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LARGE-SCALE AND DECENTRALIZED SYSTEMS

The size of a system is a subjective notion, and so is the no-
tion of large-scale systems. In the following we will take a
pragmatic view, and consider a system large whenever it is
conceptually or computationally attractive to decompose it
into interconnected subsystems. Typically the subsystems are
of small size and can be solved efficiently. The individual solu-
tions can then be combined in some way to obtain a solution
for the overall system.

If the system is decomposed along the boundaries of the
physical subsystems, the subsequent analysis may produce
important information about the interplay between subsys-
tems behavior and the nature of interconnections. It may,
however, be computationally inefficient. To reduce the compu-
tational effort, one should develop universal decomposition

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.



210 LARGE-SCALE AND DECENTRALIZED SYSTEMS

techniques, which need not be constrained by physical bound-
aries of subsystems, but may lead to efficient solutions of
large problems utilizing modern computer architectures. With
that in mind, our first objective will be to describe several
decomposition schemes that can either be used as precondi-
tioners for decentralized control design, or can serve to speed
up computations involving the control of large-scale systems
(usually through the use of parallel processing).

x1 y1

x2 y2

x3 y3

To efficiently decompose a large-scale system, it is gener- Figure 1. Bipartite graph B.
ally convenient to represent it in the form of a graph. De-
pending on whether or not the graph is weighted, we can

both deterministic and stochastic terms. One of the reasonsroughly distinguish between two broad classes of decomposi-
for using decentralized control strategies is their inherent ro-tion algorithms. In problems where weights are not assigned
bustness to a wide variety of structured and unstructuredto edges of the graph, decomposition schemes typically exploit
perturbations in the subsystems and their interconnections.topological properties such as structure and sparsity to obtain
Furthermore, the strategies can be made reliable with respectan appropriate partitioning (1–8). Whenever possible, it is
to both interconnection and controller failures involving indi-also useful to incorporate any existing information regarding
vidual subsystems.the physical attributes of the system (such as hierarchical

structures or repetitive blocks that are built into the design). Epsilon Decompositions
Decomposition algorithms of this type are commonly applied

A natural way to introduce epsilon decompositions is to con-for solving large sparse systems of linear equations, and a
sider the system of linear algebraic equationsnumber of them have been successfully utilized in paralleliz-

ing control-related computational problems. Ax = b (1)
A conceptually different class of algorithms arises when

the system is viewed as a weighted graph. In this case the and its solution by the Jacobi iterative method (12). In this
partitioning strategy changes significantly, since we can now context, the epsilon decomposition algorithm will be used to
utilize edge weights to identify weakly coupled subsystems permute matrix A into a form that ensures rapid convergence
and establish hierarchical relationships between them. De- to the solution.
composition schemes based on this approach have found nu- The algorithm itself is remarkably simple—given a matrix
merous applications not only in parallel computing, but also A � (aij) and a value of parameter 	 � 0, all elements satis-
in decentralized control design. In the following sections par- fying �aij� � 	 are set to zero. The resulting sparsified matrix

is then permuted into a block-diagonal form, and all the vari-ticular attention will be devoted to the epsilon decomposition
ables in the same block are considered to be strongly coupled.algorithm (9–11), due to its efficiency and simplicity; in this
After such a permutation, the matrix A can be represented ascontext, we will also examine the concept of overlapping, and

its application to the control of large-scale systems.
A = AD + εAC (2)Our second objective in this paper will be to provide the

motivation and describe the basic ideas and techniques for where AD is block-diagonal and all elements of AC are less
decentralized control of dynamic systems. The accumulated than or equal to one in magnitude. The following example
experience in controlling large complex systems suggests illustrates how such a permutation can be identified, and sub-
three basic reasons for using decentralized control structures: sequently utilized to iteratively solve Eq. (1).
dimensionality, information structure constraints, and uncer-
tainty (6). By decomposing a system of large dimension into Example 1. Consider the matrix
subsystems, a designer can devise decentralized strategies for
solving control problems that would be either impractical or
impossible to solve using a single centralized controller. Fur-
thermore, in a large complex system where databases are de-

A =




1 0.05 2
0.01 1 0.1
0.1 0.1 2


 (3)

veloped around the plant with distributed sources of data, a
and the corresponding bipartite graph B in Fig. 1, in whichneed for fast control actions in response to local inputs and
vertices yi and xj are connected if and only if aij � 0. If weperturbations dictates use of distributed (that is, decentral-
remove all edges that correspond to elements �aij� � 0.1, weized) measurement and control structures.
obtain the subgraph B	 shown in Fig. 2. It is easily seen thatA restriction on what and where the information is deliv-

ered in a large system is a common structural constraint in
building controllers and estimators. A good example is the
standard automatic generation control in power systems,
where the decentralized schemes are used to reduce the cost
of communication that would be demanded by a centralized
control strategy spread over distant geographical areas.

In modeling and control of large systems, it has been long
recognized that models of subsystems can be obtained with
increasing levels of accuracy and versatility. The essential un-

x1 y1

x2 y2

x3 y3
certainty resides in the interconnections between the subsys-
tems, since these interconnections are often poorly known in Figure 2. Subgraph B	.
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it is easily verified that no permutation can produce weakly
coupled diagonal blocks. On the other hand, if repeated verti-
ces are allowed, we obtain the expanded bigraph B̃	 in Fig. 5,
which now has two disconnected components. This transfor-
mation corresponds to a rectangular permutation matrix V,
which is uniquely defined by the ordering of x and y vertices
in the graph. Specifically,

x1 y1

x3 y3

x2 y2
VA = ÃV (8)

Figure 3. Components of B	.
where

the vertices and edges of B	 can now be regrouped into two
disconnected components, as indicated in Fig. 3. The permu-
tation defined by the vector p � (1 3 2) now produces a ma-
trix which satisfies Eq. (2), with 	 � 0.1 and

Ã =




∗ ∗ ε 0
ε ∗ ε 0
ε 0 ∗ ∗
ε 0 ε ∗


 (9)

andAD =




1 2 0
0.1 2 0
0 0 1


 , AC =




0 0 0.5
0 0 1

0.1 1 0


 (4)
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The impact of weak coupling is easily seen when Eq. (1) is
solved using the Jacobi iterative method V =




1 0 0
0 1 0
0 0 1
0 1 0


 (10)

xk+1 = xk − A−1
D (Axk − b) (k = 0,1, . . .) (5)

It is easily verified that the expanded matrix Ã now has anNamely, if the original matrix A of Eq. (3) is partitioned so
epsilon decomposition in the sense of Eq. (2).that

Scaling. Another issue that arises in the practical applica-
tion of epsilon decompositions is that elements of the matrix
A can widely vary in size. In such cases it may not be possible

AD =




1 0.05 0
0.01 1 0

0 0 2


 (6)

--
--

--
--

-

- - - - - - - - - - - - - - - -

to find a meaningful value for 	, and row scaling needs to be
utilized to obtain a more uniform distribution of element val-we obtain �I � A�1

D A�2 � 1, and the process diverges; on the
ues. This process is demonstrated by the following example.other hand, the partitioning in Eq. (4) obtained by epsilon

decomposition results in rapid convergence.
Example 3. Let matrix A be defined as

Overlapping Epsilon Decompositions. Given a matrix A and
a particular choice of parameter 	, there is no guarantee that
A can be permuted into the form shown in Eq. (2). The obvi-
ous remedy in such cases is to repeat the decomposition with

A =




10 5 0.3
0.1 0.2 0.02
4.5 1 100


 (11)

a larger value of 	; alternatively, we can use the concept of
overlapping. The following example illustrates the basic ideas In this case 	 � 0.3 is obviously not a feasible choice, since
behind overlapping epsilon decomposition. the entire second row would be eliminated. However, if each

row is scaled by the element with the maximal absolute value,Example 2. Consider the following matrix
we obtain

A = AD + εAC (12)A =




∗ ∗ ε

ε ∗ ε

ε ∗ ∗


 (7)

where all entries larger than 	 in magnitude are denoted by
�. The corresponding bipartite graph B	 is given in Fig. 4, and

x1 y1

x2 y2

x3 y3

x1 y1

y2
(1)

x3 y3

x2
(2)

x2
(1)

y2
(2)

Figure 5. Expanded subgraph B̃	.Figure 4. Subgraph B	.
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where 	 � 0.1 and

AD =




1 0.5 0
0.5 1 0
0 0 1


 , AC =




0 0 0.3
0 0 1

0.45 0.1 0


 (13)
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4Note that in this case A can be represented only as A �
AD � AC (without 	), but scaling does identify block-diagonal Figure 7. The undirected graph.
dominance, since

‖A−1
D AC‖ = ε‖A

−1
D AC‖ � 1 (14)

Nested Dissection

Nested dissection is a typical representative of BBD decompo-This feature is frequently used to enhance the convergence of
sition methods. It is relatively simple algorithm, in which thethe iterative process in Eq. (5).
matrix is assumed to be structurally symmetric and can
therefore be represented by an undirected graph. The follow-
ing example illustrates the decomposition procedure.Structural Decompositions

By their very nature, epsilon decompositions are ideally
Example 4. Let us consider the structurally symmetric ma-suited for iterative solutions of Eq. (1). In contrast, there is
trixan entire class of decompositions that are aimed at solving

Eq. (1) directly; in this approach, no matrix entries are dis-
carded, and the decompositions are designed to achieve cer-
tain desirable structures. A structure that is of particular in-
terest in the analysis and simulation of large-scale systems is
the bordered block-diagonal (BBD) form shown in Fig. 6. The
appeal of this structure lies in its inherent potential for paral-
lel computation, a feature that has been widely exploited in
different areas of engineering.

Numerous algorithms have been developed for permuting
a matrix into the BBD form, based on diverse concepts rang-

1 2 3 4 5 6 7

1
2
3
4
5
6
7

�
BBBBBBBBBB�

∗ ∗ 0 0 ∗ ∗ 0
∗ ∗ ∗ ∗ 0 ∗ 0
0 ∗ ∗ ∗ 0 0 ∗
0 ∗ ∗ ∗ 0 0 ∗
∗ 0 0 0 ∗ ∗ 0
∗ ∗ 0 0 ∗ ∗ 0
0 0 ∗ ∗ 0 0 ∗

�
CCCCCCCCCCA

(15)

ing from node clustering (2) and diakoptics (1,13) to various
forms of graph dissection (3,4,7). Despite their obvious differ- and the corresponding undirected graph in Fig. 7. The basic
ences, all these methods have a common goal in identifying a idea of nested dissection is to arrange the vertices of this
minimal border that induces a block-diagonal structure in the graph into a rooted level structure, such as the one in Fig. 8.
rest of the matrix. The border size is an important issue in

To achieve optimal results, this structure should have as
the solution of the system in Eq. (1), since the computation

many levels as possible, which is assured by choosing an ap-time depends heavily on the number of nonzero elements in
propriate vertex as the root (14,15).the border.

Once a rooted level structure is formed, the nested dissec-In this section, we will briefly describe three methods for
tion algorithm identifies the ‘‘middle’’ level (in this example,obtaining BBD structures. We begin our analysis with the
vertex �2�) and removes it from the graph, so that two discon-classic nested dissection algorithm of George and Liu (3).
nected components are left. The middle level is then placed in
the border, as illustrated in Eq. (16). In general, this proce-

5

1 6

2

3 4

7

Level 0

Level 1

Level 2

Level 3

Level 4

Figure 6. The BBD matrix structure. Figure 8. A rooted level structure.
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dure can be recursively repeated on each of the remaining The Balanced Bordered Block-Diagonal Decompositions. The
balanced BBD decomposition algorithm is recursive and con-blocks:
sists of two basic steps.

Step 1. Select a maximal allowable block size Nmax. Given
this choice, move as many vertices as necessary to the
border so that each block has size � Nmax. A typical situ-
ation after this step is shown in Fig. 9.

Step 2. The border is obviously too large after the first
step; consequently, in step 2 we reconnect border verti-
ces one by one. In this process, the next vertex to be
reconnected is always the one that results in the small-

5 1 6 3 4 7 2

5
1
6
3
4
7
2

�
BBBBBBBBBB�

∗ ∗ ∗ 0 0 0 0
∗ ∗ ∗ 0 0 0 ∗
∗ ∗ ∗ 0 0 0 ∗
0 0 0 ∗ ∗ ∗ ∗
0 0 0 ∗ ∗ ∗ ∗
0 0 0 ∗ ∗ ∗ 0
0 ∗ ∗ ∗ ∗ 0 ∗

�
CCCCCCCCCCA

- - - - - - - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - - - - - - - - ---
--

--
--

--
--

--
--

--
-

--
--

--
--

--
--

--
--

--
--

--

(16)

est increase in block sizes (such an algorithm is called
greedy). The process continues as long as there are atThe nested dissection algorithm was found to be very suc-
least two blocks left (in other words, it terminates whencessful for matrices with a regular structure (such as those
we establish that the next reconnection will result in aarising in the numerical solution of partial differential equa-
single block).tions using finite elements). However, this decomposition is

much less effective for systems such as electric circuits, where
Once two diagonal blocks and an initial border have been ob-the matrix structure is typically highly irregular (4). Several
tained, steps 1 and 2 are repeated on each block (which makesdifferent solutions where proposed to alleviate this problem,
the algorithm nested); the local borders are then added to thedating back to the work of Sangiovanni-Vincentelli et al. (2).
initial border. This procedure continues until we obtain a de-We now describe two recent decomposition algorithms, which
sired number of diagonal blocks of approximately equal sizehave been successful over a wide range of matrix structures.
(hence the term ‘‘balanced’’).

Advantages of this algorithm are its execution speed and
Decompositions Using Eigenvectors of Graphs. The idea of numerical simplicity, which result from the fact that only the

eigenvector decompositions was introduced by Pothen et al. sizes of blocks are considered, not their contents. In addition,
(5), and is based on the Laplacian matrix of a graph. This since all diagonal blocks are balanced in size, the workload
matrix is defined as can be evenly distributed across different processors; this fea-

ture is critical for an efficient parallel solution of Eq. (1).
Q ≡ D − A (17)

To illustrate the effectiveness of this decomposition, in
Figs. 10 and 11 we show how it is applied to a highly irregular

where A is the adjacency matrix of the graph, and D is a diag- matrix that arises in the modeling of the US electric power
onal matrix whose entries represent vertex degrees. It can be network.
shown that matrix Q is always positive semidefinite, with at
least one zero eigenvalue; the smallest positive eigenvalue of

DECENTRALIZED CONTROL: AN EXAMPLEQ is denoted �2, and the corresponding eigenvector is denoted
by X2. The decomposition procedure can now be summarized

The underlying idea of decentralized control is decomposition.as follows:
A dynamic system is considered as an interconnection of sub-
systems, which have independent inputs and outputs. A satis-1. Compute eigenvector X2, and determine its median com-
factory performance of the overall system is achieved by con-ponent xl.
trolling each individual subsystem using local feedback,

2. Partition the vertices of the graph in the following way: whereby local inputs are connected to local outputs (or
for any vertex i, if xi � xl, set i � A; otherwise, i � B. states).
In this way, the vertices will be partitioned into two
approximately equal sets, A and B.

3. All the edges connecting sets A and B constitute an edge
separator, H. The objective now is to find a minimal ver-
tex cover for H (that is, the minimal number of vertices
that need to be removed so that all edges in set H are
removed). This vertex cover constitutes the separator,
which appears in the border of the BBD structure.

4. Repeat steps 1–3 on the remaining components after
the separator is removed.

Decompositions based on eigenvectors of graphs were
found to be effective and applicable to a wide range of matrix
structures. However, for large matrices computing the second
eigenvector can be difficult, if not impossible. This consider-
ation has motivated the development of the balanced BBD
decomposition (11,16), which is described next. Figure 9. Situation after step 1.
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Figure 12. Inverted pendulums.

When the state and input vectors are chosen as x � (�1, �̇1,
�2, �̇2)T and u � (u1, u2)T, the interconnected system is repre-
sented by the state equations
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Figure 10. A model for the US electric power network (5300 � 5300).

S : ẋ =




0 1 0 0
g
l

− ka2

ml2
0

ka2

ml2
0

0 0 0 1
ka2

ml2 0
g
l

− ka2

ml2 0




x +




0 0
1

ml2
0

0 0

0
1

ml2




u- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

--
--

--
--

--
--

--
--

-

--
--

--
--

--
--

--
--

-

(19)To introduce the decentralized control problem, let us con-
sider the two inverted pendulums interconnected by a spring In choosing the feedback control laws to achieve the objec-
as shown in Fig. 12. The control objective is to keep the pen- tive, the information structure constraint is essential: Each
dulums upright by using the inputs u1 and u2. After lineariza- input u1 and u2 can depend only on local states x1 � (�1, �̇1)T

tion around the equilibrium state �1 � �2 � 0, the equations and x2 � (�2, �̇2)T of each individual pendulum. In other words,
of motion are

u1 = u1(x1), u2 = u2(x2) (20)

Since the system S is linear, a reasonable choice is a linear
ml2 θ̈1 = mglθ1 − ka2(θ1 − θ2) + u1

ml2 θ̈2 = mglθ2 − ka2(θ2 − θ1) + u2

(18)
control law

u1 = −kT
1 x1, u2 = −kT

2 x2 (21)

where feedback gain vectors

k1 = (k11, k12)
T , k2 = (k21, k22)

T (22)

need to be selected to stabilize S, that is, to keep the pendu-
lums in the upright position. When the two pendulums are
considered as two subsystems

S1 : ẋ1 =
[

0 1
α 0

]
x1 +

[
0
β

]
u1

S2 : ẋ2 =
[

0 1
α 0

]
x2 +

[
0
β

]
u2

(23)

the overall system breaks up into two interconnected subsys-
tems as

S : ẋ1 =
[

0 1
α 0

]
x1 +

[
0
β

]
u1 + e

[
0 0

−γ 0

]
x1 + e

[
0 0
γ 0

]
x2

ẋ2 =
[

0 1
α 0

]
x2 +

[
0
β

]
u2 + e

[
0 0
γ 0

]
x1 + e

[
0 0

−γ 0

]
x2

(24)
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Figure 11. The matrix after a balanced BBD decomposition. where � � g/l, � � 1/ml2, � � a2k/ml2, and e � (a/a)2.
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By choosing the decentralized control of Eq. (21), we effec- trices have proper dimensions, and N � �1, 2, . . ., N�. At
present we are interested in disjoint decompositions, that is,tively intend to stabilize the interconnected system S by sta-

bilizing the two subsystems in Eq. (23). This turns out to be
a robust control strategy, since it can produce an overall
closed-loop system that can remain stable despite the essen-
tial uncertainty about the height a of the spring. This uncer-
tainty is represented by the normalized interconnection pa-

x = (xT
1 , xT

2 , . . ., xT
N )T

u = (uT
1 , uT

2 , . . ., uT
N )T

y = (yT
1 , yT

2 , . . ., yT
N )T

(30)

rameter e, which can take any value between 0 and 1. When
where x(t) � �n, u(t) � �m, and y(t) � �l are the state, input,an interconnected system is stabilized in this way, it is said
and output of the overall system S, such thatto be connectively stable (6).

By using the control law of Eq. (21) in Eq. (23) we obtain
the closed-loop subsystems as R

n = R
n1 × R

n2 × · · · × R
nN

R
m = R

m1 × R
m2 × · · · × R

mN

R
l = R

l1 × R
l2 × · · · × R

lN

(31)

A compact description of the interconnected system S is

Ŝ1 : ẋ1 =
[

0 1
α − βk11 −βk12

]
x1

Ŝ2 : ẋ2 =
[

0 1
α − βk21 −βk22

]
x2

(25)

S : ẋ = AD x + BD u + AC x + BC u

y = CD x + CC x
(32)

and the overall closed-loop system becomes
where

AD = diag{A1, A2, . . ., AN}
BD = diag{B1, B2, . . ., BN}
CD = diag{C1,C2, . . .,CN}

(33)

Ŝ : ẋ1 =
[

0 1
α − βk11 −βk12

]
x1 + e

[
0 0

−γ 0

]
x1 + e

[
0 0
γ 0

]
x2

ẋ2 =
[

0 1
α − βk21 −βk22

]
x2 + e

[
0 0
γ 0

]
x1 + e

[
0 0

−γ 0

]
x2

(26) and the coupling block matrices are

It is interesting that the system in this example belongs to AC = (Aij), BC = (Bij), CC = (Cij) (34)
the class of interconnected systems that can always be stabi-
lized by decentralized feedback. A decentralized control law The collection of N decoupled subsystems is described by
can be chosen to connectively stabilize the closed-loop system
Ŝ even if the spring is shifting up and down the length of the
pendulums in an unpredictable way. The class of decentrally

SD : ẋ = AD x + BD u

y = CD x
(35)

stabilizable systems is described next.

which is obtained from Eq. (32) by setting the coupling matri-
ces to zero.INTERCONNECTED PLANTS AND CONTROLLERS

Important special classes of interconnected systems are in-
put (BC � 0) and output (CC � 0) decentralized systems, whereTo describe representations of plants, which are required in
inputs and outputs are not shared among the subsystems. In-the design of decentralized controllers, let us consider a linear
put–output decentralized systems are described assystem

S : ẋ = AD x + BD u + AC x

y = CD x
(36)S : ẋ = Ax + Bu

y = Cx
(27)

where both BC and CC are zero. This structural feature helpsas an interconnection
to a great extent when decentralized controllers and estima-
tors are designed for large plants.

A static decentralized state feedback

u = −KD x (37)

S : ẋi = Aixi + Biui +
∑
j∈N

(Aij x j + Biju j )

yi = Cixi +
∑
j∈N

Cij x j, i ∈ N
(28)

is characterized by a block-diagonal gain matrix
of N subsystems

KD = diag{K1, K2, . . ., KN} (38)

which implies that each subsystem Si has its individual con-

Si : ẋi = Aixi + Biui

yi = Cixi, i ∈ N
(29)

trol law
where xi(t) � �ni, ui(t) � �mi, yi(t) � �li are the state, input,
and output of the subsystem Si at a fixed time t � �, all ma- ui = −Ki xi, i ∈ N (39)
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with a constant gain matrix Ki. The control law u of Eq. (37), yi and inputs ui, but are collectively responsible for the stabili-
zation of S. The closed-loop system iswhich is equivalent to the totality of subsystem control laws

of Eq. (39), obeys the decentralized information structure con-
straint requiring that each subsystem Si is controlled using
its locally available state xi. The resulting closed-loop system S&CD :

[
ẋ
ż

]
=

[
A − BKDC −BHD

GDC FD

][
x
z

]
(46)

is described as

The basic result of Ref. 17 states that the closed-loop system
S&CD is stabilizable by decentralized controllers Ci if andŜ : ẋ = (AD − BDKD )x + ACx (40)

only if the set of decentralized fixed modes
When dynamic output feedback is used under decentralized

constraints, then controllers of the following type are consid-
ered: �D =

⋂
KD

σ (A − BKDC) =
⋂

K1 ,...,KN

σ

�
A −

∑
i∈N

B̃iKiC̃i

�
(47)

lies in the open left half plane. This result includes the inter-
Ci : żi = Fizi + Giyi

ui = −Hizi − Kiyi, i ∈ N
(41)

connected system of Eq. (44) in an obvious way.
A simple characterization of decentralized fixed modes waswhich can be rewritten in a compact form as a single decen-

provided in Ref. 18. For any subset I � �i1, . . ., iP� of thetralized controller defined as
index set N , let I C � �j1, . . ., jN�P� denote the complement of
I in N , and defineCD : ż = FDz + GDy

u = −HDz − KDy
(42)

where B̃I = [B̃i1
, B̃i2

, . . ., B̃iP
], C̃I c =




C̃j1
C̃j2

...

C̃ jN−P


 (48)

z = (zT
1 , zT

2 , . . ., zT
N )T , y = (yT

1 , yT
2 , . . ., yT

N )T

u = (uT
1 , uT

2 , . . ., uT
N )T (43)

Then a complex number � � � is a decentralized fixed mode
are the state z � �r, input y � �l, and output u � �m of the of S if and only if
controller CD. By combining the system S and the decentral-
ized dynamic controller CD, we get the composite closed-loop
system as rank

[
A − λI B̃I

C̃I c 0

]
< n (49)

for some I � N . Thus, the appearance of a fixed mode can
be attributed to a special pole–zero cancellation, which can-

S&CD :

[
ẋ
ż

]
=

[
AD − BDKDCD + AC −BDHD

GDCD FD

][
x
z

]
(44)

not be removed by constant decentralized feedback. However,
under relatively mild conditions, such fixed modes can be

DECENTRALIZED FEEDBACK STRUCTURES eliminated by time-varying decentralized feedback.

Before a search for stabilizing decentralized feedback begins, Structurally Fixed Modes
it is necessary to determine whether such a feedback exists

Graph theory serves as a suitable environment for both con-for a given plant. It is well known that if there are no restric-
ceptual and numerical analysis of large-scale systems (6), be-tions on the information structure of the linear system S of
cause it allows the designer to take advantage of the specialEq. (27), it can be stabilized if and only if the uncontrollable
structural features of a large system before attempting aor unobservable modes of the system are stable. However,
costly quantitative analysis. In particular, the theory is suit-this is not the case when information constraints are present
able for handling the lack of exact knowledge of system pa-and the plant has unstable decentralized fixed modes.
rameters by considering the existence rather than the true
value of a connection between any two variables in the sys-Fixed Modes
tem (19).

Let us consider the system S of Eq. (27) in the form A graph-theoretic characterization of controllability was
introduced by Lin (20). He established that in an uncontrolla-
ble pair (A, B), loss of controllability is either due to an insuf-
ficient number of nonzero parameters (indicating a lack of
sufficient linkage among system variables), or due to a perfect

S : ẋ = Ax +
∑
i∈N

B̃iui

yi = C̃ix, i ∈ N

(45)

matching of system parameters. In the former case, the pair
(A, B) is structurally uncontrollable in the sense that all pairswhere only the inputs and outputs are partitioned as in Eq.

(28), but the state (and thus the matrix A) is considered as a having the same structure as (A, B) are uncontrollable. By
describing the structure of (A, B) using a directed graph,whole. Either the subsystems are ignored for technical rea-

sons, or there are no natural or useful decompositions of the structural controllability can be checked via efficient graph-
theoretic algorithms (6). In this context, a pair (A, B) is struc-system into interconnected subsystems. In this case, the con-

trollers Ci described in Eq. (41) still use local measurements turally controllable if and only if:
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1. The system graph is input-reachable, that is, each state 1. All state vertices of DK are covered by vertex disjoint
variable can be reached along a directed path by at cycles, and
least one input, and 2. No strong component of DK contains only state vertices,

2. The system graph has no dilation, that is, there exists where a strong component is a maximal subgraph
no subset of state variables whose number exceeds the whose vertices are reachable from each other.
total number of all state and input variables directly
affecting these variables.

How this graph-theoretic criterion can be used to choose a
minimum number of feedback links that avoid structurallyThe concept of structurally fixed modes represents a general-
fixed modes is explained in Refs. 6 and 22.ization of the idea of structural controllability (21). Let D �

(V , E ) be a directed graph associated with the system S of
Eq. (27), where V � U � X � Y is a set of vertices corre-

STABILIZATIONsponding to inputs, states, and outputs of S, and E is a set of
directed edges corresponding to nonzero elements of the sys-

It has been common practice to use decentralized control intem matrices A, B, and C. To every nonzero aij there corre-
the stabilization of large interconnected systems. Each sub-sponds an edge from vertex xj to vertex xi, to every nonzero
system is stabilized independently using local feedback, andbij an edge from uj to xi, and to every nonzero cij one from xj

stability of the overall system is established using the Matro-to yi. Given a feedback pattern K, which adds a feedback edge
sov–Bellman concept of vector Liapunov functions. While afrom yj to ui for every kij � 1, one obtains a digraph DK � (V ,

E � E K) that completely describes the structure of both the vector Liapunov function may offer more flexibility and com-
system S and the feedback constraint specified by K, a special putational simplicity than a scalar one, it remains inherently
case of which is the decentralized constraint. In this case, per- conservative. The use of vector functions, however, has been
missible controllers have the structure justified by the presence of uncertainty in the interconnec-

tions, which can cause a breakup of the system during opera-
tion along the subsystem boundaries. The method of vector
Liapunov functions is a natural tool for making decentrally
controlled systems robustly stable to interconnection failures,
that is, connectively stable (6).

C
K

: żi = Fizi +
∑
j∈Ji

gij y j

ui = −hT
i zi −

∑
j∈Ji

kij yi

(50)

where J i � �j : kij � 1�. Vector Liapunov Functions
If we choose a gain matrix K to conform with the feedback

Let us assume that the plant is governed by linear time-in-structure K, then the set
variant equations

�
K

=
⋂
K

σ (A − BKC) (51)

can be conveniently specified as the set of fixed modes with
S : ẋi = Aixi + Biui +

N∑
j=1

eij Aij x j , i ∈ N (52)

respect to the decentralized feedback structure constraint de-
fined by K. It is fairly easy to show (6) that the system S can which are an obvious derivative of Eq. (28) save for the inser-
be stabilized by the constrained controller CK if and only if tion of the interconnection parameters eij � [0, 1]. The param-
�K is contained in the open left half plane. To characterize eters are coefficients of the N � N interconnection matrix
�K as in Eq. (49), let us consider the index sets I � M � �1, E � (eij), which are used to model the uncertain strength of
2, . . ., M� and replace I C by J � �i�I

C J i, where I C now interconnections.
refers to the complement of I in M . To stabilize S we use the decentralized control laws of Eq.

In order to formulate graph-theoretic conditions for the ex-
(39) to stabilize each individual closed-loop system

istence of structurally fixed modes, let us recall that two sys-
tems are said to be structurally equivalent if they have the
same graph. Then, a system S is said to have structurally Ŝi : ẋi = (Ai − BiKi )xi, i ∈ N (53)
fixed modes with respect to a given feedback structure K if
every system structurally equivalent to S has fixed modes This is presumably a relatively easy task, because the subsys-
with respect to K. ‘‘Structurally fixed’’ is a generic concept: tems have low dimensions. Stability of each decoupled closed-
Having structurally fixed modes is a property of a class of loop system follows from a subsystem Liapunov function
systems sharing the same graph. Most importantly, if a sys- vi : �n�i � ��. These individual functions are then stacked up
tem has no structurally fixed modes, then it either has no to form a vector Liapunov function v(x) � [v1(x1), v2(x2), . . .,
fixed modes, or the fixed modes can be removed by arbitrarily vN(xN)]T. Finally, the vector Liapunov function is used to form
small perturbations of system parameters. This means that if a scalar Liapunov function V : �n � �� of the form
a system has no structurally fixed modes for a given K, then
(generically) it can be stabilized by a controller with a gain K

V (x) = dTv (54)and structure K, decentralized structure being a special case.
It was shown in Ref. 21 that a system S has no structurally

where d � (d1, d2, . . ., dN)T is a positive vector (di � 0, i �fixed modes with respect to a feedback pattern K if and only
if: N ). The Liapunov function V(x) is utilized to establish stabil-
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ity of the overall closed-loop system for the system S of Eq. (27). By applying the epsilon decompo-
sition to M and regrouping the variables, we get S as

Ŝ : ẋi = Âixi +
N∑

j=1

eij Aij x j , i ∈ N (55)

where Âi � Ai � BiKi.
Taking the total time derivative of V(x) with respect to Ŝ,

S : xi = Aixi + Biui + ε

�
N∑

j=1
j �=i

Aij x j + Bij u j

�
, i ∈ N

(61)
after lengthy but straightforward computations (6), we get

By applying the decentralized feedback of Eq. (39), we obtain
the closed-loop system asV̇ (x)

Ŝ
≤ −dT Wz (56)

where z � (�x1�, �x2�, . . ., �xN�)T, and W � (wij) is the aggregate
matrix defined as

Ŝ : ẋi = Âixi + ε

N∑
j=1
j �=i

Âij x j , i ∈ N (62)

where Âij � Aij � BijKj. In this case, the aggregate matrix
W � (wij) is defined as

wij =
{

αi − eiiβii, i = j

−eijβij, i �= j
(57)

The positive numbers �i depend on the choice of vi’s, and the
nonnegative numbers �ij are bounds on interconnection matri-

wij =
{

αi, i = j

−εβij, i �= j
(63)

ces Aij. The binary numbers eij are elements of the N � N
fundamental interconnection matrix E � (eij), which define We recall (6) that if the threshold 	 is sufficiently small, then
the nominal structure of S, W is an M matrix: The smaller the absolute values of wij’s,

the easier it is for W to satisfy the M-matrix conditions. We
note, however, that the smaller 	 is, the smaller the number
of subsystems will be, implying a smaller reduction in theeij =

{
1 if S j acts on Si

0 if S j does not act on Si

(58)
dimensionality of the stability problem via decomposition.

It is a well-known result (6,19) that: Decentrally Stabilizable Systems

Vector Liapunov functions provide only sufficient conditions
The interconnected system Ŝ is connectively stabilized by for stability of interconnected systems, and one may search in

decentralized control ui � �Kixi, i � N , if the aggregate ma- vain for stabilizing control. For this reason, there are a num-
trix W is an M matrix. ber of results aimed at identifying classes of interconnected

systems which can always be stabilized by decentralized
feedback.A matrix W � (wij) with nonpositive off-diagonal elements

The most popular (but also the most restrictive) conditionsis an M matrix if and only if there exists a positive vector d
for decentral stabilizability are the matching conditions (23),such that the vector

Im Bi ⊃ Im Aij (64)
c = W

T
d (59)

These conditions simply imply that the interconnections may
is a positive vector as well, and stability of Ŝ follows by the be made to enter the subsystem through the input matrices
standard Liapunov theorem involving V(x) � 0 and V̇(x)Ŝ � 0. Bi, that is, we have
The connective property of stability, which requires stability
to hold for all E � E, is concluded from the fact that W(E) �

W(E) element by element, and W is an M matrix whenever
W is.

S : ẋi = Ai xi + Bi

�
ui +

N∑
j=1

eij Dij x j

�
, i ∈ N (65)

which means that Aij � BiDij for some matrices Dij.Epsilon Decompositions Nonmatching conditions for decentral stabilizability of sin-
gle-input subsystems have been considered in Ref. 24. TheEpsilon decompositions are ideal preconditioners for the sta-
system S is described asbilization of large-scale systems using decentralized control

and vector Liapunov functions (6,9). To see this, assume that
C � 0 and form the augmented matrix S : ẋi = Aixi + biui +

∑
j∈N

eij Aij x j, i ∈ N (66)

where, without loss of generality, the subsystem pairs (Ai, bi)
are assumed to be in the controllable canonical form. For each

M =
[

A B
0 0

]
(60)
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interconnection matrix Aij, define an integer ized control have been obtained by Chen et al. (32,33), Zhang
et al. (34), and Hassan et al. (35).

Since the introduction of multiple control system concepts
for reliable stabilization (36), there have been numerous pa-mij =

{
max{q − p : aij

pq �= 0}, Aij �= 0

n, Aij = 0
(67)

pers dealing with controller or sensor/actuator failures. Solu-
tions to this problem in the algebraic setting were given by

Thus, mij is the distance between the main diagonal and a Vidyasagar and Viswanadham (37), Özgüler (38), Tan et al.
line parallel to the main diagonal that borders all nonzero (39), and Gündes and Kabuli (40); relying on adaptation, by
elements of Aij. Given an index set I � N , let J denote any Cho et al. (41); using H �, by Veillette et al. (42), Medanić
permutation of I . Then, the following holds: (43), and Park and Bien (44); and in the context of linear qua-

dratic control by Veillette (45). An application of the multiple
The system S of Eq. (66) is stabilizable by decentralized control system concept to reliable control of steam generators

state feedback ui � �kT
i xi, i � N , if was offered by Wu and Lin (46).

There are a number of interesting recent results concern-
ing fixed-gain designs of decentralized control for intercon-
nected systems. In Ref. 47 a stabilization scheme was pro-

∑
i∈I
j∈J

(mij − 1) < 0 (68)

posed in the parameter space of linear systems, which was
formulated in the standard framework of convex program-for all I and all permutations J .
ming. This opened up the possibility of using a variety of con-
cepts and algorithms available in the linear matrix inequali-In the special case of matching conditions, mij � nj � ni.
ties approach (48) for robust decentralized designs. AThe condition in Eq. (68) was obtained via vector Liapunov
promising result is the decentralized quadratic stabilizationfunctions, and therefore guarantees decentral stabilizability
of interconnected systems (49), which can be reduced to aneven when the elements of the interconnection matrices Aij
H � control problem (see also Refs. 50 and 51).are bounded nonlinear time-varying functions of the state x.

There is a large body of literature on decentralized controlThere are a large number of results that characterize
design using frequency-domain methods, which is based onwider classes of decentrally stabilizable systems (e.g., Refs.
the work of Rosenbrock (52). The initial results were obtained24–27), most of them surveyed in Ref. 6. Some of the results
in Ref. 53 and further developed in Refs. 54–56 using the M-broadened the scope of the given framework to include multi-
matrix theory and block-diagonal dominance. Parametriza-variable systems, time delays in the interactions, time-vary-
tion of decentralized stabilizing controllers by the fractionaling models, and stochastic perturbations. Especially interest-
representation approach was considered in Refs. 57–60. Fi-ing are schemes for decentralized output control, which
nally, we should mention a number of books (61–65) where autilize dynamic output controllers or decentralized estimators
wide variety of useful methods and techniques can be foundfor reconstruction of the state of the overall system from the
for the design of stabilizing decentralized control.subsystem state estimates.

Robustness. There are many useful and interesting proper-
ADAPTIVE CONTROLties of systems stabilized by decentralized feedback. First,

stability of decentrally controlled systems can tolerate nonlin-
Decentrally stabilizable systems with suitable interconnec-earities in the interconnections; the nonlinear interconnec-
tion structures can (always) be stabilized by using local statestions need not be known, since only their size must be limited.
or outputs, often employing high-gain feedback. How high theOnce the closed-loop system Ŝ is shown to be stable, it auto-
gains should be depends on how strong the interconnectionsmatically follows (6) that any nonlinear time-varying version
are. More often than not, it is difficult, or impossible, to pre-
dict and limit the size of the coupling among the subsystems,ŜN : ẋi = Âixi + hi(t, x), i ∈ N (69)
implying that fixed-gain controllers may be incapable in stabi-
lizing the system. In such cases, one has to use adaptive con-of Ŝ is connectively stable, provided the conical constraints
trollers, which can adjust the gains to values needed for over-
all stability (66).

Let us consider a single-input, single-output version of S,‖hi(t, x)‖ ≤
N∑

j=1

eijβij‖xj‖, i ∈ N (70)

on the interconnection functions hi : � � �n � �ni hold for all
(t, x) � � � �n. This robustness result is useful in practice
because, typically, either interconnections are poorly known,

S : ẋi = Aixi + biui + Pivi

yi = cT
i xi

wi = Qi xi, i ∈ N

(71)

or they change during the operation of the controlled system.
Obviously, the result includes the case when the interconnec-

where xi � �ni, ui � �, and yi � � are the state, input, andtion parameters eij are considered as nonlinear time-varying
output of the subsystem Si, and vi � �mi and wi � �li are thefunctions eij : � � �n � [0, 1].
interconnection inputs and outputs of Si from and to otherConnective decentralized stabilization was considered by
subsystems Sj, j � N , which are related asTan and Ikeda (28) and, when applied to robotic manipula-

tors, by Stokić and Vukobratović (29), Mills and Goldenberg
(30), and Mills (31). New results in robust design of decentral- vi = hi(t, w), i ∈ N (72)



220 LARGE-SCALE AND DECENTRALIZED SYSTEMS

The crucial restriction on the functions hi : � � �l � �mi is The adaptive stabilizability conditions, which are based on
structural restriction in Eq. (75), allow the controller gains tothat they are bounded:
rise to whatever level is necessary to ensure that stability of
the subsystem overrides the perturbations caused by inter-
connection fluctuations, so long as they are finite. The bound-‖hi(t, w)‖ ≤

N∑
j=1

βij‖wj‖ (73)

edness part of the above result ensures the boundedness of
the adaptation gains and therefore the realizability of the de-where �ij are nonnegative, but unknown, numbers. The matri-
centralized adaptive control scheme.ces Ai and vectors bi and ci defining the subsystem Si are not

The above basic result has many extensions. In the state-specified, except for the fact that pairs (Ai, bi) are controllable
tracking problem, the state x(t) of the plant S follows theand that pairs (Ai, ci) are observable. The uncertainty about
state xm(t) of the reference model M despite the change in the

the triples (Ai, bi, ci) compounds the essential uncertainty size and shape of interconnections. Furthermore, the steady-
about the overall system S caused by our ignorance of the state tracking error e(t) � x(t) � xm(t) can be made as small
interconnections. as desired. When the subsystem models are known, which is

The control objective is to force each state xi(t) of Si to track often the case in practice, the adaptive decentralized scheme
the state xmi(t) of the corresponding reference model extends to multiinput, multioutput subsystems with added

simplicity in implementation; the scheme requires only one
adaptation parameter per subsystem. Under relatively mild
conditions the scheme can accommodate output feedback con-

Mi : ẋmi = Amixmi + bmiri

ymi = cT
mixmi, i ∈ N

(74)

trollers as well.
where ri � � is the external (reference) input. To achieve this Since the initial work on adaptive decentralized control by
objective, we assume that there exist subsets I � N and Hmamed and Radouane (68), a wide variety of schemes have
J � N � I such that been developed. Unmodeled dynamics with fast and slow

modes in the subsystems was considered by Ioannou and Ko-
kotović (69). The use of input–output models was initiated by
Wiemer and Unbehauen (70) for a discrete-time problem of

Pi = bi p
T
i , i ∈ I

Qi = qi cT
i , i ∈ J

(75)

decentralized adaptive control. A state-space approach to the
same problem was proposed by Reed and Ioannou (71) as wellfor some constant vectors pi � �mi and qi � �li, which are
as Kamoun et al. (72) and Yang and Papavassilopoulos (73).matching conditions requiring that either incoming distur-
Motivated by models of mechanical systems, Shi and Singhbances enter through the control channel or outgoing distur-
(74,75) considered higher-order interconnections with polyno-

bances pass through the measurement channel. These condi- mial bounds. Poor transient behavior of the standard adap-
tions, as shown in Ref. 67, make the system stabilizable by tive schemes, which is caused by insufficient knowledge of
high-gain decentralized feedback, and are crucial for the ad- subsystem parameters, can be improved by exchanging the
aptation scheme to work. output signals between individual subsystems and assuming

The basic requirement of the adaptive regulator is to drive weak coupling (76).
the state of the overall system S to zero. For this purpose, the A major drawback of the early adaptive decentralized
local control laws are chosen as schemes was the relative-degree restriction on the subsys-

tems. This restriction was first removed by Ortega and Her-
ui = θT

i xi, i ∈ N (76) rera (77) by using the concept of higher-order tuning. The
same result was later achieved by Wen (78) by applying the

where �i � �ni is the time-varying adaptation gain vector. To integrator backstepping procedure. The original scheme of
arrive at suitable adaptation laws �i(t), we choose Ami’s as (sat- Gavel and Šiljak (66) was extended by Lyon (79) to the case
isfactorily) stable constant matrices and set when the relative order of each subsystem does not exceed

two. Due to the high-gain nature of the adaptive scheme pro-
θ̇i = −Ri(k

T
i xi )xi, i ∈ N (77)

posed in Refs. 66, 80, a variable-structure decentralized con-
trol (81,82) became a logical candidate for improving the de-

where Ri and ki are appropriate constant matrices and �i(t0) sign. Sasaki et al. (83) developed a variable-structure version
is finite. Finally, the closed-loop system is of their decentralized adaptive scheme for control of distrib-

uted systems.
Input–output models with relay-type controllers were used

by Brusin and Ugrinovskaya (84); see also Refs. 85 and 86. In

Ŝ : ẋi = (Ami + biφ
T
i )xi + bi p

T
i hi

φ̇i = −Ri(k
T
i xi )xi, i ∈ N

(78)

Refs. 87 and 88, coordinate transformations have been uti-
lized to broaden the class of systems that can be stabilized bywhere �i � �ni is the ith parameter adaptation error defined
decentralized adaptive control. Indirect adaptive schemesas �i � �i � �*i , and �*i is a model-matching constant parame-
have been proposed by Wen (89) and Spooner and Passinoter vector. We denote the solutions of the closed-loop system
(90). Finally, a partially decentralized adaptive control hasS by (x, �)(t; t0, x0, �0), where x � (xT

1, xT
2, . . ., xT

N) and � �
been developed in Ref. 91.(�T

1, �T
2, . . ., �T

N)T. Relying on the decentral stabilizability con-
dition of Eq. (75), Gavel and Šiljak (66) established the follow-
ing basic result: OVERLAPPING DECENTRALIZED CONTROL

The solutions (x, �)(t; t0, x0, �0) of Ŝ are globally bounded, In a wide variety of natural and industrial systems, subsys-
tems share common parts (6). In these cases, for either con-and x(t; t0, x0, �0) � 0 as t � �.
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ceptual or computational reasons it is advantageous to use It is crucial to note from Eq. (87) that the expansion S̃ of
Eq. (86) has an epsilon decomposition, while the original sys-overlapping decentralized control. We will use the overlap-

ping epsilon decomposition to provide a justification for such tem S of Eq. (80) does not. Decentralized stabilization
schemes can now take advantage of the weak coupling amonga practice.

Let us consider a linear constant system the two subsystems, and use local feedback to stabilize the
expansion S̃ by independent stabilization of the two subsys-
tems. It is easy to show that stability of the expanded systemS : ẋ = Ax + Bu (79)
S̃ implies stability of the original system S.

where x � �n, u � �m, and the block matrices The circle of ideas and methods surrounding the overlap-
ping decompositions and control structures have been orga-
nized into a general mathematical framework known as the
inclusion principle (6). In a wide variety of problems arising
in the theory and practice of large-scale systems, the principle

A =




A11 A12 εA13

εA21 A22 εA23

εA31 A32 A33


 , B =




B11 0
0 0
0 B32


 (80)

--
--

--
-

--
--

--

--
--

--
--

-

- - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - -

- - - - - -

produced interesting conceptual insights and useful solution
procedures (92–98).are decomposed along the dashed lines defining the two over-

lapping subsystems. By using a linear transformation

OPTIMIZATIONx̃ = Vx (81)

where V is the ñ � n matrix Despite considerable efforts and a large number of new re-
sults in the theory of large complex systems, the fundamental
problem of optimal decentralized control has remained un-
solved for over two decades. The simple reason has been the
fact that the decentralized information structure constraints
have not been successfully incorporated into any of the stan-

V =




I1 0 0
0 I2 0
0 I2 0
0 0 I3


 (82)

dard optimization frameworks. Neither Pontryagin’s maxi-
mum principle nor Bellman’s dynamic programming can han-and the identity matrices are compatible with the blocks of
dle the lack of complete state observation, a difficultyA, we get the expansion of S as
recognized by Fleming (99) as far back as the late sixties. For
this reason, there have been a large number of results relyingS̃ : ˙̃x = Ãx̃ + B̃u (83)
on pragmatic suboptimality concepts, which have capitalized

where x � �ñ, ñ � n1 � 2n2 � n3, and n1, n2, n3 are dimensions on effective solutions of robustness issues in the subopti-
of the square matrices A11, A22 and A33. The system matrices mality framework (6).
are The standard practice has been to optimize each decoupled

subsystem using linear quadratic (LQ) control laws. Then,
suboptimality of the interconnected closed-loop system, whichÃ = VAU + M, B̃ = VB + N (84)
is driven by the union of the locally optimal LQ control laws,

and is determined with respect to the sum of the quadratic costs
chosen for the subsystems. Under relatively mild conditions,
suboptimality implies stability. Furthermore, the degree of
suboptimality, which is computed with respect to the globally
optimal union of decoupled subsystems, can serve as a mea-
sure of robustness with respect to a wide spectrum of uncer-
tainties residing in both the subsystems and their interac-
tions. It has been shown (100) how the classical measures of
gain and phase margins, as well as the gain reduction toler-
ance, can be incorporated in the decentralized LQ control of
large interconnected systems.

U =




I1 0 0 0
0 1

2 I2
1
2 I2 0

0 0 0 I3




M =




0 1
2 A12 − 1

2 A12 0
0 1

2 A22 − 1
2 A22 0

0 − 1
2 A22

1
2 A22 0

0 − 1
2 A32

1
2 A32 0




N = 0

(85)

Recently, a solution to the optimal decentralized stochastic
control problem has been offered in the classical optimizationThen, the expansion S̃ of Eq. (83) has the form
framework of Lagrange (101) relying on the constrained opti-
mization approach proposed in Ref. 102. The principal idea is
to redefine the information structure constrains as differen-
tial equations, and attach Lagrange multipliers to each con-
straint to obtain sufficient as well as necessary conditions for

S̃ : ˙̃x =




A11 A12 0 εA13

εA21 A22 0 εA23

εA21 0 A22 εA23

εA31 0 A32 A33


 x̃ +




B11 0
0 0
0 0
0 B32


 u (86)- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

--
--

--
--

--
--

--
--

--
--

--
--

optimality of decentralized control laws. The multipliers are
functions of time and state, and, because of the role they playwhere the dashed lines delineate two disjoint subsystems, so
in the optimization process, they are termed the Lagrange–that we can write the expansion S̃ as
Liapunov multipliers. The sufficient conditions are formu-
lated in terms of the Hamilton–Jacobi-like equations and are
proved by using the method of global optimization (103). In
contrast, the necessary conditions of optimality, which are de-

S̃ : ˙̃x =
[

Ã11 εÃ12

εÃ21 Ã22

]
x̃ +

[
B̃11 0

0 B̃22

]
u (87)- - - - - - - - - - - - - - - - - - - - - -

--
--

--
-

--
--

--
-
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tions obtained in the new approach provide a feedback struc- Levine (ed.), The Control Handbook, Boca Raton, FL: CRC Press,
ture for decentralized control, which involves Riccati-type 1996, pp. 779–793.
equations in the same way as in the classical regulator theory 23. G. Leitmann, One approach to the control of uncertain systems,

ASME J. Dynam. Syst. Meas. and Control, 115: 373–380, 1993.of Kalman (104). This fact is expected to play a major role in
applications of optimal decentralized control to complex inter- 24. M. Ikeda and D. D. Šiljak, On decentrally stabilizable large-
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94. M. Ikeda and D. D. Šiljak, Overlapping decentralized control
with input, state, and output inclusion, Control Theory Adv.
Technol., 2: 155–172, 1986.
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