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DISCRETE EVENT DYNAMICAL SYSTEMS

In recent decades, many modern, large-scale, human-made
systems (e.g., flexible manufacturing systems, computer and
communication networks, air and highway traffic networks,
and the military C3I/logistic systems) have been emerging.
These systems are called discrete event systems because of the
discrete nature of the events. Research indicates that these
human-made systems possess many properties that are simi-
lar to those of natural physical systems. In particular, the
evolution of these human-made systems demonstrates some
dynamic features; exploring these dynamic properties may
lead to new perspectives concerning the behavior of discrete
event systems. The increasing need for analyzing, controlling,
and optimizing discrete event systems has initiated a new re-
search area, the dynamics of discrete event systems. To em-
phasize their dynamic nature, these systems are often re-
ferred to as discrete event dynamic systems (DEDS) in the
literature (1).

This article reviews the fundamental theories and applica-
tions of DEDS. Since the dynamic behavior is closely related
to time, we shall not discuss untimed models such as the
automata-based model (2); these models are mainly used to
study the logical behavior of a discrete event system.

In 1988, the report of the panel of the IEEE Control Sys-
tems Society noted, ‘‘Discrete event dynamic systems exist in
many technological applications, but there are no models of
discrete event systems that are mathematically as concise or
computationally as feasible as are differential equations for
continuous variable dynamical systems. There is no
agreement as to which is the best model, particularly for the
purpose of control’’ (3). This statement is still true today.
However, after the hard work of many researchers in the re-
cent years, there are some relatively mature theories and
many successful application examples.

Most frequently used models for analyzing DEDS are
queueing systems and Petri nets. Queueing models are usu-
ally used to analyze the performance (in most cases, steady
state performance) of DEDS, and Petri nets provide a graphi-
cal illustration of the evolution of the system behavior and
are particularly useful in analyzing behaviors comprising con-
currency, synchronization, and resource sharing (4). Other
models for DEDS include the more general but less structural
models such as Markov processes and generalized semi-
Markov processes (GSMP), and the max-plus algebra that is
particularly suitable for modeling DEDS with deterministic
event lifetimes that exhibit a periodic behavior.
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One main theory that employs a dynamic point of view to server j with probability qi, j and leaves the network with prob-
ability qi,0. We have �M

j�0 qi, j � 1, i � 1, 2, � � � , M. The servicestudy system behavior is the perturbation analysis (PA). The
objective of PA is to obtain performance sensitivities with re- time of server i is exponentially distributed with mean si �

1/�i, i � 1, 2, � � � , M.spect to system parameters by analyzing a single sample path
of a discrete event system (5–9). The sample path, which de- The system state is n � (n1, n2, � � � , nM), where ni is the

number of customers in server i. Let 	i be the arrival rate ofscribes how the DEDS evolves, can be obtained by observing
the operation of a real system or by simulation. The technique the customers to server i. Then
is in the same spirit of the linearization of nonlinear continu-
ous variable dynamic systems (6).

The sample path based approach of PA motivates the re- λi = λ0,i +
M∑

j=1

λ jq j,i i = 1, 2, . . ., M

search of on-line performance optimization of DEDS. Recent
study shows that PA of discrete parameters (parameters that

It is known that the steady state distribution isjump among discrete values) is closely related to the Markov
decision problem (MDP) in optimization. The PA-based on-
line optimization technique has been successfully applied to a
number of practical engineering problems. p(n) = p(n1, n2, . . ., nM ) =

M∑
k=1

p(nk)

The following section briefly reviews some basic DEDS
models. The next section introduces PA in some details. The with
final section 4 discusses the application of PA in on-line opti-
mization and points out its relations with the Markov deci-
sion problem. p(nk) = (1 − ρk)ρ

nk
k

ρk = λk

µk
k = 1, 2, . . ., M

DEDS MODELS A load-independent closed Jackson (Gordon-Newell) net-
work is similar to the open Jackson network described above,

Queueing Systems except that there are N customers circulating among servers
according to the routing probabilities qi, j, �M

k�1 qi,k � 1, i � 1,The simplest queueing system is the M/M/1 queue, where
2, � � � , M. We have �M

k�1 nk � N. We consider a more generalcustomers arrive at a single server according to a Poisson pro-
case: the service requirement of each customer is exponentialcess with rate 	 and the service time for each customer is
with a mean �1; the service rates, however, depend on theexponentially distributed with mean 1/�, � � 	. The steady
number of customers in the server. Let �i,ni

be the service ratestate probability of n, the number of customers in the queue,
of server i when there are ni customers in the server, 0 �is
�i,ni

� �, ni � 1, 2, � � � , N, i � 1, 2, � � � , M. We call this a
load-dependent network. In a load-independent network,
�i,ni

� �i for all ni, i � 1, 2, � � � , M.
p(n) = ρn(1 − ρ) ρ = λ

µ
, n = 0, 1, . . .

The state of such a network is n � (n1, n2, � � � , nM). We
From this, the average number of customers in the queue is use ni, j � (n1, � � � , ni � 1, � � � , nj � 1, � � � , nM), ni  0, to

denote a neighboring state of n. Let
n̄ = ρ

1 − ρ

and the average time that a customer stays in the queue is
ε(nk) =

{
1 if nk > 0

0 if nk = 0

and letT = 1
µ − λ

The more general model is a queueing network that consists
of a number of service stations. Customers in a network may

µ(n) =
M∑

k=1

ε(nk)µk,nk

belong to different classes, meaning that they may have dif-
ferent routing mechanisms and different service time distri- Then the flow balance equation for the steady state probabil-
butions. A queueing network may belong to one of three ity p(n) is
types: open, closed, or mixed. In an open network, customers
arrive at the network from outside and eventually leave the
network; in a closed network, customers circulate among sta-
tions and no customer arrives or leaves the network; A mixed

µ(n)p(n) =
M∑

i=1

M∑
j=1

ε(nj )µi,ni +1qi, j p(n j,i )

network is open for some classes of customers and closed for
others. Let yi  0, i � 1, 2, � � � , M, be the visit ratio to server i,

An open Jackson network consists of M single-server sta- that is, a solution (within a multiplicative constant) to the
tions and N single-class customers. Each server has an buffer equation
with an infinite capacity and the service discipline is first-
come-first-served. Customers arrive at server i according to a
Poisson process with (external) rate 	0,i, i � 1, 2, � � � , M.
After receiving the service at server i, a customer enters

yi =
M∑

j=1

qj,iy j j = 1,2, . . ., M
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Let Ai(0) � 1, i � 1, 2 � � � , M, and

Ai(k) =
k∏

j=1

µi, j i = 1, 2, . . ., M

and for every n � 1, 2, � � � , N and M � 1, 2, � � � , M, let

Mach. 2

Mach. 1

Exit

b1 b2

b3

Figure 1. A reentrant line.
Gm(n) =

∑
n1+···+nm=n

m∏
i=1

yni

Ai(ni)

a place to a transition. A place is an input (output) to a transi-
Then we have tion if an arc exists from the place (transition) to the transi-

tion (place).
The dynamic feature of a Petri net is represented by to-

kens, which are assigned to the places. Tokens move from
p(n) = 1

GM(N)

M∏
i=1

yni
i

Ai(ni)

place to place during the execution of a Petri net. Tokens are
This equation is often referred to as a product-form solution. drawn as small dots inside the circle representing the places.

For load-independent networks, �i,ni
� �i, i � 1, 2, � � � , The marking of a Petri net is a vector M � (m1, m2, � � � ,

M. The product-form solution becomes mn), where mi is the number of tokens in place pi, i � 1, 2,
� � � , n. A marking corresponds to a state of the system. A
Petri net executes by firing transitions. A transition is en-
abled if its every input place contains at least one token.

Gm(n) =
∑

n1+···+nm=n

m∏
i=1

xni
i

When a transition is enabled, it may fire immediately or after
a firing delay, which can be a random number. The firing de-and
lay is used to model the service times. When a transition fires,
one token is removed from each input place and one token
added to each output place. Thus, the number of tokens in ap(n) = 1

GM (N)

M∏
i=1

xni
i

(1)
place and in the system my change during the execution. In
addition to the arcs described above, another type of arc,

where xi � yi/�i � yisi, i � 1, 2, � � � , M. called the inhibitor arc, is often used to model the priority
There are a number of numerical methods for calculating among services. An inhibitor arc is drawn from a place to a

p(n) and the steady state performance, among them are the transition, with a small circle at its end. When an inhibitor
convolution algorithm and the mean value analysis (7); in ad- arc is used, if there is at least one token in the place, the
dition, analytical expressions exist for the normalizing con- transition cannot fire.
stant GM(N) (10). For more about queueing theory, see, for As an example, we consider the reentrant line (13) shown
example, Refs. 11 and 12. in Fig. 1. The system consists of two machines and three buff-

One typical example of the queueing model is the resource ers. Work pieces arrive at buffer b1 with rate 	 and get service
sharing problem. Consider the case where M resources are from machine 1 with rate �1; after the service in b1, the piece
shared by N users and each resource can be held by only one moves to buffer b2 and gets service at machine 2 with rate
user at any time. Every time a user grasps resource i, it holds

�2; after the service in b2, the piece reenters machine 1 at
the resource for a random time with si, A user, after the com- buffer b3 and receives service with rate �3. Machine 1 can
pletion of its usage of resource i, requests the hold of resource serve one piece at a time, and pieces in b3 have a nonpreemp-
j with a probability qi, j. This problem can be modeled exactly tive higher priority than those in b1.as a closed queueing network with N customers and M The Petri net model for the system is shown in Fig. 2. In
servers. This model can be successfully used in analyzing the the figure, places bi, i � 1, 2, 3, represent the buffers, and
performance of packet switches, where the users are the transitions pi, i � 1, 2, 3, represent the service processes of
head-of-line packets and the resources are the channels, and the pieces in the three buffers. If there is a token in places
the performance of data-base systems, where the users are mi, i � 1, 2, then machine i is available; if there is a token in
programs and the resources are data records. si, i � 1, 3, then the work piece in buffer bi is under service.

It is clear that machine 1 is shared by the pieces in both b1Petri Nets
and b3, and the inhibitor arc from b3 to p4 models the priority.
(For more about Petri net theory and applications, see Refs.Many DEDS consist of components [e.g., central processing

units (CPUs), disks, memories, and peripheral devices in com- 4 and 14–16).
The state process of a queueing system or a Petri net canputer systems; and machines, pallets, tools, and control units

in manufacturing systems] that are shared by many users be modeled as a Markov process, or more generally, as a gen-
eralized semi-Markov process. In this sense, both Markov pro-and exhibit concurrency. This feature makes Petri nets a suit-

able model for DEDS. cesses and GSMPs are more general than queueing systems
and Petri nets; however, these general models do not enjoyIn a graphical representation, the structure of a Petri net

is defined by three sets: a set of places P � �p1, p2, � � � , pn�, the structural property that queueing systems and Petri nets
possess. In fact, the GSMP model is a formal description ofa set of transitions T � �t1, t2, � � � , tm�, and a set of arcs. A

place is represented by a circle and a transition by a bar. An the evolution mechanism of a queueing system. Readers are
referred to Refs. 5 and 8 for a discussion of GSMP.arc is represented by an arrow from a transition to a place or
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We can prove that for all i � 1

K⊗(2i) =
[

0 −1
−3 0

]

K⊗(2i+1) =
[
−2 −1
−1 −2

]

M is said to be of order 2 periodic. Cohen et al. (17) proved
that all matrices possess such periodicity. Therefore, Eq. (2)
can be used to study the periodic behavior of a DEDS. For
more discussions, see Ref. 18.

PERTURBATION ANALYSIS

Perturbation analysis of DEDS is a multidisciplinary re-

in b1 b2

b3
s3
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m2
m1

p1 p2
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µ1

µ3

µ2

λ
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search area developed since early 1980s, with the initial
Figure 2. The Petri net model for the reentrant line. work of Ho et al. (19). PA provides the sensitivities of

performance measures with respect to system parameters
by analyzing a single sample path of a DEDS. This area is

The Max-Plus Algebra promising because of its practical usefulness. First, com-
pared with the standard procedure, which uses the differ-With the max-plus algebra proposed in Ref. 17, many DEDS
ence of performance measures with two slightly differentcan be modeled as linear systems. In the max-plus algebra,
values for every parameter, this technique saves a greatwe define the operation ‘‘multiplication’’ on two real numbers
amount of computation in simulation, because PA algo-a and b as a � b � a � b and the ‘‘addition’’ as a � b � max
rithms can provide the derivatives with respect to all the�a, b�. It is easy to verify that these two operations indeed
parameters by using only a single simulation run. In addi-define an algebra. We give a simple example to illustrate how
tion, PA estimates are more accurate than those obtainedthe max-plus algebra can be used to analyze the periodic be-
from finite differences because the latter may encounterhavior of a DEDS. Consider a single queue with deterministic
numerical problems caused by dividing two small numbers.interarrival time a and service time s. Let ak and dk be the
Second, PA can be applied to on-line performance optimiza-arrival and departure times of the kth customer, respectively,
tion of real-world systems by observing a sample path ofk � 1, 2, � � � , and a1  0, d0 � 0. Then for k � 1, 2, � � � we
an existing system; for these systems, changing the valueshave
of their parameters may not be feasible.

Cao (20) observed that the simple PA algorithms based on
a single sample path, called infinitesimal perturbation analy-

ak+1 = a + ak

dk = max{ak + s, dk−1 + s}
sis (IPA), in fact yield sample derivatives of the performance;
although these sample derivatives are unbiased or strongly

In the max-plus algebra, this can be written as a linear equa- consistent for many systems, this is not the case for many
tion others. This insight has set up two fundamental research di-

rections: to establish IPA theory, including the proof of con-
xk+1 = Axk k = 1, 2, . . . vergence of IPA algorithms, and to develop new algorithms

for systems where IPA does not work well. After the hard
where work of many researchers in more than one decade, the the-

ory for IPA is relatively mature, and many results have been
obtained for problems where IPA does not provide accurate
estimates.xk =

[
ak

dk−1

]
A =

[
a −H
d d

]

Infinitesimal Perturbation Analysiswith H being a large positive number. Thus,
Let � be a parameter of a stochastic discrete event system;
the underlying probability space is denoted as (�, F , P ). Letxk+1 = A⊗kxk (2)
� � �(�), � � �, be a random vector that determines all the
randomness of the system. For example, for a closed queueingwhere A�k � A�(k�1) � A, k  1, and A�1 � A.
network, � may include all the uniformly distributed randomAn interesting property of a matrix under the max-plus
variables on [0, 1) that determine the customer’s service timesalgebra is the periodic property. This can be illustrated by an
and their transition destinations (say, in a simulation). Thus,example. Consider
a sample path of a DEDS depends on � and �; such a sample
path is denoted as (�, �).

Let T0 � 0, T1, � � � , Tl, � � � be the sequence of the state
transition instants. We consider a sample path of the system

M =
[

1 5
3 2

]
= 4 ⊗

[
−3 1
−1 −2

]
= 4 ⊗ K
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in a finite period [0, TL). The performance measured on this
sample path is denoted as 
L(�, �). Let

η̄L(θ ) = E[ηL(θ, ξ )] (3)

∆i,1

∆i,1

∆i,2

t1 t2

and Figure 3. The perturbation in a busy period.

η(θ ) = lim
L→∞

ηL(θ, ξ ) w.p.1. (4)
All the papers published in the area of IPA deal with these

two basic issues. Roughly speaking, the interchangeability re-where E denotes the expectation with respect to the probabil-
quires that the sample performance function 
L(�, �) be con-ity measure P . We assume that both the mean and limit in
tinuous with respect to �. General conditions can be found inEq. (3) and Eq. (4) exist. Thus 
L(�, �) is an unbiased estimate
Refs. 20 and 8.of 
L(�) and an strongly consistent estimate of 
(�), respec-

The algorithms for obtaining sample derivatives are calledtively.
IPA algorithms. Given a finite-length sample path (�, �), weThe goal of perturbation analysis is to obtain the perfor-
first, by applying IPA algorithms, fictitiously construct a sam-mance derivative with respect to � by analyzing a single sam-
ple path for the DEDS with a slightly changed parameter andple path (�, �). That is, we want to derive a quantity based on
the same random vector, (� � ��, �), called a perturbed samplea sample path (�, �) and use it as an estimate of �
L(�)/�� or
path. The derivative of the performance with respect to � can�
(�)/��.
be obtained by comparing these two sample paths, the origi-Given a single sample path, the realization of the random
nal one and the perturbed one.vector � is fixed. Therefore, we fix � and consider 
L(�, �) as a

The principles used in IPA to determine the perturbedfunction of �. This function is called a sample performance
path are very simple. We take closed queueing networks asfunction. Now, we consider the following question: given a
an example. The basic idea is that a change in parametersample path (�, �), can we determine the sample path (� �
(say, a mean service time) will induce changes of the service��, �) with the same � and ��/� � 1? If we can, then we can
completion times, and a change of a customer’s service com-get the performance for the perturbed system, 
L(� � ��, �),
pletion time will affect the other customers’ service comple-and furthermore, the derivative of the sample performance
tion times. IPA rules describe how these changes can be de-function:
termined.

Figure 3 illustrates a busy period of a server, say server i,
in a queueing network. Let Fi(s, �) be its service time distribu-

∂

∂θ
ηL(θ, ξ ) = lim

θ→0

ηL(θ + �θ, ξ ) − ηL(θ ), ξ )

�θ
(5)

tion. The service time of its kth customer is
This is called a sample derivative.

It seems reasonable to choose the sample derivative �/�� si,k = F−1
i (ξi,k, θ ) = sup{s : F(s, θ ) ≤ ξi,k},


L(�, �) as an estimate for �
L(�)/�� or �
(�)/��. This estimate
where �i,k, k � 1, 2, � � � , are uniformly distributed randomis called the infinitesimal perturbation analysis (IPA) esti-
variables on [0, 1). With the same �i,k, in the perturbed sys-mate. We require that the estimate be unbiased or strongly
tem, the service time changes to F �1

i (�i,k, � � ��). Thus, theconsistent; that is, either
service time increases by

E
{

∂

∂θ
[ηL(θ, ξ )]

}
= ∂

∂θ
E[ηL(θ, ξ )] (6)

or

�i,k = F−1
i (ξi,k, θ + �θ) − F−1

i (ξi,k, θ )

= ∂F−1
i (ξi,k, θ )

∂θ

∣∣∣∣
ξi,k=Fi (si,k ,θ )

�θ
(8)

Equation (8) is called the perturbation generation rule, andlim
L→∞

{
∂

∂θ
[ηL(θ, ξ )]

}
= ∂

∂θ

{
lim

L→∞
[ηL(θ, ξ )]

}
(7)

�i,k is called the perturbation generated in the kth customer’s
service time. If the service time is exponentially distributed

In Eq. (5), the same random variable � is used for both with its mean changed from si to si � �si, then Eq. (8) becomes

L(� � ��, �) and 
L(�, �); this corresponds to the simulation
technique ‘‘common random variable’’ in estimating the differ-
ence between two random functions. This technique usually �i,k = �s̄i

s̄i
si,k (9)

leads to small variances. Equations (6) and (7) are referred to
as the ‘‘interchangeability’’ in the literature (20). From the The delay of a servers’ service completion time is called the
above discussion, the two basic issues for IPA are perturbation of the server, or the perturbation of the cus-

tomer being served. In Fig. 3, the perturbation of the first
1. To develop a simple algorithm that determines the sam- customer is �i,1 � (si,1/si) �si. Because of this perturbation, the

ple derivative of Eq. (5) by analyzing a single sample service starting time of the next customer is delayed by the
path of a discrete event system; and same amount. Furthermore, the service time of the second

customer increases by �i,2 � (si,2/si) �si, and thus the perturba-2. To prove that the sample derivative is unbiased and/or
strongly consistent, that is, the interchangeability of tion of the second customer is �i,1 � �i,2 (see Fig. 3). In gen-

eral, the service completion time of the kth customer in aEq. (6) and/or Eq. (7) holds.
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not be larger than the length of the idle period; otherwise the
idle period in the original sample path will disappear in the
perturbed one and the simple propagation rules illustrated by
Fig. 4 no longer hold. It is easy to see that for any finite-
length sample path (�, �), we can always (with probability
one) choose a �� that is small enough (the size depends on �)
such that the perturbations of all customers in the finite sam-
ple path are smaller than the shortest length of all the idle

Server 1

Server 2
t0 t1 t2 t3 t4

∆
∆ ∆

∆

periods in the sample path. This explains the word ‘‘infinites-
Figure 4. Propagation of a single perturbation. imal’’ in IPA. Therefore, we can always use IPA propagation

rules to get the perturbed sample path and the sample deriv-
ative.

busy period will be delayed by �k
j�1 �i, j, with �i, j being deter- The perturbed sample path is completely determined by

mined by Eq. (8) or Eq. (9). This can be summarized as fol- the perturbations of the servers. Given a sample path of a
lows: a perturbation of a customer will be propagated to the single-class closed Jackson network of M servers with sm, m
next customer in the same busy period; the perturbation of a � 1, 2, � � � , M, being the mean service times, the perturba-
customer equals the perturbation generated in its service pe- tions of the perturbed system with si changed to si � �si (with
riod plus the perturbation propagated from the preceding cus- i fixed) can be determined by the following algorithm.
tomer.

If a perturbation at the end of a busy period is smaller IPA Algorithm for Closed Jackson Networks
than the length of the idle period following the busy period,

0. Create a vector v � (v1, v2, � � � , vM); set its initial valuethe perturbation will not affect (i.e., will not be propagated
v � (0, 0, � � � , 0)to) the next busy period, because the arrival time of the next

1. At the kth, k � 1, 2, � � � , service completion time ofbusy period depends on another server’s service completion
server i, set vi :� vi � si,ktime.

A perturbation at one server may affect other servers 2. If on the sample path, a customer from server j termi-
through idle periods. To see how servers may affect each nates an idle period of server l, then set vl :� vj.
other, we study the evolution of a single perturbation. In Fig.
4, at t1, server 1 has a perturbation �, and before t1, server 2 Note that for simplicity in the algorithm we add si,k, instead
is idle. At t1, a customer arrives from server 1 to server 2. of (�si/si) si,k, to the perturbation vector. Thus, the perturba-
Because server 1’s service completion time is delayed by �, tion of server m, m � 1, 2, � � � , M, is (�si/si) vm, with vm being
server 2’s service starting time will also be delayed by �; and determined by the algorithm. We shall see that the term
as a result, its service completion time will also be delayed by �si/si is eventually cancelled in Eq. (11).
the same amount. We say the perturbation � is propagated The sample derivative can be obtained from these pertur-
from server 1 to server 2 through an idle period (server 2 has bations. Let the sample performance measure be
the same perturbation as server 1 after t1). At t3, this pertur-
bation is propagated back to server 1.

In summary, if a perturbation is smaller than the lengths η( f )

L = 1
L

∫ TL

0
f [N(t)] dt (10)

of idle periods (we say that the original and the perturbed
paths are similar), then the evolution of this perturbation on

where N(t) is the state process and f is a function defined onthe sample path can be determined by the following IPA per-
the state space. The steady state performance measure isturbation propagation rules:

1. A perturbation of a customer at a server will be propa- η( f ) = lim
L→∞

η( f )

L w.p.1

gated to the next customer at the server until it meets
an idle period, and If f � I � 1 for all n, then we have 
(I)

L � TL/L and 
(I) � 1/
,
where 
 is the throughout of the system. The sample deriva-2. If, after an idle period, a server receives a customer
tive of 
(f)

L can be easily obtained by adding performance calcu-from another server, then after this idle period the for-
lations to the basic IPA algorithm as follows.mer will have the same perturbation as the latter (the

perturbation is propagated from the latter to the
former). 0. Set v � (0, 0, � � � , 0), H � 0, and �H � 0

1,2. Same as steps 1 and 2 in the basic IPA algorithm
The perturbation generation rule describes how perturba- 3. At server m’s service completion time, denoted as Tl,tions are generated because of a change in the value of a pa- set H � H � f [N(Tl�)](Tl � Tl�1) and �H � �H �

rameter; perturbation propagation rules describe how these �f [N(Tl�)] � f [N(Tl�)]�vm.
perturbations evolve along a sample path after being gener-
ated. Combining these rules together, we can determine the

In the algorithm, H records the value of the integral in Eq.perturbed path.
(10), andTo apply the propagation rules, the size of the perturbation

at the end of each busy period should not be larger than the
length of the idle period that follows, and the size of the per-
turbation of a customer that terminates an idle period should

1
L

�s̄i

s̄i
(�H)
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represents the difference of 
(f)
L between the original and the SPA attempts to find a suitable Z so that the ‘‘average’’ per-

formance function 
L(�, Z is smooth enough and the inter-perturbed paths. At the end of the sample path, we have
changeability of Eq. (12) holds, even if Eq. (6) does not. If this
is the case and the derivative of the conditional mean 
L(�,
Z ) can be calculated, then �/�� 
L(�, Z ) can be used as an

η( f )

L (s̄i, ξi ) = H
L

unbiased estimate of �/�� 
L(�).
and The method was first proposed in Ref. (23); a recent book

Ref. (5) contains a detailed discussion about it. The main is-
sues associated with this method are that it may not be easy
to calculate �/�� E[
L(�, Z )] and that the computation effort

�η( f )

L (s̄i, ξi) = �s̄i

s̄i

�H
L

required may be large.
Thus, we can calculate the sample elasticity as follows

Finite Perturbation Analysis. The sample derivative does not
contain any information about the jumps in the performance
function. This is because as �� goes to zero, the event se-

s̄i

η( f )

L
(s̄i, ξ )

∂η( f )

L
(s̄i, ξi)

∂ s̄i
= �H

H
(11)

quence of any perturbed sample path is the same as that of
It has been shown that Eq. (11) is strongly consistent (9,6), the original path (two paths are similar). Thus, with IPA, we
that is, do not study the possibility that because of a parameter

change ��, two events may change their order. In finite per-
turbation analysis (FPA), a fixed size of �� is assumed. For
any fixed ��, the event sequence in the perturbed path may

lim
L→∞

s̄i

η( f )

L
(s̄i, ξ )

∂η( f )

L
(s̄i, ξi)

∂ s̄i
= s̄i

η( f )

∂η( f )

∂ s̄i
w.p.1

be different from that in the original path. FPA develops some
rules that determine the perturbation when the event orderSimilar algorithms and convergence results have been ob-
changes. The FPA algorithm is more complicated than IPA,tained for open networks, networks with general service time
and it is usually approximate since only order changes be-distributions, and networks in which the service rates depend
tween adjacent events are taken into account (9).on the system states (6). Glasserman (8) studied various IPA

algorithms and their unbiasedness and strong consistency in
the GSMP framework. Sample Path Constructability Techniques. Given the nature

of IPA, it cannot be applied to sensitivities with respect to
Extensions of IPA changes of a fixed size or changes in discrete parameters. Mo-

tivated by the principles of IPA, we ask the following ques-For a sample derivative (i.e., the IPA estimate) to be unbiased
tion: Given a sample path of discrete event system under pa-and strongly consistent, usually requires that the sample
rameter �, it is possible to construct a sample path of thefunction be continuous. This request, however, is not always
same system under a different parameter ��? This problem issatisfied. A typical example illustrating the failure of IPA is
formulated as the sample path constructability (7). Normally,the two-server multiclass queueing network discussed in Ref.
such constructability requires that the sets of events and(21); later, Heidelberger et al. (22) discussed in detail a few
states of the sample path to be constructed (with parameterextensions of the example.
��) belong to the sets of events and states of the original sam-In the past decade, many methods have been proposed to
ple path. For example, one may construct a sample path forextend IPA to a wider class of problems. Each of these
an M/M/1/K � 1 queue (where K � 1 denotes the buffer size)methods has some success on some problems at the cost of
from a sample path of an M/M/1/K queue. Ref. 24 shows thatincreasing analytical difficulty and computational complexity.
for some systems with additional computation such sampleWe shall review only briefly the basic concepts of these
path construction can be done even if some states in the sam-methods.
ple path to be constructed do not appear in the original sam-
ple path.

Smoothed Perturbation Analysis. The idea of smoothed per-
Techniques in this class include augmented system analysisturbation analysis (SPA) is to ‘‘average out’’ the discontinuity

(7,25), extended perturbation analysis (26), and the standardover a set of sample paths before taking the derivative and
clock approach (27).expectation. To illustrate the idea, we first write the expected

value of 
L(�, �) as
Structural Infinitesimal Perturbation Analysis. Structural in-

finitesimal perturbation analysis (SIPA) was developed to ad-η̄L(θ ) = E[ηL(θ, ξ )] = E{E[ηL(θ, ξ ) |Z ]}
dress the problem of estimating the performance sensitivity

where Z represents some random events in (�, F , P ). Let with respect to a class of parameters such as the transition

L(�, Z ) � E[
L(�, �)�Z ], then probabilities in Markov chains. At each state transition, in

addition to the simulation of the original sample path, an ex-
tra simulation is performed to obtain a quantity needed to getη̄L(θ ) = E[ηL(θ, Z )]
the performance sensitivity. It has been shown that the extra

and Eq. (6) becomes simulation requires bounded computational effort, and that
in some cases the method can be efficient (28). It is interesting
to note that this approach can be explained by using the con-
cept of realization discussed in the next subsection.

E
{

∂

∂θ
[ηL(θ, Z )]

}
= ∂

∂θ
E[ηL(θ, Z )] (12)
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Rare Perturbation Analysis. Brémaud (29) studies the perfor- tion factor of a perturbation of server i at t � 0 with state n,
denoted as c(f)(n, i), is defined asmance sensitivity with respect to the rate of a point process

and proposes the method of rare perturbation analysis (RPA).
The basic idea is that the perturbed Poisson process with
rate 	 � �	 with �	  0 is the superposition of the original
Poisson process with rate 	 and an additional Poisson process

c( f )(n, i) = lim
L→∞

E

{
1
�

[∫ T ′
L

0
f [N′(t)] dt −

∫ TL

0
f [N(t)] dt

]}

(13)
with rate �	. Thus, in a finite interval, the difference between
the perturbed path and the original one is rare. The perfor- where T�L and N�(t) represents the quantities in the per-
mance derivative is then obtained by studying the effect of turbed path.
these ‘‘rare’’ but big (meaning finite) perturbations on the sys- A perturbation � is said to be realized if at some time Tltem performance. The case �	  0 is called the positive all the servers have the same perturbation �; it is said to be
RPA. lost if at some time Tl no server has any perturbation. It was

When �	 � 0, the perturbed Poisson process with rate 	 � proved that in an irreducible closed network a perturbation
�	 can be constructed by thinning the original Poisson pro- will be either realized or lost with probability one. The proba-
cess with the thinning probability �	/	. That is, some arrival bility that a perturbation is realized is called the realization
points in the original process will be taken away. The perfor- probability.
mance derivative is then obtained by studying the effect of Suppose that a perturbation is realized or lost at TL*. L*
the removal of these rare arrival points. This is called the depends on the sample path, that is, �. If the perturbation is
negative RPA. Others in this direction include Refs. 30 lost, then f [N�(t)] � f [N(t)], for all t  TL*; if it is realized,
and 31. then f [N�(t)] � f [N(t � �)] for all t  TL*. Therefore, from the

Markov property, Eq. (13) becomes
Estimation of Second Order Derivatives. The single path

based approach can also be used to estimate the second order
derivatives of the performance of a DEDS by calculating the
conditional expectations. See Ref. 32 for GI/G/1 queues and

c( f )(nnn, i) = E

{
1
�

[∫ T ′
L∗

0
f [N′(t)] dt −

∫ T ′
L∗

0
f [N(t)] dt

]}

(14)
Ref. 33 for Jackson networks.

where L* is a random number, which is finite with probabil-
Others. In addition to the above direct extensions of IPA, ity one.

it also motivated the study of a number of other topics, such Realization factors can be uniquely determined by a set of
as the Maclaurin series expansion of the performance of some linear equations (6). The steady state performance sensitivity
queueing systems (35), the rational approximation approach can be obtained by
for performance analysis (36), and the analysis of perfor-
mance discontinuity (37).

Finally, besides the PA method, there is another approach,
s̄i

η(I)

∂η( f )

∂ s̄i
=

∑
all nnn

p(nnn)c( f ) (nnn, i) (15)

called the likelihood ratio (LR) method (38–40), that can be
applied to obtain estimates of performance derivatives. The

where I(n) � 1 for all n and p(n) is the steady state probabil-method is based on the importance sampling technique in
ity of n.simulation. Compared with IPA, the LR method may be ap-

A close examination reveals that the IPA algorithm pro-plied to more systems but the variances of the LR estimates
vides a simple way for estimating the quantity �allnare usually larger than those of IPA.
p(n)c(f)(n, i) on a single sample path. The theory has been ex-
tended to more general networks, including open networks,

Perturbation Realization state-dependent networks, and networks with generally dis-
tributed service times (6).One important concept regarding the sensitivity of steady

state performance of a DEDS is the perturbation realiza-
Perturbation Realization for Markov Processes. Consider antion. The main quantity related to this concept is called

irreducible and aperiodic Markov chain X � �Xn; n � 0� on athe realization factor. This concept may provide a uniform
finite state space E � �1, 2, � � � , M� with transition probabil-framework for IPA and non-IPA methods. The main idea
ity matrix P � [pij]M

i�1�Mj�1. Let � � (�1, �2, � � � , �M) be the vectoris: The realization factor measures the final effect of a
representing its steady state probabilities, and f � [f (1), f (2),single perturbation on the performance measure of a DEDS;
� � � , f (M)]T be the performance vector, where T representsthe sensitivity of the performance measure with respect to
transpose and f is a column vector. The performance measurea parameter can be decomposed into a sum of the final
is defined as its expected value with respect to �:effects of all the single perturbations induced by the param-

eter change.

Perturbation Realization For Closed Jackson Networks. Sup-
η = Eπ ( f ) =

M∑
i=1

πi f (i) = π f. (16)

pose that at time t � 0, the network state is n and server i
obtains a small perturbation �, which is the only perturbation Assume that P changes to P� � P � �Q, with �  0 being a

small real number and Qe � 0, e � (1, 1, � � � , 1)T. The perfor-generated on the sample path. This perturbation will be prop-
agated through the sample path according to the IPA propa- mance measure will change to 
� � 
 � �
. We want to esti-

mate the derivative of 
 in the direction of Q, defined asgation rules and will affect system performance. The realiza-
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�
/�Q � lim��0 �
/�. It is well known that IPA does not work discrete event systems, analytical approach does not usually
exist for parametric optimization problems. One has to resortfor this problem.

In this system, a perturbation means that the system is to simulation or experimental approaches, where the deriva-
tive estimates obtained by perturbation analysis can play anperturbed from one state i to another state j. For example,

consider the case where qki � ��, qkj � �, and qkl � 0 for all important role.
There are two major algorithms used in stochastic optimi-l � i, j. Suppose that in the original sample path the system

is in state k and jumps to state i, then in the perturbed path, zation: Kiefer–Wolfowitz (KW) and Robbins–Monro (RM).
Both are essentially the hill-climbing type of algorithm. Theit may jump to state j instead. Thus, we study two indepen-

dent Markov chains X � �Xn; n � 0� and �X �n; n � 0� with KW algorithm employs the performance difference as an esti-
mate of the gradient. With PA, we can obtain, based on aX0 � i and X �0 � j; both of them have the same transition

matrix P. The realization factor is defined as (34): single sample path of a DEDS, the estimates of the gradients.
Thus, the RM algorithm, which is known to be faster than the
KW algorithm, can be used.

Suppose that we want to minimize a performance measure

(�), where � � (�1, �2, � � � , �M) is a vector of parameters. In

di j = E

{ ∞∑
n=0

[ f (X ′
n) − f (Xn)]|X0 = i, X ′

0 = j

}

i, j = 1,2, . . ., M (17)
the RM algorithm using PA derivative, the (n � 1)th value of
the parameter �, �n�1, is determined by (see, e.g., Ref. 41)Thus, dij represents the long term effect of a change from i to

j on the system performance. Equation (17) is similar to Eq.
(13). θn+1 = θn − αn

∂η

∂θ
(θn) (22)

If P is irreducibile, then with probability one the two sam-
ple paths of X and X� will merge together. That is, there is a where
random number L* such that X �L* � XL* for the first time.
Therefore, from the Markov property, Eq. (17) becomes

∂η

∂θ
(θn) =

[
∂η

∂θ1
(θn),

∂η

∂θ2
(θn), · · · ,

∂η

∂θM
(θn)

]

is the estimate of the gradient of the performance function

(�) at �n with each component being the PA estimate, and

di j = E

{
L∗−1∑
n=0

[ f (X ′
n) − f (Xn)]|X0 = i, X ′

0 = j

}

i, j = 1,2, . . ., M (18)

�n, n � 1, 2, � � � , are the step sizes. It usually requires that
which is similar to Eq. (14). ��

n�1 �n � � and ��
n�1 �2

n � �.
The matrix D � [dij] is called a realization matrix, which Many results have been obtained in this direction. For ex-

satisfies the Lyapunov equation ample, Ref. 41 studied the optimization of J(�) � T(�) � C(�)
for a single server queues, where T(�) is the mean system

D − PDPT = F time, C(�) a cost function, and � the mean service time. It was
proved that under some mild conditions, the Robbins–Monrowhere F � efT � feT, and e � (1, 1, � � � , 1)T is a column vector
type of algoritm (22) converges even if we update � using theall of whose components are ones. The performance derivative
IPA gradient estimate at any random times (e.g., at everyis
customer arrival time). Other works include Refs. 42, 43, 44,
and 45.

The optimization procedures using perturbation analysis
∂η

∂Q
= πQDT πT (19)

have been applied to a number of real-world problems. Suc-
cessful examples include the bandwidth allocation problem inSince D is skew-symmetric, that is, DT � �D, we can write
communications, (46,47), and optimization of manufacturingD � egT � geT, where g � [g(1), g(2), � � � , g(M)]T is called a
systems (48–52).potential vector. We have

For performance optimization over discrete parameters, for
example, in problems of choosing the best transition matrix,
we may use the approach of realization matrix and potentials

∂η

∂Q
= πQg. (20)

discussed in the last section. It is interesting to note that in
g(i) can be estimated on a single sample path by gn(i) � this context, PA is equivalent to the Markov decision process
E��n

l�0[f (Xl)]�X0 � i�. There are a few other methods for esti- (MDP) approach. To see this, let �� be vector of the steady
mating g and D by using a single sample path. state probability for the Markov chain with transition matrix

The potential g satisfies the Poisson equation P�. From the Poisson equation [Eq. (21)], it is easy to prove

(I − P + eπ)g = f (21) η′ − η = π ′Qg (23)

Thus, perturbation realization in a Markov process relates The right-hand side of Eq. (23) is the same as that of Eq. (20)
closely to Markov potential theory and Poisson equations. except � is replaced by ��. In policy iteration of an MDP prob-

lem, we choose the P� corresponding to the largest Qg �
(P� � P)g (component-wise) as the next policy. This corre-APPLICATIONS: ON-LINE OPTIMIZATION
sponds to choosing the largest �
/�Q in PA, because all the
components of � and �� are positive. Therefore, the policy iter-A direct application of perturbation analysis is in the area

of stochastic optimization. Because of the complexity of most ation procedure in MDP in fact chooses the steepest direction
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21. X. R. Cao, First-order perturbation analysis of a single multi-of the performance measure obtained by PA as the policy in
class finite source queue, Performance Evaluation, 7: 31–41,the next iteration. Thus, in this setting, PA is simply a single
1987.sample-path-based implementation of MDP. Further research

22. P. Heidelberger et al., Convergence properties of infinitesimalis needed in this direction. Another on-going research related
perturbation analysis estimates, Management Science, 34: 1281–to DEDS optimization is the ordinal optimization technique
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