
GAIN SCHEDULING sign several linear controllers, one for each operating
condition.

MOTIVATION Each individual controller is expected to achieve good per-
formance whenever the nonlinear plant is near the control-

A classical tradeoff in control design is model accuracy versus ler’s associated operating condition. As the plant varies from
model simplicity. While sophisticated models better represent one operating condition to another, the gains of the individual
a physical system’s behavior, the resulting analysis and con- controllers are interpolated, or scheduled, to match the
trol design are more involved. changes in operating conditions. The final result is a nonlin-

One manifestation of this tradeoff is the use of nonlinear ear controller which is constructed out of several local linear
versus linear models. Most physical systems exhibit nonlinear controllers.
behavior. Some common examples are saturations, rate limit- The implementation of a gain scheduled controller is de-
ers, hysteresis, and backlash. Predominantly nonlinear be- picted in Fig. 1. An auxiliary variable, usually called the
havior may be found in robotic manipulator dynamics, air- scheduling variable, is used to update the gains of the linear
craft or missile flight dynamics, undersea vehicle dynamics, controller. The scheduling variable should be a good indica-
jet engine combustion dynamics, and satellite attitude dy- tion of the current operating condition of the plant, and hence
namics. Although analysis and control design for nonlinear should be correlated with the plant nonlinearities. The sched-
systems remains an active topic of research, analysis of linear uling variable can be a combination of endogenous signals,
systems is significantly less complicated, and there is an such as a plant measurements, or exogenous parameters
abundance of control design methodologies, ranging from which reflect environmental conditions.
classical control to multivariable robust control. One example is missile autopilot design. Useful scheduling

One compromise is to linearize the system behavior, that variables are the angle-of-attack and dynamic pressure, both
is, approximate the behavior of a nonlinear system near a of which characterize the aerodynamic flight coefficients of
particular operating condition by a linear system. This simpli- the missile. The angle-of-attack is the angle between the mis-
fication allows one to draw upon analysis and design methods sile body and velocity vector and can be considered a state
for linear systems. However, this simplification comes at the variable, and hence endogenous to the missile dynamics. The
cost of certain limitations: dynamic pressure, which is a function of missle velocity and

atmospheric pressure, is indicative of the environmental con-
ditions. Atmospheric pressure is clearly an exogenous signal.• The nonlinear system must be confined to operating near
Since the dynamic pressure is also a function of missile veloc-the specified operating condition of the linearization.
ity, it can be considered an endogenous variable. However,• The linearization analysis may give misleading or incon-
the velocity variations in a simplified model are decoupledclusive results.
from the attitude dynamics, and hence, dynamic pressure

• The linearization may ignore important nonlinear phe- may be modeled as an exogenous signal. This sort of ambigu-
nomena which dominate the system behavior.

ity, namely that an ‘‘exogenous’’ signal is really an endoge-
nous signal in a more sophisticated model, is common.

Despite these limitations, linearization remains a widely used Gain scheduling has seen widespread industrial applica-
method for control system analysis and design. tion. It is perhaps the most prevalent nonlinear method for

In many cases, confining a nonlinear system to operating aircraft flight control and missle autopilot design. Other ap-
near a specified operating condition is too restrictive. One ex- plications include power systems, process control, and auto-
ample is flight control. An aircraft typically experiences sev- motive control. Despite its widespread usage, traditional gain
eral flight conditions, including take-off, cruising at various scheduling has been an ad hoc design approach accompanied
altitudes, specialized maneuvers, and landing. No single by heuristic guidelines.
linearization can adequately describe the aircraft dynamics at
all of these conditions. Another example is boiler-turbine con-
trol in power generation. Typical operating conditions include
power ramp up, steady power delivery at various levels, and
power ramp down. Again, no linearization can adequately de-
scribe the dynamics at all operating conditions.

WHAT IS GAIN SCHEDULING?

Gain scheduling is an approach to overcome the local limita-
tions associated with linearizations. The idea is simple and
intuitively appealing. Given a nonlinear plant with a wide
range of operating conditions, one can select several represen-
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tative operating conditions within the operating regime, per-
form several linearizations of the nonlinear dynamics, and de- Figure 1. Gain scheduled control implementation.
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206 GAIN SCHEDULING

Some immediate drawbacks of gain scheduling are the fol- Let r(x) denote the residual error of approximation; that is,
lowing:

r(x) = f (x) − (
f (x0) + D f (x0)(x − x0)

)
(4)

• The design of several controllers at several linearization
points can be a tedious task.

Then,
• Gain scheduled designs typically assume a fixed op-

erating condition, even though the operating condition is
varying. lim

x→xo

r(x)

|(x − x0)| = 0 (5)

• Although the resulting controller is nonlinear, it is still
based on linearizations of plant dynamics, and hence

where �v� denotes the Euclidean norm of v � R n,may neglect important nonlinear phenomena.

Two heuristic rules-of-thumb which guide successful gain |v| = (vT v)1/2 (6)
scheduled designs are the following:

Example 1. Let f : R 2 � R 2 be defined as
• The scheduling variable should vary slowly.
• The scheduling variable should capture plant nonlinear-

ities.
f (x) =

(
x1|x1| + x2

x2
1x2

)
(7)

It is easy to interpret these guidelines in terms of the Then
aforementioned drawbacks. Since gain scheduled designs as-
sume a constant operating condition, slow variations among
operating conditions should be tolerable. Similarly, since gain
scheduling relies on a family of linearizations, the changes

D f (x) =
(

2|x1| 1
2x1x2 x2

1

)
(8)

within this family should be indicative of plant nonlinearities.
This article provides an overview of the gain scheduling Approximating f (x) near

design procedure, discusses the theoretical foundations be-
hind gain scheduling, as well as limitations of traditional gain
scheduling, and presents emerging techniques for gain sched-
uling which address these limitations.

x0 =
(

1
2

)

leads toLINEARIZATION

Linearization of Functions

We begin by recalling some concepts from multivariable cal-
culus. Let f : R n � R p denote a multivariable function which

f (x) ≈ f (x0) + D f (x0)(x − x0)

=
(

3
2

)
+

(
2 1
4 1

)(
x1 − 1
x2 − 2

)
(9)

maps vectors in R n to vectors in R p. In terms of the individ-
ual components,

Now, let f : R n � R m � R p denote a multivariable function
which maps vectors in R n and R m together to vectors in R p.
In terms of the individual components,

f (x) =




f1(x1, . . ., xn )

...
fp(x1, . . ., xn)


 (1)

In case f is differentiable, Df (x) denotes the p � n Jacobian
matrix of partial derivatives; i.e., f (x, u) =




f1(x1, . . ., xn, u1, . . ., um)

...
fp(x1, . . ., xn, u1, . . ., um)


 (10)

In case f is differentiable, D1f (x, u) denotes the p � n Ja-
cobian matrix of partial derivatives with respect to the first
variable,

D f (x) =




∂ f1

∂x1
(x) · · · ∂ f1

∂xn
(x)

...
. . .

...

∂ fp

∂x1
(x) · · · ∂ fp

∂xn
(x)




(2)

For f continuously differentiable, i.e., if Df (x) has continu-
ous elements, we may approximate f (x) by the truncated Tay-
lor’s series

f (x) ≈ f (x0) + D f (x0)(x − x0) (3)

D1 f (x, u) =




∂ f1

∂x1
(x, u) · · · ∂ f1

∂xn
(x, u)

...
. . .

...

∂ fp

∂x1
(x, u) · · · ∂ fp

∂xn
(x, u)




(11)
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and D2 f (x, u) denotes the p � m Jacobian matrix of partial and
derivatives with respect to the second variable,

f (x0) = 0 (21)

Substituting these formulas into (18) and neglecting the re-
sidual term, r(x), leads to the approximate dynamics

x̃ = Ax̃ (22)
.

where

D2 f (x, u) =




∂ f1

∂u1
(x, u) · · · ∂ f1

∂um
(x, u)

...
. . .

...

∂ fp

∂u1
(x, u) · · · ∂ fp

∂um
(x, u)




(12)

As before, if f is continuously differentiable, we may ap- A = D f (x0) (23)

proximate f (x, u) by
Equation (22) is called the linearization of Eq. (16) about

the equilibrium x0. Intuitively, whenever x � x0 is small, then
x̃ in the linearization should be a good approximation of x �

f (x, u) ≈ f (x0, u0) + D1 f (x0, u0)(x − x0) + D2(x0, u0)(u − u0)

(13)
x0, and hence the linear dynamics of Eq. (22) should be a good
approximation of the nonlinear dynamics of Eq. (16).Let

It is often possible to make more definite statements about
nonlinear dynamics based on an analysis of the linearization,
in particular regarding the stability of the nonlinear system.

r(x, u) = f (x, u) − (
f (x0, u0) + D1 f (x0, u0)(x − x0)

+ D2(x0, u0)(u − u0)
) (14)

First, recall the following stability definitions.

denote the approximation residual. Then as before, Definition 3. Let x0 be an equilibrium of Eq. (16).

• x0 is stable if for any � � 0, there exists a � � 0 such thatlim
x→x0u→u0

r(x, u)√|x − x0|2 + |u − u0|2
= 0 (15)

|x(0) − x0| < δ �⇒ |x(t) − x0| ≤ ε (24)

Equations (5) and (15) indicate that the approximations Otherwise, x0 is unstable.
are accurate up to the first order. • x0 is asymptotically stable if in addition to being stable,

Linearization of Autonomous Systems |x(0) − x0| < δ �⇒ lim
t→∞

x(t) = x0 (25)

In the last section, we saw how to approximate the static be-
In words, stability implies that the solution to Eq. (16)havior of a nonlinear function by using a truncated Taylor’s

stays near x0 whenever it starts sufficiently close to x0,series. We now show how similar tools can be used to approxi-
whereas asymptotic stability implies that the solution also as-mate the dynamic behavior of a nonlinear system.
ymptotically approaches x0.Consider an autonomous nonlinear system

Theorem 4. Let f in Eq. (16) be continuously differentiable.ẋ = f (x) (16)
The equilibrium x0 is asymptotically stable if all of the eigen-
values of Df (x0) have negative real parts. It is unstable ifDefinition 2. The vector x0 is an equilibrium of (16) if
Df (x0) has at least one eigenvalue with a positive real part.

f (x0) = 0 (17)
Since the eigenvalues of Df (x0) determine the stability of

the linearization (22), Theorem 4 states that one can assess
the stability of a nonlinear system based on its linearization.The reasoning for this terminology is that the initial condi-

tion x(0) � x0 leads to the solution x(t) � x0 for all time. So if
Example 5. The equations of motion for a pendulum ofthe solution starts at x0, it remains at x0, hence the term equi-
length � arelibrium.

In case f is continuously differentiable, we may rewrite
(16) as

d2θ

dt2 + c
dθ

dt
− g

�
sin(θ ) = 0 (26)

ẋ = f (x0) + D f (x0)(x − x0) + r(x) (18) where � is the pendulum angle measure positive clockwise
with � � 0 being the upright position, c is a friction coeffi-

where r(x) denotes the residual error in the approximation cient, and g is gravitational acceleration. In state space form,
these equations becomes

f (x) ≈ f (x0) + D f (x0)(x − x0) (19)

Since x0 is both fixed and an equilibrium, d
dt

(
x1

x2

)
=


 x2

g
�

sin(x1) − cx2


 (27)

where x1 � �, and x2 � �̇.
d
dt

(x − x0) = dx
dt

(20)
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Linearizing about the upright equilibrium x0 � 0 leads to with the constant input u(t) � u0 leads to the constant solu-
tion x(t) � x0.

Proceeding as in the autonomous case, whenever f is con-
tinuously differentiable, we may rewrite (33) as

˙̃x =
(

0 1
g/� −c

)
x̃ (28)

The linearization has an eigenvalue with positive real part.
Hence, the upright equilibrium of the pendulum is unstable,

ẋ = f (x0, u0) + D1 f (x0, u0)(x − x0)

+ D2 f (x0, u0)(u − u0) + r(x, u)]
(35)

as expected.
where r(x, u) denotes the residual error in the approximationLinearizing about the hanging equilibrium

f (x, u) ≈ f (x0, u0) + D1 f (x0, u0)(x − x0)

+ D2 f (x0, u0)(u − u0)
(36)x0 =

(
π

0

)

Dropping this residual term and using that f (x0, u0) � 0 leads
leads to to the approximate linear dynamics

x̃ = Ax̃ + Bũ (37)
.˙̃x =

(
0 1

−g/� −c

)
x̃ (29)

where
which is asymptotically stable. Therefore, the hanging equi-

A = D1 f (x0, u0), B = D2 f (x0, u0) (38)librium of the nonlinear pendulum is asymptotically stable,
as expected.

As before, Eq. (37) is called the linearization of the nonlinear
Eq. (33) about the equilibrium (x0, u0). The quantity x̃ approxi-The above example demonstrates that different equilib-
mates x � x0, whereas the quantity ũ equals u � u0, exactly.rium points of the same nonlinear system can have different

stability conditions.
Definition 8. The equilibrium (x0, u0) of Eq. (33) is stabilizedIn some cases, using the linearization to assess stability
by the state feedback u � G(x) ifmay be inconclusive.

• u0 � G(x0)Example 6. Consider the scalar nonlinear systems
• x0 is a stable equilibrium of the closed loop dynamics

ẋ = −x3 (30)
ẋ = f (x, G(x)) (39)

and
The following is a direct consequence of Theorem 4.

ẋ = x3 (31)

Theorem 9. Let f in Eq. (33) be continuously differentiable,
It is easy to see that the equilibrium x0 � 0 is asymptotically and let Eq. (37) be the linearization of Eq. (33) about the equi-
stable for the former system, while the same equilibrium is librium (x0, u0). Suppose the static linear feedback,
unstable for the latter system.

Both systems have the same linearization at the equilib- ũ = −Kx̃ (40)
rium x0 � 0,

stabilizes the linearization of Eq. (37). Then the equilibrium
x̃ = 0 (32)
.

(x0, u0) of Eq. (33) is stabilized by the feedback

(note that x̃ represents different quantities in the two linear- u = u0 − K(x − x0) (41)
izations). In this case, stability analysis of linearization is in-
conclusive; it does not indicate either the stability or instabil-

Theorem 9 states that we can construct stabilizing feed-
ity of the equilibrium x0 � 0.

back for a nonlinear system by designing stabilizing feedback
for its linearization.Linearization of Systems with Controls

It is also possible to use linearization methods to synthesize Example 10. Recall the simple pendulum example, but now
controllers for a nonlinear system. with a control torque input,

Consider the controlled system

ẋ = f (x, u) (33) d
dt

(
x1

x2

)
=


 x2

g
�

sin(x1) − cx2 + u


 (42)

Definition 7. The pair (x0, u0) is an equilibrium of Eq. (33) if
Linearizing about the upright equilibrium leads to

f (x0, u0) = 0 (34)

The reasoning behind the term equilibrium is similar to
the autonomous case. The initial condition x(0) � x0 along

x̃ =
(

0 1
g/� −c

)
x̃ +

(
0
1

)
ũ (43)

.
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The feedback Then, the linearization about the equilibrium (x0, u0),

ũ = −(k1 k2)x̃ (44) x̃ = Ax̃ + Bx̃

ỹ = Cx̃
(53)

.

stabilizes the linearization for any k1 � g/� and k2 � �c. From
Theorem 9, the feedback where

A = D1 f (x0, u0), B = D2 f (x0, u0), C = Dg(x0) (54)u = u0 − (k1 k2)(x − x0)

= −(k1 k2)x
(45)

approximates the input-output behavior of Eq. (33) with mea-
stabilizes the upright equilibrium, where we used that x0 � 0 surement of Eq. (49). Here, x̃ approximates x � x0, ỹ approxi-
and u0 � 0. mates y � y0, and ũ exactly represents u � u0.

In some cases, analysis of the linearization does not aid in Theorem 13. Let f in Eq. (33) and g in Eq. (49) be continu-
the construction of stabilizing feedback. ously differentiable, and let Eq. (53) be the linearization of

Eq. (33) about the equilibrium (x0, u0). Suppose the linear
Example 11. Consider the scalar nonlinear system feedback,

ẋ = x + xu (46) ż = Az + Bỹ

ũ = Cz
(55)

Linearizing about the equilibrium (x0, u0) � (0, 0) leads to

stabilizes the linearization of Eq. (53). Then the equilibriumx̃ = x̃ (47)
.

(x0, u0) of Eq. (33) is stabilized by the output feedback

which is not stabilizable. However, the constant ‘‘feedback’’
u � �2 leads to the closed loop equations ż = Az + B(y − g(x0))

u = u0 + Cz
(56)

ẋ = −x (48)

Example 14. Suppose we wish to control the simple pendu-which is stable.
lum under the output feedback

Now suppose that the state is not available for feedback. y = (1 0)x (57)
Rather, the control is restricted to measurements

Linearizing about the upright equilibrium leads toy = g(x) (49)

By using a similar analysis, we can construct stabilizing out-
put feedback for the nonlinear system based on stabilizing
output feedback for the linearization.

x̃ =
(

0 1
g/� −c

)
x̃ +

(
0
1

)
ũ def= Ax̃ + Bũ

ỹ = (1 0)x̃ def= Cx̃

(58)

.

Definition 12. The equilibrium (x0, u0) of Eq. (33) is stabi- The observer based controller
lized by the dynamic output feedback

ż = (A − BK − HC)z + Hỹ

ũ = −Kz
(59)ż = F(z,y)

u = G(z)
(50)

stabilizes the linearization for appropriate gain matrices
if for some z0,

• (z0, g(x0)) is an equilibrium of Eq. (50) K = (k1 k2), H =
(

h1

h2

)
(60)

• u0 � G(z0)
• (x0, z0) is an asymptotically stable equilibrium of the Since x0, u0, y0 � 0, the same controller (with input y and

closed loop dynamics output u) stabilizes the nonlinear pendulum.

BASIC GAIN SCHEDULING
ẋ = f (x, G(z))

ż = F(z,g(x))
(51)

Gain Scheduled Command FollowingLet (x0, u0) be an equilibrium of Eq. (33), and define y0 �
g(x0). In case g is continuously differentiable, we can approxi- We now outline the basic procedure of gain scheduling in the
mate Eq. (49) as context of command following. The nonlinear plant of interest

is Eq. (33). The objective is to make the measured output Eq.
y ≈ y0 + Dg(x0)(x − x0) (52) (49) approximately follow reference commands, r.
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The primary motivation of gain scheduling is to address Example 17. Recall the controlled pendulum
local limitations associated with a control design based on a
single linearization. The main problem is that the perfor-
mance and even stability of the closed loop system can deteri-
orate significantly when the system is not operating in the

d
dt

(
x1

x2

)
=


 x2

g
�

sin(x1) − cx2 + u


 (67)

vicinity of the equilibrium.
An equilibrium family over the set S � [��, �] is

Example 15. Consider the scalar system
xeq(s) =

(
s
0

)
, ueq(s) = −g

�
sin s (68)

ẋ = x|x| + u

y = x
(61)

The associated linearization family is

By linearizing about the equilibrium (x0, u0) � (0, 0), we ob-
tain the linear control u � �x � r. For r � 0, this control law
stabilizes the equilibrium (0, 0). The resulting closed loop sys-

˙̃x =

 0 1

g
�

cos(s) −c


 x̃ +

(
0
1

)
ũ (69)

tem is

Step 2: Fixed Operating Condition Designs. Let us select sev-ẋ = x|x| − x (62)
eral operating conditions,

For �x(0)� � 1, the solution asymptotically approaches 0. How- {s1, s2, . . ., sN} ⊂ S (70)
ever, for �x(0)� � 1, the solution diverges to infinity.

which characterize the variations within the operating en-
Step 1: Construction of Linearization Family. Gain scheduling velope.

attempts to overcome local limitations by considering a family At the ith equilibrium, si, we can linearize the plant dynam-
of linearizations, rather than a single linearization. ics about the equilibrium (xeq(si), ueq(si)) and design a stabiliz-

ing linear controller to achieve approximate command follow-
ing using any suitable linear design methodology. The resultDefinition 16. The functions (xeq( 	 ), ueq( 	 )) define an equilib-
is an indexed collection of controllers,rium family for the nonlinear system Eq. (33) over the set

S if

f (xeq(s),ueq(s)) = 0 (63)

ż = Aiz + Biỹ + Lir̃

ũ = Ciz
(71)

for all s � S. where r̃ denotes the reference command in local coordinates,

r̃ = r − yeq(si) (72)Associated with an equilibrium family are the output equi-
librium values

This step constitutes the core of gain scheduling, and ac-
cordingly, accounts for the bulk of the effort in a gain sched-
uled control design. Designing fixed operating point control-yeq(s) def= g(xeq(s)) (64)

lers is especially tedious in the case of several design
operating conditions.The equilibrium family induces the following linearization

family for Eq. (33) with measurement Eq. (49),
Step 3: Scheduling. The remaining step is to piece together

a global controller from the individual local controllers. As
the scheduling variable varies in time, the control gains are

x̃ = A(s)x̃ + B(s)ũ

ỹ = C(s)x̃
(65)

.

updated to reflect the current operating condition of the plant.
The resulting overall controller is

where

ż = A(s)z + B(s)(y − yeq(s)) + L(s)(r − yeq(s)),

u = ueq(s) + C(s)z
(73)

The matrices A(s), B(s), C(s), and L(s) are functions of the

A(s) = D1 f (xeq(s), ueq(s)),

B(s) = D2 f (xeq(s), ueq(s)),

C(s) = Dg(xeq(s))
(66)

scheduling variable, as are the vectors yeq(s) and ueq(s). It is
important to note that the scheduling variable, s, which wasThe variable, s, which we will call the scheduling variable,

parameterizes a family of equilibrium points and plant linear- held constant during the design phase, is now time varying.
These matrix and vector functions are used to update the con-izations. Typically, s can be a combination of both endogenous

and exogenous signals (recall discussion of missile autopilot trol parameters according to the variations in the scheduling
variable.earlier). Any fixed s will be called an operating condition, and

the set S defines the operation envelope, or range of op- There are different options in how to schedule the control-
ler parameters in Eq. (73).erating conditions.
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• Switched Scheduling. The operating envelope is divided which are globally stable, as opposed to the local stability of
Example 15.into disjoint regions, Ri, so that

S ⊂ R1 ∪ . . . ∪ RN (74) Notice in this example that the linear control term (x �
xeq(s)) has no effect on the closed loop equations. This is be-

and the controller matrices in (73) are scheduled ac- cause of the smooth scheduling implementation with s � x as
cording to the scheduling variable. In this case, a desirable feedback

loop was eliminated in the scheduling implementation. It is
also possible to introduce undesirable feedback during imple-
mentation.

Theoretical Foundations

The gain scheduled controller is designed so that stability and
performance are achieved whenever the plant is in the vicin-
ity one of the design operating conditions. Since the plant ac-

A(s) =




A1,

AN ,

...
s ∈ R1;

s ∈ RN .

, . . ., ueq(s)

=




ueq(s1),

...

ueq(sN ),

s ∈ R1;

s ∈ RN

(75)

tually varies throughout the entire operating regime, an im-
portant question is to what degree the local properties of the• Continuous Scheduling. Any interpolation algorithm is
individual operating point designs carry over to the globalused to construct continuous matrices which interpolate
system.the design conditions so that

The overall closed loop equations for a gain scheduled sys-
tem areA(si) = Ai, . . ., ueq(si) = ueq(si) (76)

Some important points to consider are the following:

• Gain scheduling is still based on linearizations, and
hence can ignore important nonlinear phenomena.

• The fixed operating point designs assume a constant
scheduling variable which is actually time varying.

ẋ = f (x, u)

ż = A(s)z + B(s)ỹ + L(s)r̃

u = C(s)z + ueq(s)

ỹ = g(x) − yeq(s)

r̃ = r − yeq(s)

(83)

• Implementing the gain scheduled controller introduces
feedback loops which are not present in the fixed op- In general, the scheduling variable, s, can be written as
erating point designs.

s = γ (x, r) (84)
Example 18. Recall the system of Example 15. The equilib-
rium family for an appropriate function, �. Clearly, the overall system is

nonlinear and hence, requires nonlinear methods for analysis.
xeq(s) = s, ueq(s) = −s|s| (77) An analysis of these equations (see Bibliography for

sources) leads to the conclusion that the overall gain sched-
leads to the linearization family uled system will exhibit similar stability and performance as

the local designs whenever (1) the scheduling variable, s,
x̃ = 2|s|x̃ + ũ (78)
.

changes ‘‘sufficiently slowly,’’ and (2) the plant dynamics are
predominantly nonlinear in the scheduling variable.

Because of the simplicity of this system, we are able to design The following sections provide some insight into these re-
controls for all s, rather than selected s. A suitable linear de- strictions.
sign for command following is

LPV Systems. It is convenient to consider slow variation re-ũ = −3|s|x̃ + (r̃ − x̃) (79)
striction in the context of linear parameter varying (LPV) sys-
tems. LPV systems are defined to be linear systems whoseImplementing this design using smooth scheduling leads to
dynamics depend on exogenous time varying parametersthe gain scheduled control
which are unknown a priori, but can be measured upon opera-
tion of the control system.

An LPV system can be represented in state space form as
u = ueq(s) + ũ

= ueq(s) − 3|s|(x − xeq(s)) + ((r − xeq(s)) − (x − xeqs))
(80)

For the scheduling variable s � x, the control becomes
ẋ = A(θ )x + B(θ )u

y = C(θ )x
(85)

u = −x|x| + (r − x) (81)
where � is a time varying parameter. Typical assumptions on
� are magnitude bounds; for example,This feedback leads to the closed loop dynamics

|θ | ≤ θmax (86)ẋ = −x + r (82)
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and rate bounds; for example, By subtracting equation (91) from equation (89), we obtain

|θ̇ | ≤ θ̇max (87)

LPV systems form the underlying basis of gain scheduling.

d
dt

(
s
v

)
= M(s)

(
0

v − veq(s)

)
+ B(u − ueq(s)) (92)

It is convenient to associate the ‘‘parameter’’ with the sched-
If veq(s) is differentiable,uling variable and the LPV structure with the linearization

family, although this is not always the case as will be seen.
The following is a classical result from differential equa-

tions stated in an LPV context.

Theorem 2. If the equilibrium xo � 0 of Eq. (85) is asymptoti-

d
dt

veq(s) = Dveq(s)ṡ

= Dveq(s)M12(s)(v − veq(s)) + Dveq(s)B1(u − ueq(s))
(93)

cally stable for all constant �, then it is asymptotically stable
for all time varying � provided that �̇max is sufficiently small. where the matrices M12(s) and B1 are appropriate sub-matri-

ces of M(s) and B.
The relevance of Theorem 19 to gain scheduling is as fol- Combining these equations leads to the alternate form of

lows. A closed loop LPV system is such that good stability and Eq. (89),
performance is expected for fixed values of the parameter/
scheduling variable. However, performance and even stability
can deteriorate in the presence of parameter time variations.
Theorem 19 provides a sufficient condition for the fixed pa-

d
dt

(
s

v − veq(s)

)
(94)

rameter properties to carry over to the varying parameter
setting.

Example 20. A classical example of instability from fixed pa-
rameter stability is the time-varying oscillator,

=
(

0 M12(s)
0 M22(s) − Dveq(s)M12(s)

)(
s

v − veq(s)

)

+
(

B1

B2 − Dveq(s)B1

)
(u − ueq(s))

(95)

which can be written asẋ(t) =
(

0 1
−(1 + θ(t)/2) −0.2

)
x(t) (88)

These equations can be viewed as a mass-spring-damper sys-
tem with time-varying spring stiffness. For fixed parameter

d
dt

(
s
ṽ

)
= Anew(s)

(
s
ṽ

)
+ Bnew(s)ũ (96)

values, �(t) � �o, the equilibrium xo � 0 is asymptotically sta-
ble. However, for the parameter trajectory �(t) � cos(2t), it where
becomes unstable. An intuitive explanation is that the stiff-
ness variations are timed to pump energy into the oscilla- ṽ(t) = v(t) − veq(s(t)), ũ(t) = u(t) − ueq(s(t)) (97)
tions.

The original equations now take a quasi-LPV form, whereQuasi-LPV Representation. It is also convenient to consider
the ‘‘parameter’’ is actually an endogenous variable. Note thatthe relationship between the scheduling variable and plant
no linearization approximations were made to bring Eq. (89)nonlinearities in an LPV setting.
to the form Eq. (96).The relationship between LPV systems and gain schedul-

This transformation shows that an underlying LPV struc-ing is not limited to linearization families. Consider the fol-
ture exists, even without linearizations, in the extreme caselowing special nonlinear plant in which the scheduling vari-
that the plant dynamics are nonlinear only in the schedulingable is a subset of the state,
variable. Any additional nonlinearities not captured by the
scheduling variable enter as high order perturbations in Eq.
(96). This transformation then reveals the importance of the
scheduling variable to capture the plant nonlinearities.

d
dt

(
s
v

)
= φ(s) + M(s)

(
s
v

)
+ Bu (89)

These equations represent the extreme case where the nonlin- Example 21. Consider the nonlinear system
earities are entirely captured in the scheduling variable, s.
Let (xeq(s), ueq(s)) be an equilibrium family, with

ẋ =
(

x1|x1| + x2

x2
1x2 + u

)
(98)

xeq(s) =
(

s
veq(s)

)
(90)

and let s � x1 be the scheduling variable. These equations
take the form of Eq. (89). The resulting equilibrium family isso that

xeq(s) =
(

s
−s|s|

)
, ueq(s) = s3|s| (99)0 = φ(s) + M(s)

(
s

veq(s)

)
+ Bueq(s) (91)
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Performing the transformations described above leads to the In order to convexify the problem, consider the change in
variablesquasi-LPV form

Q = P−1, Yi = KiP
−1 (106)

Given Q � 0 and Yi, one can solve for the original variables P
and Ki. With these variables, condition Eq. (105) is equiva-
lent to

d
dt

(
s

x2 − (−s|s|)

)
=

(
0 1
0 s2 − 2|s|

) (
s

x2 − (−s|s|)

)

+
(

0
1

)
(u − (−s3|s|)

(100)

AiQ − BYi + QAT
i − Y T

i BT < 0 (107)

ADVANCED METHODS FOR GAIN SCHEDULING Now the set of Q � 0, Y1, and Y2 which satisfy Eq. (107) is
convex. This allows one to employ efficient convex feasibility

Convex Optimization for LPV Systems algorithms which either produce a feasible set of matrices or
determine definitely that no solution exists.Because of the availability of numerically efficient methods

Some important points to consider are the following:for large scale problems, convex optimization is an emerging
technique for gain scheduling design of for LPV and quasi-

• The scheduling process is built into the construction ofLPV systems. As seen in the previous section, the develop-
the state feedback; it is not necessary to perform severalment of methods for LPV systems is directly pertinent to gain
fixed parameter designs.scheduling, since LPV systems form the underlying structure

of a gain scheduled design. • Stability for arbitrarily fast parameter variations is as-
The main idea in convex optimization methods for LPV sured.

systems is to combine stability and performance parameters • Theorem 22 is only a sufficient condition for stability,
with controller parameters in a single convex optimization ob- and hence may be conservative.
jective.

We will demonstrate these methods in the following simple The method extends to more general control objectives,
context. Consider the open loop LPV system other than stabilizing state feedback, including

ẋ = (θA1 + (1 − θ )A2)x + Bu (101) • disturbance rejection and command following
• output feedback

where the parameter is constrained by
• rate constrained parameter variations

0 ≤ θ ≤ 1 (102)
Extended/Pseudo-Linearization

The objective in extended and pseudo-linearization is to im-We are interested in constructing stabilizing gain scheduled
pose that the closed loop system has a linearization familystate feedback. Let us impose the feedback structure
which is invariant in some desired sense.

Let us consider the special case of a tracking problem withu = −(θK1 + (1 − θ )K2)x (103)
full state feedback for the nonlinear system Eq. (33). The ob-
jective is for the first state, x1, to approximately track refer-which mimics the LPV variations of the system. The closed
ence commands, r. Let the equilibrium family (xeq(s), ueq(s)) beloop dynamics are then
an such that

ẋ = (θ (A1 − BK1) + (1 − θ )(A2 − BK2))x (104)
(1 0 . . . 0)xeq(s) = s (108)

A sufficient condition which guarantees the stability of
Now consider the nonlinear feedback(104) is the following.

u = G(x, r) (109)
Theorem 22. The equilibrium xo � 0 of Eq. (104) is asymp-
totically stable if there exists a positive definite matrix, P � where
PT � 0, such that for both i � 1 and i � 2,

ueq(s) = G(xeq(s), s) (110)
P(Ai − BKi) + (Ai − BKi )

T P < 0 (105)
Then, a linearization family for the closed loop system

It is important to note that Theorem 22 only provides a ẋ = f (x, G(x, r)) (111)
sufficient condition for stability. The main idea is that the
matrix P defines the Lyapunov function, V(x) � xTPx, for the is
closed loop system Eq. (104).

Our objective is to find matrices K1, K2, and P which satisfy
Eq. (105). It can be shown that the set of matrices which sat-
isfy Eq. (105) is not convex. This lack of convexity signifi-
cantly complicates any direct search process.

˙̃x = (D1 f (xeq(s),G(xeq(s), s))

+ D2 f (xeq(s),G(xeq(s), s))D1G(xeq(s), s))x̃

+ D2 f ((xeq(s), G(xeq(s), s))D2G(xeq(s), s)r̃

(112)
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