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DIGITAL CONTROL

The revolutionary advances in computer technology today
have made it possible to replace conventional controllers with
digital computers. Digital control thus refers to the control
scheme in which the controller is a digital device, generally a
digital computer. This means that we can make use of a much
more advanced control logic and versatility than those made
possible with conventional analog controllers. On the other
hand, we also need an interface that connects a computer
with real plants. In particular,

Measurement is made at discrete instants in time
Data must be spatially discretized to allow digital data

handling

In other words, digital controllers can handle data that are
discretized both in time and space. The former discretization
is usually referred to as sampling and the latter quantization.
These two features place digital control systems outside the
scope of the usual linear, time-invariant control systems.
(There is also the problem of saturation effect when control-
lers have a fixed word length. But this problem is much less
studied in the context of digital control.)

To see the situation more concretely, consider the unity-
feedback digital control system shown in Fig. 1. Here r is the
reference signal, y the system output, and e the error signal.
These are continuous-time signals. The error e(t) goes
through the sampler (or an A/D converter) S . This sampler

ed ud

S C(z) C(z)H
r e y+

–

Figure 1. A unity-feedback digital control system consisting of a con-
tinuous-time plant P(s), discrete-time controller C(z), sampler S and
a hold device H .
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Figure 2. Quantization converts the slanted straight line (thin) to Figure 4. A D/A converter is constructed with an operational ampli-
the piecewise step zigzag function (thick). fier, switching, and resistors.

reads out the values of e(t) at every time step h called the In the process above, a quantization error occurs in the
sampling period, and produces a discrete-time signal ed[k], A/D conversion. This is a round-off error that occurs when
k � 0, 1, 2, . . .. In this process, a quantization error (due to we convert analog values to digital data (often with a fixed
round-off) as shown in Fig. 2 occurs. The sampling operator wordlength), as shown in Fig. 2. This introduces a nonlinear-
S acts on a continuous-time signal w(t), t � 0 as ity into the system although other system components may

be linear. A possible effect is that the closed-loop system may
exhibit typical nonlinear behavior, such as limit cycles. SuchS (w)[k] := w(kh), k = 0, 1, 2, . . .

phenomena are, however, much less studied compared to the
(The quantization effect is omitted here.) The discretized sig- effect arising from data sampling in time, and one usually
nal is then processed by a discrete-time controller C(z) and assumes that sufficient spatial resolution is guaranteed so
becomes a control input ud. This signal then goes through an- that the effect of quantization is negligible.
other interface H called a hold device or a D/A converter to The term digital control is thus used almost synonymously
become a continuous-time signal. A typical example is the with sampled-data control (that is, the control scheme where
zero-order hold, where H simply keeps the value of a discrete- measurement and control actions occur intermittently with a
time signal w[k] as a constant until the next sampling time: fixed period) and quantization effects are ignored. Usually

one considers single-rate sampled-data control systems where
sampling and hold actions occur periodically with a fixed pe-(H (w[k]))(t) := w[k], for kh ≤ t < (k + 1) h
riod in a synchronized way. In practice, however, there are

A typical sample-hold action [with C(z) � identity] is shown varied situations in which different sampling rates are em-
in Fig. 3. A simple D/A converter can be constructed with ployed at distributed control stations. Such a situation leads
operational amplifiers, resistors, and switching devices as de- to multirate sampled-data control systems. However, for the
picted in Fig. 4. Because this construction requires high preci- sake of simplicity this article deas with single-rate systems.
sion in resistors, more elaborate circuitry is adopted in
practice.

z-TRANSFORMThere are other types of hold devices, for example, a first-
order hold for various reasons. In this article, however, we

We start with a fundamental description of systems and se-confine ourselves to the zero-order hold above.
quences. Let �w[k]��

k�0 denote a sequence with values in some
vector space X. Typically, X is the n-dimensional vector space
�n, but we will later encounter an example where X is not
finite-dimensional. The z-transform of w � �w[k]��

k�0 is defined
to be the formal sum (mathematically, this is called a formal
power series):

Z [w](z) :=
∞∑

k=0

w[k]z−k

with indeterminate z. It is also denoted as ŵ(z). The negative
powers of z is in accord with the usual convention. Here z is
just a formal variable, and z-transform at this stage simply
gives a convenient way of coding sequences via the correspon-Figure 3. A simple sample-hold combination maps a continuous-

time signal to a piecewise step function. dence t } z�t.
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It can be readily verified that the z-transform Z [w � u] of ues on or outside the unit circle �z : �z� � 1�. This is equivalent
to the transfer function being analytic in �z : �z� � 1�, providedthe discrete convolution
that there are no hidden poles of (zI � A)�1 cancelled by the
numerator.

Let us now give a sample-point description of the continu-(w ∗ u)[k] :=
k∑

j=0

w[k − j]u[ j]

ous-time plant P(s). Let (A, B, C) be its (minimal) realization.
For brevity, we assume that the direct feedthrough term ofis given by the product Z [w]Z [u] of the z-transforms of the
P(s) is zero. This meanstwo sequences, i.e.,

Z [w ∗ u] = Z [w]Z [u]
ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t)
(4)

As a special case, the multiplication by z�1 yields the time- The first objective is to give a description of this plant at sam-
shift (delay): �w[k]��

k�0 � �w[k � 1]��
k�1. Similarly, the multipli- pling instants t � kh, k � 0, 1, 2, . . .. By the zero-order hold,

cation by z yields the time-advance operator: �w[k]��
k�0 � the input to the plant for kh � t � (k 	 1)h is the constant

�w[k 	 1]��
k�0. ud[k]. Suppose that the state of the plant at t � kh is x[k] �

The z-transformation plays the role of the Laplace trans- x(kh). Then by integrating Eq. (4) from kh to (k 	 1)h, we
formation in the continuous-time case. As with Laplace trans- obtain
forms, it is useful to consider the substitution of a complex
number to the variable z. For example, the geometric se-
quence ��kv��

k�0 has the z-transform

∞∑
k=0

λkz−kv = zv
z − λ

(1)

We can consider this as a function with complex variable z.

x[k + 1] = x((k + 1)h) = eAhx[k] +
∫ h

0
eA(h−τ )Bud[k] dτ

= eAhx[k] +
∫ h

0
eA(τ )Bdτud[k] =: Adx[k] + Bdu[k]

y[k] = y(kh) = Cx[k] =: Cdx[k]
(5)

The sequence ��kv� tends to zero if and only if ��� � 1; this is
In other words, the behavior of P(s) at the sampling instantsequivalent to its z-transform being analytic in �z : �z� � 1�.
can be described by a time-invariant discrete-time systemFor a fixed sampling period h, the z-transform of a continu-
(Ad, Bd, Cd). This is the formula due to Kalman and Bertramous-time signal x(t) is understood to be the z-transform of its
(1). Its transfer functionsampled sequence:

Pd(z) := C(zI − eAh)−1
∫ h

0
eAτ BdτZ [x](z) :=

∞∑
k=0

x(kh)z−k

is called the pulse transfer function of P(s). Then the composite
There is a way to compute Z [x](z) from its Laplace transform transfer function of the closed-loop system, when confined to
(see Theorem below). Note also that the z-transform of an ex- sampled instants, is given by Pd(z)C(z)(I 	 Pd(z)C(z))�1. We
ponential function e�t is z/(z � e�h): then have the following result.

Theorem 1. The behavior of the sampled-data system in Fig.Z [eµt](z) = z
z − eµh (2)

1 at sampled instants can be described by a time-invariant,
discrete-time equation. To be more precise, let (A0, B0, C0, D0)Let us now give a system description. Suppose that a dis-
and (A, B, C) be the minimal realizations of C(z) and P(s),crete-time system
respectively. Then the behavior of the closed-loop system at
sampled instants can be represented by system matricesx[k + 1] = Ax[k] + Bu[k]

y[k] = Cx[k] + Du[k]
(3)

is given. Taking z-transforms of sequences �x[k]�, �u[k]�,

�[
A0 −B0Cd

BdC0 Ad − BdD0Cd

]
,

[
B0

BdDD0

]
, [0 Cd]

�

�y[k]� and using the fact that the multiplication by z induces
Example 1. Let P(s) � 1/s2. This has a realizationthe time-advance operator, we see that

zx̂ = Ax̂ + Bû

ŷ = Cŷ + Dû

dx
dt

=
[

0 1
0 0

]
x +

[
0
1

]
u

y = [1 0] x
Solving this, we have

Equation (5) is then computed easily as
ŷ = C(zI − A)−1x0 + [D + C(zI − A)−1B]û

where x0 is the initial state at time 0. The second term D 	
C(zI � A)�1B is the transfer function of this system. It is
(asymptotically) stable if and only if zI � A has no eigenval-

x[k + 1] =
[

1 h
0 1

]
x[k] +

[
h2/2

h

]
ud[k]

y[k] = [1 0] x[k]
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Much of the classical theory for sampled-data control is x(t), its modified z-transform Z [x](z, m), 0 � m � 1 is defined
asdevoted to the computation of the pulse transfer function from

a given continuous-time transfer function. Note that this pre-
cedes the advent of the modern state space theory, and elabo-
rate formulas in the z and Laplace transform domains have

Z [x](z, m) :=
∞∑

k=0

x(kh + mh)z−k (9)

been found. For example, the following theorem is well
known (2,3): As in Theorem 2, the following result holds.

Theorem 2. Let P(s) be a rational function such that it is Theorem 4. Assuming the same conditions as in Theorem 2,
analytic for �s : �s� 
 R� for some R 
 0 and sP(s) � � as �s� � the following formulas for the modified z-transform holds:
� for some real �. Then

Z [P](z, m) = 1
2π j

∮
C

P(s)emhs

1 − emhsz−1
ds

=
∑

poles of P(s)

Res
[

P(s)emhs

1 − emhsz−1

]Z [P](z) = 1
2π j

∮
γ

P(s)
1 − ehsz−1 ds

=
∑

poles of P(s)

Res
[

P(s)
1 − ehsz−1

] (6)

where � denotes a contour that travels from c � j� to c 	 The modified z-transform has a close connection with lifted
j� [c: abscissa of convergence of P(s); the coordinate to the transfer functions in the modern approach (see the section
right of which the Laplace integral defining P(s) converges] entitled Modern Approach).
and goes around a semcircle on the left half-plane that encir-
cles all poles of P(s).

CLASSICAL DESIGN METHODS AND THEIR LIMITATIONS

Once the sample-point behavior is specified by the proce-
We briefly review the classical design methods and their limi-dure above, it is easy to give a description of the intersample
tations. The first is a design method based on the continuous-behavior of the output or the state. Suppose, for example, that
time design.the state of the plant P(s) takes values x[k] at t � kh, k � 0,

1, 2, . . .. By integrating Eq. (4) from t � kh to t � kh 	 �
Continuous-Time Design(0 � � � h), we get

A simple, straightforward method is to employ a continuous-
time design, obtain a continuous-time controller, and then
convert the controller to a discrete-time system via some kind

x(kh + θ ) = eAθ x[k] +
∫ θ

0
eA(θ−τ )Bud[k] dτ (7)

of discretization. Let Cc(s) be a continuous-time controller.
and Typical discretization methods are the following:

• Use the Tustin (bilinear) transformation:y(kh + θ ) = Cx(kh + θ ) (8)

This shows that if x[k] and ud[k] tend to zero as k � �,
then the intersampling behavior x(kh 	 �), 0 � � � h also

C(z) = Cc

�2
h

· z − 1
z + 1

�

tends to zero uniformly for � as k � �. This is because
the right-hand side of Eq. (7) is just the multiplication and • Employ the backward difference (z � 1)/hz for approxi-
convolution of known continuous functions with x[k] and mating the differential operator s.
ud[k] over a finite interval. Therefore, the stability of a sam- • Approximate Cc(s) by using the sample/hold equivalent
pled-data system can be determined solely by its sample-point Eq. (5).
behavior. We summarize this observation in the form of a
theorem: Among these, the first method is most commonly used.

It is well known that the Tustin transformation preserves
Theorem 3. The closed-loop system in Fig. 1 is stable if the stability: if Cc(s) is a stable transfer function (in the sense of
discrete-time closed-loop system consisting of C(z) and Pd(z) is continuous-time systems), then the transformed function
stable. Therefore, to stabilize the plant P(s) in the sampled- Cc(2(z � 1)/h(z 	 1)) gives a stable (in the sense of discrete-
data setting Fig. 1, it is necessary and sufficient that Pd(z) be time systems) discrete-time transfer function. Although this
stabilized by C(z). is a great advantage in signal processing, care must be exer-

cised in control system design, because this property does not
guarantee the closed-loop stability. In fact, as h becomesThis result gives a foundation for the classical treatment

of sampled-data systems. To design (or at least to stabilize) a larger, there is even a case in which the closed-loop stability
is violated (see the example in the section entitled ‘‘H� De-sampled-data system, one can equivalently stabilize the pulse

transfer function Pd(z) derived from P(s). This led to the clas- sign’’). This is because the original continuous-time design
does not usually take account of the sampling period. To takesical design procedure based on pulse transfer functions.

Equations (7) and (8) are closely related to the notion of care of this, one has to pay more attention to various ro-
bustness properties, such as gain and phase margins, and sothe modified z-transform. For a continuous-time function
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on. To discuss such properties, frequency domain considera- Let us consider the stabilization by state feedback. If we em-
ploy a sampled state feedbacktions are highly desirable.

However, the notion of frequency response is not readily
available. To see the situation, let C(z) be a discrete-time ud[k] = −Kx[k]
transfer function. Suppose that a sinusoid ej�t is applied after
sampling. Then the actual input to C(z) is �ekj�h��

k�0 with z-
then by Theorem 3 the stability of the closed-loop system istransform z/(z � ej�h) given by Eq. (2). The steady-state re-
determined by the spectrum ofsponse of C(z) against this input is then given by

�ekj�hC(ej�h)��
k�0. It appears that we can discuss the frequency

domain properties via C(ej�h). For example, one might attempt Ad − BdK (10)

to employ phase lead/lag compensation based on this quan-
tity. However, due to sampling, this frequency response does Thus this is a purely discrete-time pole-placement problem.
not fully represent the nature of continuous-time inputs. For Furthermore, if we can set the eigenvalues of Eq. (10) all to
example, not only ej�t but also ej(�	2n�/h)t, n � �1, �2, . . . give zero, then x[k] becomes zero after a finitely number of steps
exactly the same sampled values �ekj�h��

k�0. The response is if there is no external input. Also with Eqs. (7) and (8), not
then governed by the same C(ej�h). This means that sampling only x[k] but also the intersampling trajectory will settle to
does not have enough resolution to distinguish all these sinu- zero. This clearly shows the advantage of the state space the-
soids, and the notion of phase, which depends on the response ory, which was introduced around that time.
against sinusoids, is unclear in such a sampled-data control The problem is thus reduced to the pole allocation for the
setup. Another way of seeing this is to note that e�j�h � ej�h discrete-time system (Ad, Bd) and the feasibility of this is re-

duced to the problem of determining the controllability andand hence C(ej(2�/h��)h) � C(ej�h). This means that beyond the
stabilizability of this pair. Naturally, we may as well assumefrequency �/h, the same gain characteristic repeats periodi-
that the continuous-time plant (A, B, C) is stabilizable or con-cally and C(ej�h) cannot be treated as the same frequency re-
trollable. Otherwise, it is not possible to stabilize the plantsponse concept as in the continuous-time case. This is related
even with continuous-time controllers.to the notion of aliasing, which we examine in more detail in

For brevity, let us consider controllability. The followingthe section ‘‘Modern Approach.’’
result is well known (4):It may be still possible to execute an elaborate continuous-

time design that also works well in the sampled-data setting
by looking more closely into the nature of the Tustin transfor- Theorem 5. Let �1, . . ., �n be eigenvalues of A. Suppose that
mation. However, in such a method, a systematic design for no pair �i, �j (i � j), �i � �j is an integer multiple of 2�/h.
method such as H� design theory is difficult to apply. Further- Then (Ad, Bd) is controllable if and only if (A, B) is control-
more, one needs a more concrete understanding of the phe- lable.
nomena above, and this is much better done in the modern
approach treated in the subsequent sections.

The proof is an easy consequence of the fact that the eigenval-
ues of Ad � eAh are �e�1, . . ., e�n�. This is a variant of the spec-

Discrete-Time Design tral mapping theorem, but we skip the details here (4,5).
By the discussions above, it may appear that sampled-dataYet another classical approach is based on the pulse transfer

control systems can be safely designed via discrete-time de-function Pd(z). As far as stability is concerned, one can deal
sign methods. Note that, at least for the deadbeat control viaonly with Pd(z). It was also recognized that sampled-data con-
state space, we can also settle the intersample behavior iden-trol can achieve performance that is not possible with linear,
tically to zero after a finite number of steps. However, this istime-invariant, continuous-time controller. For example, the
valid only for regulation problems, and the issue of the inter-so-called deadbeat control achieves the property that the out-
sample behavior for tracking (servo control) problems, whereput (or state) settles exactly to zero after a finite time period.
exogenous signals are present, is quite different. To see this,This is done by placing all poles of the closed-loop system to
consider the example depicted in Fig. 5. Here the continuous-zero; the output, at least at sampled instants, then becomes
time plant is 1/(s2 	 1) whose natural frequency is 1 rad/s.zero after a finite time—a performance not possible with con-
On the other hand, the tracking signal is sin (1 	 2�/0.1)ttinuous-time controllers.
where the sampling period h is 0.1 s. It so happens that, atIt should be, however, noted that such a classical treat-
sampling instants t � kh, k � 0, 1, 2, . . ., this signal is iden-ment also shares the weakness of the classical transfer func-
tical with sin t because (2�/0.1)kh � 2k�. Therefore, for thetion approach. Namely, it did not take account of hidden
discrete-time controller the tracking signal is no differentpole–zero configurations. In particular, it was observed that

merely settling the output might sometimes induce very large
intersample ripples.

It was Kalman and Bertram (1) who introduced the state
space approach for sampled-data systems. As we have already
seen, the sample-time input–output relation is described by

ed ud

S H
r e y+

–

e–2h–1
z – e–2h

1
s2 + 1

sin(1 + 20  )tπ

Figure 5. A unity feedback system with tracking reference signal
sin(1 	 20�)t.

x[k + 1] = Adx[k] + Bdud[k] = eAhx[k] +
∫ h

0
eAτ Bdτ ud[k]
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strict sense, if we take the intersample behavior into account.
This is closely related to the issue of the notion of aliasing
effects and Shannon’s sampling theorem. We briefly review
these in the next section.

SAMPLING THEOREM

Let f (t) be a given continuous-time signal on (��, �). To
make the sampling well defined, we assume that f is a contin-
uous function. The sampled sequence is �f (kh)��

k���. As it is,
this is just a sequence defined on the set of integers. The
question here is how we should represent this sequence in the
continuous-time domain.

Recall that the z-transform of �f (kh)��
k��� is

1

0.5

0

–0.5

–1
43 43.2 43.4 43.6 43.8 44

Time (sec)

Figure 6. The simulation of Figure 5 shows that the input sin(1 	

∞∑
k=−∞

f (kh)z−k

20�)t does not yield a sinusoid at the same frequency, and large inter-
sample ripples result.

We have extended the definition in a natural way to the nega-
tive ks. We also recall that the multiplication by z�1 is the
right shift operator. Since the kth signal value f (kh) is placed

from sin t. The simulation result is shown in Fig. 6. The plant at t � kh, this right shift corresponds to the right shift by
output is shown by the solid curve while the reference input time length h in the continuous-time domain. It is also well
is shown by the dashed curve. The output tracks sin t rather known that in the Laplace transform domain the right shift
than sin(1 	 2�/0.1)t, and there is a large amount of inter- operator by h is represented by the multiplication by e�hs.
sample ripples due to the difference between sin(1 	 2�/0.1)t Therefore, it is natural to represent the Laplace transform of
and sin t. the sequence �f (kh)��

k��� by
This example shows the following:

• There can be large intersample ripples for sampled-data
∞∑

k=−∞
f (kh)e−khs

systems.
• Such ripples are difficult to characterize via the discrete-

The inverse Laplace transform of this is the train of impulsestime framework as described above.
(Delta functions) multiplied by f (kh) at the kth step:

• The ripples do not appear to be stationary.

The observations above indicate that the discrete-time model
Eq. (5) is generally not appropriate for describing sampled-

∞∑
k=−∞

f (kh)δ(t − kh) (11)

data systems when there are nontrivial intersample ripples.
Observe that this is formally a multiplication of f (t) with theWhat is indicated here is that we need a framework that can
train of impulsesgive a description for the continuous-time behavior of a sam-

pled-data system.
Suppose that we wish to describe a frequency response. Let

sin �t be an input applied to the sampled-data system shown

∞∑
k=−∞

δ(t − kh) (12)

in Fig. 1. For linear, time-invariant, stable continuous-time
systems, it is well known that a single sinusoid yields another

and thus it is called the impulse modulation of f (t).sinusoid in the steady-state output, with exactly the same fre-
The question that concerns us here is the following: Sup-quency, possibly with gain and phase shifts. To be more pre-

pose that we are given a sampled sequence �f (kh)��
k���, orcise, let G(s) be the transfer function of such a system. It is

��
k��� f (kh)e�khs just as well. How much can we recover thewell known that the steady-state output is

original signal f (t) out of this piece of data?
If we impose no condition on f (t), then the solution isG( jω) sinωt

clearly nonunique. There is infinite freedom in the intersam-
pling periods while passing through f (kh), k � �. A typicalThat is, as t � �, the output asymptotically approaches
solution is obtained by assuming that f (t) is band-limited;G( j�) sin �t.
that is, its Fourier transform is zero outside a bounded inter-Such a separation principle does not hold for sampled-data
val. This is the content of the following Shannon samplingsystems. In fact, the example shown in Fig. 6 shows a coun-
theorem.terexample: the steady-state output against sin(1 	 2�/0.1)t

is sin t—sinusoid, but with a different frequency.
One of the reasons for such a phenomenon is that sampled- Theorem 6. Let f be a continuous function that is Fourier

transformable. Suppose that its Fourier transform is identi-data systems are no longer time-invariant systems in a very
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cally zero outside the interval (��/h 	 �, �/h � �) for some to ��
n��� f̂(� � 2n�/h). Then only the spectrum f̂(�) in the

fundamental frequency range (��/h, �/h) remains. Applying� 
 0. Then
the inverse Fourier transform, we obtain

f (t) =
∞∑

n=−∞
f (nh)

sinπ(t/h − n)

π(t/h − n)
(13)

We now briefly indicate the outline of a proof.
As noted above, Eq. (11) is obtained by multiplying f (t) to

the train of impulses [Eq. (12)]. Hence its Fourier transform
is just the convolution of the respective Fourier transforms
(6). For the Fourier transform of Eq. (12), the following Pois-

f (t) = F [f̂(ω)] = F

[
α(ω)

∞∑
n=−∞

f̂(ω − 2nπ/h)

]

= h F [α] ∗
� ∞∑

n=−∞
f (nh)δ(t − nh)

�

=
∞∑

n=−∞
f (nh)sinc(t − nh)

son summation formula is well known (6):
where sinc t :� hF [�]. This function is easily computed as

F

� ∞∑
n=−∞

δ(t − nh)

�
= 2π

h

∞∑
n=−∞

δ

�
t − 2nπ

h

�
(14)

sinc t = sinπt/h
πt/h

It follows that

This readily implies Eq. (13).
This result also clarifes the meaning of Theorem 5. When

there is a pair of eigenvalues that differ only by an integer
multiple of 2�/h, the corresponding two modes cannot be dis-
tinguished because they yield the same eigenvalues when dis-
cretized.

Some remarks are in order. Although Eq. (13) certainly
gives a well-defined reconstruction formula, it is crucially
based on the assumption that the original signal f (t) is band
limited. This assumption, which appears quite innocent, is
seldom satisfied in practice. In fact, if f is band limited, it
must be an entire function; that is, it is analytic on the whole
complex plane. We can hardly expect real signals to be ana-

F

� ∞∑
n=−∞

f (nh)δ(t − nh)

�
= F

�
f (t)

∞∑
n=−∞

δ(t − nh)

�

= 1
2π

f̂(ω) ∗
�

2π

h

∞∑
n=−∞

δ

�
t − 2nπ

h

��

= 1
h

f̂(ω) ∗
� ∞∑

n=−∞
δ

�
t − 2nπ

h

��

= 1
h

∞∑
n=−∞

f̂ ∗ δ

�
t − 2nπ

h

�

= 1
h

∞∑
n=−∞

f̂
�
ω − 2nπ

h

�
lytic functions. Therefore, the assumption for Eq. (13) can be
satisfied only in an approximate sense. The second drawbackIn other words, we get infinitely many copies of the shifted
is that Eq. (13) is not causal. In other words, it makes use ofimage of f̂(�) as shown in Fig. 7. This is because a sinusoid
future sampled values f (nh) to reconstruct the current valuesin �t behaves precisely the same as sin(� 	 2m�/h)t at sam-
f (t). It is therefore not physically realizable. To remedy this,pled points t � nh, n � 0, �1, �2, . . .. Such higher frequency
one should be content with approximation, and a large por-signals that arise from sampling are called alias components.
tion of digital signal processing is devoted to the various solu-It is clearly not possible to recover the original signal f (t) from
tions of this problem.such data contaminated by aliasing. In particular, there is in

Theorem 6 also yields the following observations:general an overlapping of f̂(� � 2n�/h). (The period �s :�
2�/h of these spectra is called the sampling frequency and its
half �/h the Nyquist frequency.) • By sampling, intersampling information is generally lost.

However, it is possible to recover f (t) if such an overlapping • In particular, sinusoids sin(� 	 2n�/h)t, n � 0, �1, �2,
does not occur. Indeed, it will be clear from Fig. 7 that if the . . . cannot be mutually distinguished.
original spectrum f̂ is zero outside the interval (��/h, �/h),

• However, this is about the maximum uncertainty intro-
then there is no overlapping among those copies. The band- duced by sampling. After sampling, all the components
limited hypothesis that f̂ is zero outside (��/h 	 �, �/h � �) that arise in the output are combinations of all such alias
guarantees this. To eliminate all unnecessary alias compo- components �sin(� 	 2n�/h)t��

n���.
nents, multiply the function

The last statement still needs to be clarified. The basic
idea is the following: When a sinusoid sin �t is sampled, it isα(ω) :=

{
1 (|ω| ≤ π/h)

0 (|ω| > π/h)
(15)

converted to a modulated train of impulses as shown in
Eq. (12). In other words, infinitely many alias components
�sin(� 	 2n�/h)t� are excited by sampling. To avoid an unde-
sirable effect arising from such aliased components, it is gen-
erally necessary to place an analog low-pass filter (usually
called an anti-aliasing filter) in front of the sampler. Since
this cannot cancel the alias components completely, how
much such alias components affect the overall performance is

π
f(  )ϖ^

f(   – 2  /h)

π  /h

ϖ^

π–   /h a concern. Such a question has been studied in the literature
(2,3,7). However, its general structure is better understood inFigure 7. The spectrum of f repeats periodically with period 2�/h.
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the scope of the modern approach, which we describe in the t � kh. As in Eq. (5), the state x[k 	 1] at time (k 	 1)h is
given bysubsequent sections.

MODERN APPROACH x[k + 1] = eAhx[k] +
∫ h

0
eA(h−τ )Bu[k](τ )dτ (17)

We now turn our attention to the foundation of the modern
The difference here is that the lifted input u[k]( 
 ) need nottreatment of sampled-data systems. From what we have pre-
be a constant on (kh, (k 	 1)h), and the right-hand side inte-sented up to this section, it is clear that the fundamental dif-
gral gives an operatorficulty in sampled-data control systems lies in the fact that

they involve two different time sets: one is discrete (arising
from the digital controller) and the other is continuous (aris-
ing from the continuous-time plant). This difficulty has been L2[0, h) → R

n : u(·) �→
∫ h

0
eA(h−τ )Bu(τ )dτ

successfully circumvented in the modern approach.

While state-transition is described in the discrete timing as
A New Model with Intersample Behavior—Lifting above, the system keeps producing an output. If we consider

lifting of x(t), it is easily seen to be described byWhile it is possible to recover intersample behavior via the
modified z-transform, it implicitly assumes sampling inputs
in its formulation. It is therefore not adequate for describing
correspondence from the exogenous continuous-time inputs to

x[k](θ ) = eAθ x[k] +
∫ θ

0
eA(θ−τ )Bu[k](τ )dτ

continuous-time outputs.
A new solution was introduced in 1990–1991 (8–12). The Then the lifted output y[k]( 
 ) is given by

new idea, currently called lifting, makes it possible to de-
scribe sampled-data systems via a time-invariant, discrete-
time model while maintaining the intersample behavior. y[k](θ ) = CeAθ x[k] +

∫ θ

0
CeA(θ−τ )Bu[k](τ )dτ (18)

The idea is very simple. Let f (t) be a given continuous-time
signal. Sampling surely results in a loss of intersample infor- Observe that Eqs. (17) and (18) take the form
mation. Then, instead of sampling f (t), we will represent it as
a sequence of functions. Namely, we set up the correspondence
(Fig. 8):

x[k + 1] = A x[k] + Bu[k]

y[k] = C x[k] + Du[k]
L : f �→ { f [k](θ )}∞

k=0, f [k](θ ) = f (kh + θ ), 0 ≤ θ < h
and the operators A , B , C , D do not depend on k. In other

This idea makes it possible to view (time-invariant or even words, it is possible to describe this continuous-time system
periodically time-varying) continuous-time systems as linear, with discrete-timing, once we adopt the lifting point of view.
time-invariant discrete-time systems. (Basically the same To be more precise, the operators A , B , C , D are defined as
idea that converts periodically time-varying discrete-time sys- follows:
tems to time-invariant systems were encountered and redis-
covered many times in the literature. It appears to date back
at least to Ref. 13. Such a discrete-time lifting is also fre-
quently used in signal processing, especially in multirate sig-
nal processing, and is called blocking.)

The basic idea is the following: Let

A : R
n → R

n : x �→ eAhx

B : L2[0, h) → R
n : u �→

∫ h

0
eA(h−τ )Bu(τ ) dτ

C : R
n → L2[0, h) : x �→ CeAθ x

D : L2[0, h) → L2[0, h) : u �→
∫ θ

0
CeA(θ−τ )Bu(τ )dτ

(19)

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t)
(16)

Thus the continuous-time plant in Eq. (16) can be de-be a given continuous-time plant. Then we lift the input u(t)
scribed by a time-invariant discrete-time model. Once this isto obtain u[k]( 
 ). We consider that this lifted input is applied
done, it is entirely routine to connect this expression with aat the timing t � kh (h is a prespecified sampling rate), and
discrete-time controller, and hence sampled-data systems (forobserve how it affects the system. Let x[k] be the state at time
example, see Fig. 1) can be fully described by time-invariant
discrete-time equations, this time without sacrificing the in-
tersampling information. We will also denote this overall
equation abstractly as

x[k + 1] = A x[k] + Bu[k]

y[k] = C x[k] + Du[k]
(20)

f(t)

0

0

0 1 2 3h

h 0 h 0 h 0 h

3h 4h2h
k

Since this is purely a discrete-time system except that the
input–output spaces are infinite-dimensional (L2 spaces), allFigure 8. Lifting maps a continuous-time signal to a discrete-time

signal with function components. the formal developments presented earlier carries over to the
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present situation without any change. For example, the trans- Since ej(�	n�s)t is lifted to be �ej�khej(�	n�s)���
k�0, such aliasing

high-frequency signals are in the form ej�khv(�). Thus thefer function is defined as
definition above takes all the aliasing components into ac-
count, and takes the largest magnitude of enlargementG(z) := D + C (zI − A )−1B

among them.
When an input u(z) is applied to system in Eq. (20), its zero-
initial state output is given by G(z)u(z). Note also that opera-

Frequency Response via Sequence Spacestor A in Eq. (19) is a matrix, and hence A in Eq. (20) is also
a matrix. This means that the stability of Eq. (20) can be The observation above clearly shows that the gain of the fre-
tested by the poles of G(z). It is stable if G(z) is analytic for quency response takes all aliasing effects into account. It is
�z : �z� � 1�. however unclear that aliasing exhausts all the freedom in

v � L2[0, h). In other words, is it true that if we consider the
Steady State and Frequency Response largest gain imposed by considering all aliased components,

does this give the same gain as Eq. (23)?The time-invariance of the lifted model Eq. (20) naturally
This is indeed true; its proof is based on the followingyields a definition of stead-state and frequency responses.

lemma which guarantees that the family �ej�n�/�h��
n��� (�n �Let G(z) be a stable transfer function as defined above.

� 	 n�s) forms an orthonormal basis of L2[0, h), and henceTake a sinusoid ej�t as an input. Its lifted image is
any v � L2[0, h) can be expanded into a series of aliased sig-
nals ej�n�, n � 0, �1, �2, . . ..{e jωkhe jωθ }∞

k=0

According to Eq. (1), the z-transform of this sequence is Lemma 1. Fix any � � [0, �s). Then every � � L2[0, h) can
be expanded in terms of �ej�n���

n��� asze jωθ

z − e jωh

Since G(z) is stable, expand it in a neighborhood of z � ej�h:
ϕ(θ ) =

∞∑
n=−∞

ane jωn θ (24)

G(z) = G(e jωh ) + (z − e jωh )G̃(z) with

with some G̃(z) that is also analytic in �z� � 1 (by the stability
of G). It follows that an = 1

h

∫ h

0
e− jωn τ ϕ(τ ) dτ = 1

h
ϕ̂( jωn) (25)

where �̂ denotes the Laplace transform of � when extended
G(z)

ze jωθ

z − e jωh
= zG(e jωh)e jωθ

z − e jωh
+ G̃(z)e jωθ

to L2[0, �) as 0 outside [0, h). Furthermore, the L2 norm ���
The second term on the right tends to zero as k � � by the is given by
analyticity of G̃, and hence the output approaches
zG(ej�h)ej��/(z � ej�h). Therefore, the lifted output y[k]( 
 ) as-
ymptotically approaches ‖ϕ‖2 = h

∞∑
n=−∞

|an|2 (26)

y[k](θ ) = (e jωh )kG(e jωh )[e jωθ ](θ ) (21)
Let us apply this result to the frequency response defined

by Eq. (23). Expand v � L2[0, h) as v(�) � ��
���� v�ej���. Noteas k � �.

that �ej�khej�n���
k�0 is the lifted image of ej�nt, and henceUnless ej�h � 1, the asymptotic response above is really not

�ej�khv(�)��
k�0 is ��

���� v�ej��t. By Eq. (21), the asymptotic re-in steady state. However, its modulus �G(ej�h)ej��� remains in-
sponse of G(z) against this input is given byvariant at each sampling time. The change at each step is a

phase shift induced by the multiplication by ej�h. This explains
why the ripples in Fig. 6 look similar but not really the same
in different sampling periods.

This observation motivates the following definition:

Definition 1 Let G(z) be the transfer function of the lifted

e jωkhG(e jωh )[v] = e jωkhG(e jωh )

[ ∞∑

=−∞

v
e
jω
 θ

]

=
∞∑


=−∞
e jωkhG(e jωh )[e jω
 θ ]v


(27)

system as above. The frequency response operator is the opera-
tor

Expand G(ej�h)[ej���] in terms of �ej�n�� to get

G(e jωh ) : L2[0, h) → L2[0, h) (22)

regarded as a function of � � [0, �s) (�s :� 2�/h). Its gain at
G(e jωh )[e jω
 θ ] =

∞∑
n=−∞

g

n e jωn θ

� is defined to be

Substituting this into Eq. (27), we obtain
‖G(e jωh )‖ = sup

v∈L2[0, h)

‖G(e jωh )v‖
‖v‖ (23)

The maximum �G(ej�h)� over [0, �s) is the H� norm of G(z).
e jωkhG(e jωh )[v] = e jωkh

∞∑

=−∞

∞∑
n=−∞

g

ne jωn θ v
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Since ej(�	n�s)h � ej�h, this is the kth step response of where R� � (�I � D *D ). The important point to be noted
here is that all the operators appearing here are actually ma-
trices. For example, by checking the domain and range
spaces, we easily see that B R�1

� B * is a linear operator from

∞∑

=−∞

∞∑
n=−∞

g

ne jωn tv


�n into itself, i.e., a matrix. Therefore, in principle, one can
solve the singular value Eq. (29) by finding a nontrivial solu-where t � kh 	 �. Interchanging the order of summation, this
tion for Eq. (30) (provided R� is invertible) (17,18).is equal to

H�/H 2 CONTROL PROBLEMS
∞∑

n=−∞

� ∞∑

=−∞

g

n(ω)v


�
e jωn t (28)

A significant consequence of the modern approach to sampled-
This means that the response against ��

���� v�ej��t is again ex- data control is that various robust control problems such as
pressible as an infinite sum of all such aliased signals. It H�/H2 control problems are now completely solved. The prob-
should be intuitively clear that the largest gain among them lem was initiated by Chen and Francis (19) and later solved
again gives the gain of the frequency response, when such in Refs. 9, 10, and 20–22 in more complete forms; see Ref. 5
signals are equipped with norm (�n�v��2)1/2. This isometric cor- for the pertinent historical accounts.
respondence is guaranteed by the Parseval identity Eq. (26). To state the problem more precisely, let us introduce the
This is the viewpoint adopted in Refs. 14 and 15 to discuss notion of generalized plants. Suppose that a continuous-time
the frequency response of sampled-data systems; see also Ref. plant is given in the following form:
16. It is also closer to the classical treatment based on the
impulse modulation (3,7).

Gain Computation

ẋc(t) = Axc(t) + B1w(t) + B2u(t)

z(t) = C1xc(t) + D11w(t) + D12u(t)

y(t) = C2xc(t)
The gain function G(ej�h) is given as the operator norm at each
frequency, and its computation is primarily an infinite-dimen- Here w is the exogenous input, u(t) is the control input, y(t)
sional problem. However, for most of the practical purposes, is the measured output, and z(t) is the controlled output. The
it can be computed as the maximal singular value (17). controller is of the following form:

Our problem is thus reduced to that of solving the singular
value equation

[γ 2I − G∗G(e jωh )]w = 0 (29)

xd[k + 1] = Adxd[k] + BdS y[k]

v[k] = Cdxd[k] + DdS y[k]

u[k](θ ) = H(θ )v[k]
This is still an infinite-dimensional equation. However, since
A , B , C , D are finite-rank operators, we can reduce this to where H(�) is a suitable hold function. This is shown in Fig.

9. The objective here is to design or characterize a controllera finite-dimensional rank condition. Note that, by lifting, a
realization of G(z) can be written in the form that achieves a prescribed performance level � 
> 0 in such

a way that

‖Tzw‖∞ < γ (31)
x[k + 1] = A x[k] + Bw[k]

y[k] = C x[k] + Dw[k]

Its adjoint can then be easily derived as

p[k] = A ∗ p[k + 1] + C ∗v[k]

e[k] = B∗ p[k + 1] + D∗v[k]

Taking the z transforms of both sides, setting z � ej�h, and
substituting v � y and e � �2w, we get

e jωhx = A x + Bw

p = e jωhA ∗ p + C ∗(C x + Dw)

(γ 2 − D∗D)w = e jωhB∗ p + D∗C x

Solving these, we obtain

A
C1

C2

B1

D11

0

B2

D12

0

Ad

Cd

Bd

Dd

S H(  )θ

u

w

y

z

Figure 9. Generalized plant construction of a sampled-feedback sys-
tem where z denotes the controlled output, y is the measured output,
w is the exogenous input, and u is the control input.

�
e jωh

[
I BR−1

γ B∗

0 A ∗ + C ∗DR−1
γ B∗

]

−
[

A + BR−1
γ D∗C 0

C ∗(I + DR−1
γ D∗)C I

]�[
x
p

]
= 0 (30)
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where Tzw denotes the closed-loop transfer function from w to
z. This is the H� control problem for sampled-data systems.
The H2 control problem is obtained by replacing the H� norm
above by the H2 norm.

The difficulty here is that both w and z are continuous-
time variables, and hence their lifted variables are infinite-
dimensional. A remarkable fact here is that the H� problem
(and H2 problem as well) [Eq. (31)] can be equivalently trans-
formed to the H� problem for a finite-dimensional discrete-
time system. While we skip the details here [see the refer-
ences above and (5)], we remark that this norm-equivalent
discrete-time system is entirely different from the one given
in the section on ‘‘Discrete-Time Design’’ in that it fully takes
intersampling behavior into account. The difference will be
exhibited by the design examples in the next section.

SOME EXAMPLES

To see the power of the modern design methods, let us con-
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sider two design examples. We start with the H� design.
Figure 11. Time responses for h � 0.1 by sampled-data (solid) and
continuous-time (dash) H� designs do not show much difference.H� Design

Consider the unstable second-order plant

Figure 11 shows the impulse responses of the designed
closed loop for the sampling period h � 0.1. The solid curveP(s) := Cp(sI − Ap)−1Bp = 1

s2 − 0.1s + 1
represents the response for the sampled-data design and the

with weight matrices dashed curve shows that for the continuous-time design with
Tustin transformation. They do not present much difference
at this stage. However, when we increase the sampling periodQ1/2 = 1 R1/2 = 0.01 E = 0.01 N = 0.01
(i.e., decrease the sampling rate) to h � 0.55 (Fig. 12), the

and the antialiasing filter continuous-time design is already very close to the stability
margin. In the conventional design, one may conclude that
this sampling period is already too long, and the whole con-F̂aa(s) := 1

hs + 1 figuration is not feasible for sampled-data implementation.
But quite contrary to such an intuition, the sampled-data H�

depicted in Fig. 10.
design can tolerate such a long sampling period. The crucialWe here compare the following two design results:

The direct sampled-data H� design
The continuous-time H� design with Tustin transformation

In the continuous-time design, the antialiasing filter is by-
passed. On the other hand, it is inserted in the sampled-data
design to make the total design well posed.

zc

Faa Cp Bp
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N

E
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wc
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Figure 12. Time responses for h � 0.55 exhibit a clear differenceFigure 10. Generalized plant for sampled-data and continuous-time
H� design. between sampled-data (solid) and continuous-time (dash) H� designs.
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Figure 15. Time responses for sampled-data (solid) and discrete-
time (dash) design show a clear difference.
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Figure 13. Frequency response plots for h � 0.55 support the obser-
Consider a simple second-order plant P(s) � 1/(s2 	 2s 	1).vation in Fig. 11.

For h � 0.2, we execute

Sampled-data (continuous-time based) H2 designdifference here is that the sampled-data design incorporates
Discrete-time H2 designthe sampling period in the design procedure, whereas the con-

tinuous-time design does not. This gap becomes even clearer
Figures 14 and 15 show the frequency and time responseswhen we compare two designs via their frequency responses

of the closed-loop systems, respectively. In Fig. 14, the solid(Fig. 13). Whereas the sampled-data design exhibits a rather
(thick) curve shows the response of the sampled-design,mild curve, the continuous-time design shows a very sharp
whereas the dotted (thin) curve shows the discrete-time fre-peak at around 1.5 rad/s. Observe also that this frequency
quency response when the designed controller K is connectedagrees precisely with the period of oscillation in the impulse
with the discretized plant Gd (i.e., a purely discrete-time fre-response (Fig. 13).
quency response). At a first glance, it appears that the dis-
cretized design performs better, but actually it performsH 2 Design
poorer when we compute the real (continuous-time) frequency

In the case of continuous-time design, slower sampling rates response of G connected with Kd. The dashed curve shows this
yield problems. For the sample-point discretization, fast sam- frequency response; it is similar to the discrete-time fre-
pling rates can induce very wild responses. quency response in the low-frequency range but exhibits a

very sharp peak at the Nyquist frequency (�/h � 15.7 rad/s,
i.e., 1/2h � 2.5 Hz).

In fact, the impulse responses in Fig. 15 exhibit a clear
difference between them. The solid curve shows the sampled-
data design, and the dashed curve the discrete-time one. The
latter shows an oscillatory response. Also, both responses de-
cay to zero very rapidly at sampled instants. The difference
is that the latter exhibits very large ripples, with periods of
approximately 0.4 s. This corresponds to 1/0.4 Hz, which is
the same as (2�)/0.4 � �/h rad/s, i.e., the Nyquist frequency.
This is precisely captured in the modern (lifted) frequency re-
sponse in Fig. 14.

It is worth noting that when h is smaller, the response for
the discrete-time design becomes even more oscillatory, and
shows a very high peak in the frequency response. The details
may be found in Ref. 23.
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Figure 14. Frequency response plots show the difference between
For classical treatments of sampled-data control, it is instruc-the sampled-data (solid), discrete-time (dashed) difference; the thin
tive to consult Refs. 2, 3, and 7. The textbooks (24,25) coverdotted curve shows the frequency response with intersample behav-

ior ignored. both classical and modern aspects of digital control. For dis-
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