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POSITION CONTROL

Position control has many applications, such as control of the elevator angle of a fighter, control of the
antenna angle in a satellite tracking system, and control of robot manipulators. Often, the essence of position
control is that the tracking error between the desired system output and the actual system output is used
to generate a suitable control input to drive the tracking error to zero. In other words, tracking control is an
important part of motion control, as it solves the problem of determining the control inputs necessary for a
system to track a desired trajectory and provides a way to achieve accurate performance.

In this article, we present adaptive position control of robot manipulators and teleoperation systems.
Robot manipulators are composed of links connected by joints. The joints may be electrically, hydraulically,
or pneumatically actuated. The number of joints determines the number of degrees of freedom (DOF) of the
manipulator. Position control of a robot manipulator involves control of the positions of the joints. Once given
a set of desired trajectories for all the joints, the controller is designed to track these trajectories so that the
end effector of the manipulator sweeps the desired positions in the workspace. The primary method of sensing
the positions is with position encoders located on the joints, either on the shaft of the motor that actuates the
joint or on the joint itself. At times, direct sensing of the end-effector position with the help of a camera is used
to improve the accuracy of the manipulator in tracking a desired trajectory.

A teleoperation system involves two distant yet coupled robots: a local master robot and a remote slave
robot. In teleoperation, the human operator controls the master robot. Motion commands are measured on the
master robot and transmitted to the slave robot, which executes these commands and is expected to track the
motion of the master robot. In addition, the contact force information sensed by the slave robot is reflected
to the master robot for force perception. Thus, the master acts as an position input device that generates a
desired trajectory. The goal of position or tracking control is to design the necessary control input that makes
the slave track the motion of the master. This control problem is an example of master–slave control.

The article is organized as follows: In the following section, we present robust adaptive control schemes
of robot manipulators. First, we present dynamic models of robot manipulators with time-varying parameters
or unmodeled dynamics. Second, we present the controller structure and adaptive law for the time-varying
parameter case and show the signal boundedness and the tracking performance of the robot system. Third, we
present and analyze stable adaptive control schemes for robot manipulators with unmodeled dynamics. Some
common topics of position control relevant to robot manipulators such as PD control, inverse dynamics, and
path or trajectory interpolation are discussed in the fourth subsection. In the third section, we present adaptive
control of teleoperation systems. Adaptive control schemes for teleoperation systems with unknown jumping
parameters and with parametrizable and unparametrizable smooth time-varying parameters are presented.
We also present some control issues relevant to teleoperation systems with communication time delays.
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Adaptive Position Control of Manipulators

To make robot manipulators capable of handling large loads in the presence of uncertainty on the mass proper-
ties of the load or its exact position in the end effector, robust adaptive control designs for robot manipulators
have been developed. In Slotine and Li (1,2) an adaptive control scheme has been proposed for the motion con-
trol of robot manipulators, which guarantees global stability and asymptotic zero tracking error between the
actual joint trajectory and the desired one and needs only the measurements of the joint position and velocity.
This consists of a proportional derivative (PD) feedback part and a full dynamics feedforward compensation
part, with the unknown manipulator and payload parameters being estimated online. The algorithm is com-
putationally simple, because of an effective exploitation of the particular structure of manipulator dynamics.
Various modified versions of this scheme have been shown to be applicable to robot systems with unmodeled
dynamics [Reed and Ioannou (3)], and joint flexibility [Spong (4)].

Recently, there has been considerable research interest in neural network control of robots, and satis-
factory results have been obtained in solving some of the special issues associated with the problems of robot
control. In Lewis, Jagannathan, and Yeildirek (5), neural network controllers are designed for robot manip-
ulators in a variety of applications, including position control, force control, parallel-link mechanisms, and
digital neural network control. These model-free controllers offer a powerful and robust alternative to adaptive
control.

In Ge et al. (6), a comprehensive study of robot dynamics, structured network models for robots, and
systematic approaches for neural-network-based adaptive controller design for rigid robots, flexible joint robots,
and robots in constraint motion are presented.

In this article, we will present a robust adaptive control scheme, based on the scheme developed by Slotine
and Li (1,2) with a modified controller structure and a modified adaptive law [Tao (7)], which ensures the signal
boundedness in the presence of time-variations in the manipulator parameters and a mean tracking error of
the order of the parameter variations, which are not required to be small. We will also show similar results
for a class of unmodeled dynamics. The allowance for the existence of possible large parameter variations and
unmodeled dynamics yields significant potentials for applications of the proposed robust adaptive manipulator
controller.

Manipulator Models and Parametrization. In this subsection, we first present the mathematical
models of robot manipulators with time-varying parameters or unmodeled dynamics, and their parametrized
forms, and then use a two-link planar manipulator to illustrate the manipulator modeling and parametrization.

Manipulator Models. To derive the dynamic equations of a n-link robot manipulator (see Fig. 1, which
shows an illustrative four-link manipulator) whose parameters may explicitly depend on time, we use the
Euler–Lagrange equations [Spong and Vidyasagar (8); Ortega and Spong (9)] of a mechanical system:

where q = (q1,. . ., qn)T is a set of position variables of n (n > 0) joints of the robot manipulator, u = (u1,. . ., un)T

is the applied joint torque, and L is the Lagrangian defined as L = K − P, the difference between the kinetic
energy K and the potential energy P, in the form
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Fig. 1. Robot manipulator.

with D (q, t) ε Rn×n being the symmetric and positive definite manipulator inertia matrix. For Eqs. (1), (2) to
represent the manipulator dynamics with time-varying parameters, the mass and the moment of inertia of
each link of the manipulator should not explicitly depend on q̇.

Letting dij be the ijth element of D (q, t) and φ(q, t) = ∂P (q, t)/∂q, and substituting Eq. (2) in Eq. (1), we
obtain the manipulator dynamic equation:

where the kjth element of C(q, q̇, t ε Rn×n is ckj = ∑n
i = 1 (∂dkj/∂qi + ∂dki/∂qj − ∂dij/∂qk) q̇i.

A key feature of the manipulator model (3) is that the inertia matrix D(q, t) and the potential energy P(q,
t) are explicitly time-dependent, which takes into account the effect of changes in environment of the robot
system or changes of the manipulator dynamics with time. Moreover, an important property of the manipulator
model (3) is

where M(q, q̇, t) = dD(q, t)/dt − ∂D(q, t)/∂t, whose ijth element is (∂dij/∂q)T q̇. When D(q, t) = D(q) does not
explicitly depend on t, that is, ∂D(q, t)/∂t = 0, Eq. (4) becomes xT[dD(q)/dt − 2C(q, q̇)]x = 0, which is well known
in the robotics literature.

A manipulator with unmodeled dynamics may be modeled as
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where Hi, i = 1, 2, 3, with appropriate dimensions, are linear operators with rational transfer matrices,
representing the unmodeled part of the robot dynamics, and g1(q̇), g2(q), g3(u) are certain vector functions of
q̇, q, u. The functions D(q), C(q, q̇), φ(q) have been defined above, and, for simplicity, they are assumed not
explicitly time-dependent in the unmodeled dynamics problem. The manipulator model (5) is generalized from
some practical robot systems [Reed and Ioannou (3); Ortega and Spong (9)].

Control Objective and Parametrization. Our control objective is, for a given reference signal qd(t), to
generate the applied torque u for the manipulator (3) or (5) with unknown parameters so that all signals in the
robot system are bounded and the joint position q tracks qd as closely as possible. To achieve such an objective
we first use the transformation technique developed in Slotine and Li (1,2) to parametrize the manipulator
model (3) or (5).

Let � be any n × n constant matrix whose eigenvalues have positive real parts; define

Clearly, it follows from Eq. (6) that

and s, v, v̇ depend only on q, qd, q̇, q̇d, q̇d and not on the joint acceleration vector q̈(t).
Using Eq. (7), we express the manipulator model (3) as

where Y (q, qd, q̇, q̇d, q̈d, t) is an n × r matrix of known functions for some r > 0, and θ∗(t) ε Rr contains
parameters, which may be time-varying. In Eq. (8), the regressor Y (q, qd, q̇, q̇d, q̈d, t) is bounded for bounded
q, qd, q̇, q̇d, q̈d

Let xt be the truncated x at time t. Denote by ‖·‖ the Euclidean vector norm or the induced matrix norm,
and by ‖·‖∞ (‖·‖1, ‖·‖2) the L∞ (L1, L2) vector norm or the induced operator norm [Desoer and Vidyasagar (10)],
as the case may be.

We make the following assumptions about the manipulator model (8):

(1) ‖θ∗ (t)‖ ≤ ρ0, ‖ θ̇∗ (t) ‖ ≤ ρ for some constants ρ0 > 0, ρ > 0;
(2) ‖∂D(q, t)/∂t ‖ ≤ γ f (q) for some constant γ > 0 and known f (q) bounded for bounded q.

Similarly, for the manipulator model (5), we obtain

where θ∗ ε Rr is a constant vector, and Y (q, qd, q̇, q̇d, q̈d) is not explicitly time-dependent.
We make the following assumptions about the manipulator model (9):
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Fig. 2. Two-link planar manipulator.

(1) ‖(g1 (q̇))t‖∞ ≤ f 1(q̇(t)), ‖(g2(q))t‖∞ ≤ f 2(q(t)) for some known f 1(q̇), f 2(q) that are bounded for bounded q̇, q,
and ‖H1‖∞ ≤ γ1, ‖H2‖∞ ≤ γ2 for some constants γ1 > 0, γ2 > 0;

(2) ‖(g3 (u))t‖ ≤ ‖ut ‖∞, and ‖H3
i‖ ≤ µi, where H3

i is the ith row of H3, i = 1,. . ., n.

We also make an assumption on the desired joint position vector qd(t):

(1) qd(t), q̇d(t), q̈d(t) are bounded.

Assumption (A1) requires only the boundedness of the manipulator parameters and their derivatives, not
the smallness of the time variations of the parameters. Smallness of the parameter variations is usually an
assumption for the design of adaptive control schemes for time-varying plants, but it is not needed here because
of the special structure of the robot manipulator dynamics. Assumption (A2) requires that ∂D (q, t)/∂t satisfy
a certain relative boundedness condition. Assumption (A3) requires that the L∞ gains of H1, H2 be finite and
g1(q̇), g2 (q) satisfy certain relative boundedness conditions. Assumption (A4) is similar to (A3), but µi ≥ 0, i =
1,. . ., n, are to be specified for the robust stability of the adaptive robot system. We note that the bounds γ, γ1,
γ2 are not needed for the adaptive controller design.

An Illustrative Example. In this sub-subsection, we consider a two-link planar manipulator [Spong and
Vidyasagar (8)], shown in Fig. 2 as an illustrative example for the robot system modeling and parametrization.

The manipulator configuration may be described as follows: there are two revolute joints with joint angles
q1, q2, and two links with masses M1, M2, lengths l1, l2, distances lc1, lc2 from the joints to the mass centers,
and rotational inertias I1, I2. The inertia matrix D(q, t) has four elements: d11 = M1lc1

2 + M2 (l1
2lc2

2 + 2l1lc2
cos q2)+ I1+l2, d12 = d21 = M2(lc2

2 + l1lc2 cos q2) + I2, d22 = M2 lc2
2 + I2; and the potential energy is P(q, t) =

(M1lc1 + M2l1) g sin q1 + M2lc2 g sin (q1 + q2), where g is the gravitational acceleration. The matrix C(q, q̇, t)
in Eq. (3) has four elements: c11 = h q̇2, c12 = (q̇1 + q̇2)h, c21 = − q̇1h, c22 = 0, where h = −M2l1lc2 sin q2.
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The manipulator model without parameter variations and unmodeled dynamics is D(q) ṡ + C(q, q̇)s = u
− Y(q, qd, q̇, q̇d, q̈d)θ∗, where

When θ∗ = θ∗(t) is time-varying, the manipulator model is Eq. (8) with Y(q, qd, q̇, q̇d, q̈d, t) and

Assuming that | θ̇i(t)| ≤ ρi, we obtain the bound ρ in (A1) as and the bounds γ, f (q) in (A2) as
γ = (ρ1

2 + ρ2
2 + 4ρ3

2 + 6ρ4
2 + ρ5

2 + 4ρ6
2)1/2, f (q) = 1.

For the unmodeled dynamics problem, the manipulator model is Eq. (9). The bounds γ1, γ2, µi in (A3) and
(A4) depend on the nature of the unmodeled dynamics.

Solution to the Parameter Variation Problem. In this subsection, we first present an adaptive control
scheme for robot manipulators modeled by Eq. (8) and then analyze the stability and tracking properties of the
proposed adaptive controller.

If the inertia D(q, t) = D(q) and the potential energy P(q, t) = P(q) are not explicitly time-dependent, that
is, ∂D(q, t)/∂t = 0, and θ∗(t) = θ∗ is constant in Eq. (8), then the adaptive control scheme proposed by Slotine
and Li (1,2),

guarantees that the closed-loop system is globally stable and convergent in the sense that q(t), q̇(t), θ(t) are
bounded, and limt→∞ e(t) = 0, as the positive definite function

has the property (t) = −sT(t)KD s(t) ≤ 0 [also see Spong et al. (11) for further analysis].
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Fig. 3. The switching σ modification.

When D(q, t), P(q, t) are both explicitly time-dependent, we have obtained the manipulator model as Eq.
(8) in which θ∗(t) is time-varying and the term ∂D(q, t)/∂t q̇ appears. If the parameters in D(q, t), P(q, t) were
known, then θ∗(t) and ∂D(q, t)/∂t q̇ could be calculated so that the control law u(t) = Y(q, qd, q̇, q̇d, q̈d, t)θ∗(t)
+ [∂D(q, t)/∂t] q̇ − KDs could be implemented, which guarantees global stability and asymptotic tracking. For
unknown D(q, t), P(q, t), next we present an adaptive control scheme that is robust with respect to the time
variation of θ∗(t) and [∂D(q, t)/∂t] q̇.

With Y(q, qd, q̇, q̇d, q̈d, t), s, KD, 	 defined before, we propose the following feedback controller structure
for the manipulator (8):

and the following update law for θ(t):

where σ(t) as shown in Fig. 3 is the switching signal [Ioannou and Tsakalis (12)] using a priori knowledge of
the upper bound M on supt≥0 ‖θ∗(t)‖:

This adaptive control scheme has the following stability and tracking properties.
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Theorem 1. All closed-loop signals are bounded, and the tracking error e(t) = q(t) − qd(t) satisfies

for some constants α0 > 0, β0 > 0, and any t2 > t1 ≥ 0. Moreover, e(t) ε L2 and limt→∞ e(t) = 0 in the absence of
parameter time variations, that is, when θ̇∗(t) = 0, ∂D(q, t)/∂t = 0.

Proof:. Consider the positive definite function

From Eqs. (4, 7, 8), (16, 17, 18) and from (A1), (A2), we have that

Since γ, ρ, ρ0 are constants and σ(t) defined in Eq. (19) satisfies

it follows from the second inequality of (2.22) that (t) ≤ 0 for θ(t), s(t) outside a certain bounded set. Therefore
s(t) and θ(t) are bounded, which, in view of Eqs. (7), (16), implies that q(t), q̇(t), u(t) are also bounded.

Using the fact that σ(t) T(t)θ(t) ≥ 0 and the first inequality of Eq. (22), we obtain



POSITION CONTROL 9

for some constant k1 > 0. Since V(t) is bounded, from Eq. (24) we have

for some constants α1 > 0, β1 > 0 and any t2 > t1 ≥ 0.
To show that Eq. (25) implies Eq. (20), let us consider the relation s(t) = ė(t) + �e(t), where � is a stable

matrix [see Eq. (7)], and denote by H the linear operator or the impulse-response matrix from s(t) to e(t) as the
case may be, that is, e(t) = H[s](t) = ∫

0
t H(t − τ)s(τ) dτ. It follows that

Since the operator H is exponentially stable and e(t) is bounded, both ‖H‖2 and
∫

t1
t2 ‖H (t − t1)e(t1)‖2 dt are

finite for any t2 > t1 ≥ 0. Hence from Eqs. (25) and (26) we prove Eq. (20).
When θ̇∗(t) = 0 and ∂D(q, t)/∂t = 0, that is, ρ = γ = 0, it follows from Eq. (20) that e(t) ε L2. This, together

with the boundedness of ė(t) = s(t) − �e(t), proves limt→∞ e(t) = 0.

To implement the controller (16), we need the knowledge of f (q) to generate the bounding signal m(t) in Eq.
(17). A more sophisticated choice of f (q) admits a wider class of ∂D(q, t)/∂t, but may make the implementation of
m(t) more complicated. We also note that the above design does not need the knowledge of the bounds γ, ρ. For
a chosen f (q), different choices of k0 in generating m(t) may have different effects on the tracking performance,
while increasing k0 may reduce the effect of γ in the mean error (20). For the signal boundedness and the
mean tracking error (20), parameter variations characterized by γ and ρ are not required to be small. This is
an important feature of the robot system. With q̇, q available for measurement, the manipulator mode (3) is
equivalent to the first-order model (8), for which the adaptive controller allows “large” parameter variations to
exist.

Solution to the Unmodeled Dynamics Problem. Consider the manipulator (9) with unmodeled
dynamics. If the terms H1[g1(q̇)](t), H2[g2(q)](t), H3[g3(u)](t) were available for measurement and θ∗ were
known, then the control law u(t) = Y(q, qd, q̇, q̇d, q̈d)θ∗ − H1[g1(q̇)](t) − H2[g2(q)](t) − H3[g3(u)](t) − KDs(t) could
be implemented so that d/dt[sT(t)D(q)s(t)] = −2sT(t)KDs(t), showing the boundedness of s(t) and exponentially
fast tracking. However, to ensure the boundedness of u(t), one needs ‖H3‖∞ = maxi = 1,...,n µi < 1.

To solve the adaptive control problem in which H1[g1(q̇)](t), H2[g2(q)](t), H3[g3(u)(t), and θ∗ are unknown,
with Y(q, qd, q̇, q̇d, q̈d), KD, s(t) = (s1(t),. . ., sn(t))T, σ(t), 	 defined before, we propose the following feedback



10 POSITION CONTROL

controller structure for the manipulator (9):

and the following update law for θ(t):

The stability and tracking properties of this adaptive control scheme are:

Theorem 2. All closed-loop signals are bounded for any µi ε [0, λi] i = 1,. . .,n, and the tracking error e(t)
satisfies

for some constants α0 > 0, β0 > 0. Moreover, e(t) ε L2 and limt→∞ e(t) = 0 in the absence of the unmodeled
dynamics, that is, when H1 = 0, H2 = 0, H3 = 0.



POSITION CONTROL 11

Proof:. Considering V(t) defined in (15), from Eqs. (9), (27), (32) and (A3), (A4) we obtain

From Eq. (30), we see that

Hence it follows from Eqs. (34), (35) that, for 0 ≤ µi ≤ λi, i = 1,. . .,n, we have (t) ≤ 0 whenever θ(t) and s(t)
are outside a certain bounded set, that is, s(t), θ(t) are bounded, and so are q(t), q̇(t).

From Eqs. (27, 28, 29, 30), (A3), (A4), and the boundedness of s(t), q(t), q̇(t), θ(t), we have

for some constant k2 > 0, which, together with Eq. (31), implies that u(t) is bounded.

Using Eqs. (34), (35) and the fact that σ(t) T(t)θ(t) ≥ 0, we obtain

For δ = maxi = 1,...,n δi, Eq. (37) implies that

for some constants α1 > 0, β1 > 0, and any t2 > t1 ≥ 0, which implies Eq. (33).
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When H1 = 0, H2 = 0, H3 = 0, the expression (34) for (t) becomes

Since sT(t)φ3(t) ≥ 0, Eq. (39) shows that s(t) ε L2. Hence, from Eq. (7), it follows that e(t) ε L2 and ė(t) is bounded.
Therefore we have limt→∞ e(t) = 0.

We have thus proved the signal boundedness of the closed-loop system in the presence of H1[g1(q)](t),
H2[g2(q)](t), H3[g3(q)](t). The gains of the linear operators H1, H2 are assumed to be finite but not small. The
gain of H3 is required to be small to ensure the boundedness of u(t).

The modifying term σ(t)θ(t) in Eq. (32) can be replaced by σ0θ(t), σ0 > 0. The signal boundedness follows,
but Eq. (33) is changed to

This scheme cannot guarantee asymptotic tracking in the absence of the unmodeled dynamics, though the
scheme does not need the knowledge of the upper bound on ‖θ∗‖.

The use of the bounding signals mi(t) defined in Eq. (28) is the key to ensuring signal boundedness in
the presence of the unmodeled dynamics satisfying (A3), (A4). To generate these signals, the knowledge of the
stability margin of the unmodeled dynamics is not needed. Alternative bounding signals may be used under
other assumptions for the unmodeled dynamics. For example, if ‖ 3

i‖∞ ≤ µi, where 3
i is the ith row of H3(s)(s

+ a0) (this s is the Láplace variable), i = 1,. . ., n, for some known constant a0 > 0, and ‖(s+a0)− 1[g3(u)])t‖∞
≤ ‖(s+a0)− 1[u])t‖∞, then we can choose m3(t) = ‖(s+a0)− 1[u])t‖∞ and set 0 < λi ≤ a0. Another choice of m3(t)
is the bounding signal [ /(s+δ0)][‖u‖](t) when ‖g3(u)‖ ≤ ‖u‖ and ‖ 3

i‖1 ≤ µi, where 3
i is the ith row of

H3(s − δ0)s with the Laplace variable s, for some known constant δ0 > 0. For this m3(t), the condition on λi is
‖(λ1,. . .,λm)T‖ < δ0 and λi > 0 for i = 1,. . .,n. We note that a similar L1-norm condition can be established for
H1 and H2 to design a robust adaptive controller.

When θ∗ is known and H1[g1(q̇)](t), H2[g2(q)](t), H3[g3(u)](t) are present, Eq. (27) with θ(t) = θ∗ becomes a
robust nonadaptive controller, which results in e(t) converging exponentially to a residual set whose size is of
the order of γ1

2/k10
2 + γ2

2/k20
2 + δ.

Next, we present the robust adaptive control design assuming that the upper bounds on the gains of the
unmodeled dynamics H1, H2 are known:

(1) (A3a)(g1 q̇), g2(q) are the same as in (A3), and ‖Hj
i‖∞: ≤ γji for some known constants γji > 0,where Hj

i is
the ith row of Hj, j = 1, 2, i = 1,. . ., n.

We propose to choose φj(t) = (φj1(t),. . .,φjn(t))T, j = 1,2,3, in Eq. (27) as
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This scheme guarantees that all signals in the closed-loop system are bounded for 0 ≤ µi ≤ λ3i, i = 1,. . .,
n, and the tracking error e(t) satisfies

for some constants α0 > 0, β0 > 0, and any t2 > t1 ≥ 0. Moreover, e(t) ε L2 and limt→∞ e(t) = 0 in the absence of
the unmodeled dynamics H1, H2, and H3.

We see from Eq. (43) that the mean tracking error explicitly depends only on the design parameter δ, not
on the bounds γji defined in (A3a). A smaller δ may result in a smaller mean tracking error (2.43). Hence, with
the knowledge of the unmodeled dynamics bounds, improvements of the tracking performance may be achieved
by using the control signals defined by Eq. (41).

Another interesting result is the adaptive controller with a so-called variable structure [Utkin (13)]:
letting δji → 0 in (2.41), j = 1,2,3, i = 1,. . .,n, we obtain

It can be shown that for 0 ≤ µi ≤ λ3i, i = 1,. . .,n, all closed-loop signals are bounded and the tracking error
asymptotically converges to e(t) = 0 with possible chatterings. For a variable structure controller, σ(t) = 0 can
be used in the update law (32).

As a final remark, we note that the proposed designs can be combined to solve the problem in which both
the parameter variation and unmodeled dynamics are present.

Proportional Derivative Control, Inverse Dynamics, and Path Interpolation. In this subsection,
we discuss some of the general concepts related to the position control of robot manipulators.

Proportional Derivative Control. We first derive a PD control law for each joint of a manipulator based
on a single-input single-output (SISO) model. Coupling effects among the joints are regarded as disturbances.
Permanent-magnet dc motors along with gear reduction are commonly used in practice to actuate the joints of
the manipulator. For such dc-motor-actuated robotic manipulator, a simplified version of the dynamics of the
kth joint can be given as in Spong and Vidyasagar (8),

where Jeffk = Jmk + rk
2dkk(q) is the effective joint inertia of the kth actuator (motor plus gear, Jmk) and the

manipulator link [dkk(q) is the kth diagonal element of D(q) in Eq. (3)], Beffk = Bmk + (Kbk Kmk/Rk) is the
effective damping of the kth actuator (motor plus gear, Bmk) with Kbk the back emf constant, Kmk the torque
constant, and Rk the armature resistance; θmk is the kth motor (rotor) angular position; Vak is the armature
voltage of the kth motor; rk is the kth gear ratio; k = Kmk/Rk; and k is the actuator dynamics (3) specified
for the kth joint and is treated as a disturbance to simplify the problem, since in that case, we maintain the
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linearity of (2.45). The last can be given as

where cijk = (∂dkj/∂qi + ∂dki/∂qj − ∂dij/∂qk) and φk(q) = ∂P(q)/∂qk with P(q) the potential energy.
The setpoint tracking problem is defined as the problem of tracking a constant step reference command

θd = [θd1,. . .,θdn] for n joints. This type of control is adequate for applications not involving very fast motion,
especially in robots with large gear reduction between the actuators and the links. A PD compensator for each
of the n joints can now be used to achieve setpoint tracking:

where Kpk, Kdk are the proportional and the derivative gains, respectively. The characteristic polynomial of the
closed-loop system is

indicating that the closed-loop system will be stable for all positive values of Kpk and Kdk and bounded
disturbances. The tracking error is given by

For a step reference input θdk(s) = θdk/s and a constant disturbance k(s) = k/s, the steady-state error is ekss

= − −rk k/ kKpk [see Spong and Vidyasagar (8)]. Thus, the steady-state error due to a constant disturbance
is smaller for larger gear reduction and can be made arbitrarily small by making the position gain Kpk large.
By using integral control as well (PID), we can achieve zero steady-state error while keeping gains small and
rejecting step disturbances. However, the PD or PID compensators perform poorly for position control when
there are large uncertainties in system parameters, or when varying disturbances and unmodeled dynamics
are present, as is common in applications. In such situations, the adaptive control designs presented in the
preceding two subsections perform much better than the PD or PID controller.

In the PD compensator presented above, the coupling effects among the joints were regarded as distur-
bances. In reality, the dynamic equations of a robot manipulator form a complex, nonlinear, and multivariable
system. Such a dc-motor-driven n-joint actuator may be represented in a matrix equation as

where D(q) is the time-invariant n × n inertia matrix, C(q, q̇) and φ(q) are the time-invariant versions of C(q,

q̇, t) and φ(q, t) in Eq. (3) respectively, is a diagonal matrix with elements Jmk/rk
2, the input joint torque

has components uk = (Kmk/rkRk) Vak, and B has elements k = Bmk + KbkLmk/Rk (with Lmk the inductance),
for k = 1, . . ., n. An independent joint PD control scheme can be written for the system (50) as in Spong and
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Vidyasagar (8):

where = qd − q is the error between the desired and the actual joint displacements, and P, D are diagonal
matrices of positive proportional and derivative gains, respectively. In the absence of gravity [φ(q) = 0], the
PD control law (51) achieves asymptotic tracking of the desired joint positions. In presence of gravity, Eq. (51)
alone cannot guarantee asymptotic tracking and has to be modified as

to cancel the steady-state error due to the effect of the gravitational terms [see Spong and Vidyasagar (8)]. For
detailed analysis and performance study of PD controller for robot manipulators, please refer to Spong and
Vidyasagar (8).

Inverse Dynamics. Using inverse dynamics, a more complex nonlinear control technique can be imple-
mented for trajectory tracking of rigid manipulators [Spong and Vidyasagar (8)]. Consider the system given by
Eq. (50) in a more simplified form,

where = D + , h = C q̇ + q̇ + φ. The idea of inverse dynamics is to seek a nonlinear feedback control
law u = (q, q̇) which when substituted into Eq. (53) results in a linear closed-loop system. Since the inertia
matrix M is invertible, the control law

reduces the system q̈ = Va with Va as the new input to the system, the armature voltages to be applied to to the
actuator motors. Thus, we have a double integrator system with n uncoupled double integrators. The nonlinear
control law (54) is called the inverse dynamics control and achieves a new linear and decoupled system, making
it possible to design Vak to control a simple linear second-order system and can be designed as

where χ0, χ1 are diagonal matrices of position and velocity gains, respectively, and is the reference. The gains
could be chosen to get a joint response that is equal to the response of a critically damped linear second-order
system with desired natural frequencies for each of the desired speeds of the responses of the joints. The inverse
dynamics can be viewed as an input transformation that transforms the problem from one of choosing torque
input commands, which is difficult, to one of choosing acceleration input commands, which is easy. There are
many crucial issues of implementation and robustness that must be addressed to implement Eq. (54), and the
reader is referred to Spong and Vidyasagar (8).

Path Interpolation. The simplest type of robot motion is point-to-point motion. In this approach the robot
is commanded to go from an initial configuration to a final configuration without regard to the intermediate
path followed by the end effector. To understand the concept of configuration, it is helpful to review some
terminology used in Spong and Vidyasagar (8). Suppose a robot has n + 1 links numbered from 0 to n starting
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Fig. 4. Path interpolation: via points to plan motion around obstacles.

the base of the robot, which is taken as link 0. The joints are numbered 1 to n, and the ith joint is the point
in space where links i − 1 and i are connected. The ith joint variable is denoted by qi. A coordinate frame is
attached rigidly to each link. We attach an inertial frame to the base and call it frame 0. Frames 1 to n are
chosen such that frame i is rigidly attached to link i. Now the configuration is given by the transformation
matrix that transforms the coordinates of a point from frame j to frame i and is denoted by Ti

j. For example, for
a seven-link robot manipulator, the initial and final configurations that are of interest in point-to-point motion
are the transformation matrices that transform the coordinates of frame 6 to frame 0; let them be denoted
by T0

6 init and T0
6 final. This type of motion is suitable for materials transfer jobs where the workspace is

clear of obstacles. Given the desired initial and final positions and orientation of the end effector, the inverse
kinematic solution is evaluated to find the required initial and final joint variables. Suppose, di

j denotes the
position of frame j with respect to frame i, and Ri

j denotes the orientation of frame j relative to frame i. For the
manipulator with seven links, the motion of the first three, joints is calculated by computing the joint variables
q1, q2, and q3 corresponding to d0

3 init and d0
3 final. The motion of the final three joint variables is found by

computing a set of Euler angles corresponding to R3
6 init and R3

6 final [Spong and Vidyasagar (8)]. For some
purposes, such as obstacle avoidance, the path of the end effector can be further constrained by the addition of
via points intermediate to the initial and the final configurations as shown in Fig. 4. Different techniques of
generating smooth trajectories in joint space, given the initial and final joint variables, are presented in Spong
and Vidyasagar (8).

Adaptive Control of Teleoperation Systems

A teleoperation system involves two distant yet coupled robots: a local master robot and a remote slave robot. An
ideal teleoperation is the one in which the impedance felt by the human operator is matched to the impedance of
the slave environment [Lawrence (14)]. The term “transparency” is used to describe such an ideal teleoperation.
For teleoperation systems with known and time-invariant dynamics, a transparency control scheme is proposed
in Lawrence (14), with a modification to handle communication time delays. For teleoperation systems with
unknown time-invariant dynamics, an adaptive control scheme based on Slotine and Li (1,2) algorithm is
presented in Hashtrudi-Zaad and Salcudean (15). Stability and signal boundedness of a similar adaptive control
system are investigated in Lee and Chung (16). Despite recent progresses in teleoperation, transparency issues
for teleoperation systems with unknown time-varying parameters, such as jumping and smoothly but rapidly
changing parameters, including control designs and transparency characterizations, remain open.
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Fig. 5. Structure of a teleoperation system.

In this article, we present new transparency concepts suitable for adaptive control of teleoperation systems
with time-varying parameters [Shi et al. (17)]. Adaptive control schemes for teleoperation systems with jumping
or rapidly time-varying parameters are developed [Shi et al. (17)]. The developed adaptive control schemes
lead to stable and transparent teleoperations in the presence of unknown constant or jumping or fast-varying
parameters. The teleoperation systems to be controlled are assumed to have no communication time delay. In
the first subsection, we present the new concepts of weak transparency, asymptotic weak transparency, and
approximate weak transparency, and formulate the transparency control problem for four types of teleoperation
systems with no communication time delay [Shi et al. (17)]. In the next subsection, we present adaptive
control schemes for teleoperation systems with unknown jumping parameters and with parametrizable and
unparametrizable smoothly time-varying parameters [Shi et al. (17)]. In the last subsection we present some
control issues relevant to teleoperation systems with communication time delays.

Teleoperation Systems. In this section, we present the general structure of a teleoperation system
and its dynamic description, introduce several new concepts for transparency of teleoperation systems, and
state the adaptive control objective with which the new transparency concepts are to be verified.

Dynamics of a Teleoperation System. A teleoperation system consists of five subsystems: the human
operator, the master robot, the communication channels, the slave robot, and the slave environment, as shown
in Fig. 5. The term teleoperator refers to the master and slave manipulators connected by the communication
channels. Bilateral teleoperation involves velocity and force information transfer between the master and the
slave. Communication time delays commonly exist in teleoperation systems due to the large distance and
restrictive data transfer. These delays are assumed to be absent in the following analysis, for confinement to
fundamentals and for simplicity of analysis. In Fig. 5, vh is the velocity of the human operator’s hand, vm is the
velocity of the master end effector, vs is the velocity of slave end effector during contact, Fh is the force applied
by the human operator to the master robot, Fe is the force exerted by the slave robot on its environment, and
Fs is the coordinating torque. In the absence of communication time delay, vsd(t) = vm(t) and Fmd = Fs(t). In the
presence of communication time delay T, vsd(t) = vm (t − T) and Fmd = Fs(t − T). In the following analysis, no
communication time delay is assumed.

For analysis, a network representation of a teleoperation system is useful and Fig. 6 shows one commonly
used in the literature, in which the human operator and the slave environment are represented by one-port
networks, and the teleoperator by a two-port network. The blocks Zh, Zm, Zs, and Ze represent respectively
the dynamics of a human operator, a master robot, a slave robot, and the slave environment; signals τm and τs
denote control torques for master and slave robots; signals vh and ve refer to velocities of the human operator’s
hand and the slave environment. Note that vh equals vm, the velocity of master end effector, and ve equals
vs, the velocity of slave end effector during contact. The signals Fh∗, Fh, Fe represent respectively the force
generated by the human operator, the force applied by the human operator to the master robot, and the force
exerted by the slave robot on its environment.

As in Hashtrudi-Zaad and Salcudean (15), Lee and Chung (16), and Raju et al. (18), we consider the
dynamics of the master and slave robots as
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Fig. 6. A two-port network for a teleoperation system.

where M, B, and K are inertia, damping, and stiffness parameters; the signal x is the position of end effector;
and the signal τ denotes the control torque with subscript m for the master and s for the slave. From Eq. (56),
we see that Zm(s) = Mms + Bm + Km/s.

Let Cm and Cs denote the master and slave feedback control, and Ci, i = 1, . . ., 4, represent the data
communication control for signals vm, Fe, Fh, and vs, respectively. Then the torques τm and τs have the following
descriptions:

where the minus sign indicates the feedback signals. We also assume the human operator and the slave
environment are passive, and as in Raju et al. (18), we use a generalized mass–damping–spring model to
describe the human operator and the slave environment,

where M, B, and K are the inertia, damping, and stiffness parameters with subscript h for the human operator
and e for the slave environment. Substituting Eq. (61) into Eq. (57), we get the slave system

where M = Ms + Me, B = Bs + Be, and K = Ks + Ke.
Four types of teleoperation systems are usually met in applications: teleoperation systems (i) with known

time-invariant dynamics, (ii) with unknown constant environment, (iii) with jumping environment parameters,
and (iv) with smooth time-varying environment parameters. The transparency of adaptive teleoperation control
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systems is of main interest in this article, for which we will introduce new concepts suitable for adaptive control
when the system parameters are unknown, for different cases of parameter uncertainties.

We first consider teleoperation systems with no communication time delay. The stability analysis is easy
and simple when communication delay is not involved. A closed-loop transfer function can be obtained for the
bilateral system, and the traditional tools such as the root locus technique and the Routh–Hurwitz stability
criterion can be used for stability analysis. It is reasonable to assume no communication delay to develop the
basic adaptive control techniques along with the stability analysis. In the last subsection below, we present
some of the control issues relevant to teleoperation with communication time delays.

Transparency of a Teleoperation System. The impedance transmitted to or “felt” by human operator,
Zt (see Fig. 6), is defined by Fh = Zt vh, in the frequency domain.

Definition 1. [Lawrence (14)]. A teleoperation system is transparent if

This means that in a transparent teleoperation, the human operator feels as if he were manipulating the
slave environment directly. Note that when the slave robot is in contact with its environment, its velocity, vs
and the environment force Fe are related by the impedance Ze as Fe = Zs vs in the frequency domain. Since
vh = vm, if the slave exactly reproduces the motion of the master (i.e., vs = vm, and Zt = Ze, then Fh = Fe,
that is, the master accurately feels the slave contact force. That is, for a transparent teleoperation, the velocity
tracking from the slave to the master leads to force tracking from the master to the slave.

Definition 2. A teleoperation system is weakly transparent if

The property (64) is called weak transparency because it only needs Zt = Ze for some specific operation
frequencies at which vs = vm.

Definition 3. A teleoperation system is asymptotic weakly transparent if

This weak transparency is ensured in adaptive teleoperation control systems with parametric uncertain-
ties.

Definition 4. A teleoperation system is approximate weakly transparent if

for some constant c1 > 0, c2 > 0, α > 0 and some design parameter β > 0.

In this case, it is expected that the design parameter β > 0 in the control system can be chosen to be large
so that the tracking error vs(t) − vm(t) can be made small.
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Definition 5. A teleoperation system is approximate weakly transparent in the mean if

for some constant γ1 > 0 and γ2 > 0, and any t2 > t1 ≥ 0.

This weak transparency is ensured in adaptive teleoperation systems with both parametric and structural
uncertainties. In this case, it is expected that γ1 = γ0α for an adaptive control system, for some design parameter
α > 0 that can be made small.

Control Objective. The control objective is to develop controllers Cm, Cs, and Ci, i = 1,. . ., 4, that ensure (i)
closed-loop signal boundedness, (ii) limt→∞ [vs(t) − vm(t)] = 0 [vs(t) tracks vm(t) as closely as possible in the
sense (66) or (67)], and (iii) Fh = Fe for the slave environment with constant parameters, or with jumping
parameters, or with smoothly time-varying parameters, in the presence of parameter uncertainties. This is a
master–slave control problem.

Control Designs. In this subsection, we will first review two existing control designs: one for teleop-
eration systems with known constant parameters, and one for teleoperation systems with unknown constant
parameters. We will then present new adaptive control schemes for time-varying teleoperation systems with
jumping parameters or with smoothly time-varying parameters. The teleoperation systems in consideration
are assumed to have no communication time delay. For the new proposed control schemes, we will analyze the
system performance in terms of stability and transparency. The teleoperation system is said to be stable if the
state variables of the system are bounded at any time.

Design for System with Known Constant Parameters. As in Lawrence (14), the forces and velocities of
the teleoperator two-port as shown in Figure 6 are related by a hybrid matrix H:

where Hij, i, j = 1, 2, representing the input–output relation of the teleoperator two-port, are H11 = (Zm + Cm)
D(Zs + Cs − C3C4) + C4, H12 = − (Zm + Cm) D(I − C3C2) − C2, H21 = D(Zs + Cs − C3C4), H22 = −(I − C3C2)
with D = (C1 + C3Zm + C3Cm)− 1. Solving for Fh, vh from Eq. (68), we get

To achieve Zt = Ze, it is needed that H11 = H22 = 0, H12 = −1, H21 = 1. Therefore, it can be derived
that C1 = Zs + Cs, C2 = 1, C3 = 1, C4 = −(Zm + Cm) with Cm, Cs stable. This control scheme achieves
transparency for teleoperation systems with known dynamics in the absence of communication time delay.
Sufficient conditions for stability of the teleoperation system are derived in Lawrence (14). A tradeoff between
stability and transparency is necessary [Lawrence (14)]. With the modified control schemes, good transparency
is achieved at lower frequency. However, Zt = Ze cannot be ensured for all frequencies.

In the next sub-subsections, we will consider the adaptive control problems when the slave system’s
parameters are unknown, to show that new transparency concepts defined in Definitions 3.3, 3.4, 3.5 are
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useful for adaptive teleoperation systems. To design an adaptive control law, we assume zero communication
time delay and

(1) The master position signal xm is bounded with bounded derivatives ẋm, ¨022m [Lee and Chung (16)].

Design for System with Unknown Constant Parameters. In this section, the slave environment is as-
sumed to have unknown constant parameters. Our control objective, as specified in the sub-subsection “Trans-
parency of a Teleoperation System” above, is to achieve (i) closed-loop signal boundedness; (ii) limt→∞[vs(t) −
vm(t)] = 0, and (iii) Fh = Fe. The last two properties imply asymptotic weak transparency of the teleoperation
system. A control scheme based on Slotine and Li’s (1) design is first applied to achieve signal boundedness
and velocity tracking. Force matching is then designed by using the relationship of (3.13) with H11 = 0, H12 =
−1.

Adaptive Control Design. The slave system as defined in Eq. (62) is

where M = Ms + Me, B = Bs + Be, K = Ks + Ke, and Ms, Be, Ke > 0 are unknown constants.
Let � > 0 be a design parameter, and define the signals e(t) = xs(t) − xm(t), v(t) = ẋm(t) − �e(t), s(t) = ẋs(t)

− v. As in Slotine and Li (1), the control law is chosen as

where Y(v̇, v, xs) = [v̇ v xs] is a vector of known signals, θ = [M B K]T is a vector of unknown parameters, is
the estimate of θ, and KD > 0 is a design gain parameter. Choose the adaptive law as

where 	 = 	T ε R3×3 is positive definite. Consider the Lyapunov function V = (Ms2 + T 	− 1 ), where =
− θ. Then it follows that = − (KD + B)s2 ≤ 0, which implies that all the closed-loop signals are bounded,

and that e, ė converge to zero asymptotically as the time t goes to ∞ [Slotine and Li (1)].
Transparency and Stability. With velocity tracking from the slave to the master, the force tracking from

the master to the slave will lead to a weak transparent teleoperation. Because Fh is related to Fe as Fh = H11
ve + H12(−Fe), the condition for Fh = Fe is

Recall H11 = (Zm + Cm)D(Zs + Cs − C3C4) + C4, H12 = −(Zm + Cm)D(I − C3C2) − C2, and D = (C1 + C3Zm +
C3Cm)− 1. The following design [Lee and Chung (16)] will satisfy the condition (71):

Thus far asymptotic velocity tracking and force tracking are ensured, which lead to asymptotic weak
transparency for a teleoperation system with unknown constant parameters. The developed teleoperation
system is stable because the master, the slave, and their controllers are passive, and the human operator and
the slave environment are also passive by assumption.
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Design for System with Unknown Jumping Parameters. Parameter variations in this case are charac-
terized by piecewise constant behavior. An example is the slave robot intermittently contacting with different
environments. Assume that parameters B and K in the slave system (69) are unknown and piecewise constant,
as modeled by

where Bi and Ki, i = 1,. . ., l, are constants, which last for certain durations of time, and f i(t), i = 1,. . ., l, are
functions indicating which values of Bi and Ki are taken by B(t) and K(t) at a given time. The indicator functions,
f i(t), are known functions that reveal the durations and the time instants of the parameter discontinuities, and
are defined as

The function f i(t) = 1 indicates the value Bi or Ki is taken by the system parameter B(t) or K(t). In addition,
f i(t) indicates that only one value can be active at any time, that is, f i(t)f j(t) = 0 for i �= j. With θ(t) = [M B(t)

K(t)]T, it follows that (t) = (t) − θ̇(t) �= (t), so we cannot use (t) in Eq. (70) to ensure (t) ≤ 0 for any t
> 0.

In this sub-subsection, we first present an adaptive control scheme for the slave system (69) with unknown
jumping parameters described by (73, 74, 75).

Adaptive Control Design. We propose the following controller structure:

where v(t), s(t), Y( v̇, v, xs), and KD are defined in the preceding sub-subsection, and = [ ]T is the
estimate of θ = [M B(t) K(t)]T, with (t) = 1f 1(t) + 2f 2(t) + . . . + lf l(t) and (t) = 1f 1(t) + 2f 2(t) +
. . . + lf l(t). Substituting (3.21) into (3.14) reveals

where the estimate errors � − M, i� i − Bi, and i � i − Ki, i = 1,. . ., l. Let us choose the positive
function
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where γm, γbi, γki > 0, i = 1,. . ., l. We choose the adaptive laws for i, i and Ki as

With this adaptive design, the derivative of Eq. (78), (t), becomes

For stability analysis, we need the following lemma.

Lemma 1. [Tao (19)]. If ḟ (t) ε L∞, f (t) ε L2, then limt→∞ f (t) = 0.

The fact that (t) = −(KD + B)s2 ≤ 0 implies s ε L2 ∩ L∞, ε L∞, i ε L∞, i ε L∞, i = 1, 2,. . ., l. Since
s = ė + �e, we conclude that e, ė ε L2 ∩ L∞. Hence xs, ẋs ε L∞, as from assumption (A1) we have xm, ẋm ε

L∞. From Eqs. (76) and (77) it follows that τs, ṡ ε L∞; then ë ε L∞. Applying Lemma 3.1, we conclude that the
position tracking error e(t) and velocity tracking error ė(t) = vs(t) − vm(t) go to zero as t goes to ∞. In summary,
we have proven the following theorem.

Theorem 3. The adaptive controller (76) with the adaptive laws (79, 80, 81), applied to the system (69) with
jumping parameters (73, 74, 75), guarantees that all closed-loop signals are bounded and the tracking errors
e(t) and ė(t) go to zero as t goes to ∞.

Transparency and Stability. With velocity tracking, controllers that ensure force tracking will also lead
to asymptotic weak transparency of the teleoperation system. For such transparency, the force control (72) is
also a choice for a teleoperation system with jumping parameters. Because the parameter jumping is bounded,
the resulting jumping in acceleration and velocity is bounded as well. This will not change the passivity of the
slave system, because its elements are still passive. Hence the system stability is guaranteed with respect to
passivity.

Design for Smooth Time-Varying Parameters. Parameter variations in those systems are characterized
by continuous bounded functions with bounded derivatives. The slave system is represented by

where m(t) > 0, B(t) > 0, K(t) > 0 represent the time-varying mass, damping, and spring parameters. This

model follows from the Euler–Lagrange equation [Spong and Vidyasagar (8)] with kinetic energy K = ẋs M(t)
ẋs. Transparent teleoperation designs for known and unknown time-varying parameters are considered in this
section. To achieve weak transparency the key is velocity tracking and force tracking between slave and master
robots.
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Control Design for Known Time-Varying Parameters. A control scheme that ensures asymptotically weak
transparency is proposed first for the teleoperation system with known time-varying slave system. This scheme
is then extended to the time-varying slave system with bounded parameter disturbances.

Design I for Known Time-Varying Parameters.Design I for Known Time-Varying Parameters For the
slave system (83) with known time-varying parameters, we propose the control scheme

where θ(t) = [M(t) B(t) K(t)]T, Y( v̇, v, xs) = [ v̇, v, xs], v = ẋm(t) −�e(t), s = ẋs(t) − v, and e(t) = xs(t) − xm(t), as
in the sub-subsection “Design for System with Unknown Constant Parameters” above, and KD > 0 is a design
gain to be specified later. Substituting the controller (84) into the slave system (83) reveals

Define the positive function

The time derivative (t) of V(t) is

To ensure (t) ≤ 0, we choose KD to be such that

The result that (t) ≤ 0 implies that s ε L2 ∩ L∞. Since s = ė + �e, we conclude that e and ė ε L2 ∩ L∞. Hence
xs, ẋs ε L∞. From Eqs. (84) and (85) we have τs, ṡ ε L∞, and therefore ë ε L∞. Applying Lemma 1, we conclude
that the tracking errors e(t) and ė(t) = vs(t) − vm(t) go to zero as t goes to ∞.

In summary, we have the following results:

Theorem 4. All signals in the closed-loop system with the time-varying model (83) and the controller (84)
where KD satisfies (3.32) are bounded, and the tracking errors e(t) and ė(t) go to zero as t goes to ∞.

Design II for Time-Varying Parameters with Unknown Disturbances.Design II for Time-Varying Parame-
ters with Unknown Disturbances In this case, the system parameters θ(t) and M(t) satisfy the assumptions:

(1) The time-varying parameter vector θ(t) satisfies
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for some known parameter θ0(t) ε R3 and some unknown but bounded disturbance �θ(t) ε R3 such that
‖�θ(t)‖ < ρ1 for some constant ρ1 > 0.

(2) The time-varying parameter (t) satisfies

for some known function 0(t), and some unknown but bounded disturbance �M(t) such that |�M(t)| < ρ2
for some constant ρ2 > 0.

We propose the controller structure as

where KD > 0 is the design gain. We choose the positive function V(t) as defined in Eq. (86). Choose KD > 0

+ ρ2 + k0, for some design parameter k0 > 0. Then ≤ −(B + k0)s2 + ρ1
2/4KD + ρ2

2/4KD, which implies that

V(t) is bounded. Since V = M(t)s2, we have

which implies

where α1 > 0 is a constant. We then have

and

where k1 > 0, k2 > 0, and β1 > 0 are constants, k0 is a design parameter that can be chosen to be large, and so
is KD > 0. Since s(t) = ė(t) + λe(t) where λ > 0 is a constant, we have
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where c1 > 0, c2 > 0, d1 > 0, and d2 > 0 are some constants, and β1 = is a design parameter that can
be chosen to large so that the errors in Eqs. (93) and (94) are small.

In summary, we have the following results.

Theorem 5. All signals in the time-varying system (83) with parameter disturbances (A2), (A3) and controller
(90) are bounded, and the tracking errors e(t), ė(t) satisfy Eqs. (93) and (94), respectively. Moreover, e(t) ε L2,
ė(t) ε L2, and limt→∞ e(t) = 0, limt→∞ ė(t) = 0 in the absence of parameter disturbances, that is, when �θ = 0,
δM = 0.

Adaptive Control for Unknown Time-Varying Parameters. Transparent teleoperations are designed for
two types of slave systems: those with unknown smooth time-varying (parametrizable) parameters, and those
with unknown and disturbed time-varying (unparametrizable) parameters. An adaptive control scheme is
proposed for the first type of system to achieve asymptotic weak transparency. With modification, this scheme
ensures approximate weak transparency in the mean for the second type of system.

Design I for Parametrizable Parameter Variations.Design I for Parametrizable Parameter Variations We
present an adaptive control design for systems satisfying the following assumptions:

(1) The unknown time-varying parameter vector θ(t) satisfies

for some known function Y0(t) ε R3×r
θ and some unknown but constant parameter θ0 ε Rrθ, for some rθ

≥ 1 [under this assumption, Y( v̇, v, xs)θ(t) = Y( v̇, v, xs)Y0(t)θ0, so that Slotine and Lis (1) design in the
sub-subsection “Design for System with Unknown Jumping Parameters” above can be applied].

(2) The time-varying term (t)( ẋs + v) can be expressed as

for some known function Z(xs, ẋs, xm, ẋm, t) ε R1×rψand some unknown but constant parameter ψ0 ε Rrψ, for
some rψ≥ 1.

We propose the adaptive controller structure

where 0, 0 are the estimates of θ0 and ψ0.
Including the controller (97) in the slave system (83) leads to
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Define the parameter errors 0 = 0 − θ0, 0 = 0 − ψ0, and choose the positive function

where 	θ = 	θ
T > 0 and 	ψ= 	ψ

T > 0 are constant matrices of the appropriate dimensions. To ensure that ≤
0, we choose the adaptive laws for 0 and 0 as

With this choice of 0 and 0, we have = −KDs2 ≤ 0, which implies that s ε L2∩L∞ and 0, 0 ε L∞. Since
s = ė + �e, we conclude that e, ė ε L2 ∩ L∞. Hence xs, ẋs ε L∞. From Eq. (97) it follows that τs, ṡ ε L∞; therefore,
ë ε L∞. Applying Lemma 3.1, we conclude that the tracking errors e(t) and ė(t) = vs(t) − vm(t) go to zero as t
goes to ∞.

In summary, we have the following results.

Theorem 6. The adaptive controller (97) with the adaptation law (100) and (101) applied to the time-varying
system (83) guarantees that all closed-loop signals are bounded and the tracking error e(t) and ė(t) go to zero
as t goes to ∞.

Design II for Unparametrizable Parameter Variations.Design II for Unparametrizable Parameter Vari-
ations We assume the unparametric parameters having a parametric part and bounded disturbance part.
They satisfy the modified assumptions:

(1) The parameter θ(t) satisfies

where Y0(t) and θ0 are the same as that defined in (A4), such that ‖θ0‖ < M1 for some constant M1 ≥ 0, and
‖�θ(t)‖ < ρ1 for some constants ρ1 > 0.

(2) The term (t)( ẋs + v) satisfies

where Z(xs, ẋs, xm, ẋm, t) and ψ0 are the same as that defined in (A5) such that |ψ0| < M2 for some constant
M2 > 0, and |�ψ(t)| < Y1(t)ρ2 for some constant ρ2 > 0 and some known function Y1(t). Remark: One choice
of Y1(t) is Y1(t) = ẋs(t) + v(t).
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We propose the controller structure as

and the adaptive law for θ0 and ψ0 as

where σθ, σψare switching signals defined as

for some constants σθ0 > 0 and σψ0 > 0.

The Lyapunov candidate function is same as defined in Eq. (99). Using the facts that σθ 0
T ≥ 0 and σψ

0
T

0 ≥ 0, that σθ 0
T and σψ 0

T
0 go unbounded if 0(t) and 0(t) go unbounded [see Ioannou and

Sun (20)], and that �θ and ρ2 are finite [see assumptions (A4′) and (A5′)], we have that V(t) is bounded, and

Since V(t) is bounded, from Eq. (109) we have

for some constants α0, β0 > 0, and any t2 > t1 ≥ 0. Because of the relation s(t) = ė(t) + �e(t) and � > 0 is
constant, we can obtain
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and

where α1, β1, α2, and β2 are some positive constants [see Tao (7)]. In this case, the design parameter KD > 0
can be chosen to be large so that the mean errors are small in Eqs. (111) and (112).

In summary, we have the following results.

Theorem 7. All signals in the closed-loop system (83) with unparametric time-varying parameters, and adap-
tive control law (104) and adaptive law (105, 106, 107, 108, 109, 110), are bounded, and the tracking errors
e(t), ė(t) satisfy Eqs. (111) and (112), respectively. Moreover, e(t) ε L2, ė(t) ε L2 and limt→∞ e(t) = 0 limt→∞ ė(t)
= 0 in the absence of parameter disturbances, that is, when �θ = 0, �ψ= 0.

Transparency and Stability. For teleoperation systems with known time-varying parameters or para-
metric time-varying parameters, the adaptive control schemes (84) and (97) ensure velocity tracking from the
slave to the master. Therefore the force tracking design as in Eq. (72) will lead to asymptotic weak transparency
(Definition 3). For time-varying systems with bounded disturbances, an arbitrary small tracking error can be
obtained by increasing the design gain KD. By using the force tracking design in Eq. (72), approximate weak
transparency (Definition 4) or approximate weak transparency in the mean (Definition 5) is achieved. Stability
of the resulting releoperation system is ensured by the boundedness of all the closed-loop signals.

Teleoperation with Communication Time Delay. Communication time delay in a bilateral teleop-
eration system reduces system stability and performance. Delay on the order of a tenth of a second were shown
to destabilize the teleoperator. The stability problem becomes difficult when a communication time delay T is
present, because a time delay introduce a factor e− sT into the system and hence makes the system infinite-
dimensional. In bilateral teleoperation, the force reflection from the slave, introduced for providing the “feeling”
of the remote task, has effects on the master’s motion, which generates disturbances on the desired motion. The
communication delay may worsen the situation as well. With a time delay T, the conventional communication
law results in tracking of both position and force in the steady state. However, with the delay, the system is not
passive, and will probably never reach a steady state. A preliminary result on a modified control scheme that
provides improved tracking performance for a noncontact task in the presence of time delay and for arbitrary
master trajectories has been developed in Shi et al. (21).

In the previous research, the passivity formalism and network expression were used to investigate the
stability of a bilateral teleoperation system. In these methods, the human operator input is assumed to be
bounded, and the human operator and the environment are assumed to be passive. In the presence of commu-
nication time delay, and with the passivity assumptions about the operator and the environment, passivity of
the system depends on passivity of the communication block.

Two approaches can be used to produce a passive communication block. The first was developed by
Anderson and Spong (22) using scattering transformation theory. This solution uses the transmission line
equations as a basis for deriving a passive communication control law. By applying scattering theory, it is
shown how conventional approaches lead to infinite gain of a scattering operator at finite frequencies, and how
by implementing a set of time delay equations this instability can be overcome. The resulting system is then
passive for all time delays. The proposed control law maintains steady-state force and velocity tracking.

The second approach to produce a passive communication block is developed by Niemeyer and Slotine
(23). This approach uses an energy formulation to construct a teleoperation system that imitates physical
systems and obeys an energy conservation law. A wave variable is utilized to characterize time delay systems
and leads to a new configuration for force-reflecting teleoperation.
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Since the dynamic control of the remote slave by an operator is severely restricted by the time delays in
the transmission, it is important to provide consistent dynamic performance locally at the remote site in the
face of uncertainties and varying operating conditions. With the development of high-speed and high-capacity
computer networks, it is possible to deliver teleoperation over a public computer network. The problem of
varying communication time delays arises in such a teleoperation system. Adaptivity of a teleoperation system
to uncertain time delay in also desirable. The related stability, tracking, and transparency problems of a
bilateral teleoperation system under uncertain environment but now with communication time delay are
important issues to be addressed. Adaptive control solutions proposed in the subsection “Control Designs”
need to be modified to provide adaptation mechanisms for adjusting the controller parameters to achieve
desired system performance, despite system uncertainties due to the unknown slave environment, and now in
the presence of communication time delays.

The passivity-based solution to the bilateral teleoperator time delay problem developed by Anderson and
Spong (22) is based on the result in circuit theory that a circuit consisting of passive elements only is passive
and therefore stable. However, if some elements in a circuit representing a teleoperation system are not passive,
one cannot use passive network theory to conclude the stability of the teleoperation system. On the other hand,
if the transfer function of a teleoperation system is positive real, then the system is passive. In Shi et al. (24),
a notion of positive realness has been used to investigate the passivity of the teleoperation system proposed
by Anderson and Spong (22). Shi et al. (24) have also proposed a modified control scheme that use the master
accelaration information (with delayed operation, which can be obtained from the velocity information) for
slave control and ensures that in the absence of slave environment torque the slave position tracks that of the
master asymptotically, that is, achieves improved tracking performance for the teleoperation system.

Summary

Position control for robot manipulators and teleoperation systems involves many dimensions of control theory,
such as controller design, robustness analysis, and adaptive designs, along with many practical applications.
Robust adaptive control schemes have been presented to handle situations in which the robot system has
bounded parameter variations or/and unmodeled dynamics of bounded gains. The distinct feature of the ma-
nipulator dynamics were used to define bounding signals in the controller structure, whose parameters are
updated from a robust adaptive law to ensure signal boundedness and tracking errors of the order of parameter
variations and unmodeled dynamics, which may not be small. Some common topics relevant to position control
of robot manipulators, such as PD control, inverse dynamics control, and path or trajectory interpolation, were
also discussed.

Adaptive motion control of teleoperation systems was addressed. Several new concepts of transparency
were defined for teleoperation control systems with unknown parameters. These new transparency concepts
are useful for developing adaptive control schemes for control of a teleoperation system with unknown constant
parameters, or with unknown jumping parameters, or with unknown smooth but large time-varying param-
eters. Weak transparency properties have been established for such adaptive teleoperation control systems.
Some important control issues for teleoperation systems with communication time delay were also discussed.
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