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Intelligent control describes the discipline for which con-
trol methods are developed that attempt to emulate im-
portant characteristics of human intelligence. These char-
acteristics include adaptation and learning, planning un-
der large uncertainty, and coping with large amounts of
data. The main difficulty in specifying exactly what is
meant by the term intelligent control stems from the fact
that there is no agreed-upon definition of human intelli-
gence and intelligent behavior, and the centuries-old de-
bate of what constitutes intelligence is still continuing,
nowadays among educators, psychologists, computer scien-
tists, and engineers. Apparently the term intelligent con-
trol was coined in the 1970s by K. S. Fu.

There are a number of areas related to the area of in-
telligent control. Intelligent control is interdisciplinary as
it combines and extends theories and methods from ar-
eas such as control, computer science, and operations re-
search. It uses theories from mathematics and seeks in-
spiration and ideas from biological systems. Intelligent
control methodologies are being applied to robotics and
automation, communications, manufacturing, and traffic
control, to mention but a few application areas. Neural
networks, fuzzy control, genetic algorithms, planning and
expert systems, intelligent agents, and hybrid systems are
all areas where related work is taking place. The areas
of computer science and in particular artificial intelli-
gence provide knowledge representation ideas, architec-
tures, methodologies, and tools such as semantic networks,
frames, reasoning techniques, and computer languages.
Concepts and algorithms developed in the areas of adaptive
control and machine learning help intelligent controllers to
adapt and learn. Advances in sensors, actuators, computa-
tion technology, and communication networks help provide
the intelligent control hardware necessary for implemen-
tation and influence the type of architecture used. For ex-
ample, low-cost processing and communication devices to-
gether with low-cost sensors are making it possible to have
distributed, networked, embedded control systems in many
application areas.

In the following, fundamental ideas of intelligent con-
trol are emphasized rather than particular methodologies;
note that several related areas are described at length else-
where in this encyclopedia. Fundamental ideas and char-
acteristics of intelligent systems are introduced in the sec-
tion on foundations of intelligent control, and a historical
perspective is given in the section on intelligent learning
control in which the role of machine learning is discussed.
The quest for machines that exhibit higher autonomy has
been the driving force in the development of control sys-
tems over the centuries, and this is discussed in the section

on intelligent control for high-autonomy systems. Hybrid
systems that contain both continuous and digital compo-
nents are also briefly discussed, as they are central in in-
telligent control.

FOUNDATIONS OF INTELLIGENT CONTROL

The term intelligent control has come to mean, particu-
larly to those outside the control area, some form of control
using methodologies such as intelligent agents, genetic al-
gorithms, or fuzzy and/or neural networks. Intelligent con-
trol, however, does not restrict itself only to those method-
ologies. The fact is that there are problems of control today
that cannot be formulated and studied in the conventional
differential or difference equation mathematical frame-
work using “conventional (or traditional) control” method-
ologies; these methodologies were developed in the past
decades to control dynamical systems. To address these
problems in a systematic way, a number of methods have
been developed in recent years that are collectively known
as intelligent control methodologies. It is worth remember-
ing at this point that intelligent control uses conventional
control methods to solve lower level control problems and
that conventional control is included in the area of intel-
ligent control. In summary, intelligent control attempts to
build upon and enhance the conventional control method-
ologies to solve new challenging control problems.

Conventional and Intelligent Control

The word “control” in “intelligent control” has a different,
more general meaning than the word control in conven-
tional control. First, the processes of interest are more gen-
eral and may be described, for example, by discrete event
system models, differential or difference equation models,
or both. This has led to the development of theories for hy-
brid control systems,which study the control of continuous-
state dynamic processes by discrete-state controllers. In
addition to the more general processes considered in in-
telligent control, the control objectives can also be more
general. For example, “replace part A in satellite” can be
the general task for the controller of a space robot arm;
this is then decomposed into a number of subtasks, sev-
eral of which may include, for instance, “follow a particular
trajectory,” which may be a problem that can be solved by
conventional control methodologies. To attain such control
goals for complex systems over a period of time, the con-
troller has to cope with significant uncertainty that fixed
feedback robust controllers or adaptive controllers cannot
deal with. Since the goals are to be attained under large
uncertainty, fault diagnosis, and control reconfiguration,
adaptation and learning are important considerations in
intelligent controllers. It is also clear that task planning is
an important area in intelligent control design. So the con-
trol problem in intelligent control is an enhanced version of
the problem in conventional control. It is much more ambi-
tious and general.The area of intelligent control is interdis-
ciplinary, and it attempts to combine and extend theories
and methods from areas such as control, computer science,
and operations research to attain demanding control goals
in complex systems.
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Note that the theories and methodologies from the ar-
eas of operations research and computer science cannot,
in general, be used directly to solve control problems, as
they were developed to address different needs. The tech-
niques from computer science and operations research are
primarily analysis tools developed for non-real-time sys-
tems, while in control, synthesis techniques to design real-
time feedback control laws for dynamic systems are mainly
of interest. Recent work on real-time systems in computer
science has moved the research along lines that are of great
interest to intelligent control. In view of this discussion, it
should be clear that intelligent control research, which is
mainly driven by applications, has a very important and
challenging theoretical component. Significant theoretical
strides must be made to address the open questions. The
problems are nontrivial, but the payoff is very high indeed.

As it was mentioned above, the word control is intelli-
gent control has a more general meaning than in conven-
tional control; in fact it is closer to the way the term control
is used in everyday language. Because intelligent control
addresses more general control problems that also include
the problems addressed by conventional control, it is rather
difficult to come up with meaningful benchmark examples.
Intelligent control can address control problems that can-
not be formulated in the language of conventional control.
To illustrate, in a rolling steel mill, for example, conven-
tional controllers may include the speed (revolutions per
minute) regulators of the steel rollers. In the intelligent
control framework one may include, in addition, fault di-
agnosis, alarm systems, and perhaps the problem of decid-
ing on the set points of the regulators, which are based
on the sequence of orders processed, economic decisions,
maintenance schedules, availability of machines, etc. All
these factors have to be considered as they play a role in
controlling the whole production process, which is really
the overall goal.

Another difference between intelligent and conven-
tional control is the separation between controller and the
system to be controlled. In conventional control the system
to be controlled, called the plant, typically is separate and
distinct from the controller. The controller is designed by
the control designer, while the plant is, in general, given
and cannot be changed. In intelligent control problems,
which are most often complex and challenging, there may
not be a clear separation of the plant and the controller; the
control laws may be embedded in and part of the system to
be controlled. This opens new opportunities and challenges
as it may be possible to affect the design of processes in a
more systematic way.

Areas relevant to intelligent control, in addition to
conventional control, include hybrid systems, planning
and knowledge-based systems, intelligent agents, machine
learning, search algorithms, fault diagnosis and control re-
configuration, and real-time and embedded systems, predi-
cate logic, automata, Petri nets, neural networks, and fuzzy
logic genetic algorithms. In addition, in order to control
complex systems, one has to deal effectively with the com-
putational complexity issue; this has been in the periphery
of the interests of the researchers in conventional control,
but it is clear that computational complexity is a central
issue whenever one attempts to control complex systems.

Intelligence and Intelligent Control

It is appropriate at this point to comment briefly on the
meaning of the word intelligent in intelligent control. The
precise definition of intelligence has been eluding mankind
for thousands of years. More recently, this issue has been
addressed by disciplines such as psychology, philosophy, bi-
ology, and of course artificial intelligence (AI). AI is defined
to be the study of mental faculties through the use of com-
putational models. No consensus has yet emerged of what
constitutes intelligence. The controversy surrounding the
widely used IQ tests also points to the fact that we are far
away from having understood these issues. A term that has
been introduced more recently is that of computational in-
telligence to distinguish machine intelligence from human
intelligence. In this article we introduce and discuss sev-
eral characterizations of intelligent systems that appear
to be useful when attempting to address complex control
problems.

Intelligent controllers can be seen as machines which
emulate human mental faculties such as adaptation and
learning, planning under large uncertainty, and coping
with large amounts of data in order to control complex pro-
cesses effectively. This is the justification for the use of the
term intelligent in intelligent control, since these mental
faculties are considered to be important attributes of hu-
man intelligence. An alternative term, which is discussed
later in this article, is autonomous (intelligent) control; it
emphasizes the fact that an intelligent controller typically
aims to attain higher degrees of autonomy in accomplish-
ing and even setting control goals, rather than stressing
the (intelligent) methodology that achieves those goals.

Defining Intelligent Control Systems

Intelligent systems can be characterized in a number of
ways and along a number of dimensions. There are certain
attributes of intelligent systems that are of particular in-
terest in the control of systems; see Ref. 1. We begin with a
general characterization of intelligent systems: An intelli-
gent system has the ability to act appropriately in an un-
certain environment, where an appropriate action is that
which increases the probability of success, and success is
the achievement of behavioral subgoals that support the
system’s ultimate goal. In order for a manmade intelligent
system to act appropriately, it may emulate functions of
living creatures and ultimately human mental facilities.

An intelligent system can be characterized along a num-
ber of dimensions. There are degrees or levels of intelligence
that can be measured along the various dimensions of in-
telligence. At a minimum, intelligence requires the ability
to sense the environment, to make decisions, and to con-
trol action. Higher levels of intelligence may include the
ability to recognize objects and events, to represent knowl-
edge in a world model, and to reason about and plan for the
future. In advanced forms, intelligence provides the capac-
ity to perceive and understand, to choose wisely, and to act
successfully under a large variety of circumstances so as
to survive and prosper in a complex and often hostile envi-
ronment. Intelligence can be observed to grow and evolve,
both through growth in computational power and through
accumulation of knowledge of how to sense, decide, and act



Intelligent Systems, Robots, Vehicles, Manufacturing 3

in a complex and changing world.
This characterization of an intelligent system is rather

general. Accordingly, a great number of systems can be con-
sidered intelligent. In fact, according to this definition even
a thermostat may be considered to be an intelligent system,
although of a low level of intelligence. It is common, how-
ever, to call a system intelligent when in fact it has a rather
high level of intelligence. There exist a number of alterna-
tive but related definitions of intelligent systems that em-
phasize systems with high degrees of intelligence. For ex-
ample, the following definition emphasizes the fact that the
system in question processes information, and it focuses on
manmade systems and intelligent machines: Machine in-
telligence is the process of analyzing, organizing, and con-
verting data into knowledge; where (machine) knowledge
is defined to be the structured information acquired and
applied to remove ignorance or uncertainty about a spe-
cific task pertaining to the intelligent machine. This defi-
nition relates to the principle of increasing precision with
decreasing intelligence of Saridis.

Next, an intelligent system can be characterized by its
ability to assign subgoals and control actions dynamically
in an internal or autonomous fashion: Many adaptive or
learning control systems can be thought of as designing
a control law to meet well-defined control objectives. This
activity represents the system’s attempt to organize or or-
der its “knowledge” of its own dynamical behavior so as to
meet a control objective. The organization of knowledge can
be seen as one important attribute of intelligence. If this
organization is done autonomously by the system, then in-
telligence becomes a property of the system, rather than of
the system’s designer. This implies that systems that au-
tonomously (self)-organize controllers with respect to an
internally realized organizational principle are intelligent
control systems.

A procedural characterization of intelligent systems is
given as follows: Intelligence is a property of the system
that emerges when the procedures of focusing attention,
combinatorial search, and generalization are applied to the
input information in order to produce the output. One can
easily deduce that once a string of the procedures given
previously is defined, the other levels of resolution of the
structure of intelligence grow as a result of the recursion.
Having only one-level structure leads to a rudimentary in-
telligence that is implicit in the thermostat or to a variable-
structure sliding mode controller.

Control and Intelligent Systems

The concepts of intelligence and control are closely related
and the term intelligent control has a unique and distin-
guishable meaning. An intelligent system must define and
use goals. Control is then required to move the system to
these goals and to define such goals. Consequently, any in-
telligent system will be a control system. Conversely, in-
telligence is necessary to provide desirable functioning of
systems under changing conditions, and it is necessary to
achieve a high degree of autonomous behavior in a control
system. Since control is an essential part of any intelligent
system, the term intelligent control systems is sometimes
used in engineering literature instead of intelligent systems

or intelligent machines. The term “intelligent control sys-
tem” simply stresses the control aspect of the intelligent
system.

Characteristics or Dimensions of Intelligent Systems

There are several essential properties present in differ-
ent degrees in intelligent systems. One can perceive them
as intelligent system characteristics or dimensions along
which different degrees or levels of intelligence can be mea-
sured. In the following we discuss three such characteris-
tics that appear to be rather fundamental in intelligent
control systems.

Adaptation and Learning. The ability to adapt to chang-
ing conditions is necessary in an intelligent system. Al-
though adaptation does not necessarily require the ability
to learn, for systems to be able to adapt to a wide variety of
unexpected changes, learning is essential. So the ability to
learn is an important characteristic of (highly) intelligent
systems.

Autonomy and Intelligence. Autonomy in setting and
achieving goals is an important characteristic of intelligent
control systems. When a system has the ability to act ap-
propriately in an uncertain environment for extended pe-
riods of time without external intervention it is considered
to be highly autonomous. There are degrees of autonomy;
an adaptive control system can be considered as a system
of higher autonomy than a control system with fixed con-
trollers, as it can cope with greater uncertainty than a fixed
feedback controller. Although for low autonomy no intelli-
gence (or “low” intelligence) is necessary, for high degrees
of autonomy, intelligence in the system (or “high” degrees
of intelligence) is essential.

Structures and Hierarchies. In order to cope with com-
plexity, an intelligent system must have an appropriate
functional architecture or structure for efficient analysis
and evaluation of control strategies. This structure should
provide a mechanism to build levels of abstraction (res-
olution, granularity) or at least some form of partial or-
dering so to reduce complexity. An approach to study in-
telligent machines involving entropy (of Saridis) empha-
sizes such efficient computational structures. Hierarchies
(that may be approximate, localized, or combined in het-
erarchies) that are able to adapt may serve as primary
vehicles for such structures to cope with complexity. The
term hierarchies refers to functional hierarchies or hier-
archies of range and resolution along spatial or temporal
dimensions, and it does not necessarily imply hierarchical
hardware. Some of these structures may be hardwired in
part. To cope with changing circumstances the ability to
learn is essential so these structures can adapt to signifi-
cant, unanticipated changes.

In view of the preceding points, a working characteriza-
tion of intelligent systems [or of (highly) intelligent (con-
trol) systems or machines] that captures the essential char-
acteristics present in any such system follows: An intelli-
gent system must be highly adaptable to significant unan-
ticipated changes, and so learning is essential. It must ex-
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Figure 1. Intelligent autonomous controller functional architec-
ture. The three levels of a hierarchical intelligent control architec-
ture are the execution level, the coordination level, and the man-
agement or organization level.

hibit a high degree of autonomy in dealing with changes. It
must be able to deal with significant complexity, and this
leads to certain types of functional architectures such as
hierarchies or heterarchies.

Some Examples

Man-made systems that solve complex problems and in-
corporate some of the essential characteristics of intelli-
gent control systems given previously do exist today. Here
are some examples from Ref. 1: A hierarchically intelligent
control system was designed and built at the Rensselaer
Polytechnic Institute laboratories to do truss construction
remotely in deep space for the NASA space station Free-
dom. This intelligent control system had a functional hi-
erarchy that consisted of three levels: the lowest was the
execution level, the highest was the organization level,
and the middle was the coordination level (see Fig. 1 and
the section on intelligent autonomous control later in this
article); see Ref. 1. Intelligent control systems using the
real-time control system (RCS) implementations from the
National Institute for Standards and Technology (NIST):
robot vision-based object pursuit; robot deburring; include
an automated manufacturing research facility; robot ma-
chine loading or unloading for a milling workstation; mul-
tiple autonomous undersea vehicles; NASA space station
telerobotics and the Mars vehicle; army field material han-
dling robot; DARPA submarine automation; coal mine au-
tomation; and army unmanned land vehicles. Other exam-
ples of existing intelligent control systems include mobile
robots based on sulsumption and other architectures. See
Refs. 1–6.

For additional information and insight into the founda-
tions of intelligent control, the interested reader may refer
to Refs. 1–12.

INTELLIGENT LEARNING CONTROL

The term intelligent control was coined in the 1970s.
Earlier used terms included learning control and self-
organizing control. A brief description of some of the early
developments in the area that is known today as intelligent
control is now given.

As discussed previously, learning is an important di-
mension or attribute of intelligent control. Highly au-
tonomous behavior is a very desirable characteristic of ad-
vanced control systems, so they perform well under chang-
ing conditions in the plant and the environment (even
in the control goals), without external intervention (note
that intelligent autonomous control is discussed at length
later). This requires the ability to adapt to changes affect-
ing, in a significant manner, the operating region of the
system. Adaptive behavior of this type typically is not of-
fered by conventional control systems. Additional decision-
making abilities should be added to meet the increased
control requirements. The controller’s capacity to learn
from past experience is an integral part of such highly
autonomous controllers. The goal of introducing learning
methods in control is to broaden the region of operability
of conventional control systems. Therefore the ability to
learn is one of the fundamental attributes of autonomous
intelligent behavior; see Refs. 1 and 2.

The ability of manmade systems to learn from experi-
ence and, based on that experience, improve their perfor-
mance is the focus of machine learning. Learning can be
seen as the process whereby a system can alter its ac-
tions to perform a task more effectively due to increases
in knowledge related to the task. The actions that a sys-
tem may take depend on the nature of the system. For ex-
ample, a control system may change the type of controller
used, or vary the parameters of the controller, after learn-
ing that the current controller does not perform satisfac-
torily within a changing environment. Similarly, a robot
may need to change its visual representation of the sur-
roundings after learning of new obstacles in the environ-
ment. The type of action taken by the machine is depen-
dent upon the nature of the system and the type of learning
system implemented. The ability to learn entails such is-
sues as knowledge acquisition, knowledge representation,
and some level of inference capability. Learning, consid-
ered fundamental to intelligent behavior, and in particular
the computer modeling of learning processes have been the
subject of research in the field of machine learning since
the 1960s; see Refs. 19 and 14.

Learning and Adaptive Control

The problem of learning in automatic control systems has
been studied in the past, especially in the late 1960s, and it
has been the topic of numerous papers and books; see, for
example, Refs. 15–19. References 15, 17, and 19 provide
surveys on the early learning techniques. All of these ap-
proaches involve a process of classification in which all or
part of the prior information required is unknown or incom-
pletely known.The elements or patterns that are presented
to the control system are collected into groups that corre-
spond to different pattern classes or regions; see Ref. 19.
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Thus learning was viewed as the estimation or successive
approximation of the unknown quantities of a function; see
Ref. 15. The approaches developed for such learning prob-
lems can be separated into two categories: deterministic
and stochastic. Where can learning be used in the control
of systems? As it was already mentioned, learning plays an
essential role in the autonomous control of systems. There
are many areas in control in which learning can be used
to advantage and these needs can be briefly classified as
follows: (1) Learning about the plant; that is, learning how
to incorporate changes and then how to derive new plant
models. (2) Learning about the environment; this can be
done using methods ranging from passive observation to
active experimentation. (3) Learning about the controller;
for example, learning how to adjust certain controller pa-
rameters to enhance performance. (4) Learning new design
goals and constraints. What is the relation between adap-
tive control and learning control? Learning is achieved, in a
certain sense, when an adaptive control algorithm is used
to adapt the controller parameters so that, for example, sta-
bility is maintained. In this case the system learns and the
knowledge acquired is the new values for the parameters.
Note, however, that if later the same changes occur again
and the system is described by exactly the same parame-
ters identified earlier, the adaptive control algorithm still
needs to recalculate the controller and perhaps the plant
parameters since nothing was kept in memory. So, in that
sense the system has not learned. It has certainly learned
what to do when certain types of changes take place. In
particular, it has been told exactly what to do, that is, it
was given the adaptive algorithm, and this is knowledge
by rote learning. The knowledge represented by the new
values of the controller and the plant parameters and the
circumstances under which these values are appropriate
are not retained. So a useful rule of thumb is that for a
controller to be a learning controller, memory is required
so that past knowledge is stored in such a way that it can
be used to benefit when a similar situation arises.

With respect to terminology it is perhaps beneficial at
this point to bring in a bit of history. In the 1960s, adap-
tive control and learning received a lot of attention in the
control literature. It was not always clear, however, what
those terms meant. The comment by Y. Tsypkin, in Ref. 18
describes quite clearly the atmosphere of the period: “It is
difficult to find more fashionable and attractive terms in
the modern theory of automatic control than the terms of
adaptation and learning. At the same time, it is not simple
to find any other concepts which are less complex and more
vague.” Adaptation, learning, self-organizing systems, and
control were competing terms for similar research areas.
The term pattern recognition was appearing together with
adaptive, learning, and self-organizing systems in the con-
trol literature of that era. It is obvious that there was no
agreement as to the meaning of these terms and their re-
lation. Pattern recognition is today a research discipline in
its own right, which develops and uses an array of methods
ranging from conventional algorithms to artificial intelli-
gence methods. The term self-organizing system is not be-
ing used as much today in the control literature. Adaptive
control has gained renewed popularity in the last decades
and mainly emphasizes studies in the convergence of adap-

tive algorithms and in the stability of adaptive systems;
the systems considered are primarily systems described
by differential (or difference) equations where the coeffi-
cients are (partially) unknown. In an attempt to enhance
the applicability of adaptive control methods, learning con-
trol has been reintroduced in the control literature; see, for
example, Refs. 10–12 and 20 for learning methods in con-
trol with emphasis on neural networks.

INTELLIGENT CONTROL FOR HIGH-AUTONOMY
SYSTEMS

From a control systems point of view the use of intelli-
gent control methods is a natural next step in the quest for
building systems with higher degrees of autonomy. These
ideas are discussed in the following.

In the design of controllers for complex dynamical sys-
tems there are needs today that cannot be successfully
addressed with the existing conventional control theory.
They mainly pertain to the area of uncertainty. Heuris-
tic methods may be needed to tune the parameters of an
adaptive control law. New control laws to perform novel-
control functions to meet new objectives should be designed
while the system is in operation. Learning from past ex-
perience and planning control actions may be necessary.
Failure detection and identification are needed. Such func-
tions have been performed in the past by human opera-
tors. To increase the speed of response, to relieve opera-
tors from mundane tasks, to protect them from hazards, a
high degree of autonomy is desired. To achieve this, high-
level decision-making techniques for reasoning under un-
certainty and taking actions must be utilized. These tech-
niques, if used by humans, may be attributed to intelligent
behavior. Hence, one way to achieve a high degree of au-
tonomy is to utilize high-level decision-making techniques,
intelligent methods, in the autonomous controller. Auton-
omy is the objective, and intelligent controllers are one way
to achieve it.

Evolution of Control Systems and the Quest for Higher
Autonomy

The first feedback device on record was the water clock in-
vented by Ktesibios, a Greek living in Alexandria, Egypt
around the 3rd century BC This was certainly a successful
device, as water clocks of similar design were still being
made in Baghdad when the Mongols captured that city in
1258 AD The first mathematical model to describe plant be-
havior for control purposes is attributed to J. C. Maxwell,
of the Maxwell equations fame. In 1868 Maxwell used dif-
ferential equations to explain instability problems encoun-
tered with James Watt’s flyball governor; the governor was
introduced in 1769 to regulate the speed of steam engine
vehicles. When Maxwell used mathematical modeling and
methods to explain instability problems encountered with
Watt’s flyball governor, it demonstrated the importance
and usefulness of mathematical models and methods in
understanding complex phenomena and signaled the be-
ginning of mathematical system and control theory. It also
signaled the end of the era of intuitive invention. Control
theory made significant strides in the past 120 years, with
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the use of frequency domain methods and Laplace trans-
forms in the 1930s and 1940s and the development of opti-
mal control methods and state-space analysis in the 1950s
and 1960s. Optimal control in the 1950s and 1960s, fol-
lowed by progress in stochastic, robust, adaptive, nonlin-
ear hybrid, and networked control methods in the 1960s
to today, has made it possible to control significantly more
complex dynamical systems than the original flyball gov-
ernor more accurately.

Conventional control systems are designed today using
mathematical models of physical systems. A mathemati-
cal model that captures the dynamical behavior of interest
is chosen and then control design techniques are applied,
aided by computer-aided design (CAD) packages, to design
the mathematical model of an appropriate controller. The
controller is then realized via hardware or software and it
is used to control the physical system. The procedure may
take several iterations. The mathematical model of the sys-
tem must be“simple enough”so that it can be analyzed with
available mathematical techniques and “accurate enough”
to describe the important aspects of the relevant dynami-
cal behavior. It approximates the behavior of a plant in the
neighborhood of an operating point.

The control method and the underlying mathematical
theory were developed to meet the ever-increasing control
needs of our technology. The need to achieve the demanding
control specifications for increasingly complex dynamical
systems has been addressed by using more complex math-
ematical models such as nonlinear and stochastic ones,
and by developing more sophisticated design algorithms
for, say, optimal control. The use of highly complex math-
ematical models, however, can seriously inhibit our ability
to develop control algorithms. Fortunately, simpler plant
models, for example, linear models, can be used in the con-
trol design; this is possible because of the feedback used
in control that can tolerate significant model uncertain-
ties. When the fixed feedback controllers are not adequate,
then adaptive controllers are used. Controllers can then
be designed to meet the specifications around an operating
point where the linear model is valid, and then via a sched-
uler a controller emerges that can accomplish the control
objectives over the whole operating range. This is, for ex-
ample, the method typically used for aircraft flight control
and it is a method used to design fixed controllers for cer-
tain classes of nonlinear systems. Adaptive control in con-
ventional control theory has a specific and rather narrow
meaning. In particular, it typically refers to adapting to
variations in the constant coefficients in the equations de-
scribing the linear plant; these new coefficient values are
identified and then used, directly or indirectly, to reassign
the values of the constant coefficients in the equations de-
scribing the linear controller. Adaptive controllers provide
for wider operating ranges than fixed controllers and so
conventional adaptive control systems can be considered to
have higher degrees of autonomy than control systems em-
ploying fixed feedback controllers.

Intelligent Control for High-Autonomy Systems

There are cases in which we need to increase the oper-
ating range of the system significantly. We must be able

to deal effectively with significant uncertainties in mod-
els of increasingly complex dynamical systems in addition
to increase the validity range of our control methods. We
need to cope with significant unmodeled and unanticipated
changes in the plant, in the environment, and in the control
objectives. This will involve the use of intelligent decision-
making processes to generate control actions so that a cer-
tain performance level is maintained even though there are
drastic changes in the operating conditions. I have found
useful to keep in mind an example that helps set goals for
the future and also teaches humility, as it shows how dif-
ficult, demanding, and complex autonomous systems can
be. Currently, if there is a problem on the space shuttle,
the problem is addressed by the large number of engineers
working in Houston Control, the ground station. When the
problem is solved the specific detailed instructions about
how to deal with the problem are sent to the shuttle. Imag-
ine the time when we will need the tools and expertise of all
Houston Control engineers aboard the space shuttle or an-
other space vehicle for extended space travel. What needs
to be achieved to accomplish this goal is certainly highly
challenging!

In view of the above it is quite clear that in the control
of systems there are requirements today that cannot be
successfully addressed with the existing conventional con-
trol theory. It should be pointed out that several functions
proposed in later sections, to be part of the high-autonomy
control system, have been performed in the past by sepa-
rate systems; examples include fault trees in chemical pro-
cess control for failure diagnosis and hazard analysis, and
control system design via expert systems.

An Intelligent Control Architecture for High-Autonomy
Systems

To illustrate the concepts and ideas involved and to provide
a more concrete framework to discuss the issues, a hierar-
chical functional architecture of an intelligent controller
that is used to attain high degrees of autonomy in future
space vehicles is briefly outlined as an example; full details
can be found in Ref. 21. This hierarchical architecture has
three levels, the execution level, the coordination level, and
the management or organization level. The architecture
exhibits certain characteristics, which have been shown in
the literature to be necessary and desirable in autonomous
systems. Based on this architecture we identify the impor-
tant fundamental issues and concepts that are needed for
an autonomous control theory.

Architecture Overview: Structure and Characteristics. The
overall functional architecture for an autonomous con-
troller is given by the architectural schematic of the Fig. 1.
This is a functional architecture rather than a hardware
processing one; therefore it does not specify the arrange-
ment and duties of the hardware used to implement the
functions described. Note that the processing architecture
also depends on the characteristics of the current process-
ing technology; centralized or distributed processing may
be chosen for function implementation depending on avail-
able computer technology.
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The architecture in Fig. 1 has three levels. At the lowest
level, the execution level, there is the interface to the vehi-
cle and its environment (the process in the figure) via the
sensors and actuators. At the highest level, the manage-
ment or organization level, there is the interface to the pilot
and crew, ground station, or onboard systems. The middle
level, called the coordination level, provides the link be-
tween the execution level and the management level. Note
that we follow the somewhat standard viewpoint that there
are three major levels in the hierarchy. It must be stressed
that the system may have more or fewer than three levels,
which, however, can be conceptually combined into three
levels. Some characteristics of the system that dictate the
actual number of levels are the extent to which the opera-
tor can intervene in the system’s operations, the degree
of autonomy or level of intelligence in the various sub-
systems, and the hierarchical characteristics of the plant.
Note that the three levels shown in Fig. 1 are applicable to
most architectures of intelligent autonomous controllers,
by grouping together sublevels of the architecture if nec-
essary. The lowest, execution level, involves conventional
control algorithms, while the highest, management and
organization level, involves only higher-level, intelligent,
decision-making methods. The coordination level provides
the interface between the actions of the other two levels
and it uses a combination of conventional and intelligent
decision-making methods.

The sensors and actuators are implemented mainly with
hardware. Software and perhaps hardware are used to im-
plement the execution level. Mainly software is used for
both the coordination and management levels. There are
multiple copies of the control functions at each level, more
at the lower and fewer at the higher levels. Note that the
autonomous controller is only one of the autonomous sys-
tems on the space vehicle. It is responsible for all the func-
tions related to the control of the physical system and al-
lows for continuous on-line development of the autonomous
controller and provides for various phases of mission op-
erations. The tier structure of the architecture allows us
to build on existing advanced control theory. Development
progresses, creating each time higher-level adaptation and
a new system that can be operated and tested indepen-
dently. The autonomous controller performs many of the
functions currently performed by the pilot, crew, or ground
station. The pilot and crew are thus relieved from mundane
tasks and some of the ground-station functions are brought
aboard the vehicle. In this way the degree of autonomy of
the vehicle is increased.

Functional Operation. In Fig. 1, commands are issued
by higher levels to lower levels and response data flows
from lower lever upwards. However we allow the flow of
data within a level and so the functional architecture is
not a pure hierarchy but rather an heterarchy. Parameters
of subsystems can be altered by systems one level above
them in the hierarchy. There is a delegation and distribu-
tion of tasks from higher to lower levels and a layered dis-
tribution of decision-making authority. At each level, some
preprocessing occurs before information is sent to higher
levels. If requested, data can be passed from the lowest
subsystem to the highest, for example, for display. All sub-

systems provide status and health information to higher
levels. Human intervention is allowed even at the control
implementation supervisor level, with the commands, how-
ever, passed down from the upper levels of the hierarchy.

Here is a simple illustrative example to clarify the over-
all operation of the autonomous controller. Suppose that
the pilot desires to repair a satellite.After dialogue with the
management level via the interface, the task is refined to
“repair satellite using robot A.” This is a decision made us-
ing the capability-assessing, performance-monitoring, and
planning functions of the management level. The manage-
ment level decides if the repair is possible under the cur-
rent performance level of the system and in view of near-
term other planned functions. Using its planning capabil-
ities, it then sends a sequence of subtasks to the coordi-
nation level sufficient to achieve the repair. This sequence
could be to order robot A to “go to satellite at coordinates (x,
y, z)”; “open repair hatch”; “repair.” The coordination level,
using its planner, divides, say, the first subtask, “go to satel-
lite at coordinates (x, y, z),” into smaller subtasks: “go from
start to (x1,y1,z1),” then“maneuver around obstacle,”“move
to (x2, y2, z2),” . . . , “arrive at the repair site and wait.” The
other subtasks are divided in a similar manner. This infor-
mation is passed to a control implementation supervisor
at the coordination level, which recognizes the task and
uses stored control laws to accomplish the objective. The
subtask ’go from start to (x1, y1, z1)” can, for example, be
implemented using stored control algorithms to first pro-
ceed forward 10 m, to the right 15◦, etc. These control al-
gorithms are executed in the controller at the execution
level utilizing sensor information; the control actions are
implemented via the actuators.

Characteristics of Hierarchical Intelligent Controllers for
High-Autonomy Systems

Based on the architecture previously described, important
fundamental concepts and characteristics that are needed
for an autonomous intelligent control theory are now iden-
tified. The fundamental issues that must be addressed for
a quantitative theory of autonomous intelligent control are
discussed.

There is a successive delegation of duties from the
higher to lower levels; consequently the number of distinct
tasks increases as we go down the hierarchy. Higher levels
are concerned with slower aspects of the system’s behavior
and with its larger portions, or broader aspects. There is
then a smaller contextual horizon at lower levels, that is,
the control decisions are made by considering less infor-
mation. Also notice that higher levels are concerned with
longer time horizons than lower levels. Due to the fact that
there is the need for high-level decision making abilities at
the higher levels in the hierarchy, the proposition has been
put forth that there is increasing intelligence as one moves
from the lower to the higher levels. This is reflected in the
use of fewer conventional numeric-algorithmic methods at
higher levels as well as the use of more symbolic decision-
making methods. This is the “principle of increasing intel-
ligence with decreasing precision” of Saridis; see also Ref.
8 and the references therein. The decreasing precision is
reflected by a decrease in time scale density, decrease in
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bandwidth or system rate, and a decrease in the decision
(control action) rate. (These properties have been studied
for a class of hierarchical systems in Ref. 22.) All these
characteristics lead to a decrease in granularity of models
used, or equivalently, to an increase in model abstractness.
Model granularity also depends on the dexterity of the au-
tonomous controller.

It is important at this point to discuss briefly the“dexter-
ity” of the controller. The execution level of a highly dexter-
ous controller is very sophisticated and it can accomplish
complex control tasks. The coordination level can issue
commands such as “move 15 cm to the right” and “grip stan-
dard, fixed dimension cylinder” in a dexterous controller, or
it can completely dictate each mode of each joint (in a ma-
nipulator) “move joint 1 15◦” then “move joint 5 3◦,” etc., in
a less dexterous one. The simplicity and level of abstract-
ness of commands in an autonomous controller depend on
its dexterity. The more sophisticated the execution level is
the simpler are the commands that the control implementa-
tion supervisor needs to issue. Notice that a very dexterous
robot arm may itself have a number of autonomous func-
tions. If two such dexterous arms were used to complete a
task that required the coordination of their actions, then
the arms would be considered to be two dexterous actua-
tors and a new supervisory autonomous controller would
be placed on top for the supervision and coordination task.
In general, this can happen recursively, adding more in-
telligent autonomous controllers as the lower-level tasks,
accomplished by autonomous systems, need to be super-
vised.

There is an ongoing evolution of the intelligent functions
of an autonomous controller. It is interesting to observe the
following. Although there are characteristics that separate
intelligent from nonintelligent systems, as intelligent sys-
tems evolve, the distinction becomes less clear. Systems
that were originally considered to be intelligent evolve to
gain more characteristics of what is considered to be non-
intelligent, numeric-algorithmic systems. An example is a
route planner. Although there are AI route-planning sys-
tems now, as problems like route planning become better
understood, more conventional numeric-algorithmic solu-
tions are developed. The AI methods that are used in intel-
ligent systems help us to understand complex problems so
we can organize and synthesize new approaches to problem
solving, in addition to being problem-solving techniques
themselves. AI techniques can be viewed as research ve-
hicles for solving very complex problems. As the problem
solution develops, purely algorithmic approaches, which
have desirable implementation characteristics, substitute
AI techniques and play a greater role in the solution of the
problem. It is for this reason that we concentrate on achiev-
ing autonomy and not on whether the underlying system
can be considered “intelligent.”

Models for Intelligent Controllers. In highly autonomous
control systems, the plant is normally so complex that it is
either impossible or inappropriate to describe it with con-
ventional mathematical system models such as differential
or difference equations. Even though it might be possible
to describe some system accurately with highly complex
nonlinear differential equations, it may be inappropriate

if this description makes subsequent analysis too difficult
or too computationally complex to be useful. The complex-
ity of the plant model needed in design depends on both
the complexity of the physical system and how demanding
the design specifications are. There is a tradeoff between
model complexity and our ability to perform an analysis
of the system via the model. However, if the control per-
formance specifications are not too demanding, a more ab-
stract, higher-level, model can be utilized, which will make
subsequent analysis simpler. This model intentionally ig-
nores some of the system characteristics, specifically those
that need not be considered in attempting to meet the par-
ticular performance specifications; see also the discussion
on hybrid systems later in this article. For example, a sim-
ple temperature controller could ignore almost all dynam-
ics of the house or the office and consider only a tempera-
ture threshold model of the system to switch the furnace
off or on.

Discrete event system (DES) models using finite au-
tomata, Petri nets, queuing network models, Markov
chains, etc., are quite useful for modeling the higher-level
decision-making processes in the intelligent autonomous
controller. The choice of whether to use such models will,
of course, depend on what properties of the autonomous
system need to be studied.

The quantitative, systematic techniques for modeling,
analysis, and design of control systems are of central and
utmost practical importance in conventional control the-
ory. Similar techniques for intelligent autonomous con-
trollers do not exist. This is mainly due to the hybrid
structure (nonuniform, nonhomogeneous nature) of the dy-
namical systems under consideration; they include both
continuous-state and discrete-state systems. Modeling tech-
niques for intelligent autonomous systems must be able to
support a macroscopic view of the dynamical system; hence
it is necessary to represent both numeric and symbolic in-
formation. The nonuniform components of the intelligent
controller all take part in the generation of the low-level
control inputs to the dynamical system; therefore they all
must be considered in a complete analysis. Research could
begin by using different models for different components
of the intelligent autonomous controller, since much can
be attained by using the best available models for the var-
ious components of the architecture and joining them via
some appropriate interconnecting structure. For instance,
systems that are modeled with a logical discrete event sys-
tem (DES) model at the higher levels and a difference or
differential equation at the lower level should be examined;
see the discussion on hybrid systems later in this article.
In any case, good understanding of hierarchical models is
necessary for the analysis and synthesis of intelligent au-
tonomous controllers.

Research Directions. One can roughly categorize re-
search in the area of intelligent autonomous control into
two areas: conventional control theoretic research, which
addresses the control functions at the execution and co-
ordination levels, and the modeling, analysis, and design
of higher-level decision-making systems found in the man-
agement and coordination levels.
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It is important to note that in order to obtain a high
degree of autonomy it is necessary to adapt or learn.
Neural networks offer methodologies to perform learning
functions in the intelligent autonomous controller. In gen-
eral, there are potential applications of neural networks
at all levels of hierarchical intelligent controllers that pro-
vide higher degrees of autonomy to systems. Neural net-
works are useful at the lowest execution level—where
the conventional control algorithms are implemented via
hardware and software—through the coordination level,
to the highest management level, at which decisions are
being made based on possibly uncertain and/or incom-
plete information. One may point out that at the execution
level—conventional control level—neural network proper-
ties such as the ability for function approximation and the
potential for parallel implementation appear to be very im-
portant. In contrast, at higher levels abilities such as pat-
tern classification and the ability to store information in,
say, an associative memory appear to be of significant inter-
est. Machine learning is of course important at all levels.

We stress that in control systems with high degrees of
autonomy we seek to widen the operating range of the sys-
tem significantly so that nontrivial failures and environ-
mental changes can occur and performance will still be
maintained. All of the conventional control techniques are
useful in the development of autonomous controllers and
they are relevant to the study of autonomous control. It is
the case, however, that certain techniques are more suit-
able for interfacing to the autonomous controller and for
compensating for significant system failures. For instance,
the area of restructurable or reconfigurable control systems
studies techniques to reconfigure controllers when signifi-
cant failures occur.

Conventional modeling, analysis, and design methods
should be used whenever applicable for the components of
the intelligent autonomous control system as well as fuzzy
controllers. For instance, they should be used at the execu-
tion level of many autonomous controllers. The symbolic-
numeric interface is a very important issue; consequently it
should be included in any analysis. There is a need for sys-
tematically generating less detailed, more abstract models
from differential or difference equation models to be used
in higher levels of the autonomous controller; see the later
discussion on hybrid systems. Tools for the implementation
of this information extraction also need to be developed. In
this way conventional analysis can be used in conjunction
with the developed analysis methods to obtain an over-
all quantitative, systematic analysis paradigm for intelli-
gent autonomous control systems. In short, we propose to
use hybrid modeling, analysis, and design techniques for
nonuniform systems. This approach is not unlike the ap-
proaches used in the study of any complex phenomena by
the scientific and engineering communities.

HYBRID SYSTEMS

Hybrid control systems contain two distinct types of sys-
tems, systems with continous dynamics and systems with
discrete dynamics, that interact with each other. Their
study is central in designing intelligent control systems

with a high degree of autonomy and it is essential in de-
signing discrete event supervisory controllers for continu-
ous systems; see Refs. 1–26.

Hybrid control systems typically arise when continuous
processes interact with, or are supervised by, sequential
machines. Examples of hybrid control systems are com-
mon in practice and are found in such applications as flexi-
ble manufacturing, chemical process control, electric power
distribution, and computer communication networks. A
simple example of a hybrid control system is the heating
and cooling system of a typical home. The furnace and air
conditioner, along with the heat-flow characteristics of the
home, form a continuous-time system that is to be con-
trolled. The thermostat is a simple discrete-event system
that basically handles the symbols {too hot, too cold} and
{normal}. The temperature of the room is translated into
these representations in the thermostat and the thermo-
stat’s response is translated back to electrical currents that
control the furnace, air conditioner, blower, etc.

Since the continuous and discrete dynamics coexist and
interact with each other it is important to develop mod-
els that accurately describe the dynamic behavior of such
hybrid systems. In this way it is possible to develop con-
trol strategies that fully take into consideration the rela-
tion and interaction of the continuous and discrete parts
of the system. In the past, models for the continuous- and
discrete-event subsystems were developed separately; the
control law was then derived in a rather empirical fashion,
except in special cases such as the case of digital controllers
for linear time-invariant systems. The study of hybrid sys-
tems provides the backbone for the formulation and im-
plementation of learning control policies. In such policies,
the control acquires knowledge (discrete data) to improve
the behavior of the system as it evolves in time. Hybrid
systems have become a distinctive area of study due to
opportunities to improve on traditional control and esti-
mation technologies by providing computationally effective
methodologies for the implementation of digital programs
that design or modify the control law in response to sensor-
detected events, or as a result of adaptation and learning.
The interested reader should consult Refs. 25, 26 and es-
pecially the references therein.

Certain important issues in hybrid systems are now
briefly discussed using a paradigm of a continuous sys-
tem supervised by a DES controller from Refs. 23 and 24.
The hybrid control system of interest here consists of a
continuous-state system to be controlled, also called the
plant, and a discrete-state controller connected to the plant
via an interface; see Fig. 2.

The plant contains all continuous-state subsystems
of the hybrid control system, such as any conventional
continuous-state controllers that may have been developed
and a clock if time and synchronous operations are to be
modeled. The controller is an event-driven, asynchronous
DES, described by a finite state automaton or an ordinary
Petri net. The hybrid control system also contains an inter-
face that provides the means for communication between
the continuous-state plant and the DES controller. The in-
terface receives information from the plant in the form of
a measurement of a continuous variable z(t), such as the
continuous state, and issues a sequence of symbols {z̃(i)}
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Figure 2. Hybrid supervisory control architecture. The interface
receives continuous measurements z(t) and issues a sequence of
symbols {z̃(i)} which the DES controller processes to issue a se-
quence of control symbols {r̃(i)}. These are translated by the in-
terface to (piecewise) continuous input commands r(t).

to the DES controller. It also receives a sequence of control
symbols {r̃(i)} from the controller and issues (piecewise)
continuous input commands r(t) to the plant.

The interface plays a key role in determining the dy-
namics and the behavior of the hybrid control system. Un-
derstanding how the interface affects the properties of the
hybrid system is one of the fundamental issues in the the-
ory of hybrid control systems. The interface can be chosen
to be simply a partitioning of the state space; see Ref. 23. If
memory is necessary to derive an effective control, it is in-
cluded in the DES controller and not in the interface. Also
the piecewise continuous command signal issued by the in-
terface is simply a staircase signal, not unlike the output of
a zero-order hold in a digital control system. Including an
appropriate continuous system at (the input of) the plant,
signals such as ramps and sinusoids can be generated if
desired. So the simple interface is used without loss of gen-
erality. It allows analysis of the hybrid control system with
development of properties such as controllability, stability
and determinism, in addition to control design methodolo-
gies; see Refs. 23 and 24. In general, the design of the in-
terface depends not only on the plant to be controlled, but
also on the control policies available, as well as on the con-
trol goals. Depending on the control goals, one may or may
not need, for example, detailed state information; this cor-
responds to small or large regions in the partition of the
measured signal space (or greater of lower granularity).
This is, of course, not surprising as it is rather well known
that to stabilize a system, for example, requires less de-
tailed information about the system’s dynamic behavior
than to do, say, tracking. The fewer the distinct regions in
the partitioned signal space, the simpler (fewer states) the
resulting DES plant model and the simpler the DES con-
troller design. Since the systems to be controlled via hybrid
controllers are typically complex, it is important to make
every effort to use only the necessary information to attain
the control goals. This leads to simpler interfaces that is-
sue only the necessary number of distinct symbols and to
simpler DES plant models and controllers. The question of
systematically determining the minimum amount of infor-
mation needed from the plant in order to achieve specific
control goals via a number of specialized control policies is
an important question.

CONCLUDING REMARKS

There may be the temptation to classify the area of intelli-
gent autonomous systems as simply a collection of methods
and ideas already addressed elsewhere, the need only be-
ing some kind of intelligent assembly and integration of
known techniques. This is not true. The theory of control
systems is not covered by, say, the area of applied mathe-
matics, because control has different needs and therefore
asks different questions. The problems of interest in intel-
ligent systems require development of novel concepts, ap-
proaches, and methods in computer science, operations re-
search control systems, to mention but a few. The marriage
of all these fields can only be beneficial to all. Computer sci-
ence and operation research methods are increasingly used
in control problems, while control system concepts such
as feedback and methods are providing the base for new
theories and methods in those areas. Intelligent control
for high degree of autonomy systems is a vibrant research
and applications area where developments are followed by
interdisciplinary research and advances in computational
networking, sensing, and artworking technologies.
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