary reference as the input in a
self-tuning feedback manner).A distinctive characteristic of control engineering from

other disciplines is that it employs some kind of feedback Engineering feedback control approaches have seen an al-
luring future in more advanced theories and applications inmechanism. In fact, feedback is pervasive in modern control

theories and technologies. For instance, the parametric varia- controlling complex dynamics. Utilization of feedback is
among the most inspiring concepts that engineering has evertion control method discussed previously is a special type of

feedback control method. In engineering control systems, con- contributed to modern sciences and advanced technologies.
A Typical Feedback Control Problem. A general feedback ap-ventional feedback controllers are used for nonchaotic sys-

tems. In particular, linear feedback controllers are often de- proach to controlling a dynamical system, not necessarily cha-
otic nor even nonlinear, can be illustrated by starting fromsigned for linear systems. It has been widely experienced that

with careful design of various conventional controllers, con- the following general form of an n-dimensional control sys-
tem:trolling chaotic systems by feedback strategies is not only pos-

sible, but indeed quite successful. One basic reason for this
success is that chaotic systems, although nonlinear and sensi- ẋxx(t) = fff (xxx,uuu, t), xxx(0) = xxx0 (26)
tive to initial conditions with complex dynamical behaviors,
belong to deterministic systems by their very nature. where, as usual, x is the system state, u is the controller, x0

Some Features of Feedback Control. Feedback is one of the is a given initial state, and f is a piecewise continuous or
most fundamental principles prevalent in the world. The idea smooth nonlinear function satisfying some defining condi-
of using feedback, originated from Isaac Newton and Gott- tions.
fried Leibniz some 300 years ago, has been applied in various Given a reference signal, r(t), which can be either a con-
forms in natural science and modern technology. stant (set-point) or a function (time-varying trajectory), the

One basic feature of conventional feedback control is that, automatic feedback control problem is to design a controller
while achieving target tracking, it can guarantee the stability in, say, the state-feedback form
of the overall controlled system, even if the original uncon-
trolled system is unstable. This implies its intrinsic ro- uuu(t) = ggg(xxx, t) (27)
bustness against external disturbances or internal variations
to a certain extent, which is desirable and often necessary for where g is generally a piecewise continuous nonlinear func-
good performance of a required control task. The idea of feed- tion, such that the feedback-controlled system
back control always consuming strong control energy perhaps
led to a false impression that feedback mechanisms may not ẋxx(t) = fff (xxx,ggg(xxx, t), t) (28)
be suitable for chaos control due to the extreme sensitive
nature of chaos. However, feedback control under certain can achieve the goal of tracking:
optimality criteria, such as a minimum control energy con-
straint, can provide the best performance, including the lim

t→∞
‖xxx(t) − rrr(t)‖ = 0 (29)

lowest consumption of control energy. This is not only sup-
ported by theory but is also confirmed by simulation with

For discrete-time systems, the problem and notation arecomparison.
similar: For a systemAnother advantage of using feedback control is that it nor-

mally does not change the structure and parameters of the
given system, and so whenever the feedback is disconnected xxxk+1 = fff k(xxxk,uuuk) (30)
the given system retains the original form and properties
without modification. In many engineering applications, the with given target trajectory �rk� and initial state x0, find a
system parameters are not feasible or not allowed for direct (nonlinear) controller
tuning or replacement. In such cases, state or output feedback
control is a practical and desirable strategy. uuuk = gggk(xxxk) (31)

An additional advantage of feedback control is its auto-
matic fashion in processing control tasks without further hu- to achieve the tracking-control goal:
man interaction after being designed and implemented. As
long as a feedback controller is correctly designed to satisfy
the stability criteria and performance specifications, it works

lim
k→∞

‖xxxk − rrrk‖ = 0 (32)
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which yields en(t) :� xn(t) � yn � 0 as t � �. Overall, it results
in a completely controllable linear system, so that the con-
stant control gain kc can be chosen such that x(t) � y as t �
�. Another example is that for the control system

ẋxx(t) = fff (xxx(t), t) + uuu(t)

r x+
– f (.)

g(.)

ex

Figure 16. Configuration of a general feedback control system. using

uuu(t) = − fff (xxx(t), t) + ẏyy(t) + K(xxx(t) − yyy(t))
A closed-loop continuous-time feedback control system has

a configuration as shown in Fig. 16, where ex :� r � g(x), f is with a stable constant gain matrix K can drive its trajectory
the given system, and g is the feedback controller to be de- to the target y(t) as t � �.
signed, in which f and g can be either linear or nonlinear. In This kind of ‘‘design,’’ however, is undesirable, and its
particular, it can be a linear system in the state-space form practical value is questionable in most cases, because the con-
connected with a linear additive state-feedback controller— troller is even more complicated than the given system (it
namely, cancels the nonlinearity by using the given nonlinearity

which means it removes the given plant and then replaces it
ẋxx = Axxx + Buuu = Axxx + BKc(rrr − xxx) by another system). In the discrete-time setting, for a given

nonlinear system, xk�1 � f k(xk) � uk, one may also find a simi-
where Kc is a constant control gain matrix to be determined. lar nonlinear feedback controller or, even simpler, use u �
The corresponding closed-loop block diagram is shown in

�f k(xk) � gk(xk) to achieve any desired dynamics satisfying
Fig. 17. xk�1 � gk(xk) in just one step. This is certainly not an engi-

A Control Engineer’s Perspective. In controllers design, par- neering design, nor a valuable methodology, for any real-
ticularly in finding a nonlinear controller for a system, it is world application other than artificial computer simulations.
important to emphasize that the designed controller should Therefore, in designing a feedback controller, it is very im-
be (much) simpler than the given system to make sense of portant to come out with a simplest possible working control-
the world. ler: If a linear controller can be designed to do the job, use a

For instance, suppose that one wants to find a nonlinear linear controller; otherwise, try the simplest possible nonlin-
controller, u(t), in the continuous-time setting, to guide the ear controllers (starting, for example, from piecewise linear or
state vector x(t) � [x1(t), � � � , xn(t)]� of a given nonlinear con- quadratic controllers). Whether or not one can find a simple,
trol system, physically meaningful, easily implementable, low-cost, and ef-

fective controller for a designated control task can be quite
technical: It relies on the designer’s theoretical background
and practical experience.

A General Approach to Feedback Control of Chaos. To outline
the basic idea of a general feedback approach to chaos sup-
pression and tracking control, consider Eq. (26), which is now




ẋ1(t) = x2(t)

ẋ2(t) = x3(t)
...

ẋn(t) = f (x1(t), . . ., xn(t)) + u(t)
assumed to be chaotic and possess an unstable periodic orbit
(or equilibrium), x, of period tp � 0—namely, x(t � tp) � x(t),to a target state, y � [y1, . . ., yn]�—namely,
t0 � t � �. The task is to design a feedback controller in the
form of Eq. (27), such that the tracking control goal of Eq.xxx(t) → yyy as t → ∞
(29), with r � x therein, is achieved.

Since the target periodic orbit x is itself a solution of theIt is then mathematically straightforward to use the control-
original system, it satisfiesler

u(t) = − f (x1(t), . . ., xn(t)) + kc(xn(t) − yn) ẋxx = fff (xxx, 0, t) (33)

with an arbitrary constant kc � 0. This controller leads to Subtracting Eq. (33) from Eq. (26) then yields the error dy-
namics:

ẋn(t) = kc(xn(t) − yn)

ėeexxx = fff eee(eeexxx,xxx, t) (34)

where

eeexxx(t)=xxx(t)−xxx(t), fff eee(eeexxx,xxx, t) = fff (xxx,ggg(xxx,xxx, t), t)− fff (xxx, 0, t)

Here, it is important to note that in order to perform correct
stability analysis later on, in the error dynamical system of
Eq. (34) the function fe must not explicitly contain x; if so, x

r x x+
–

+ •

+

ex
Kc B

A

∫

should be replaced by ex � x (see Eq. (38) below). This is be-
cause Eq. (34) should only contain the dynamics of ex but notFigure 17. Configuration of a state-space feedback control system.
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x, while the system may contain x, which merely is a specified the nonlinear controller will be designed to satisfy g(0, kc, t)
� 0. Then the error dynamics is reduced totime function but not a system variable.

Thus, the design problem becomes to determine the con-
troller, u(t), such that ėeexxx = A(xxx, t)eeexxx + hhh(eeexxx, Kc,kkkc, t) (39)

wherelim
t→∞

‖eeexxx(t)‖ = 0 (35)

which implies that the goal of tracking control described by
Eq. (29) is achieved.

A(xxx, t) =
[

∂ fff eee(eeex, t)
∂eeexxx

]
eeexxx=0

It is clear from Eqs. (34) and (35) that if zero is an equilib-
rium of the error dynamical system of Eq. (34), then the origi- and h(ex, Kc, kc, t) contains the rest of the Taylor expansion.
nal control problem has been converted to the asymptotic sta- The design is then to determine both the constant control
bility problem for this equilibrium. As a result, Lyapunov gains Kc and kc as well as the nonlinear function g( � , � , t)
stability methods and theorems can be directly applied or based on the linearized model of Eq. (39), such that ex � 0 as
modified to obtain rigorous mathematical techniques for con- t � �. When this controller is applied to the original system,
troller design (24). This is discussed in more detail next. the goal of both chaos suppression and target tracking will be

Chaos Control via Lyapunov Methods. The key in applying achieved. For illustration, two controllability conditions es-
the Lyapunov second method to a nonlinear dynamical sys- tablished based on the boundedness of the chaotic attractors
tem is to construct a Lyapunov function that describes some as well as the Lyapunov first and second methods, respec-
kind of energy and governs the system motion. If this function tively, are summarized next (24).
is constructed appropriately, so that it decays monotonically Suppose that in Eq. (39), h(0, Kc, kc, t) � 0 and A(x, t) � A
to zero as time evolves, then the system motion, which falls is a constant matrix whose eigenvalues all have negative real
on the surface of this decaying function, will be asymptoti- parts, and let P be the positive definite and symmetric solu-
cally stabilized to zero. A controller, then, may be designed tion of the Lyapunov equation
to force this Lyapunov function of the system, stable or not
originally, to decay to zero. As a result, the stability of PA + ATP = −I
tracking error equilibrium, and hence the goal of tracking, is
achieved. For a chaos control problem with a target trajectory where I is the identity matrix. If Kc is designed to satisfy
x, typically an unstable periodic solution of the given system,
a design can be carried out by determining the controller ‖hhh(eeexxx, Kc,kkkc, t)‖ ≤ c‖eeexxx‖
u(t) via the Lyapunov second method such that the zero equi-

for a constant c � ���max(P) for t0 � t � �, where �max(P) is thelibrium of the error dynamics, ex � 0, is asymptotically stable.
maximum eigenvalue of P, then the controller u(t), defined inIn this approach, since a linear feedback controller alone
Eq. (36), will drive the trajectory x of the controlled system ofis usually not sufficient for the control of a nonlinear system,
Eq. (37) to the target, x, as t � �.particularly a chaotic one, it is desirable to find some criteria

For Eq. (39), since x is tp-periodic, associated with the ma-for the design of simple nonlinear feedback controllers. In so
trix A(x, t) there always exist a tp-periodic nonsingular ma-doing, consider the feedback controller candidate of the form
trix M(x, t) and a constant matrix Q such that the fundamen-
tal matrix (consisting of n independent solution vectors) hasuuu(t) = Kc(xxx − xxx ) + ggg(xxx − xxx,kkkc, t) (36)
the expression

where Kc is a constant matrix, which can be zero, and g is a
simple nonlinear function with constant parameters kc, satis- (xxx, t) = M(xxx, t)etQ

fying g(0, kc, t) � 0 for all t � t0. Both Kc and kc are deter-
mined in the design. Adding this controller to the given sys- The eigenvalues of the constant matrix et

p
Q are called the Flo-

tem gives quet multipliers of the system matrix A(x, t).
In Eq. (39), assume h(0, Kc, kc, t) � 0 and h(ex, Kc, kc, t)

ẋxx = fff (xxx, t) + uuu = fff (xxx, t) + Kc(xxx − xxx ) + ggg(xxx − xxx,kkkc, t) (37) and 
h(ex, Kc, kc, t)/
ex are both continuous in a bounded
neighborhood of the origin in Rn. Assume also that

The controller is required to drive the trajectory of the con-
trolled system of Eq. (37) to approach the target orbit x.

The error dynamics of Eq. (34) now takes the form lim
‖ eeexxx‖→0

‖hhh(eeexxx, Kc,kkkc, t)‖
‖eeexxx‖ = 0

ėeexxx = fff eee(eeexxx, t) + Kc eeexxx + ggg(eeexxx,kkkc, t) (38)
uniformly with respect to t � [t0, �). If the nonlinear control-
ler of Eq. (36) is so designed that all Floquet multipliers ��i�where
of the system matrix A(x, t) satisfy

eeexxx = xxx − xxx, fff eee(eeexxx, t) = fff (eeexxx + xxx, t) − fff (xxx, t)
λi(t) < 1, i = 1, . . ., n, ∀t ∈ [t0,∞)

It is clear that fe(0, t) � 0 for all t � [t0, �)—namely, ex � 0
is an equilibrium of the tracking-error dynamical system of then the controller will drive the chaotic orbit x of the con-

trolled system of Eq. (37) to the target orbit, x, as t � �.Eq. (38).
Next, Taylor expand the right-hand side of the controlled Various Feedback Methods for Chaos Control. In addition to

the general nonlinear feedback control approach described pre-system of Eq. (38) at ex � 0 (i.e., at x � x) and remember that
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viously, adaptive and intelligent controls are two large classes where f is assumed to be sufficiently smooth with respect to
both the state xk � Rn and the parameter p � R, and has anof engineering feedback control methods that have been shown

to be successful for chaos control. Other effective feedback con- equilibrium at (x, p) � (0, 0). In addition, assume that the
system Jacobian of Eq. (40), evaluated at the equilibrium thattrol methods include optimal control, sliding mode and robust

controls, digital controls, and occasionally proportional and is the continuous extension of the origin, has an eigenvalue
�(p) satisfying �(0) � �1 and ��(0) � 0, while all remainingtime-delayed feedback controls. Linear feedback controls are

also useful, but generally for simple chaotic systems. Various eigenvalues have magnitude strictly less than one. Under
these conditions, the nonlinear function has a Taylor expan-variants of classical control methods that have demonstrated

great potential for controlling chaos include distortion control, sion
dissipative energy method, absorber as a controller, external
weak periodic forcing, Kolmogorov-Sinai entropy reduction, fff (xxx; p) = J(p)xxx + Q(xxx,xxx; p) + C(xxx,xxx,xxx; p) + · · ·
stochastic controls, and chaos filtering (4).

where J(p) is the parametric Jacobian, and Q and C are qua-Finally, it should be noted that there are indeed many val-
dratic and cubic terms generated by symmetric bilinear anduable ideas and methodologies that by their nature cannot be
trilinear forms, respectively.well classified into one of the aforementioned three categories,

This system has the following property (25): A period-dou-not to mention that many novel approaches are still emerg-
bling orbit can bifurcate from the origin of system of Eq. (40)ing, improving, and developing as of today (4).
at p � 0; the period-doubling bifurcation is supercritical and
stable if � � 0 but is subcritical and unstable if � � 0, whereCONTROLLING BIFURCATIONS

β = 2lllT[C0(rrr,rrr,rrr; p) − 2Q0(rrr, J−
0 Q0(rrr,rrr; p))]

Ordering chaos via bifurcation control has never been a sub-
ject in conventional control. This seems to be a unique ap- in which l� is the left eigenvector and r the right eigenvector
proach valid only for those nonlinear dynamical systems that of J(0), respectively, both associated with the eigenvalue �1,
possess the special characteristic of a route to chaos from bi- and
furcation.

Why Bifurcation Control?

Bifurcation and chaos are often twins and, in particular, pe-
riod-doubling bifurcation is a route to chaos. Hence, by moni-
toring and manipulating bifurcations, one can expect to

Q0 = J(0)Q(xxx,xxx; p) + Q(J(0)xxx, J(0)xxx; p)

C0 = J(0)C(xxx,xxx,xxx; p) + 2Q(J(0)xxx, Q(xxx,xxx; p))

+ C(J(0)xxx, J(0)xxx, Q(xxx,xxx; p); p)

J−
0 = [JT(0)J(0) + llllllT]−1JT(0)

achieve certain types of control for chaotic dynamics.
Even bifurcation control itself is very important. In some Now consider Eq. (40) with a control input:

physical systems such as a stressed system, delay of bifurca-
tions offers an opportunity to obtain stable operating condi- xxxk+1 = fff (xxxk; p,uuuk), k = 0, 1, . . .

tions for the machine beyond the margin of operability in a
which is assumed to satisfy the same assumptions when uk �normal situation. Also, relocating and ensuring stability of bi-
0. If the critical eigenvalue �1 is controllable for the linear-furcated limit cycles can be applied to some conventional con-
ized system, then there is a feedback controller, uk(xk), con-trol problems, such as thermal convection, to obtain better
taining only third-order terms in the components of xk, suchresults. Other examples include stabilization of some critical
that the controlled system has a locally stable bifurcated pe-situations for tethered satellites, magnetic bearing systems,
riod-two orbit for p near zero. Also, this feedback stabilizesvoltage dynamics of electric power systems, and compressor
the origin for p � 0. If, however, �1 is uncontrollable for thestall in gas turbine jet engines (4).
linearized system, then generically there is a feedback con-Bifurcation control essentially means designing a control-
troller, uk(xk), containing only second-order terms in the com-ler for a system to result in some desired behaviors, such as
ponents of xk, such that the controlled system has a locallystabilizing bifurcated dynamics, modifying properties of some
stable bifurcated period-two orbit for p near 0. This feedbackbifurcations, or taming chaos via bifurcation control. Typical
controller also stabilizes the origin for p � 0 (25).examples include delaying the onset of an inherent bifurca-

tion, relocating an existing bifurcation, changing the shape or
Bifurcation Control via Harmonic Balancetype of a bifurcation, introducing a bifurcation at a desired

parameter value, stabilizing (at least locally) a bifurcated pe- For continuous-time systems, limit cycles in general cannot
riodic orbit, optimizing the performance near a bifurcation be expressed in analytic forms, and so limit cycles correspond-
point for a system, or a combination of some of these. Such ing to the period-two orbits in the period-doubling bifurcation
tasks have practical values and great potential in many non- diagram have to be approximated in applications. In this
traditional real-world control applications. case, the harmonic balance approximation technique (10) can

be applied, which is also useful in controlling bifurcations
Bifurcation Control via Feedback

such as delay and stabilization of the onset of period-doubling
bifurcations (26).Bifurcations can be controlled by different methods, among

which the feedback strategy is especially effective. Consider a Consider a feedback control system in the Lur’e form de-
scribed bygeneral discrete-time parametrized nonlinear system

fff ∗ ( ggg ◦◦◦ yyy + Kc ◦◦◦ yyy) + yyy = 0xxxk+1 = fff (xxxk; p), k = 0, 1, . . . (40)
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and a new parameter, for the period-doubling to occur at the
point p*c . Thus, the controller design is completed by choosing
a suitable value for kc to satisfy such conditions (26).

Controlling Multiple Limit Cycles

As indicated by the Hopf bifurcation theorem, limit cycles are
frequently associated with bifurcations. In fact, one type of

f (.;p)
y

–
–

Kc

g(.;p)

degenerate (or singular) Hopf bifurcations (when some of the
Figure 18. A feedback system in the Lur’e form. conditions stated in the Hopf theorems are not satisfied) de-

termines the birth of multiple limit cycles under system pa-
rameters variation. Hence, the appearance of multiple limit

where � and � represent the convolution and composition oper- cycles can be controlled by manipulating the corresponding
ations, respectively, as shown in Fig. 18. First, suppose that degenerate Hopf bifurcations. This task can be conveniently
a system S � S(f , g) is given as shown in the figure without accomplished in the frequency-domain setting.
the feedback controller, Kc. Assume also that two system pa- Again, consider the feedback system of Eq. (16), which can
rameter values, ph and pc, are specified, which define a Hopf be illustrated by a variant of Fig. 18. For harmonic expansion
bifurcation and a supercritical predicted period-doubling bi- of the system output, y(t), the first-order formula is (10)
furcation, respectively. Moreover, assume that the system has
a family of predicted first-order limit cycles, stable in the yyy1 = θrrr + θ3zzz13 + θ5zzz15 + · · ·
range ph � p � pc.

where � is shown in Fig. 12, r is defined in Eq. (17), and z13,Under this system setup, the problem for investigation is
� � � , z1,2m�1 are some vectors orthogonal to r, m � 1, 2, � � � ,to design a feedback controller, Kc, added to the system as
given by explicit formulas (10).shown in Fig. 18, such that the controlled system, S* �

Observe that for a given value of �̂, defined in the graphi-S*(f , g, Kc), has the following properties:
cal Hopf theorem, the SISO system transfer function satisfies

1. S* has a Hopf bifurcation at p*h � ph.
2. S* has a supercritical predicted period-doubling bifurca-

tion for p*c � pc.

H( jω̂)

= H(s) + (−α + jδω)H ′(s) + 1
2

(−α + jδω)2H ′′(s) + · · · (41)
3. S* has a one-parameter family of stable predicted limit

cycles for p*h � p � p*c . where �� � �̂ � �, with � being the imaginary part of the
4. S* has the same set of equilibria as S. bifurcating eigenvalues, and H�(s) and H�(s) are the first and

second derivatives of H(s), defined in Eq. (16), respectively.
Only the one-dimensional case is discussed here. First, one On the other hand, with the higher-order approximations, the

can design a washout filter with the transfer function s/(s � following equation of harmonic balance can be derived:
a), where a � 0, such that it preserves the equilibria of the
given nonlinear system. Then note that any predicted first-
order limit cycle can be well approximated by [H( jω)J + I]

m∑
i=0

zzz1,2i+1θ
2i+1 = −H( jω)

m∑
i=1

rrr1,2i+1θ
2i+1

where z11 � r and r1,2m�1 � hm, m � 1, 2, � � � , in which h1 hasy(1)(t) = y0 + y1 sin(ωt)

the formula shown in Eq. (17), and the others also have ex-
In so doing, the controller transfer function becomes plicit formulas (10).

In a general situation, the following equation has to be
solved:Kc(s) = kc

s(s2 + ω2(ph))

(s + a)3

where kc is the constant control gain, and �(ph) is the fre-
[H( jω̂)J + I](rrrθ + zzz13θ

3 + zzz15θ
5 + · · · )

= −H( jω̂)[hhh1θ
3 + hhh2θ

5 + · · · ] (42)
quency of the limit cycle emerged from the Hopf bifurcation
at the point p � ph. This controller also preserves the Hopf In so doing, by substituting Eq. (41) into Eq. (42), one obtains
bifurcation at the same point. More importantly, since a � 0, the expansion
the controller is stable, so by continuity in a small neighbor-
hood of kc the Hopf bifurcation of S* not only remains super- (α − jδω) = γ1θ

2 + γ2θ
4 + γ3θ

6 + γ4θ
8 + O(θ9) (43)

critical but also has a supercritical predicted period-doubling
bifurcation (say at pc(kc), close to ph) and a one-parameter in which all the coefficients 	i, i � 1, 2, 3, 4, can be calculated
family of stable predicted limit cycles for ph � p � pc(kc). explicitly (10). Then taking the real part of Eq. (43) gives

The design is then to determine kc such that the predicted
period-doubling bifurcation can be delayed, to a desired pa- α = −σ1θ

2 − σ2θ
4 − σ3θ

6 − σ4θ
8 − · · ·

rameter value p*c . For this purpose, the harmonic balance ap-
proximation method (10) is useful, which leads to a solution where �i � �R �	i� are the curvature coefficients of the

expansion.of y(1) by obtaining values of y0, y1, and � (they are functions
of p, depending on kc and a, within the range ph � p � p*c ). To this end, notice that multiple limit cycles will emerge

when the curvature coefficients are varied near the valueThe harmonic balance also yields conditions, in terms of kc, a
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zero, after alternating the signs of the curvature coefficients serving chaos in these cases is important and healthy, which
presents a real challenge for creative research on anticontrolin increasing (or decreasing) order. For example, to have four

limit cycles in the vicinity of a type of degenerate Hopf bifur- of chaos (4).
cation that has �1 � �2 � �3 � 0 but �4 � 0 at the criticality,

Some Approaches to Anticontrolling Chaosthe system parameters have to be varied in such a way that,
for example, � � 0, �1 � 0, �2 � 0, �3 � 0, and �4 � 0. This Anticontrol of chaos is a new research direction. Different
condition provides a methodology for controlling the birth of methods for anticontrolling chaos are possible (4), but only
multiple limit cycles associated with degenerate Hopf bifurca- two preliminary approaches are presented here for illus-
tions. tration.

One advantage of this methodology is that there is no need
to modify the feedback control path by adding any nonlinear Preserving Chaos by Small Control Perturbations. Consider an
components, to drive the system orbit to a desired region. One n-dimensional discrete-time nonlinear system
can simply modify the system parameters, a kind of paramet-
ric variation control, according to the expressions of the cur- xxxk+1 = fff (xxxk, p, uk)
vature coefficients, to achieve the goal of controlling bifurca-
tions and limit cycles. xk is the system state, uk is a scalar-valued control input, p is

a variable parameter, and f is a locally invertible nonlinear
map. Assume that with uk � 0 the system orbit behaves cha-ANTICONTROL OF CHAOS
otically at some value of p, and that when p increases and
passes a critical value, pc, inverse bifurcation emerges leadingAnticontrol of chaos, in contrast to the main stream of order-
the chaotic state to periodic.ing or suppressing chaos, is to make a nonchaotic dynamical

Within the biological context, such a bifurcation is oftensystem chaotic or to retain/enhance the existing chaos of a
undesirable: There are many cases where loss of complexitychaotic system. Anticontrol of chaos as one of the unique
and the emergence of periodicity are associated with pathol-features of chaos control has emerged as a theoretically at-
ogy (dynamical disease). The question, then, is whether it istractive and potentially useful new subject in systems control
possible (if so, how) to keep the system state chaotic even iftheory and some time-critical or energy-critical high-perfor-
p � pc, by using small control inputs, �uk�.mance applications.

It is known that there are at least three common bifurca-
Why Anticontrol of Chaos? tions that can lead chaotic motions directly to low-periodic

attracting orbits: (1) crises, (2) saddle-node type of intermit-Chaos has long been considered as a disaster phenomenon
tency, and (3) inverse period-doubling type of intermittency.and so is very fearsome in beneficial applications. However,
Here, crisis refers to sudden changes caused by the collisionchaos ‘‘is dynamics freed from the shackles of order and pre-
of an attractor with an unstable periodic orbit; intermittencydictability.’’ Under good conditions or suitable control, it ‘‘per-
is a special route to chaos where regular orbital behavior ismits systems to randomly explore their every dynamical pos-
intermittently interrupted by a finite duration ‘‘burst’’ insibility. It is exciting variety, richness of choice, a cornucopia
which the orbit behaves in a decidedly different fashion; andof opportunities’’ (27).
inverse period-doubling bifurcation has a diagram in reverseToday, chaos theory has been anticipated to be potentially
form to that shown in Fig. 13 (i.e., from chaos back to lessuseful in many novel and time- or energy-critical applications.
and less bifurcating points, leading back to a periodic motion)In addition to those potential utilizations of chaos mentioned
while the parameter remains increasing.earlier in the discussion of chaos control, it is worth men-

In all these cases, one can identify a loss region, G, whichtioning navigation in the multibody planetary system, secure
has the property that after the orbit falls into G, it is rapidlyinformation processing via chaos synchronization, dynamic
drawn to the periodic orbit. Thus, a strategy to retain thecrisis management, and critical decision making in political,
chaos for p � pc is to avoid this from happening by succes-economical, and military events. In particular, it has been ob-
sively iterating G in such a way thatserved that a transition of a biological system’s state from

being chaotic to being pathophysiologically periodic can cause
the so-called dynamical disease and so is undesirable. Exam-
ples of dynamical diseases include cell counts in hematologi-
cal disorder; stimulant drug-induced abnormalities in the be-
havior of brain enzymes and receptors; cardiac interbeat
interval patterns in a variety of cardiac disorders; the resting

G1 = fff −1(G, p, 0),

G2 = fff −1(G1, p,0) = fff −2(G, p, 0),

...

Gm = fff −m(G, p, 0)
record in a variety of signal sensitive biological systems fol-
lowing desensitization; experimental epilepsy; hormone re- As m increases, the width of Gm in the unstable direction(s)
lease patterns correlated with the spontaneous mutation of a has a general tendency to shrink exponentially. This suggests
neuroendocrine cell to a neoplastic tumor; the prediction of the following control scheme (28):
immunologic rejection of heart transplants; the electroenceph-
alographic behavior of the human brain in the presence of Pick a suitable value of m, denoted m0. Assume that the orbit ini-
neurodegenerative disorder; neuroendocrine, cardiac, and tially starts outside the region Gm

0
�1 � Gm

0
� � � � � G1 � G. If

electroencephalographic changes with aging; and imminent the orbit lands in Gm
0
�1 at iterate �, the control ul is applied to

kick the orbit out of Gm
0
at the next iterate. Since Gm

0
is thin, thisventricular fibrillation in human subjects (28). Hence, pre-
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control can be very small. After the orbit is kicked out of Gm
0
, it is It turns out that this is possible under a natural condition

expected to behave chaotically, until it falls again into Gm
0
�1; at that all the Jacobians �f �k(xk)� are uniformly bounded:

that moment another small control is applied, and so on. This pro-
cedure can keep the motion chaotic. sup

0≤k≤∞
‖ fff ′

k(xxxk)‖ ≤ γ fff < ∞ (46)

Anticontrol of Chaos via State Feedback. An approach to To come up with a design methodology, first observe that
anticontrol of discrete-time systems can be made mathemati- if ��(k)

i �n
i�1 are the singular values of the matrix Tk(x0); then

cally rigorous by applying the engineering feedback control
�(k)

i � 0 for all i � 1, � � � , n and k � 0, 1, � � � . Let �i � 0 for
strategy. This anticontrol technique is first to make the Lya-

�(k)
i � 0 and

punov exponents of the controlled system either strictly posi-
tive or arbitrarily assigned (positive, zero, and negative in
any desired order), and then apply the simple mod operations σi = lim

k→∞
1
k

ln θ (k)

i (for θ (k)

i > 0), i = 1, . . ., n
(4,29). This task can be accomplished for any given higher-
dimensional discrete-time dynamical system that could be Clearly, if �(k)

i � e(k�1)�i is used in the design, then all �(k)
i will

originally nonchaotic or even asymptotically stable. The argu- not be zero for any finite values of �i, for all i � 1, � � � , n and
ment used is purely algebraic and the design procedure is k � 0, 1, � � � . Thus, Tk(x0) is always nonsingular. Conse-
completely schematic without approximations. quently, a control-gain sequence �Bk� can be designed such

Specifically, consider a nonlinear dynamical system, not that the singular values of the matrix Tk(x0) are exactly equal
necessarily chaotic nor unstable to start with, in the general to �ek�i�n

i�1: At the kth step, k � 0, 1, 2, � � � , one may simply
form choose the control gain matrix to be

xxxk+1 = fff k(xxxk) (44) Bk = (γ fff + ec)In, for all k = 0, 1, 2, . . .

where the constants c and 	f are given in Eqs. (45) and (46),where xk � Rn, x0 is given, and f k is assumed to be continu-
respectively (29). This ensures Eq. (45) to hold.ously differentiable, at least locally in the region of interest.

Finally, in conjunction with the previously designed con-The anticontrol problem for this dynamical system is to
troller—that is,design a linear state-feedback control sequence, uk � Bkxk,

with uniformly bounded constant control gain matrices,
�Bk�s � 	u � �, where � � �s is the spectral norm for a matrix, uuuk = Bkxxxk = (γ fff + ec)xxxk

such that the output states of the controlled system
anticontrol can be accomplished by imposing the mod opera-
tion in the controlled system:xxxk+1 = fff k(xxxk) + uuuk

xxxk+1 = fff k(xxxk) + uuuk (mod 1)
behaves chaotically within a bounded region. Here, chaotic
behavior is in the mathematical sense of Devaney described This results in the expected chaotic system whose trajecto-
previously—namely, the controlled map (a) is transitive, (b) ries remain within a bounded region in the phase space
has sensitive dependence on initial conditions, and (c) has a and, moreover, satisfies the aforementioned three basic
dense set of periodic solutions (9). properties that together define discrete chaos. This ap-

In the controlled system proach yields rigorous anticontrol of chaos for any given
discrete-time systems, including all higher-dimensional, lin-
ear time-invariant systems; that is, with f k(xk) � Axk in Eq.xxxx+1 = fff k(xxxk) + Bkxxxk

(44), where the constant matrix A can be arbitrary (even
asymptotically stable).let

Although uk � Bkxk is a linear state-feedback controller,
it uses full-order state variables, and the mod operation isJk(xxxk) = fff ′

k(xxxk) + Bk
inherently nonlinear. Hence, other types of (simple) feed-
back controllers are expected to be developed in the near

be the system Jacobian, and let future for rigorous anticontrol of chaos, particularly for con-
tinuous-time dynamical systems [which is apparently much
more difficult (30), especially if small control input is de-Tk(xxx0) = Jk(xxxk) · · · J1(xxx1)J0(xxx0), k = 0,1, 2, . . .

sired].
Moreover, let �k

i � �i(T�
k Tk) be the ith eigenvalue of the kth

product matrix [T�
k Tk], where i � 1, � � � , n and k � 0, 1,
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