
J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering
Copyright c© 1999 John Wiley & Sons, Inc.

INPUT-OUTPUT STABILITY

The earliest mathematical studies of control systems focused solely on the input-output stability of systems
as described in the works of Black (1), Bode (2), and Nyquist (3). In fact, most of the classical control work
was limited to the input-output study of single-input–single-output linear and mostly time-invariant systems.
Notions of input-output stability for nonlinear systems were later advanced by Sandberg (4), Zames, (5,6)
Safonov (7), and others. The first book dedicated completely to the subject was by Willems (8) in 1971, followed
shortly by that of Desoer and Vidyasagar in 1975 (9). With the popularity of state-space methods, Lyapunov-
stability concepts became the preferred analysis and design tools for nonlinear systems until the 1980s when
researchers became interested again in the input-output behavior of systems. The relationships between the
input-output and Lyapunov-stability concepts were developed in Refs. 10 and 11 and culminated in the various
versions of the Kalman-Yakubovich-Popov (KYP) lemma (12). The current studies in input-output systems are
highly dynamic with the introduction of new concepts such as input-to-state stability (13,14,15), the interaction
with geometric nonlinear control (16), applications to robust control (16,17,18), research in the adaptive control
for linear (19) and nonlinear systems (17), the interest in various mechanical and electric systems (20), and
the publication of various theoretical and applied books (18,20,21). It is now clear that the two points of view
(state-space and input-output) are complementary and that many deep relationships between the various
stability concepts are yet to be explored.

In this article we concentrate our discussion on continuous-time systems and survey the classical as well
as the more recent results in the input-output approach. The major results included in this article are taken
mainly from Refs. 9,18,22,23,24, and the reader is referred to those books for most proofs. An excellent 1995
chapter on input-output stability from a distance-separation point of view appeared in Ref. 25. Related concepts
for discrete-time systems were presented in Ref. 9 and recently revived by Byrnes and co-workers (26,27), but
will not be discussed here. In addition, while we mention absolute stability as an important application area of
input-output concepts, we refer the reader to the article on Absolute Stability in this encyclopedia for details.

The article starts with a collection of basic definitions followed by the general results on the basic concepts
of input-output stability and results for testing input-output stability and its relationship with Lyapunov sta-
bility. Next, we discuss the stability of interconnected systems and present the small-gain and passivity results.
Related concepts such as absolute stability, dissipativity, and input-to-state and input-to-output stability are
then reviewed, followed by our conclusions. Various technical definitions are presented in the appendices. We
have attempted to include the main references on the subject of input-output stability, striving to be current
and relevant rather than encyclopedic.

Basic Concepts

The general ideas of input-output stability involve the relative “size” of signals as they are processed by
dynamical systems. We will thus begin by providing mathematical measures of the size of signals and of the
effect that a particular system has on that size.
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2 INPUT-OUTPUT STABILITY

In order to introduce the mathematical notions of input-output stability, we need some preliminary
definitions of signal spaces. (A detailed treatment of measure, signal spaces, and signal norms is beyond the
scope of this article. The reader is referred, for example, to Ref. 28.) The Lm

p set, with p ∈ [1, +∞), consists of
all functions u: [0, +∞) → m that are Lebesgue measurable [i.e., functions that are the limits (except for a set
of measure zero) of a sequence of piecewise constant functions], such that

where ‖v‖q denotes the q-norm of the vector v = (v1 v2 ··· vm)T, defined as

Remark 1. For the finite-dimensional set m all q-norms are equivalent, in the sense that for all k, h ∈ [1,
+∞] there exist positive constants c1 and c2 such that

for all x ∈ m. This is why, when defining the Lp
m set, we do not need to specify q, as u(t) ∈ m for any fixed t ∈

[0, ∞).

The Lm∞ set consists of all the functions u: [0, +∞) → m that are measurable and essentially bounded
on [0, +∞) (where essentially bounded means that the function is bounded except on a set of measure zero).
For a function belonging to Lm

p, p ∈ [1, +∞), we introduce the norm

whereas for a function belonging to Lm∞ we introduce the norm

Note that at the left-hand side of definitions (2) and (3), we should specify the dependence of the norm on q,
but we omit it to avoid cumbersome notation; the choice of q will be clear from the context.

For the Lm
2 set, the norm is usually defined by setting q = 2 in Eq. (2), obtaining

The Lm
2 set with the norm (4) is of particular interest, since in some contexts the norm (4) is proportional

to the energy of the signal u, as is the case, for instance, for which u(t) is the voltage across a resistance R.
Then the total energy delivered to the resistance would be found by integrating the instantaneous power
u(t)2/R. As usual, in the following we shall denote the L1

p set, p ∈ [1, +∞), by Lp.
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Remark 2. In contrast with finite-dimensional spaces (see Remark 1), for the infinite-dimensional set Lm (the
set of all measurable functions u: [0, ∞) → m) the p-norms may be nonequivalent. For instance,

• u(t) = 1/(1+t)α with 0 < α < 1 belongs to L∞ and to Lp with p < 1/α, but does not belong to Lp for p ≥ 1/α.
• u(t) = sin(t) belongs to L∞ but does not belong to Lp for any p ∈ [1, +∞).

In this article, we are interested in studying the stability properties of a generic operator G that maps a
signal space into another signal space ,

We shall define the operator G in Eq. (5) as being Lp-stable if for any u(·) ∈ Lm
p the output y(·) belongs to

Lr
p. To give a formal definition of Lp stability and to provide a broad definition of “unstable systems,” we first

need to define precisely the domain and the image of the operator G, which in general are not limited to Lm
p

and Lr
p, respectively (for example, we may be interested in considering unbounded inputs and/or outputs). For

this reason, we need to introduce some extended Ln
p spaces. First, let us define the truncation uT(t) of a signal

u(t) in the following way:

The extended set Lm
pe, with p ∈ [1, +∞], consists of all the functions u: [0, +∞) → m such that

Introducing this extended space, we can treat unbounded signals. For instance, u(t) = t does not belong to Lp
for any p ∈ [1, +∞] but its truncation

belongs to Lp, with p ∈ [1, +∞], for every finite T. Therefore u(t) = t belongs to Lpe for every p ∈
[1, + ∞].

Finally we end the section with the definition of causality of an operator G. When we later specify an
operator in terms of state-space differential equations, causality is an intrinsic property of the operator: the
output y at time t depends on the initial conditions and on the values of the input u up to time t. On the other
hand, when dealing with a generic operator as in Eq. (5), we need to enforce causality. An operator G: Lm

pe →
Lr

pe is said to be causal if the value of the output at time t depends only on the values of the input up to time t
as defined next.

Definition 1 (causality). An operator G: Lm
pe → Lr

pe is said to be causal if (G(u))T = (G(uT))T ∀ T ≥ 0, ∀ u ∈
Lm

pe.

We are now ready to present the first input-output stability concept.
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Lp Stability

Now we give the definition of Lp-stable systems that transform Lp input signals into Lp output signals.

Definition 2. An operator G: Lm
pe → Lr

pe is

• Lp-stable if

• Finite-gain Lp-stable if there exist finite constants γp and βp such that

• Finite-gain Lp-stable with zero bias if there exists a finite constant γp such that

For finite-gain Lp-stable systems, the smallest scalar γp for which there is a βp such that relation (7) is
satisfied (when such γp exist) is called the gain of the system. Similarly, for finite-gain Lp-stable systems with
zero bias, the smallest scalar γp such that relation (8) is satisfied (when such γp exist), is called the gain with
zero bias of the system.

Regarding finite-gain Lp stability for a causal operator G, we have the following result.

Lemma 1. (Ref. 29)
Let G: Lm

pe → Lr
pe be a causal finite-gain Lp-stable operator with constants γp and βp. Then

Proof. Since G is causal (G(u))T = (G(uT))T. Moreover if u ∈ Lm
pe, then uT ∈ Lm

p for all T ≥ 0; hence G(uT) ∈
Lm

p. Finally, for a generic function x, ‖xT‖Lp ≤ ‖x‖Lp. Therefore the following inequalities hold:

For a causal, finite-gain Lp-stable operator with zero bias, it can be shown in the same way that

Remark 3. Recalling the definition of the Lm∞ set with the norm (3), L∞ stability is in fact what is normally
termed bounded-input, bounded-output (BIBO) or external stability. It is usually defined in reference to a system
specified through a state-space representation, and guarantees that if the input to the system is essentially
bounded, then its output is also essentially bounded.

Example: This example illustrates an L∞-stable and a finite-gain L∞-stable operator.

• Let us consider the function g: → defined by g(u) = uk with k ∈ (1, +∞). Correspondingly, define the
operator G: L∞e → L∞e that assigns to every input u(t), t ≥ 0 the output g(u(t)). We will show that G is L∞
stable. Indeed set ‖u‖L∞ = c < +∞; then we have
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Therefore G is a BIBO operator. It is not a finite-gain L∞-stable operator; however, since we cannot find
fixed scalars γ∞ and β∞ such that ck ≤ γ∞c + β∞ holds for all c ∈ [0, +∞).

• By similar arguments as above, it is easy to check that G associated with the function g(u) = uk with k ∈
(0, 1) is a finite-gain L∞-stable operator.

Example: There are some special cases when the gain of an operator can be numerically or explicitly found;
one of these cases is the L2 gain for linear systems. Let us consider a linear time-varying (LTV) system in the
form (for the sake of simplicity, we assume no feedthrough term)

where A(t), B(t), and C(t) are piecewise continuous and bounded.
We assume that the unforced system = A(t)x is exponentially stable (see Appendix 1 for the definition of
exponential stability and Appendix 2 for a necessary and sufficient condition for exponential stability of LTV
systems). Let G be the input-output operator mapping u to y; then the L2 gain of G (which is also called energy
gain and induced-operator norm of G) is defined by

For a given γ > 0, we find (see Ref. 30) that γ2 ≤ γ if and only if there exists an ε > 0 such that the Riccati
differential equation

admits a positive definite solution P(t) for which a symmetric matrix-valued function P(t) is said to be positive
definite if there exists a positive α such that xTP(t)x ≥ αx2 for all x ∈ n and t ≥ 0. Therefore by conducting a
binary search over γ, the L2 gain of G can be computed up to the desired precision.
The time-invariant case is even simpler, since we only have to deal with the algebraic version of Eq. (11). In
this case there is actually another way of computing the L2 norm; let Ĝ(s) denote, as usual, the transfer matrix
Ĝ(s) = C(sI − A)− 1B. It is possible to show that the L2 gain (10) is related to the transfer matrix Ĝ(s); in fact
it is given by

where σmax(A) := is the maximum singular value of the matrix A, and A∗ denotes the conjugate
transpose of a matrix A. The norm (12) is known in literature as the H∞ norm of Ĝ (jω) and is denoted by ‖Ĝ‖∞.

So far, we have considered operators whose domain is the whole space Lm
p. The following example

motivates a local version of Definition 1, concerning input signals that lie in a subset of Lm
p.

Example: Let us consider the function g: (−1, 1) → defined by g(u) = 1/(1−u2). As in Example 1 define the
associated operator G: L∞e → L∞e that assigns to every input u(t), t ≥ 0, the output g(u(t)). Since the function
is defined only when the input signal is such that
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the G is not an L∞-stable operator according to Definition 1. However, let |u| ≤ c < 1; then

and so

which implies that G is an L∞-stable operator in a new sense made clear in the next definition.

The following definition is an extension of one originally presented in Ref. 31.

Definition 3. An operator G: Lm
pe → Lr

pe is small-signal Lp-stable if there exists a positive constant r such
that Eq. (6) is satisfied for all u ∈ Lm

p with supt ‖u(t)‖ < r. Similarly, G is a small-signal finite-gain Lp-stable
[operator small-signal finite-gain Lp-stable operator with zero bias] if there exists a positive constant r such that
inequality (7) [inequality (8)] is satisfied for all u ∈ Lm

p with supt‖u(t)‖ < r.

Remark 4. In Definition 3, we do not need to specify a particular norm to evaluate supt ‖u(t)‖, since we are
dealing with a norm in m and norms are equivalent in finite-dimensional spaces (see Remark 1). From Eq. (3)
it is clear that if ‖u(t)‖ is uniformly bounded then so is the signal norm ‖u(·)‖L∞. This is not true in general as
it is easy to construct examples in which the signal norm ‖u(·)‖Lp, with p ∈ [1, +∞), is arbitrarily large even if
‖u(t)‖ is uniformly bounded.

Sufficient conditions for Lp stability. In the previous section we have provided the definition of Lp
stability for a given input-output operator. An important question then arises: How do we check whether an
input-output operator is Lp-stable or not?

To answer this question we should not focus, as done so far, on generic input-output operators; in this
section we assume that the operators under consideration are specified in terms of a state-space representation
of a dynamical system in the form

where x ∈ n, u ∈ m, y ∈ r, and

with D := {x ∈ n: ‖x‖ < r}, Du := {u ∈ m: ‖u‖ < ru}, where r and ru are positive numbers.
It is important to note that Eqs. (13a) define an input-output operator for any given initial state x0. In other

words, system (13) defines an entire class of input-output operators, each obtained in relation to a particular x0.
We should always distinguish between the concept of a system and that of an operator. In many textbooks, when
looking at the input-output behavior of a system, it is assumed that the initial condition is zero, and therefore
the system and the corresponding operator are the same object. As opposed to our treatment, the discussion of
Ref. 25 maintains the distinction between the input-output concepts and the state-space description.

In the remainder of this article, we assume that a state-space description of the dynamical system is given
unless otherwise specified. This will allow us to provide in this section a sufficient condition for Lp stability
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and, at the same time, to establish the first connection between Lyapunov (internal) stability and Lp stability.
Assume that x = 0 is an equilibrium point for system (13a) with u = 0, that is,

We shall see that, if x = 0 is an exponentially stable equilibrium point (see Appendix A for the definition)
and some other additional technical assumptions hold, the corresponding input-output operator is Lp-stable
for any x0 as described in the following theorem.

Theorem 1. (Corollary 6.1 of Ref. 23)
Assume that

(1) x = 0 is an exponentially stable equilibrium point for system (13a) under the input u = 0;
(2) f is continuously differentiable and the Jacobian matrices ∂f /∂x and ∂f /∂u are bounded, uniformly in t
(3) h is of Lipschitz form with respect to x and u, that is, there exist positive constants η1, η2 such that

for all (t, x, u) ∈ [0, +∞) × D × Du.

Then there exists a constant r0 > 0 such that for each x0 satisfying ‖x0‖ < r0 the operator defined by system
(13) with initial condition x0, is a small-signal finite-gain Lp-stable operator for each p ∈ [1, +∞].

If all the assumptions hold globally, with D = n and Du = m, then for each x0 ∈ n the operator defined
by system (13) with initial condition x0 is a finite-gain Lp-stable operator for each p ∈ [1, +∞].

Note that a linear system

always satisfies assumption ii and iii of Theorem 1 globally if A(·) and B(·) are continuously differentiable
(actually this hypothesis can be relaxed to piecewise continuity) and uniformly bounded and C(·) and D(·) are
uniformly bounded; moreover, the exponential stability of x = 0 of system (14a) with u = 0 is always global.
Therefore we can state the following corollary of Theorem 1.

Corollary 1. Consider the linear system

where A(·) and B(·) are continuously differentiable and uniformly bounded and C(·) and D(·) are uniformly
bounded. Assume that the equilibrium point x = 0 under u = 0 of Eq. (15a) is exponentially stable; then for each
x0 ∈ n the operator defined by system (15) with initial condition x0 is finite gain Lp-stable for each p ∈ [1, +∞].

Recall that the L2 gain of the operator associated with the linear system (14) for x0 = 0 can be computed
according to the procedure detailed in Remark 4. Finally, a sufficient condition for exponential stability is given
in Appendix 2.
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Relations between Lyapunov stability and Lp stability. So far in this section we have shown the
following (Theorem 1):

This represents the first connection between Lyapunov and Lp stabilities.
The remainder of this section is devoted to find the reverse connection between Lyapunov and Lp sta-

bilities. It is, however, difficult to find a general result in the spirit of Theorem 1. Following the guidelines of
Ref. 29 we shall restrict ourselves to time-invariant systems and focus on attractivity rather than exponential
stability. Roughly speaking, the next theorem will show the following result:

Theorem 2. Assume that

(1) system (13) is time invariant, reachable, and uniformly observable and
(2) the input-output operator defined by system (13) with initial condition x(0) = 0 is a small-signal L2-stable

operator.

Then x = 0 is an attractive equilibrium point for system (13).
Moreover, if system (13) is globally reachable and the input-output operator is L2-stable, x = 0 is a globally

attractive equilibrium point.

For the definitions of reachability, uniform observability, and attractivity see Appendix 1. A LTI system
in the form

is globally reachable if and only if it is reachable and is uniformly observable if and only if it is observable.
Moreover small-signal L2 stability implies L2 stability, and attractivity implies exponential stability. Therefore
we can derive the following corollary of Theorem 2.

Corollary 2. Assume that

(1) system (16) is reachable and observable and
(2) The input-output operator defined by system (16) with initial condition x(0) = 0 is L2-stable.

Then x = 0 is an exponentially stable equilibrium point for system (16).

Interconnected Systems

One of the main applications of the formalism of input-output stability is the study of the stability of inter-
connected systems, without explicit knowledge of the internal dynamics of the composite subsystems. Let us
consider the feedback interconnection of Fig. 1, where G1: Lm

pe → Lr
pe and G2: Lr

pe → Lm
pe. Input-output

stability allows us to investigate how the signals propagate through this scheme. Before presenting the main
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Fig. 1. Basic feedback system.

results, we need to introduce the concept of well-posedness of the feedback interconnection. Well-posedness
guarantees that for each choice of u1 ∈ Lm

pe and u2 ∈ Lr
pe there exist unique solutions e1,y2 ∈ Lm

pe and e2,y1 ∈
Lr

pe that satisfy the loop equations

Small-Gain Theorems. Theorem 3. Consider the feedback system of Fig. 1. Suppose that G1: Lm
pe →

Lr
pe and G2: Lr

pe → Lm
pe are causal finite-gain Lp-stable operators with constants γp1,βp1 and γp2,βp2, re-

spectively. Moreover, suppose that the feedback interconnection is well-posed. Then the feedback system of
Fig. 1 is a finite-gain Lp-stable system if

and

Proof. Consider inputs u1 ∈ Lm
p and u2 ∈ Lr

p. Since the closed-loop system is well-posed, there exist unique
solutions e1,e2,y1,y2. With respect to e1 and e2 we have
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Since G1 and G2 are causal finite-gain Lp-stable operators, we find that (see Lemma 1)

After some trivial manipulations, recalling that γp1 γp2 < 1 by assumption, Eqs. (18a) become

Since for a generic function x, ‖xT‖Lp ≤ ‖x‖Lp, we have

Now, the right-hand sides of inequalities (20) are independent of T. Therefore it can be easily shown that e1
and e2 belong to Lm

p and Lr
p, respectively, and that

In a similar way it can be shown that y1 and y2 belong to Lr
p and to Lm

p, respectively, and that inequalities
(17c) and (17d) hold.

The work of Safonov (7) exploited the general input-output concepts in order to study the robustness
of closed-loop systems. His results and variations were later exploited in H∞ robust control analysis and
design. The small-gain theorem is thus extremely useful in studying the robustness of a closed-loop system,
when a nominal system is subject to a perturbation as shown in Fig. 2. The next example shows one of these
applications.
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Fig. 2. Feedback robustness loop.

Example: Let us consider the feedback scheme of Fig. 2 where G(s) and 	(s) are asymptotically stable
transfer matrices. The transfer matrix G(s) represents the nominal system, whereas 	(s) is a model of the
uncertainty. Let u1 and u2 belong to L2. In Example 2 we have seen how to compute the L2 gains of G(s) and
	(s); let

The small-gain theorem tells us that if

then the closed-loop system is a finite-gain L2-stable system. In other words, it gives us an estimate of how
large the perturbation 	(s) can be, in terms of its H∞ norm, preserving the closed-loop L2 stability.

There are various versions of the small-gain theorem, a sample of which is the incremental small-gain
theorem below, which needs a preliminary definition.

Definition 4. An operator G: Lm
pe → Lr

pe is said to be an incrementally finite-gain stable operator if

(1) G(u) ∈ Lr
p when u ≡ 0 and

(2) there exists a constant γ such that

for all T > 0 and for all u, v ∈ Lm
pe.

Theorem 4. Consider the interconnected system of Fig. 1. Let both G1 and G2 be incrementally finite-gain stable
operators with respective gains γ1 and γ2. Then, the feedback interconnection is well-posed and incrementally
finite-gain stable from u = [u1 u2] to y = [y1 y2] if

Passivity Theorems. One of the main related concepts to the input-output stability concepts discussed
so far is the concept of passive systems. In a way, while Lp stability deals with the effect the system has on the
size of signals, passivity results deal with the effect the system has on the “energy” of signals. We start with
few definitions and follow with the main results for interconnected systems.
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Definition 5. We say that a system G: Lm
2e → Lr

2e is

(1) Passive if there exists β ∈ such that for all T and all u ∈ Lm
2e

(2) Strictly passive if there exists α > 0 and β ∈ such that for all T and all u ∈ Lm
2e

Theorem 5. Consider the interconnected system of Fig. 1. Assume that the systems G1 and G2 satisfy

The closed-loop system is L2 finite-gain stable if

Note that this theorem does not require both systems G1 and G2 to be passive, as long as one of the two
systems is passive enough. If on the other hand, one of the two systems is passive and the other is strictly
passive, the previous theorem simplifies to the following.

Theorem 6. Consider the interconnected system of Fig. 1, and let u2 = 0. Then, the closed-loop system is
finite-gain L2 stable if one of the following conditions holds:

• G1 is passive and G2 is strictly passive
• G1 is strictly passive and G2 is passive.

In the special case of affine in the control systems, the passivity of one system is equivalent to the
L2-stability of a related system. This is detailed in the following theorem:

Theorem 7. (Proposition 3.2.12 of Ref. 18)
Let

and

where u = 1
2 (v − z) and y = 1

2 (v + z). Then, system (22) is passive ⇐⇒ system (23) has L2 gain ≤ 1.
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Fig. 3. The Lur’e problem.

Related Stability Concepts And Applications

In this section, we review various concepts that are related to input-output stability and discuss some of their
applications.

Dissipativity. In 1972, Willems (10,11) introduced the notion of dissipativity in an attempt to further
unify input-output and Lyapunov-stability concepts. The notion of dissipativity is a generalization of passivity
and captures the concept that a system will dissipate energy if the sum of the energy it stores and the energy
it dissipates to the environment is less than the total energy that the environment supplies to it. This is a
manifestation of the second law of thermodynamics and is the case of most physical systems that transform
some form of energy to another, but also lose some in the process. In the following, + = [0, ∞).

Definition 6. The system (13) is dissipative with respect to the supply rate w(u, y): m × r → if and only if there
exists a storage function V: n → + such that

for all u, all T ≥ 0, and all x(0) ∈ n.

Note that passivity can actually be defined as a special case of dissipativity by letting w(u, y) = uTy
(therefore, the system is square and m = r). We can also define other types of passivity as follows: the system is
an input-strictly-passive (ISP) system if it is dissipative with supply rate w(u, y) = uTy − δu‖u‖2, δu > 0, and it
is an output-strictly-passive (OSP) system if it is dissipative with supply rate w(u, y) = uTy − δy‖y‖2, δy > 0. The
system is a state-strictly-passive (SSP) system if w(u, y) = uTy − δxψ (x), δx > 0 and ψ (x) is a positive-definite
function of x. Note that an OSP system is necessarily L2 stable (18,23). In addition, one can guarantee the L2
stability of a system by making sure it is dissipative with the particular supply rate w(u, y) = 1

2 γ2‖u‖2 − ‖y‖2

for some positive γ, which then becomes an upper bound on the L2 gain of the system (18,23).
The Linear Case and the KYP Lemma. One of the more important applications of the input-output

approach is in the solution of the so-called Lur’e problem shown in Fig. 3. The details of this approach are
detailed in another chapter of this encyclopedia and only a few comments are included here for completeness.

The basic question asked by Lur’e is to find conditions in the single-input–single-output case on the linear
system G(s) such that when the nonlinear block �(t, y) is static (i.e., a non-time-varying function of y only),
the closed-loop system is stable (32). Popov provided graphical, frequency-domain criterion for the absolute
stability problem when the nonlinear block �(y) is time invariant (33,34). Yakubovich (35) and Kalman (36)
introduced different versions of the so-called positive-real or Kalman-Yakubovich-Popov (KYP) lemma to relate
Popov’s criterion to the existence of a special Lyapunov function. This then provides another connection between
input-output stability concepts and Lyapunov concepts. Anderson then (12,22) extended the KYP lemma to the
multi-input–multi-output case. The KYP lemma has found various applications in adaptive control (19) and
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has recently been generalized to the case in which the linear block G(s) is replaced by a nonlinear but affine
nonlinear system = f (x) + g(x)u, y = h(x) (16,18).

In the linear case, passivity concepts may be related to the concept of positive-realness, already introduced
in the study of electrical networks (22). In fact, consider a stable, square, LTI system with minimal state-space
realization

where u, y ∈ m, x ∈ n, and let the transfer function be

Since the state-space realization is minimal, then (A, B) is controllable and (C, A) is observable. Recall that (A,
B) is controllable if and only if rank ( ) = n and (C, A) is observable if and only if rank ( ) = n where = [B
AB ··· An − 1B] and T = [CT ATCT (An − 1)TCT].

Definition 7. Let H(s) be a proper m × m rational transfer matrix. Then

• H(s) is positive real (PR) if

(1) No element of H(s) has a pole in Re[s] > 0
(2) Any pole of an element of H(s) on the jω axis must be simple and the associated residue matrix is positive

semidefinite Hermitian, and
(3) For all real ω for which jω is not a pole of an element of H(s), Z(jω) + ZT(−jω) is positive semidefinite.
(4) H(s) is said to be strictly positive real (SPR) if H(s − ε) is PR for some ε > 0.

For variations on this definition, the reader should consult Ref. 37, where various PR concepts are
discussed.

Lemma 2. Let H(s) be an m × m transfer matrix (25) where

(1) A is stable
(2) (A, B) is controllable and (C, A) is observable

Then, the transfer function H(s) is SPR if and only if there exist a positive definite symmetric matrix P,
matrices W and L, and a real ε > 0 such that
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Note that if D = 0, that is, H(s) is strictly proper, then Eqs. (26a) simplify to the more familiar

Lemma 3. H(s) is PR if and only if it is dissipative with storage function V(x) = xTPx.

Hill and Moylan (38) and others expanded the dissipativity notions in order to explain the KYP lemmas.
The KYP lemmas have applications to adaptive control for linear systems (19) and a generalization to nonlinear
systems (17). Connections between passivity and stability are provided in the next lemma.

Lemma 4. (Lemma 10.6 in Ref. 23)
Given the autonomous system

then the following holds true.

(1) If Eq. (27) is passive with a positive-definite storage function V(x), then the origin of Eq. (27) with zero input
is stable.

(2) If the system is OSP, then it is a finite-gain L2-stable system.
(3) If the system is OSP with a positive-definite storage function V(x) and zero-state observable (see Appendix

1), then the origin of Eq. (27) with zero input is asymptotically stable.
(4) If the system is SSP with a positive-definite storage function V(x), then the origin of Eq. (27) with zero input

is asymptotically stable.

Passification via Feedback. In recent years, the input-output approach has gained new footing as a
design tool for nonlinear control systems. One of the main applications of such an approach has been to use
feedback in order to render a closed-loop system passive or strictly passive (or the passification of an open-loop
system). The main motivation for such designs is of course that a passive system will tolerate large-magnitude
uncertainties as long as the uncertainties are passive (see Theorem 5). References 16 and 17 contain a large
number of results on the passification of nonlinear systems. Roughly speaking, all designs require that the
open-loop system be of minimum phase and of a relative degree one in order for it to be made passive using
static output feedback. Such concepts have been generalized to a large class of nonlinear systems. As mentioned
previously, and following the early concepts (9), there has been much recent work on the discrete-time versions
of the input-output stability concepts including the passification designs in Refs. 26 and 27.

Input-to-State and Input-to-Output Stability. In a series of papers (13,14,15), Sontag and co-workers
have advanced the notion of input-to-state stability to study the behavior of state-space systems when the
input is bounded. Roughly, the input-to-state stability concepts guarantee that the state x(t) is bounded for
any bounded input u(t), which may be an external disturbance or a tracking signal. This idea is in some
ways a more restrictive version of the input-output concepts unless y = x and is more tightly coupled to the
Lyapunov-stability concepts. In what follows, we deal with system (13), or with its autonomous version:
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Definition 8. The system (13a) is said to be locally input-to-state stable (ISS) if there exists a class L function
α, a class function β (see Appendix 1 for the definitions of such functions), and positive constants k1 and k2
such that for any initial state x(t0) with ‖x(t0)‖ < k1 and any input u(t) with supt ≥ t0 ‖u(t)‖ < k2, the solution
x(t) exists and

The system is said to be ISS stable if the preceding requirement holds globally (i.e., if D = n and Du = m) for
any bounded input u(t) and any initial condition x(t0).

Theorem 5.4. (Lemmas 5.4 and 5.5 (Ref. 23
Let f (t, x, u) be continuously differentiable and of global Lipschitz form in (x, u) uniformly in t. Then, if

the system (13a) has a globally exponentially stable equilibrium point at x = 0, it is ISS. In the case for which
the system is autonomous, f (x, u) in Eq. (28a) is continuously differentiable, and the origin is an asymptotically
stable equilibrium point of Eq. (28a), then Eq. (28a) is ISS.

Definition 9. The system (13) is locally input-to-output stable if there exists a class L function α, a class
function β, and positive constants k1 and k2 such that for any initial condition x(t0) such that ‖x(t0)‖ < k1 and
any input u(t) such that supt ≥ t0 ‖u(t)‖ < k2, and for any t ≥ t0 ≥ 0, the following holds true.

(1) The solution x(t) exists.
(2)

The system (13) is said to be input-to-output stable (IOS) if D = n, Du = m, and Eq. (30) holds for any
initial state x(t0) and any bounded input u(t).

Note that while this is similar to the Lp-stability concepts presented previously, it is actually more general
as the α function need not be linear and the β function need not be a constant.

Theorem 9. (Theorem 6.3 of Ref. 23)
Let f (t, x, u) be piecewise continuous in t and of local Lipschitz form in (x, u), and let h be piecewise

continuous in t and continuous in (x, u). Assume that the system (13) is ISS, and that there exists class
functions α1 and α2 such that

Then the system (13) is locally IOS. If all assumptions hold globally and Eq. (13a) is ISS, then it is IOS.

Conclusions

In this article we have attempted to summarize various concepts of input-output stability for nonlinear dynam-
ical systems, focusing on the continuous-time case. We have presented the basic input-output concepts but also
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some extensions and their applications to stability robustness analysis and design and to the adaptive control
of linear and nonlinear systems, as mentioned previously.

It is now clear that the connections between Lyapunov stability and input-output stability are strong and
may be exploited for further design. On the other hand, it is clear that the input-output approach remains a
versatile tool. This approach allows us to be able to determine the stability of the closed-loop system although
we have have little knowledge of the internal dynamics of the open-loop system and its uncertainties. This is
clearly an advantage when dealing with uncertain systems as the dynamics of the systems and its uncertainties
may be unknown. One of the limitations of the input-output approach, however, is that it remains limited to the
study of stability while other objectives such as the optimization of some performance indices remain beyond
the reach of these techniques. We end this article by mentioning that prior to its introduction to feedback
systems and control, the input-output approach was part of operator theory and functional analysis. Finally,
the input-output approach has been applied to various areas such as communications (39,40) and to the study
of neural network stability (41).

Appendix 1: Definitions

Definition 1.1 (Lipschitz functions). A function f (x) is said to be of local Lipschitz form on a domain D ⊂ n

if for each point x0 ∈ D there exist a neighborhood D0 of the point x0 and a constant L0 such that

If equation (32) holds for all x ∈ D with the same constant L, then f is said to be of Lipschitz form on D. If f is
of Lipschitz form on n than it is said to be of global Lipschitz form.

Definition 1.1 can be extended to the case of f (t, x) provided that the Lipschitz condition holds uniformly
on t for a given time interval.

Definition 1.2. (Function of class .
A continuous function α: [0, +∞) → [0, +∞) is said to be of class if it is strictly increasing and α(0) = 0.

Definition 1.3. (Function of class ∞).
A function α: [0, +∞) → [0, +∞) is said to be of class ∞ if it is of class and α(s) → ∞ as s → ∞.

Definition 1.4. (Function of class L).
A function α: [0, +∞) × [0, +∞) → [0, +∞) is said to be of class L if for each fixed t the mapping α(s, t)

is of class and for each fixed s the mapping α(s, t) is decreasing with respect to t and α(s, t) → 0 as t → ∞.

Example:

• The function α(s): [0, +∞) → s/(s+1) is of class since α′(s) = 1/(s+1)2 > 0, but it is not of class ∞ since
lims→∞ α(s) = 1 < +∞.

• The function α(s): [0, +∞) → s is of class ∞ since α′(s) = 1 > 0 and lims→∞ α(s) = +∞.
• The function α(s, t): [0, +∞) × [0, +∞) → se− t is of class L. Indeed it is strictly increasing in s, since
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strictly decreasing in t, since

and α(s, t) → 0 as t → ∞.

Definition 1.5 (State transition matrix). Given the LTV system

with x ∈ n and A(t) piecewise continuous, the state transition matrix �(ċ,ċ): + × + → n×n, (t, t0) → �(t, t0),
is defined as the unique solution of the matrix differential equation

Consider the zero-input system

where f (·): D ⊆ n → n is of local Lipschitz form on D.

Definition 1.6 (Attractivity). Consider the zero-input system (1.2) and denote by s(t, x0) the solution starting
from x0 at time t = 0. Assume that x = 0 is an equilibrium point of system (1.2); then x = 0 is attractive if there
exists a domain Da ⊆ D, 0 ∈ Da such that

The equilibrium point x = 0 is globally attractive if Da = n.

Definition 1.7 (Stability and Asymptotic Stability). Consider the zero-input system (1.2) and denote by
s(t, x0) the solution starting from x0 at time t = 0. Assume that x = 0 is an equilibrium point of system (1.2);
then x = 0 is

• stable if, for each ε > 0, there exists a δ = δ (ε) such that

• unstable if it is not stable.
• asymptotically stable if it is stable and δ can be chosen such that x = 0 is attractive on the domain D =

{x ∈ n, ‖x‖ < δ}.
• globally asymptotically stable if it is stable and globally attractive.

Now consider the zero-input system

where f (·,·): [0, +∞) × D → n, D = {x ∈ n, ‖x‖ < r}, and t0 ≥ 0.
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Definition 1.8 (Exponential stability). Consider the zero-input system (1.3) and assume that x = 0 is an
equilibrium point. Then x = 0 is exponentially stable if there exist positive numbers K, γ, c such that

The equilibrium x = 0 is globally exponentially stable if the above condition is verified for any initial state.

Definition 1.9 (Zero-State Observability). The system (27) is said to be zero-state observable from the output
y if for all initial conditions, y(t) ≡ 0 ⇒ x(t) ≡ 0. The system is zero-state detectable if for all initial conditions
y(t) ≡ 0 ⇒ limt→∞ x(t) = 0.

Definition 1.10 (Reachability). Consider the system

and denote by s(t, x0, u) the solution starting from x0 at time t = 0 under the input u. Then system (1.5) is said
to be reachable if there exists a class function α and a set D := {x ∈ n: ‖x‖ < r}, such that for all x ∈ D there
exists a time t∗ and an input u∗ such that ‖u∗‖L∞ ≤ α(‖x‖) and s(t∗, 0, u∗) = x. The system is said to be globally
reachable if all the assumptions hold for all x ∈ n.

Definition 1.11 (Uniform observability). Consider the system

and denote by s(t, x0, u) the solution starting from x0 at time t = 0 under the input u. Then system (1.6) is said
to be uniformly observable if there exists a class function α such that for all x,

Appendix 2: Sufficient Conditions For Exponential Stability

Theorem 2.1 (Sufficient condition for exponential stability). Let x = 0 be an equilibrium point of system
(1.3) and assume there exists a continuously differentiable Lyapunov function V(·,·): (t, x) ∈ [0, +∞) × D →
satisfying

for some positive constants k1, k2, k3, and γ. Then the equilibrium x = 0 is exponentially stable. Moreover, if all
the assumptions hold globally, x = 0 is globally exponentially stable.
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Theorem 2.2 (Exponential stability of linear systems). The equilibrium point x = 0 of the LTV system

is exponentially stable if and only if there exist positive constants α and k such that

where �(t, t0) is the state transition matrix of system (2.2).

Note that the concept of exponential stability is equivalent, for linear systems, to that of uniform asymp-
totic stability (see Ref. 23 for the definition). This equivalence is no longer true for nonlinear systems, where
the concept of exponential stability is stronger than that of uniform asymptotic stability. Finally, note that for
LTI systems a necessary and sufficient condition for exponential stability is the Hurwitz character of the A
matrix, that is, all its eigenvalues should have negative real part.
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