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CONVEX OPTIMIZATION

An optimization problem can be stated in the so-called stan-
dard form as follows:

minimize f (xxx) : R → R

subject to ggg(xxx) ≤ 0, ggg : Rm → Rn
(NLP)

representing the minimization of a function f of n variables
under constraints specified by inequalities determined by
functions g � [g1, g2, . . ., gm]T. The functions f and gi are, in
general, nonlinear functions. Note that � inequalities can be
handled under this paradigm by multiplying each side by �1,
and equalities by representing them as pairs of inequalities.
The maximization of an objective function f (x) can be
achieved by minimizing �f (x). The set F � �x�g(x) � 0� that
satisfies the constraints on the nonlinear optimization prob-
lem is known as the feasible set, or the feasible region. If F

covers all of (a part of) Rn, then the optimization is said to be
unconstrained (constrained).

Note that the above standard-form formulation may not be
directly applicable to real life design problems, where often,
multiple conflicting objectives must be optimized. In such a
case, multicriterion optimization techniques and Pareto opti-
mality can be used to identify noninferior solutions (1). In
practice, however, techniques to map the problem to the form
in Eq. (NLP) are often used.

When the objective function is a convex function and the
constraint set is a convex set (both terms will be formally de-
fined later), the optimization problem is known as a convex
programming problem. This problem has the remarkable
property of unimodality, i.e., any local minimum of the prob-
lem is also a global minimum. Therefore, it does not require
special methods to extract the solution out of local minima in
a quest to find the global minimum. While the convex pro-
gramming problem and its unimodality property have been
known for a long time, it is only recently that efficient algo-
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Figure 3. A separating hyperplane (line) in two dimensions betweenFigure 1. Convex and nonconvex sets.
convex sets A and B.

Elementary Convex Setsrithms for the solution of these problems have been proposed.
The genesis of these algorithms can be traced back to the

Ellipsoids. An ellipsoid E(x, B , r) � Rn centered at pointwork of Karmarkar (2) that proposed a polynomial-time inte-
x � Rn is given by the equationrior-point technique for linear programming, a special case of

convex programming. Unlike the simplex method for linear {yyy|(yyy − xxx)TB(yyy − xxx) ≤ r2}
programming, this technique was found to be naturally exten-
sible from the problem of linear programming to general con- If B is a scalar multiple of the unit matrix, then the
vex programming formulations. It was shown that this ellipsoid is called a hypersphere. The axes of the ellip-
method belongs to the class of interior penalty methods pro- soid are given by the eigenvectors, and their lengths are
posed by Fiacco and McCormick (3) using barrier functions. related to the corresponding eigenvalues of B .
The work of Renegar (4) showed that a special version of the Hyperplanes. A hyperplane in n dimensions is given by
method of centers for linear programming is polynomial. Gon- the region
zaga (5) showed similar results for the barrier function asso-
ciated with a linear programming problem, with a proof of cccTxxx = b, ccc ∈ Rn, b ∈ RRR
polynomial-time complexity. Nesterov and Nemiorvsky (6) in-

Half spaces. A half space in n dimensions is defined by thetroduced the concept of self-concordance, studying barrier
region that satisfies the inequalitymethods in their context. Further improvements in the com-

putational complexity using approximate solutions and rank- cccTxxx ≤ b, ccc ∈ Rn, b ∈ R
one updates were shown in the work of Vaidya (7). The work
of Ye (8) used a potential function to obtain the same com- Polyhedra. A (convex) polyhedron is defined as an inter-

section of half spaces, and is given by the equationplexity as Renegar’s work without following the central path
too closely.

P = {xxx|Axxx ≤ bbb), A ∈ Rm×n, bbb ∈ Rm

corresponding to a set of m inequalities aT
i x � bi, ai �

DEFINITIONS OF CONVEXITY Rn. If the polyhedron has a finite volume, it is referred
to as a polytope. An example of a polytope is shown in

Convex Sets Fig. 2.
Definition. A set C � Rn is said to be a convex set if, for

Some Elementary Properties of Convex Setsevery x1, x2 � C and every real number �, 0 � � � 1, the
point �x1 � (1 � �)x2 � C. Property. The intersection of convex sets is a convex set. The

union of convex sets is not necessarily a convex set.
This definition can be interpreted geometrically as stating

Property (Separating hyperplane theorem). Given twothat a set is convex if, given two points in the set, every point
nonintersecting convex sets A and B, there exists a separatingon the line segment joining the two points is also a member
hyperplane cTx � b such that A lies entirely within the halfof the set. Examples of convex and nonconvex sets are shown
space cTx � b and B lies entirely within the half space cTx �in Fig. 1.
b. This is pictorially illustrated in Fig. 3.

Property (Supporting hyperplane theorem). Given a con-
vex set C and any point x on its boundary, there exists a
supporting hyperplane cTx � b such that C lies entirely
within the half space cTx � b. This is illustrated in Fig. 4.

S

y

x

Figure 2. An example convex polytope in two dimensions as an in- Figure 4. A supporting hyperplane (line) in two dimensions at the
boundary point of a convex set S.tersection of five half spaces.
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Figure 5. An example showing the convex hull of five points.

Definition. The convex hull of m points, x1, x2, . . ., xm �
Rn, denoted co(x1, x2, . . ., xm), is defined as the set of points
y � Rn such that

y

x
c = 3c = 2c = 1

Figure 7. Level sets of f (x,y) � x2 � y2.y =
mX

i=1

αixxxi, αi ≥ 0 ∀i,
mX

i=1

αi = 1

Property. A function f (x) is convex over the convex set S ifThe convex hull is thus the smallest convex set that con-
and only iftains the m points. An example of the convex hull of five

points in the plane is shown by the shaded region in Fig. 5. If ∇2 f (xxx0) ≥ 0 ∀xxx0 ∈ S
the set of points xi is of finite cardinality (i.e., m is finite),
then the convex hull is a polytope. Hence, a polytope is also i.e., its Hessian matrix is positive semidefinite over S. For
often described as the convex hull of its vertices. strict convexity, �2f (x0) must be positive definite.

Convex Functions Property. If f (x) and g(x) are two convex functions on the
convex set S, then the functions f � g and max( f, g) are con-Definition. A function f defined on a convex set � is said to
vex over S.be a convex function if, for every x1, x2 � � and every �, 0 �

� � 1,
Definition. The level set of a function f (x) is the set defined
by f (x) � c where c is a constant. An example of the level setsf [αxxx1 + (1 − α)xxx2] ≤ α f (xxx1) + (1 − α) f (xxx2)

of f (x, y) � x2 � y2 is shown in Fig. 7. Observe that the level
set for f (x, y) � c1 is contained in the level set of f (x, y) � c2f is said to be strictly convex if the above inequality is strict

for 0 � � � 1. for c1 � c2.

Property. If f is a convex function in the space S , then theGeometrically, a function is convex if the line joining two
level set of f is a convex set in S .points on its graph is always above the graph. Examples of

convex and nonconvex functions on Rn are shown in Fig. 6.
This is a very useful property, and many convex optimiza-

tion algorithms depend on the fact that the constraints areSome Elementary Properties of Convex Functions
defined by an intersection of level sets of convex functions.

Property. A function f (x) is convex over the set S if and only if
Definition. A function g defined on a convex set � is said to
be a concave function if the function f � �g is convex. Thef (xxx) ≥ f (xxx0) + [∇ f (xxx0)]T(xxx − xxx0) ∀xxx,xxx0 ∈ S
function g is strictly concave if �g is strictly convex.

where �f corresponds to the gradient of f with respect to the
vector x. Strict convexity corresponds to the case where the For a fuller treatment of convexity properties, the reader

is referred to Ref. 9.inequality is strict.

Figure 6. Convex and nonconvex functions.
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CONVEX OPTIMIZATION Barrier Methods. The barrier technique of Fiacco and
McCormick (3) is a general technique to solve any constrained

Convex Programming nonlinear optimization problem by solving a sequence of un-
constrained nonlinear optimization problems. This methodDefinition. A convex programming problem is an optimiza-
may be used for the specific case of minimizing a convex func-

tion problem that can be stated as follows:
tion over a convex set S described by an intersection of convex
inequalitiesminimize f (xxx)

such that xxx ∈ S
(CP)

S = {xxx|gi(xxx) ≤ 0, i = 1, 2, . . ., m}
where f is a convex function and S is a convex set. where each gi(x) is a convex function. The computation re-

quired of the method is dependent on the choice of the barrier
Such a problem has the property that any local minimum function. In this connection, the logarithmic barrier function

of f over S is a global minimum. (abbreviated as the log barrier function) for the set of inequal-
ities is defined as

Comment. The problem of maximizing a convex function
over a convex set does not have the above property. However,
it can be shown (10) that the maximum value for such a prob- �(xxx) =

�
−Pn

i=1 log[−gi(xxx)] for xxx ∈ S

0 otherwise
lem lies on the boundary of the convex set.

Intuitively, the idea of the barrier is that any iterative gradi-
For a convex programming problem of the type (CP), we ent-based method that tries to minimize the barrier function

may state without loss of generality that the objective func- will be forced to remain in the feasible region, due to the sin-
tion is linear. To see this, note that the problem (CP) may gularity at the boundary of the feasible region. It can be
equivalently be written as �min t:f (x) � t, g(x) � 0� shown that �(x) is a convex function over S and its value

Linear programming is a special case of nonlinear optimi- approaches infinity as x approaches the boundary of S. Intu-
zation, and more specifically, a special type of convex pro- itively, it can be seen that �(x) becomes smallest when x is,
gramming problem where the objective and constraints are in some sense, farthest away from all of the boundaries of S.
all linear functions. The problem is stated as The value of x at which the function �(x) is minimized is

called the analytic center of S.

Example. For a linear programming problem of the type de-
scribed in Eq. (LP), with constraint inequalities described by

minimize cccTxxx

subject to Axxx ≤ bbb, xxx ≥ 0

where A ∈ Rm×n, bbb ∈ Rm, ccc ∈ Rn, xxx ∈ Rn

(LP)

aT
i x � bi, the barrier function in the feasible region is given

byThe feasible region for a linear program corresponds to a poly-
hedron in Rn. It can be shown that an optimal solution to a
linear program must necessarily occur at one of the vertices
of the constraining polyhedron. The most commonly used

�(xxx) = −
nX

i=1

log(bi − aaaT
i xxx)

technique for solution of linear programs, the simplex method
(11), is based on this principle and operates by a systematic The value of bi � aT

i x represents the slack in the ith inequal-
search of the vertices of the polyhedron. The computational ity, i.e., the distance between the point x and the correspond-
complexity of this method can show exponential behavior for ing constraint hyperplane. The log barrier function, therefore,
pathological cases, but for most practical problems it has been is a measure of the product of the distances from a point x to
observed to grow linearly with the number of variables and each hyperplane, as shown in Fig. 8(a). The value of �(x) is
sublinearly with the number of constraints. Algorithms with minimized when �n

i�1(bi � aT
i x) is maximized. Coarsely speak-

polynomial-time worst-case complexity do exist; these include ing, this occurs when the distance to each constraint hyper-
Karmarkar’s method (2) and the Shor–Khachiyan ellipsoidal plane is sufficiently large.
method (12). The computational times of the latter, however,
are often seen to be impractical. As a cautionary note, we add that while the analytic center

In the remainder of this section, we will describe various is a good estimate of the center in the case where all con-
methods used for convex programming and for mapping prob-
lems to convex programs.

Path-Following Methods

This class of methods proceeds iteratively by solving a se-
quence of unconstrained problems that lead to the solution of
the original problem. In each iteration, a technique based on
barrier methods is used to find the optimal solution. If we

Analytic
center

(a) (b)

Analytic
centerp p

denote the optimal solution in the kth iteration as x*k , then
the path x*1 , x*2 , . . . in Rn leads to the optimal solution, and Figure 8. (a) Physical meaning of the barrier function for the feasi-
hence techniques of this class are known as path-following ble region of a linear program; (b) the effect of redundant constraints

on the analytic center.methods.
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straints present an equal contribution to the boundary, the The Self-Concordance Property and Step Length. The value of
� above is an adjustable parameter that will affect the num-presence of redundant constraints can shift the analytic cen-

ter. The effect on the analytic center of repeating the con- ber of Newton iterations required to find the optimum value
of the analytic center. Depending on the value of � chosen,straint p five times is shown in Fig. 8(b).

We will now consider the convex programming problem the technique is classified as a short-step, medium-step, or
long-step (possibly even with � 
 1) method. For a short-stepspecified as
method, one Newton iteration is enough, while for longer
steps, further Newton iterations may be necessary.

Nesterov and Nemirovskii (6) introduced the following idea
minimize f (xxx)

such that g(xxx) ≤ 0, i = 1, 2, . . ., m
of the self-concordance condition:

where each gi(x) is a convex function. The traditional barrier
Definition. A convex function 	 : S � R is self-concordantmethod (3) used to solve this problem formulates the corre-
with parameter a � 0 (a-self-concordant) on S if 	 is threesponding unconstrained optimization problem
times continuously differentiable on S and for all x � S and
h � Rm, the following inequality holds:minimize B(α) = α f (xxx) + �(xxx)

and solves this problem for a sequence of increasing (con- |D3ϕ(xxx)[hhh,hhh,hhh]| ≤ 2a−1/2{D2ϕ(xxx)[hhh,hhh]}3/2

stant) values of the parameter �. When � is zero, the problem
where Dk	(x)[h1, h2, . . ., hk] denotes the value of the kthreduces to finding the center of the convex set constraining
differential of 	 taken at x along the collection of directionsthe problem. As � increases, the twin objectives of minimiz-
[h1, h2, . . ., hk].ing f (x) and remaining in the interior of the convex set are

balanced. As � � �, the problem amounts to the minimiza-
tion of the original objective function f . By formulating logarithmic barrier functions that are self-

concordant, proofs of the polynomial-time complexity of vari-In solving this sequence of problems, the outer iteration
consists in increasing the values of the parameter �. The in- ous interior point methods have been shown. An analysis of

the computational complexity in terms of the number of outerner iteration is used to minimize the value of B(�) at that
value of �, using the result of the previous outer iteration as and inner (Newton) iterations is presented in Refs. 13 and 6.
an initial guess. The inner iteration can be solved using New-
ton’s method (10). For positive values of �, it is easy to see Other Interior-Point Methods
that B(�) is a convex function. The notion of a central path

Affine Scaling Methods. For a linear programming problem,for a linearly constrained optimization problem is shown in
the nonnegativity constraints x � 0 are replaced by con-Fig. 9.
straints of the type �X�1 (x � xc)� � � � 1, representing an
ellipsoid centered at xc. The linear program is then relaxed to

Method of Centers. Given a scalar value t 
 f (x*), the the following form, whose feasible region is contained in that
method of centers finds the analytic center of the set of in- of the original linear program:
equalities f (x) � t and gi(x) � 0 by minimizing the function

min{cccTxxx : Axxx = bbb, ‖X −1(xxx − xxxc)‖ < β ≤ 1}− log[t − f (xxx)] + �(xxx)

Note that the linear inequalities in Eq. (LP) have been con-where �(x) is the log barrier function defined earlier. The op-
verted to equalities by the addition of slack variables. Thistimal value x* associated with solving the optimization prob-
form has the following closed-form solution:lem associated with finding the analytic center for this barrier

function is found, and the value of t is updated to be a convex
combination of t and f (x*) as xxx(β) = xxx − β

XPAX Xccc
‖PAX Xccc‖

t ← θt + (1 − θ ) f (xxx∗), θ > 0
where PAX � I � XAT(AX2AT)�1AX. The updated value of x is
used in the next iteration, and so on. The search direction
XPAXXc is called the primal affine scaling direction and corre-
sponds to the scaled projected gradient with respect to the
objective function, with scaling matrix X. Depending on the
value of �, the method may be a short-step or a long-step
(with � 
 1) method, and convergence proofs under various
conditions are derived. For details of the references, the
reader is referred to Ref. 13.

We consider a general convex programming problem of the
type (note that the linear objective function form is used here)

{min f (yyy) = bbbTyyy : gi(yyy) ≤ 0}

   = 0
(Analytic
center)

   = 100

   = 10α

α
α

Optimum

The constraint set here is similarly replaced by the ellipsoidalFigure 9. Central path for a linearly constrained convex optimiza-
tion problem. constraint (y � yc)T H (y � yc) � �2, where yc is the center of
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the current ellipsoid, y is the variable over which the minimi- that divides the polytope into two parts such that xopt is
contained in one of them, with c � �[�f (x)]T being thezation is being performed, and H is the Hessian of the log-

barrier function ��n
i�1 log[�gi(y)]. The problem now reduces negative of the gradient of the objective function, and �

being defined as � � cT xc once again. This hyperplaneto
is the supporting hyperplane for the set f (x) � f (xc) and
thus eliminates from the polytope a set of points whose{minbbbTyyy : (yyy − yyyc)

TH(yyy − yyyc) ≤ β2}
value is larger than the value at the current center. In
either case, a new constraint cT x � � is added to thewhich has a closed-form solution of the form
current polytope to give a new polytope that has roughly
half the original volume.

Step 3. Go to step 1 and repeat the process until the poly-
yyy(β) = yyy − β

H−1bbb√
bbbTH−1bbb

tope is sufficiently small.
This is used as the center of the ellipsoid in the next iteration.
The procedure continues iteratively until convergence. Note that the center in step 1 is ideally the center of grav-

ity of the current polytope, since a hyperplane passing
through the center of gravity is guaranteed to reduce the vol-Potential-Based Methods. These methods formulate a poten-
ume of the polytope by a factor of 1 � 1/e in each iteration.tial function that provides a coarse estimate of how far the
However, since finding the center of gravity is prohibitivelysolution at the current iterate is from the optimal value. At
expensive in terms of computation, the analytic center is aneach step of a potential reduction method, a direction and
acceptable approximation.step size are prescribed; however, the potential may be mini-

mized further by the use of a line search (large steps). This is
Example. The algorithm is illustrated by using it to solvein contrast with a path-following method that must maintain
the following problem in two dimensions:proximity to a prescribed central path. An example of a poten-

tial-based technique is one that utilizes a weighted sum of the
gap between the value of the primal optimization problem
and its dual, and of the log barrier function value as the po-

minimize f (x1, x2)

such that (x1, x2) ∈ S
tential. For a more detailed description of this and other
potential-based methods, the reader is referred to Refs. 6 where S is a convex set and f is a convex function. The shaded
and 13. region in Fig. 10(a) is the set S, and the dashed lines show

the level curves of f . The point xopt is the solution to this prob-
lem. The expected solution region is first bounded by a rectan-Localization Approaches
gle with center xc, as shown in Fig. 10(a). The feasibility of

Polytope Reduction. This method begins with a polytope xc is then determined; in this case, it can be seen that xc is
P � Rn that contains the optimal solution, xopt. The poly-

infeasible. Hence, the gradient of the constraint function is
tope P may, for example, be initially selected to be an n-

used to construct a hyperplane through xc such that the poly-
dimensional box described by the set

tope is divided into two parts of roughly equal volume, one of
which contains the solution xc. This is illustrated in Fig. 10(b),{xxx|xmin ≤ x(i) ≤ xmax}
where the region enclosed in darkened lines corresponds to
the updated polytope. The process is repeated on the new,where xmin and xmax are the minimum and maximum values of

each variable, respectively. In each iteration, the volume of
the polytope is shrunk while keeping xopt within the polytope,
until the polytope becomes sufficiently small. The algorithm
proceeds iteratively as follows.

Step 1. A center xc deep in the interior of the polytope P

is found.
Step 2. The feasibility of the center xc is determined by

verifying whether all of the constraints of the optimiza-
tion problem are satisfied at xc. If the point xc is infeasi-
ble, it is possible to find a separating hyperplane pass-
ing through xc that divides P into two parts, such that
the feasible region lies entirely in the part satisfying the
constraint

cccTxxx ≥ β

where c � �[�gp(x)]T is the negative of the gradient of
a violated constraint gp, and � � cTxc. The separating
hyperplane above corresponds to the tangent plane to

f decreasing

(a)

xopt

xopt

xc

xc

xopt

xc

xc

(b)

(d)(c)

xopt

the violated constraint. If the point xc lies within the
feasible region, then there exists a hyperplane cT x � � Figure 10. Polytope reduction approach.
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Some elementary examples of such functions are:

1. Clearly, any convex (concave) function is also quasicon-
vex (quasiconcave).

2. Any monotone function f : R � R is quasilinear.
3. The linear fractional function f (x) � (aTx � b)/(cTx �

d) where a, c, x � Rn, is quasilinear over the half space
�x�cTx � d 
 0�.

f(xk)

xk

Ek + 1

Ek

∆

Figure 11. The ellipsoidal method. Other Characterizations of Quasiconvexity. A function f de-
fined on a convex set � is quasiconvex if, for every x1, x2 � �:

smaller polytope. Its center lies inside the feasible region, and
1. For every �, 0 � � � 1, f (� x1 � (1 � �)x2) �hence the gradient of the objective function is used to gener-

max[f (x1), f (x2)].ate a hyperplane that further shrinks the size of the polytope,
2. If f is differentiable, f (x1) � f (x2) ⇒ (x2 � x1)T �f (x1) � 0.as shown in Fig. 10(c). The result of another iteration is illus-

trated in Fig. 10(d). The process continues until the polytope
Property. If f ,g are quasiconvex over �, then the functionshas been shrunk sufficiently.
�f for � 
 0 and max( f,g) are also quasiconvex over �. The
composed function g( f(x)) is quasiconvex provided g is mono-Ellipsoidal Method. The ellipsoidal method begins with a
tone increasing. In general, the function f � g is not quasicon-sufficiently large ellipsoid that contains the solution to the
vex over �.convex optimization problem. In each iteration, the size of the

ellipsoid is shrunk, while maintaining the invariant that the
As in the case of convex optimization, the gradient of asolution lies within the ellipsoid, until the ellipsoid becomes

quasiconvex objective can be used to eliminate a half spacesufficiently small. The process is illustrated in Fig. 11.
from consideration. The work in Ref. 14 presents an adapta-The kth iteration consists of the following steps, starting
tion of the ellipsoidal method to solve quasiconvex optimiza-from the fact that the center xk of the ellipsoid E k is known:
tion problems.

Step 1. In case the center is not in the feasible region, the
Semidefinite Programminggradient of the violated constraint is evaluated; if it is

feasible, the gradient of the objective function is found. The problem of semidefinite programming (15) is stated as
In either case, we will refer to the computed gradient follows:
as �h(xk).

Step 2. A new ellipsoid containing the half ellipsoid given
by

minimize cccTxxx

subject to F(xxx) ≥ 0

where F(xxx) ∈ Rm×m, ccc,xxx ∈ Rn

(SDP)

Ek ∩ {xxx|∇h(xxxk)Txxx ≤ ∇h(xxxk)Txxxk)

Here, F(x) � F0 � F1 x1 � . . . � Fn xn is an affine matrixis computed. This new ellipsoid, E k�1, and its center
function of x, and the constraint F(x) � 0 represents the factxk�1, are given by the following relations:
that this matrix function must be positive semidefinite, i.e.,
zT F(x) z � 0 for all z � Rn. The constraint is referred to as a
linear matrix inequality. The objective function is linear and
hence convex, and the feasible region is convex, since if
F(x) � 0 and F(y) � 0, then for all 0 � � � 1 it can be readily

xxxk+1 = xxxk − 1
n + 1

Ak g̃ggk

Ak+1 = n2

n2 − 1

�
Ak − 2

n + 1
Ak g̃ggk g̃ggT

k Ak

�

seen that � F(x) � (1� �) F(y) � 0.
A linear program is a simple case of a semidefinite pro-where

gram. To see this, we can rewrite the constraint set A x � b
(note that the � here is a componentwise inequality, and
it is not related to positive semidefiniteness) as F(x) �

g̃ggk = ∇h(xxxk)√
∇h(xxxk)TAk∇h(xxxk)

diag(A x � b), i.e., F0 � diag(b), Fj � diag(aj), j � 1, . . ., n,
where A � [a1 a2 . . . an] � Rm�n.Step 3. Repeat the iterations in steps 1 and 2 until the

Semidefinite programs may also be used to represent non-ellipsoid is sufficiently small.
linear optimization problems. As an example, consider the
problem

RELATED TECHNIQUES

Quasiconvex Optimization

Definition. A function f : S � R, where S is a convex set, is

minimize
(cccTxxx)2

dddTxxx
subject to Axxx + bbb ≥ 0

quasiconvex if every level set La � �x�f (x) � a� is a convex set.
A function g is quasiconcave if �g is quasiconvex over S. A where we assume that dT x 
 0 in the feasible region. Note

that the constraints here represent, as in the case of a linearfunction is quasilinear if it is both quasiconvex and quasi-
concave. program, componentwise inequalities. The problem is first re-
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written as minimizing an auxillary variable t subject to the A simple illustration of this technique is in minimizing the
outer surface area of an open box of fixed volume (say, 4original set of constraints and a new constraint
units) and sides of length x1, x2, x3. The problem can be stated
as(cccTxxx)2

dddTxxx
≤ t

The problem may be cast in the form of a semidefinite pro-
minimize x1x2 + 2x1x3 + 2x1x3

subject to x1x2x3 = 4
gram as

By setting u1 � x1x2, u2 � 2x1x3, u3 � 2x1x3, and applying the
condition listed above, the minimum value of the objective
function is 3(u1u2u3)1/3 � 3(4x2

1x2
2x2

3) � 12. It is easily verified
that this corresponds to the values x1 � 2, x2 � 2, x3 � 1.

We add a cautionary note that some, but not all, posynom-

minimize t

subject to

�
��

diag(Axxx + bbb) 0 0
0 t cccTxxx
0 cccTxxx dddTxxx

�
�� ≥ 0

ial programming problems may be solved using this simple
solution technique. For further details, the reader is referredThe first constraint row appears in a manner similar to the
to Ref. 18.linear programming case. The second and third rows use

Schur complements (16) to represent the nonlinear convex
constraint above as the 2 � 2 matrix inequality Optimization Involving Logarithmic Concave Functions

A function f is a logarithmic concave (log-concave) function if
log f is a concave function. Log-convex functions are similarly

�
t cccTxxx

cccTxxx dddTxxx

�
≥ 0

defined. The maximization of a log-concave function over a
convex set is therefore a unimodal problem, i.e., any local

The two tricks shown here, namely, the reformulation of lin- minimum is a global minimum. Log-concave functional forms
ear inequations and the use of Schur complements, are often are seen among some common probability distributions on
used to formulate optimization problems as semidefinite pro- Rn, for example:
grams.

1. The Gaussian or normal distribution
Geometric Programming

Definition. A posynomial is a function h of a positive vari-
able x � Rm that has the form f (xxx) = 1√

(2π)n det �
e−0.5(x−xc )T�−1(x−xc )

where � � 0.
2. The exponential distribution

h(xxx) =
X

j

γ j

nY

i=1

xα(i, j)
i

where the exponents �(i,j) � R and the coefficients �j 
 0, �j

� R. f (xxx) =
�

nY
i=1

λ(i)

�
e−(λ(1)x(1)+λ(2)x(2)+···+λ(n)x(n))

For example, the function f (x,y,z) � 7.4x � 2.6y3.18z�4.2 �
�3 x�2y�1.4z�5 is a posynomial in the variables x, y, and z. The following properties are true of log-concave functions:
Roughly speaking, a posynomial is a function that is similar
to a polynomial, except that the coefficients �j must be posi- 1. If f and g are log-concave, then their product fg is log-
tive, and an exponent �(i,j) can be any real number, not nec- concave.
essarily a positive integer.

2. If f (x, y) is log-concave, then the integral 
S f (x, y) dx isA posynomial has the useful property (17) that it can be
log-concave provided S is a convex set.mapped onto a convex function through an elementary vari-

3. If f (x) and g(x) are log-concave, then the convolutionable transformation, x(i) � ez(i). Such functional forms are use-

S f (x � y) g(y) dy is log-concave if S is a convex setful because in the case of an optimization problem where the
(this follows from properties 1 and 2).objective function and the constraints are posynomial, the

problem can easily be mapped onto a convex programming
problem.

ENGINEERING PROBLEMS ASFor some geometric programming problems, simple tech-
CONVEX OPTIMIZATION PROBLEMSniques based on the use of the arithmetic–geometric inequal-

ity may be used to obtain simple closed-form solutions to the
There has been an enormous amount of recent interest inoptimization problems (18). The arithmetic–geometric in-
applying convex optimization to engineering problems, partic-equality states that if u1, u2, . . ., un 
 0, then their arithme-
ularly as the optimizers have grown more efficient. Thetic mean is no smaller than their geometric mean, i.e.,
reader is referred to Boyd and Vandenberghe’s lecture notes
(19) for a treatment of this subject. In this section, we present
a sampling of engineering problems that can be posed as con-

u1 + u2 + · · · + un

n
≥ (u1u2 . . . un)1/n

vex programs to illustrate the power of the technique in
practice.with equality occurring if and only if u1 � u2 � . . . � un.
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Design Centering If the hk’s are entirely known, then the problem is a linear
program. However, if they are not known exactly, given the

While manufacturing any system, it is inevitable that process
uncertainty in the hk’s, then it may be possible to say that

variations will cause design parameters, such as component
their values lie within the ellipsoid

values, to waver from their nominal values. As a result, after
manufacture, the system may no longer meet some behavioral H = {hhh|hhh = hhhc + Fppp, ‖ppp‖ ≤ 1}
specifications, such as requirements on the delay, gain, and
bandwidth, that it has been designed to satisfy. The proce- where �p� � (pTp)1/2, h � Rk�1, F � R(k�1)�q.
dure of design centering attempts to select the nominal values The robust version of the optimization problem above must
of design parameters to ensure that the behavior of the sys- ensure that the error is minimized over all possible values of
tem remains within specifications with the greatest probabil- h within the ellipsoid. To consider the worst-case tracking er-
ity and thus maximize the manufacturing yield. ror, the optimization problem may be written as

The random variations in the values of the design parame-
ters are modeled by a probability density function �(x,xc) :
Rn � [0,1], with a mean corresponding to the nominal value
of the design parameters. The yield of the manufacturing pro-
cess, Y, as a function of the mean xc is given by

minimize worst-case error = max
h∈H

max
t=1,2,...,M

| y(t) − yd(t)|
subject to Ulow ≤ u(t) ≤ Uhigh, t = 1, 2, . . ., N

|u(t + 1) − u(t)| ≤ S, t = 1,2, . . ., N − 1

The value of p at which the worst-case error is maximized
may be derived analytically (23), and the corresponding

Y (xxxc) =
Z

x∈F

(xxx,xxxc) dxxx

worst-case tracking error at that point is
where F corresponds to the feasible region where all design
constraints are satisfied. max

t=1,2,...,M
[‖FTDtuuu‖ + |hhhTDtuuu − yd(t)|]

A common assumption made by geometrical design center-
ing algorithms for integrated circuit applications is that F The problem is therefore described as a specific form of convex
is a convex bounded body. Techniques for approximating programming problem, called a second-order cone program-
this body by a polytope P have been presented in Ref. 20. ming (SOCP) problem as follows:
When the probability density functions that represent varia-
tions in the design parameters are Gaussian in nature, the
design centering problem can be posed as a convex program-
ming problem. The design centering problem is formulated
as (21)

minimize γ

subject to Ulow ≤ u(t) ≤ Uhigh, t = 1, 2, . . ., N

− S ≤ u(t + 1) − u(t) ≤ S, t = 1,2, . . ., N − 1

‖FTDtuuu‖ + [hhhTDtuuu − ydes(t)] ≤ γ

‖FTDtuuu‖ − [hhhTDtuuu − ydes(t)] ≤ γmaximize Y (xxxc) =
Z

x∈P

(xxx,xxxc) dxxx

Optimizing Structural Dynamicswhere P is the polytope approximation to the feasible region
F . Since the integral of a log-concave function over a convex Consider a linear elastic structure consisting of a stack of k
region is also a log-concave function (22), the yield function linear elastic bars connecting a set of p nodes. The topology
Y(x) is log-concave, and the above problem reduces to a prob- and lengths of the bars and their material are fixed, and the
lem of maximizing a log-concave function over a convex set. appropriate cross-sectional widths of the bars are to be deter-
Hence, this can be transformed into a convex programming mined. The elastic stored energy of this system is given by
problem. fTd, where f is the vector of load forces and d is the vector of

(small) node displacements. The relation between f and d is
Robust Optimal Control given by f � A(x) d, where A(x), called the stiffness matrix,

is an affine sum of the variables xi, given by A(x) � �k
i�1xi AiConsider a single-input single-output discrete-time linear dy-

with the matrices A being all symmetric positive semidefinite.namic system with a finite impulse response described by
The optimization problem of minimizing the elastic stored en-
ergy (24) can then be stated as follows:y(t) = h0u(t) + h1u(t − 1) + · · · + hku(t − k)

where u is the input sequence, y is the output sequence, and
ht is the tth impulse response coefficient. Given a desired re-
sponse yd(t), the problem is to find an finite bounded input
sequence u(t) for which the output y(t) most closely tracks the
desired response, subject to constraints on the slew rate of
the input signal. The problem may be stated as

minimize fff Tddd

subject to
kX

j=1

l jx j ≤ v

fff = A(xxx)ddd

xj,min ≤ xj ≤ xj,max for j = 1,2, . . ., k

Here v is the maximum volume, and zj the length of the jth
bar. The last constraint places simple bounds on the values
of the x variables (clearly, all of these variables must be posi-
tive, since they correspond to physical lengths). We can then

minimize error = max
t=1,2,...,M

|y(t) − yd (t)|
subject to Ulow ≤ u(t) ≤ Uhigh, t = 1, 2, . . ., N

|u(t + 1) − u(t)| ≤ S, t = 1, 2, . . ., N − 1
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rewrite the problem by eliminating the d variables by substi- the dominant eigenvalue of a matrix G�1C, where G and C
are, respectively, matrices representing the conductancestution, as follows:
(corresponding to the resistances) and the capacitances re-
ferred to above. The entries in both G and C are affine func-
tions of the xi’s. The dominant time constant can be calculated
as the negative inverse of the largest zero of the polynomial
det(sC � G). It is also possible to calculate it using the follow-
ing linear matrix inequality:

minimize fff TA(xxx)−1 fff

subject to
kX

j=1

l jx j ≤ v

xj,min ≤ xj ≤ xj,max for j = 1,2, . . ., k

Tdom = min{T|TG − C ≥ 0}
Using Schur complements, this leads to the semidefinite pro-
gramming formulation in x and t given by The ‘‘�0’’ here refers to the fact that the matrix must be posi-

tive definite. To ensure that Tdom � Tmax for a specified value
of Tmax, the linear matrix inequality TmaxG(x) � C(x) � 0 must
be satisfied. This sets up the problem in the form of a semi-
definite program as follows (28):

minimize t

subject to

�
t fff T

fff A(x)

�
≥ 0

kX
j=1

l jx j ≤ v

xj,min ≤ xj ≤ xj,max for j = 1,2, . . ., k

minimize
nX

i=1

lixi

subject to TmaxG(xxx) − C(xxx) ≥ 0

xxxmin ≤ xxx ≤ xxxmax

VLSI Transistor and Wire Sizing
Largest Inscribed Ellipsoid in a Polytope

Convex Optimization Formulation. Circuit delays in inte-
Consider a polytope in Rn given by P � �x�ai

T x � bi, i � 1,grated circuits often have to be reduced to obtain faster re-
2, . . ., L� into which the largest ellipsoid E , described assponse times. Given the circuit topology, the delay of a combi-
follows, is to be inscribed:national circuit can be controlled by varying the sizes of

transistors, giving rise to an optimization problem of finding
the appropriate area–delay tradeoff. The formal statement of E = {Byyy + ddd|‖yyy‖ ≤ 1}, B = BT > 0

the problem is as follows:
The center of this ellipsoid is d, and its volume is proportional
to det B. The objective here is to find the entries in the matrix
B and the vector d. To ensure that the ellipsoid is contained

minimize area

subject to delay ≤ Tspec
(TS)

within the polytope, it must be ensured that for all y such
that �y� � 1,

The circuit area is estimated as the sum of transistor sizes,
i.e., aaaT

i (Byyy + ddd) ≤ bi

Therefore, it must be true that sup�y��1 (aT
i By � aT

i d) � bi, or
in other words, �B ai� � bi � aT

i d. The optimization problem
area =

nX

i=1

xi

may now be set up as

where xi is the size of the ith transistor and n is the number
of transistors in the circuit. This is easily seen to be a posy-
nomial function of the xi’s. The circuit delay is estimated us-
ing the Elmore delay estimate (25), which calculates the delay

maximize log det B

subject to B = BT > 0

‖Baaai‖ ≤ bi − aaaT
i ddd, i = 1, 2, . . ., L

as a maximum of path delays. Each path delay is a sum of
resistance–capacitance products. Each resistance term is of This is a convex optimization problem (6) in the variables B
the form a/xi, and each capacitance term is of the type � bi and d, with a total dimension of n(n � 1)/2 variables corre-
xi, with the constants a and bi being positive. As a result, the sponding to the entries in B and n variables corresponding to
delays are posynomial functions of the xi’s, and the feasible those in d.
region for the optimization problem is an intersection of con-
straints of the form Beamforming

Antenna arrays are often used to detect and process signals(posynomial function in xi ’s) ≤ Tspec
arriving from different directions. Each sensor is associated
with a parameter called its weight, typically a complex num-Since the objective and constraints are both posynomial func-
ber, and the values of these weights determine the beam pat-tions in the xi’s, the problem is equivalent to a convex pro-
tern. For a planar array with N elements, the beam patterngramming problem. Various solutions to the problem have
is given by the expressionbeen proposed, for instance, in Refs. 26 and 27.

Semidefinite Programming Formulation. In the problem (TS)
above, the circuit delay may alternatively be determined from

G(θ )

NX

i=1

wi gi(θ ) exp
�

j
2π

λ
(xi cos θ + yi sin θ )

�
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