NONLINEAR CONTROL SYSTEMS, ANALYTICAL
METHODS

Alarge number of methods exist for the analysis and design
of linear control systems. Unlike a linear system, a non-
linear system does not satisfy the superposition property,
which means not only that it may be difficult to deduce how
the system will respond to a specific input if its response is
known to a different input, but also nonlinear systems ex-
hibit unique behavior due to the effects of the nonlinearity.
In many systems it is possible to separate the static non-
linear effects from the dynamic so that a nonlinear system
can often be accurately modeled as a combination of static
nonlinear elements and linear dynamic elements. Here the
concentration is primarily on analytical methods for non-
linear systems which are associated with those aspects of
linear theory usually referred to as classical control. This
means basically that for systems other than second order,
frequency domain, rather than state space, models and for-
mulations are used. An exception to this is the material
on variable structure systems. The state space theme, and
some design methods presented within that framework are
given in the following article.

A block diagram of a simple nonlinear feedback system
which will receive significant attention in this article is
shown in Fig. 1. Although it only contains one nonlinear
element, its presence can change the whole behavioral pos-
sibilities of the feedback loop compared with the linear sit-
uation, and its form is adequate for discussing many of the
analysis and design techniques presented in this article.
Since all practical systems contain some form of nonlin-
earity, it is important that basic concepts relating to the ef-
fects of nonlinearity are well understood. When this is the
case it will allow the designer to assess qualitatively, if not
quantitatively, the possible effects of nonlinear operation at
various points within a feedback system and to take them
into account in the design. This may allow the analysis and
design to be done using one or more linearized models. A
full nonlinear simulation may then be used to check that
the design works satisfactorily when the nonlinear effects
are included. This approach works satisfactorily in many
instances, particularly if gain scheduling is used to coun-
teract the effects of changes produced by any nonlinearity;
however, this approach cannot be used for all situations.

Many nonlinear effects which take place in control sys-
tems may be modeled approximately using static nonlin-
earities. These include saturation in amplifiers, dead zones
in valves, friction, and backlash in gears. Depending on
the approach to be used in the analysis or design when
these nonlinearities exist, it may be necessary to approx-
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Figure 1. A simple nonlinear feedback system.

imate their characteristics by either simple continuous
mathematical functions, such as polynomials, or linear seg-
mented approximations. To apply some methods which we
will discuss, it may even be necessary to use coarser ap-
proximations to a nonlinearity simply to say that it is con-
fined within a sector. These types of nonlinearities are of-
ten referred to as inherent nonlinearities, since for a sat-
isfactory design they will exist due to the devices used, al-
though for analysis we may wish to neglect them. It is also
true that good designs will always be nonlinear, since try-
ing to ensure linear operation of a system will involve the
selection of oversized components such as pumps, motors,
and heaters. Nonlinearity may be introduced intentionally
into control systems to compensate for existing nonlinear
effects, or to implement a design strategy which is either
preferable technically or more economical.

The simple feedback system of Fig. 1, provided that the
nonlinearity or transfer functions are suitably chosen, may
exhibit a variety of behaviors which are unique to nonlin-
ear systems. First, the performance of the system, even for
a specific type of input, will depend upon the amplitude of
the input. The response, for example, to a small step input
may be quite different from that of a large step input. If the
autonomous system—that is, the system with no input—
is released from several initial states, then the resulting
behavior may be appreciably different for each state. For
example, instead of reaching a stationary equilibrium, the
system may move from some initial conditions into a limit
cycle, a continuous oscillation which can be reached from a
subset of initial conditions. This behavior is distinct from
an oscillation in an idealized linear system since the mag-
nitude of this latter oscillation is dependent upon the initial
energy input to the system. A limit cycle is a periodic mo-
tion, but its waveform may be significantly different from
the sinusoid of an oscillation. The autonomous nonlinear
system may also have a chaotic motion, a motion which is
repeatable from given initial conditions but which exhibits
no easily describable mathematical form, is not periodic,
and exhibits a spectrum of frequency components.

If a sinusoidal input is applied to the system, then the
output may be of the same frequency but will also con-
tain harmonics or other components related to the input
frequency. This output too, for certain frequencies and am-
plitudes of the input, may not be unique but has an ampli-
tude dependent upon the past history of the input or the
initial conditions of the system. The sinusoidal input may
also cause the system to oscillate at a related frequency
so that the largest frequency component in the output is
not the same as that of the input. Also if, for example, the
autonomous system has a limit cycle, then the addition
of a sinusoidal input will cause the limit cycle frequency
to change and possibly cause synchronization of the limit
cycle frequency with the input frequency or one of its har-
monics. In many instances the phenomena just mentioned
are undesirable in a control system, so that one needs tech-
niques to ensure that they do not occur. Control systems
must be designed to meet specific performance objectives,
and to do this one is required to design a control law which
is implemented based on measurements or estimation of
the system states or, by simple functions of the system
variables, typically the error signal. Many systems can be
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made to operate satisfactorily with the addition of a sim-
ple controller in the error channel, which is shown by the
transfer function G.(s) in Fig. 1. Typical performance crite-
ria, which the system may be required to meet, are that it
is stable, has zero steady-state error and a good response to
a step input, suitably rejects disturbances, and is robust to
parameter variations. Although one reason for using feed-
back control is to reduce sensitivity to parameter changes,
specific design techniques can be used to ensure that the
system is more robust to any parameter changes. If the pro-
cess to be controlled is strongly nonlinear, then a nonlinear
controller will have to be used if it is required to have es-
sentially the same step response performance for different
input step amplitudes. Some control systems—for exam-
ple, simple temperature control systems—may work in a
limit cycle mode, so that in these instances the designer is
required to ensure that the frequency and amplitude varia-
tions of the controlled temperature are within the required
specifications.

In the next section, we examine in some detail various
approaches which can be used for investigating the anal-
ysis and design of nonlinear systems. The first topic dis-
cussed is the phase plane method, which can normally only
be used to investigate second-order systems. It is a useful
technique, since it can be used when more than one non-
linearity exists in the system and since many control prob-
lems, such as position control systems, can be modeled ap-
proximately by second-order dynamics. As mentioned pre-
viously, one specification for the design may be that the
system must be stable. For linear systems, assessment of
stability is a simple problem, but this is not the case for a
nonlinear system, even when it is as simple as that shown
in Fig. 1. Several absolute stability criteria exist for check-
ing whether the system of Fig. 1 will be stable, and these
are discussed in more detail later. The criteria presented
are easy to use; and the circle criterion in particular, being
basically an extension of the Nyquist criterion, is easy to
implement and follow. A disadvantage, however, is that all
these criteria only produce sufficient conditions so that if
the condition is violated the system may still be stable.

To try to obtain an estimate of the possibility of this
being the situation, the describing function method has
been used by engineers for many years. The difficulty with
the describing function approach, which approximates the
nonlinearity by its gain to a sinusoidal input, is that the
results are not exact. It does, however, enable the designer
to obtain more insight into the situation, and, of course, the
ideas can often be further checked by simulation. The de-
scribing function approach can also be helpful for system
design in terms of shaping the frequency response of the
system to produce a more stable situation or for indicat-
ing possible nonlinear effects which can be added in the
controller to counteract the nonlinear effects in the plant.
Describing functions for other than a single sinusoid can
be obtained, and these allow some of the more complex
aspects of the behavior of nonlinear systems to be inves-
tigated. These include, for example, synchronization and
subharmonic generation as well as estimating more accu-
rately the frequency content of any limit cycle. Relay-type
characteristics are often introduced in control system to
provide economic designs or to produce variable structure

systems. First, a method for the determination of limit cy-
cles in relay systems is presented. This is an interesting
approach, since it allows the exact evaluation of a limit cy-
cle and also an exact determination of whether it is stable
or not. The method in this sense is unique, since exact limit
cycle data for systems with any order dynamics containing
a relay can be obtained.

As with the design of linear control systems, the issue of
robustness to unmodeled dynamics and parameter uncer-
tainty is also pertinent in the nonlinear control area. One
such robust technique is the so-called variable structure or
sliding mode approach. Variable structure control systems
(VSCS) are characterized by a set of feedback control laws
and an associated decision rule or switching function. This
decision rule has as its input some measure of the current
system behavior and produces as an output the particular
feedback control law which should be used at that instant
in time. The resulting variable structure system (VSS) may
be regarded as a combination of subsystems, where each
subsystem has a fixed control law which is valid for spec-
ified regions of system behavior. One of the advantages of
introducing this additional complexity into the system is
the ability to combine useful properties of each of the sub-
systems into a very flexible closed-loop control strategy. In-
deed, it will be seen that a VSS may be designed to possess
new properties which are not present in any of the com-
posite structures. Utilization of these natural ideas began
in the late 1950s in the Soviet Union and formed the foun-
dations for significant contributions to the area of robust
nonlinear control.

Of particular interest in the area of VSS is the so-called
sliding mode behavior, where the control is designed to
drive and then constrain the system state and lie within
a neighborhood of the switching function. There are two
significant advantages with this approach to controller de-
sign. First, the dynamic behavior of the system may be
tailored by the particular choice of switching function. Sec-
ond, the closed-loop response becomes totally insensitive to
changes in certain plant parameters and will completely
reject a particular class of external disturbances. This in-
variance property clearly renders sliding mode control a
strong candidate for robust control. In addition, the ability
to specify performance directly makes sliding mode control
attractive from the design perspective. This is seen from
the wide exposure of sliding mode control to many applica-
tions areas including robotics, aerospace, and automotive
industries.

The sliding mode design approach involves two stages.
The first consists of the design of an appropriate switching
function to ensure that the system behavior during sliding
motion satisfies the required design specifications. This is
termed the existence problem. In the simplest case, this
will be seen to amount to the design of a linear full-state
feedback controller for a particular subsystem. The second
design stage is concerned with the selection of a control law
which will make the switching function attractive to the
system state. This is termed the reachability problem. It is
important to note that this control law is not necessarily
discontinuous in nature.



THE PHASE PLANE METHOD

The phase plane method was the first approach used by
control engineers for studying the effects of nonlinearity
in feedback control systems. The technique can generally
only be used for systems represented by second-order dif-
ferential equations. It had previously been used in nonlin-
ear mechanics and for the study of nonlinear oscillations.
Smooth mathematical functions were assumed for the non-
linearities so that the second-order equation could be rep-
resented by two nonlinear first-order equations of the form

.fl =P(x1|x2) {11
£y =Q(xy, xy)

Equilibrium, or singular points, occur when
2, =%,=0

and the slope of any solution curve, or trajectory, in the
x1 — X9 state plane is

dx, %, Px;,xp)

A second-order nonlinear differential equation represent-
ing a control system with smooth nonlinearity can typically
be written as

£+ fe,%) =0

and if this is rearranged as two first-order equations, choos-
ing the phase variables as the state variables—that is,
X1 =X, X3 = x2—it can be written as

fh=5 (3)
%y = —flxy, %)

which is a special case of Eq. (3). A variety of procedures
have been proposed for sketching state (phase) plane tra-
jectories for Eqs. 3 and 5. A complete plot showing tra-
jectory motions throughout the entire state (phase) plane
from different initial conditions is known as a state (phase)
portrait. Knowledge of these original methods, despite the
immense improvements in computation since they were
first proposed, can be particularly helpful for obtaining
an appreciation of the system behavior. When simulation
studies are undertaken, phase plane graphs are easily ob-
tained and they are often more helpful for understanding
the system behavior than displays of the variables x; and
x9 against time.

Many investigations using the phase plane technique
were concerned with the possibility of limit cycles in the
nonlinear differential equations. When a limit cycle exists,
this results in a closed trajectory in the phase plane; typi-
cal of such investigations was the work of Van der Pol. He
considered the equation

i-p(l-22px+x=0
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Figure 2. Limit cycle solution of Van der Pol equation with
n=1.0.

where  is a positive constant. The phase plane form of this
equation can be written as

.fl =.'C2
£y = —flay, %) = p(l -2 )y — %,
The slope of a trajectory in the phase plane is

dey _ % _ pd-xhm—x, (4)
dx, ~ % xy

which is only singular (that is, at an equilibrium point),
when the right-hand side of Eq. (4) is 0/0, that is, x; =x2 = 0.

The form of the singular point, which is obtained from
linearization of the equation at the origin, depends upon u,
being an unstable focus for 1 <2 and an unstable node for
wu > 2. All phase plane trajectories have a slope of r when
they intersect the curve

rey = pu(l — x3)x9 — %, (5)

One way of sketching phase plane behavior is to draw a
set of curves for various selected values of r in Eq. (5) and
marking the trajectory slope r on the curves, a procedure
known as the method of isoclines. Figure 2 shows a simu-
lation result from a small initial condition leading to the
stable limit cycle solution for x = 1.0.

Many nonlinear effects in control systems, such as sat-
uration and friction, are best approximated by linear seg-
mented characteristics rather than continuous mathemat-
ical functions. This is an advantage for study using the
phase plane approach, since it results in a phase plane di-
vided up into different regions but with a linear differential
equation describing the motion in each region.

To illustrate the approach, consider a basic relay
position-control system with nonlinear velocity feedback
having the block diagram shown in Fig. 3. First, let us
assume that the hysteresis in the relay is negligible (i.e.,
A =0) and that A is large so that the velocity-feedback sig-
nal will not saturate. Denoting the system position output
by x; and its derivative x2; by xs, we note that the relay

output of +£1 or 0 is equal to j:l ,x and that the relay input is
equal to —x; — Axe = —1. Taking the dead zone of the relay
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Figure 3. Block diagram of relay position-
control system.

43 to be equal to 1, the motion of the system is described
by

K if —x;—ixy>1
=1 0 if [mx—ixl<1
-K if —x;—Ax, =

Thus in the phase plane, which has x; as abscissa and x5 as
ordinate, the dashed lines x; + Axy =+1 in Fig. 4 divide the
plane into the three regions, for each of which the motion
is described by one of the above three simple linear second-
order differential equations. The solution of

i =K
in terms of the phase-plane coordinates x; and x5 is
x5 — x5y = 2K (x; — X4p) (6)

where x19 and xy are the initial values of x; and x,. Since
Eq. (6) describes a parabola, which for the special case
of K = 0 has the solution x; = x5, it is easy to calcu-
late the system’s response from any initial condition (x1,
X90) in the phase plane. Figure 4 shows the response from
(—4.6,0) with A =1 and K=1.25. The initial parabola meets
the first switching boundary at A; the ensuing motion is
horizontal—that is, at constant velocity—until the second
switching boundary is reached at B. The resulting parabola
meets the same switching boundary again at C, at which
point motion from either side of the switching line through
C will be directed toward C, so that the resulting motion is
a sliding motion. Responses from any other initial condi-
tions are obviously easy to find, but, from the one response
shown, several aspects of the system’s behavior are read-
ily apparent. In particular, the system is seen to be stable
since all responses will move inward, possibly with several
overshoots and undershoots, and will finally slide down a
switching boundary to +1. Thus a steady-state error of unit
magnitude will result from any motion.

When the velocity-feedback signal saturates—that is,
when |Axs| > h—the input signal to the relay is —x; + ~.The
switching boundaries change to those shown in Fig. 5, but
the equations describing the motion between the bound-
aries remain unaltered. Therefore for a large step input
the response will become more oscillatory when the veloc-
ity saturates. When the hysteresis is finite then the switch-
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Figure 4. Initial condition response.
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Figure 5. Changed switching boundaries due to saturation.

ing lines for positive (negative) xo move to the right(left) at
their intersection with the x; axis. If 2 is large it is then
easily shown that a limit cycle, as shown in Fig. 6 for §=1
and A =0.5, will occur. Trajectories both inside and outside
the limit cycle have their motion directed toward it. Simi-
larly, it is straightforward to draw phase-plane trajectories
for a finite hysteresis A and smaller values of A.
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Figure 6. Response terminating in a limit cycle for §=1 and
A=0.5.

ABSOLUTE STABILITY CRITERIA

A very important question in control is to be able to as-
certain the stability of a feedback system. The problem for
linear systems was examined over a century ago in Cam-
bridge, England, by Routh, who published his famous work
on the stability of motion in 1877. As a result of this work
and further contributions, most notably by Nyquist, several
approaches are now available for determining the stability
of a feedback loop such as Fig. 1 when the nonlinearity n(x)
is replaced by a linear gain K. The methods provide neces-
sary and sufficient conditions for stability. The first work
on the stability of nonlinear systems by Lyapunov was pub-
lished in 1892, and since that time there have been many
attempts to determine necessary and sufficient conditions
for the stability of the autonomous feedback system—that
is, r = 0—of Fig. 1. Lyapunov formulated an approach for
determining sufficient conditions, but the difficulty of his
method is that it requires determination of a function of
the system states which then must be shown to satisfy cer-
tain properties. There is no general approach for finding a
suitable function; when one is found, it does not guaran-
tee that a “better” function does not exist which will prove
stability in a larger domain in the state space. The prob-
lem has therefore been researched by many people with
the objective of obtaining conditions for stability which are
relatively easy to use.

Several frequency-domain results (1) giving sufficient,
but not necessary, conditions for stability have been deter-
mined which use limited information about the nonlinear-
ity, n(x), typically its sector bounds or the sector bounds of
its slope. The nonlinearity n(x) has sector bounds (&1, k2);
that is, it is confined between the straight lines &1x and kox
if k122 < xn(x) < kox? for all x. Similarly, it has slope bounds
(1, B'9) if B'1x% <xn/(x) < k' 9x2, where n'(x) =dn(x)/dx. The
Popov criterion (2) states that a sufficient condition for the
autonomous system of Fig. 1 to be stable if G(s) is stable
and G(oo) > —k—1 is that a real number g > 0 can be found
such that for all w we obtain

Rel(1+ jeq)G(jw)] + &7 > 0

where the nonlinearity n(x) lies in the sector (0, £). The
theorem has the simple graphical interpretation shown in
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Figure 8. Illustration of the circle criterion.

Fig. 7, where for the system to be stable a line of slope ¢!
can be drawn through the point —k~! so that the Popov
locus G*(jw) lies to the right of the line. The Popov locus is
given by

G*(jw) =Re[G(jw)] + jo Im[G(jw)]

The circle criterion (3) is more conservative than the Popov
criterion but can be used when both the nonlinearity is time
varying and there is a bounded input, r, to the system of
Fig. 1. Satisfaction of the circle criterion guarantees that
the autonomous system is absolutely stable and the system
with bounded input has a bounded output. The criterion
uses the Nyquist locus, G(jw), and for stability of the system
of Fig. 1 with n(x) in the sector (ky, k2) it is required that
G(jw) for all real w has the following properties. If the circle
C has its diameter from —1/k; to —1/k; on the negative
real axis of the Nyquist diagram, then (1) if 21k9 < 0, G(jw)
should be entirely within C, (2) if k1ks > 0, G(jw) should
lie entirely outside and not encircle C, and (3) if 21 =0 or
ko =0, G(jw) lies entirely to the right of —1/k5 or to the left
of —1/k;. The situation for stability in case (2) is shown in
Fig. 8.

Two simple transformations are also useful for inves-
tigating the absolute stability of the autonomous system
of Fig. 1. Feeding forward around the nonlinearity and
backward around the dynamics G(s), through a constant
gain p, whose effects cancel out, changes the nonlinearity
sector to (k1 — p, k2 — p) and the linear transfer function
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to G(s)/[1 + pG(s)]. Alternatively feeding backward around
n(x) and forward around G(s) changes the nonlinearity sec-
tor to (k1/(1—Fk1p), (ko/(1—Fksp)) and changes the linear
transfer function to o + G(s). This is needed in order to ap-
ply the Popov criterion to the general finite sector—that is,
n(x) in the sector (&4, k2).

Prior to the derivation of these frequency-domain re-
sults, Aizermann had put forward a conjecture that the
autonomous system of Fig. 1 would be stable for a nonlin-
earity sector bounded by (%1, k2) if for k1k3 > 0 the Nyquist
locus G(jw) of a stable transfer function did not touch or en-
circle the line between —1/k; and —1/ks, which is of course
the diameter of the circle of Fig. 8. Several counterexam-
ples have been put forward to show that the conjecture is
incorrect; however, it can be shown that if the conjecture is
satisfied, the system may possess a limit cycle but its out-
put cannot go unbounded (4). For a monotonic nonlinearity
with slope bounds (%1, £'5) and %'1%£’2 > 0, an off-axis circle
criterion exists (5). This states that the autonomous system
of Fig. 1 with a nonlinearity satisfying the aforementioned
conditions will be absolutely stable if the Nyquist locus of a
stable transfer function does not encircle a circle centered
off the real axis and which intercepts it at (—1/k'y, —1/k'3).

DESCRIBING FUNCTION METHOD

The describing function (DF) method was developed si-
multaneously in several countries during the 1940s. En-
gineers found that control systems which were being used
in many applications—for example, gun pointing and an-
tenna control—could exhibit limit cycles under certain con-
ditions rather than move to a static equilibrium. They re-
alized that this instability was due to nonlinearities, such
as backlash in the gears of the control system, and they
wished to obtain a design method which could ensure that
the resulting systems were free from limit cycle opera-
tion. They observed that when limit cycles occurred the
observed waveforms at the system output were often ap-
proximately sinusoidal, and this indicated to them a pos-
sible analytical approach. Initial investigations therefore
focused on the autonomous feedback system with a sin-
gle nonlinear element shown in Fig. 1 containing a static
nonlinearity n(x) and linear dynamics given by the trans-
fer function G(s)=G.(s)G1(s). It was recognized that if a
limit cycle existed in the autonomous system with the out-
put c(¢) approximately sinusoidal, then the input x(¢) to the
nonlinearity could be assumed sinusoidal, the correspond-
ing fundamental output of the nonlinearity could be cal-
culated, and conditions for this sinusoidal self-oscillation
could be found, if the higher harmonics generated at the
nonlinearity output were neglected. This is the concept of
harmonic balance, in this case balancing the first harmonic
only, which had previously been used by physicists to in-
vestigate such aspects as the generation of oscillations in
electronic circuits. The DF of a nonlinearity was therefore
defined as its gain to a sinusoid—that is, the ratio of the
fundamental of the output to the amplitude of the sinu-
soidal input. Since describing functions can be used for
other than a single sinusoidal input to a nonlinearity, as
discussed in the latter part of this article; this DF is often,

for clarity, called the sinusoidal DF (SDF).

The Sinusoidal Describing Function

We assume that if in Fig. 1 we have x(¢)=a cos 6, where
0 =wt and n(x) is a symmetrical odd nonlinearity, then the
output y(¢) will be given by the Fourier series.

o0
¥(@) = Z ancos né + b, sinnd
n=0
where
2 (7)
a, = (l,frr)f y(8)cos 8do
0

and

2=
b, = (1/;()/ y(8)sin 8d8 (8)
0

The fundamental output from the nonlinearity is a; cos
0+ b1 sin 6, so that the DF is given by

N(@a)= (a, _jb:l)."a

which may be written
N(a) =Np(a) + jNg(a)

where

Np(a)=a,/a and Ny(a)=-b /a

Alternatively, in polar coordinates,
N(a) = M(a)e/V'®
where
Ma)= (@} +b3Y%/a and W@)=—tan"'(b,/a,)

It is further easily shown that if n(x) is single valued, then
b1 =0. Although Egs. 7 and 8 are an obvious approach to
the evaluation of the fundamental output of a nonlinear-
ity, they are somewhat indirect, in that one must first de-
termine the output waveform y(6) from the known nonlin-
ear characteristic and sinusoidal input waveform. This is
avoided if the substitution 6 = cos~!(x/a) is made, in which
case, after some simple manipulations, it can be shown that

a
a, = (4/a)fa xnp(x)p(x)dx (9)

a
b, = (4/a:r)f ng(x)dx (10)
0

The function p(x) is the amplitude probability density func-
tion of the input sinusoidal signal and is given by

px) = (1/7)a? —x%)-22 (11)

An additional advantage of using Egs. 9 and q0 is that
they easily yield proofs of some interesting properties of
the DF for symmetrical odd nonlinearities. These include
the following:



1. For a double-valued nonlinearity the quadrature
component Ng(a) is proportional to the area of the
nonlinearity loop, that is, Ny(a)=—(1/a?rn) (area of
nonlinearity loop)

2. For two single-valued nonlinearities n.(x) and
ng(x), with n,(x) <ngx) for all 0 <x <b, we obtain
N,(a) <Ng(a) for input amplitudes less than b.

3. For the sector bounded single-valued nonlinearity—
that is, kix <n(x) <kox for all 0 <x <b—we have
k1 < N(a) < ks for input amplitudes less than 6. This
is the sector property of the DF, and it also applies
for a double-valued nonlinearity if N(a) is replaced
by M(a).

When the nonlinearity is single-valued, it also follows di-
rectly from the properties of Fourier series that the DF,
N(a), may also be defined as follows:

1. The variable gain, K, having the same sinusoidal in-
put as the nonlinearity, which minimizes the mean-
squared value of the error between the output from
the nonlinearity and that from the variable gain.

2. The covariance of the input sinusoid and the nonlin-
earity output divided by the variance of the input.

Evaluation of the Describing Function

Tables of DFs for a variety of nonlinear characteristics can
be found in many books (6, 7). However, to illustrate the
evaluation of the DF of a nonlinearity a few simple exam-
ples are considered below.

Cubic Nonlinearity. For this nonlinearity n(x)=x® and
using Eq. (16), one has
=/2
a, :(4/1)[ (aoosG)acosGde
0
=72
= (4/n)a® [ cos*6de
0
=/2
= (4/:r)asf (§ 3 it d + COH’B) do = 3a’/4
0 8 2 8

giving N(a) = 3a?/4.
Alternatively from Eq. (23) we have

a
a, = (4/a)f 2*p(x)dx
0

The integral u, = [*_s x"p(x) dx is known as the nth mo-
ment of the probability density function; and for the sinu-
soidal distribution with p(x) = (1/7)(@? — x2)~1/2, u, has the
value
(1] for n odd
Ba=3 (n=1)(n=3) 1
a — forn even

n (n-2)"""2

Therefore a; =(4/a) Y2 - % - Y2 a* = 3a®/4, as before.

Saturation Nonlinearity. The DF can also be found by tak-
ing the nonlinearity input as a sin 6, in which case for the
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Figure 9. Saturation characteristic and output waveform.

ideal saturation characteristic shown in Fig. 9 the nonlin-
earity output waveform y(0) is as shown in the same figure.
Because of the symmetry of the nonlinearity the funda-
mental of the output can be evaluated from the integral
over a quarter period so that

4 x/2
N(a):—f y(8)sin 8d0
amr Jp

which for a > § gives

a z/2
N(a)zail:f masin29d9+f mé sin8d9:|
[ Jo a

with o =sin~18/a.
Evaluation of the integrals gives

o sin2«

Na) = (4m/m) [§ == +5cosa:|

which on substituting for § gives the result

N(a) = (m/7)(2c 4 sin2a)

Since for a < § the characteristic is linear, giving N(a) =m,
the DF for ideal saturation is mNg(8/a), where

1 fora < &
NS((S/G) =1 _ )
(1/7)[20¢ +sin2x] fora =&

Alternatively one can integrate Eq. (9) by parts to give
a; = (AL/czy'r)/n/()c)(a2 —xD2dx if n(0)=0
0

so that using the substitution x =a sin 6, this yields
a
N(a) = (4m/:r)f cos? 8d8 = (m/m)(2x + sin2x)
0
as before.

Relay with Dead Zone and Hysteresis. The characteristic
of a relay with dead zone and hysteresis is shown in Fig.
10 together with the corresponding input, assumed equal
to a cos 6, and the corresponding output waveforms. Using
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Egs. 7 and 8 over the interval —n/2 to 7/2 and assuming
that the input amplitude a is greater than § + A gives

B
a, =2/x) [ hcos8dé

= (2h/m)(sinB + sina)

where o =cos 1[(§ — A)a] and B=cos 1[(§ + A)a,] and

B

blz(2/:r)/ hsin@deé

((5+AJ_ (5—AJ)
a a

= (2h/m) =4hAjar

Thus
J4hA

% )
Na@) = =—(a’ - 6+ )" +[a’ - - 8’1} - —

T
(12)

For the alternative approach, one must first obtain the in-
phase and quadrature nonlinearities which are shown in
Fig. 11. Using Eqs. 23 and 24, one obtains

S+ A a

a, = ('4/a)[ x(h/2)p(x)dx + xhp(x)dx
3=A

5+A
= ?{[ag — 8+ )1V 4 [a? - 5 - A2V
b
544
bl = (4/aﬂ')[ h/2)dx =4hAjan
d-a
= (Area of nonlinearity loop)/an

The DFs for other relay characteristics can easily be found
from this result. For no hysteresis, A =0; for no dead zone,
§=0; and for an ideal relay, A=§=0.

It is easily shown that the DF of two nonlinearities in
parallel is equal to the sum of their individual DFs, a re-
sult which is very useful for determining DF's, particularly
of linear segmented characteristics with multiple break
points. Several procedures (6) are available for obtaining
approximations for the DF of a given nonlinearity either by
numerical integration or by evaluation of the DF of an ap-
proximating nonlinear characteristic defined, for example,
by a quantized characteristic, linear segmented character-
istic, or Fourier series.

Stability and Limit Cycles

To study the possibility of limit cycles in the autonomous
closed loop system of Fig. 1, the nonlinearity n(x) is replaced
by its DF N(a). Thus, the open-loop gain to a sinusoid is
N(a)G(jw) and a limit cycle will exist if

N(a)G(jw) = -1 (13)

where G(jw) = Gc(jw)G1(jw). This condition means that the
first harmonic is balanced around the closed loop. Since
G(jw) is a complex function of w and N(a) may be a com-
plex function of a, a solution to Eq. (13) will yield both the
frequency w and amplitude a of a possible limit cycle.
Various approaches can be used to examine Eq. (13)
with the choice affected to some extent by the problem—
for example, whether the nonlinearity is single- or double-

valued or whether G(jw) is available from a transfer func-
tion G(s) or as measured frequency response data. Typi-
cally the functions G(jw) and N(a) are plotted separately
on Bode, Nyquist, or Nichols diagrams. Alternatively, sta-
bility criteria such as the Hurwitz—Routh or root locus plots
may be used for the characteristic equation

14+ N(a)G(s) =0

although here it should be remembered that the equation
is appropriate only for s ~ jo.

Figure 12 illustrates the procedure on a Nyquist dia-
gram, where the G(jw) and C(a)=—1/N(a) loci are plot-
ted and shown intersecting for a =a, and w=wy. The DF
method therefore indicates that the system has a limit cy-
cle with the input sinusoid to the nonlinearity, x, equal
to ap sin(wot + ¢), where ¢ depends on the initial condi-
tions. When the G(jw) and C(a) loci do not intersect, the DF
method predicts that no limit cycle will exist if the Nyquist
stability criterion is satisfied for G(jw) with respect to any
point on the C(a) locus. Obviously, if the nonlinearity has
unit gain for small inputs, the point (—1,j0) will lie on C(a)
and it may then be used as the critical point, analogous to
the situation for a linear system.

When the analysis indicates that the system is stable,
its relative stability may be indicated by evaluating its gain
and phase margin. These can be found for every amplitude
a on the C(a) locus, so it is usually appropriate to use the
minimum values. In some cases a nonlinear block also in-
cludes dynamics so that its response is both amplitude and
frequency dependent and its DF will be N(a, w). A limit cy-
cle will then exist if

G(jw) =—1/N(a,w) = C(a, w)

To check for possible solutions of this equation, a family of
C(a, w) loci, usually as functions of a for fixed values of w,
may be drawn on the Nyquist diagram.

A further point of interest when a solution to Eq. (40) ex-
ists is whether the predicted limit cycle is stable. This is ob-
viously important if the control system is designed to have
a limit cycle operation, as in the case of an on—off tempera-
ture control system, but it may also be important in other
systems. If, for example, an unstable limit cycle condition
is reached, the signal amplitudes will not become bounded
but may continue to grow. The stability of a limit cycle, pro-
vided that only one solution is predicted, can be assessed
by applying the Nyquist stability criterion to points on the
C(a) locus at both sides of the solution point. If the stability
criterion indicates instability (stability) for a point on C(a)
with a <a¢ and indicates stability (instability) for a point
on C(a) with a > ag, then the limit cycle is stable (unstable).
The situation is more complicated when multiple limit cy-
cle solutions exist and the above criterion is a necessary
but not sufficient result for the stability of the limit cycle
(8).

The stability of the limit cycle can then normally be as-
certained by examining the roots of the characteristic equa-
tion

1+N,,(a)Gis)=0
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Figure 12. Illustration of limit cycle evaluation.

where Nj,(a) is known as the incremental describing func-
tion (IDF). For a single-valued nonlinearity, N;,(a) can be

evaluated from

a
N, (a) = f n'(x)p(x)dx
-a

where n'(x) and p(x) are as previously defined. It can also
be shown that Nj,(a) is related to N(a) by the equation

I\?}),(aj:N(a)+(a/2)dN(a)/da (14)

Thus, for example, for an ideal relay, putting §= A =0in Eq.
(12) gives N(a)=4h/ar, and substituting this value in Eq.
(14) yields N;,(a) = 2h/am.

As an example of using the DF to investigate the possi-
bility of a limit cycle, consider Fig. 1 with n (x) =x — (x%/6),
G.(s)=1 and G5(s)=K (1 —s)/s(s + 1). For this nonlinearity,
N(a)=1 — (a?/8), so that the C(a) locus starts at —1 on
the Nyquist diagram and, as a increases, moves along the
negative real axis to —oo for a =2 V2 then, for a greater
than this value, the C(a) locus returns along the positive
real axis from oo to the origin as a becomes large. An os-
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cillation will only start to build up, assuming zero initial
conditions, if the feedback loop with G(s) alone is unstable
since N(a) — 1 for a — 0. This requires the characteristic
equation

s24+s+K—Ks=0

to have a root with a positive real part; that is, K > 1. G(jw)
has 180° phase shift when w =1 when its gain is K. Thus
the DF solution for the amplitude of the limit cycle is given
by

1
G(j =
| (Jw)|w=1 T (a2/8)
which results in
K =8/8 —a?)

giving
a = 2v2[(K - 1)/K]*"*

As K is increased, because of the shape of the nonlinear-
ity, the limit cycle becomes more distorted. For example, if
K=2.4, the DF solution gives w=1 and a =2.10, whereas
if four harmonics are balanced, which requires a computer
program, the limit cycle frequency is 0.719 and the ampli-
tudes of the fundamental, third, fifth, and seventh harmon-
ics at the input to the nonlinearity are 2.515, 0.467, 0.161,
and 0.065, respectively.

As the DF approach is a method for evaluating limit cy-
cles, it is sometimes suggested that it cannot be used to
guarantee stability of a feedback system, since instability
may be exhibited by a signal in the system becoming un-
bounded, not oscillatory. It is, however, known for the au-
tonomous feedback system of Fig. 1 that if the symmetric
odd, single-valued nonlinearity n(x) is sector-bounded such
that £1x < n(x) < kox for x > 0 and n(x) tends to k3x for large
x, where k1 < k3 < kg, then the nonlinear system is either
stable or possesses a limit cycle, provided that the linear
system with gain K replacing N is stable for k1 < K < ks.
Thus for this situation, which is often true in practice, the
nonexistence of a limit cycle guarantees stability.

Accuracy of the Describing Function

Since the DF method is an approximate analytical ap-
proach, it is desirable to have some idea of its accuracy.
Unfortunate consequences may result if a system is pre-
dicted to be stable, and in practice this turns out not to be
the case. Although many attempts have been made to find
solutions for this problem, those that have been obtained
either are difficult to apply or produce results which are
often as conservative as the absolute stability criteria dis-
cussed earlier.

Since, as has already been shown, the C(a) locus of a
sector bounded, single-valued nonlinearity is the diame-
ter of the circle in the circle criterion, errors in the DF
method are related to its inability to predict a phase shift
which the fundamental may experience in passing through
the nonlinearity, rather than an incorrect magnitude of the
gain. When the input to a single-valued nonlinearity is a
sinusoid together with some of its harmonics, it is easy

to show that the fundamental output is not necessarily in
phase with the fundamental input; that is, the fundamen-
tal gain has a phase shift. The actual phase shift which
occurs varies with the harmonic content of the input sig-
nal in a complex manner, since the phase shift depends
on the amplitudes and phases of the individual harmonic
input components.

From an engineering viewpoint, one can therefore ob-
tain a good idea of the accuracy of a DF result by esti-
mating the distortion, d, in the waveform at the input to
the nonlinearity. This is relatively straightforward when
a limit-cycle solution is obtained since the sinusoidal sig-
nal corresponding to the DF solution can be taken as the
nonlinearity input and the harmonic content of the signal
fed back to the nonlinearity input calculated. Experience
indicates that the percentage accuracy of the DF method
in predicting the fundamental amplitude and frequency of
the limit cycle is usually better than the percentage distor-
tion in the fedback signal.

It is also important to note that the amplitude predicted
by the DF is an approximation to the fundamental of the
limit cycle, not its peak amplitude. It is possible to estimate
the limit cycle more accurately by balancing additional har-
monics, as mentioned earlier. Although algebraically this
is difficult apart from loops with a nonlinearity having a
simple mathematical description—for example, a cubic—it
can be done computationally. The procedure involves solv-
ing sets of nonlinear algebraic equations, but good starting
guesses can usually be obtained for the magnitudes and
phases of the other harmonic components from the wave-
form fedback to the nonlinearity, assuming that its input
is the DF solution.

Further Aspects

Before concluding this section on the DF method, it is im-
portant to mention two other facets of its application. In
introducing the DF, it was indicated that the existence of
a limit cycle is usually undesirable; thus if the DF indi-
cates such behavior, the system must be compensated to
remove the limit cycle. If the parameters of n(x) and G4(s),
with G.(s)=1, in Fig. 1 are such that a limit cycle is in-
dicated, because the loci G1(jw) and C(a) intersect, then a
compensator G.(s) can be added with a transfer function
such that the loci G.(jw)G1(jw) and C(a) do not intersect.
Shaping frequency responses to achieve a specific form is a
familiar approach in linear control theory, so this approach
can be easily applied. Other approaches such as adding ad-
ditional feedback paths to compensate for the effect of the
nonlinearity may also be possible. This procedure has the
advantage, as can the approach of designing a nonlinear
controller, of producing an approximately linear system.
A feature of nonlinear systems, as mentioned earlier, is
that they possess unique forms of behavior. One such in-
teresting feature is the jump resonance which can occur
when a nonlinear feedback system, such as Fig. 1, has a
sinusoidal input. Equations can be set up using the DF
approach for the feedback loop to balance the harmonic
at the frequency of the input sinusoid. Two nonlinear al-
gebraic equations are obtained; and for some situations
they can have three, rather than one, solutions for a small



range of input frequencies. The DF can also be used to show
that only two of the solutions will be stable, which means
that the approximately sinusoidal output from the feed-
back loop may have two possible values, within this fre-
quency range, which, if it exists, is found near to the res-
onant frequency of the linearized system. When the input
frequency is changed so that the solution of the equations
moves from the two-stable-solution to the one-solution (or
vice versa) region, a discontinuous change, or jump, in the
magnitude of the output may occur.

LIMIT CYCLES IN RELAY SYSTEMS

In this section an exact method for the evalution of limit
cycles and their stability is discussed which makes use of
the fact that the output from a relay is not continuously af-
fected by its input (6, 9). The input only controls the switch-
ing instants of the relay and has no further effect on the
output until it causes another switching. Therefore to in-
vestigate limit cycles in relay systems the analysis starts
by assuming a typical relay output waveform, y(¢), which
for a symmetrical odd limit cycle in a loop having a relay
with dead zone and hysteresis takes the form shown in Fig.
13, where T and At are unknown and the initial switching
is at time ¢;. Then to find a possible limit cycle in the au-
tonomous system of Fig. 1 the steady-state response of G(s)
to this waveform has to be determined. Several slightly dif-
ferent approaches are possible, but here we follow that used
by Tsypkin, primarily because for a relay with no dead zone
it allows a simple comparison with the DF method. y(¢) is
expanded in a Fourier series which gives

2h o~ 1 .
¥y = ~ ;);{Sln(nwAt)cos[nw(t—tl)]
+[1 — cos(nwAn)]sin[nw(t — 1)1}

The output c(¢) is then given by

o0

Z gi[sin(nwat) cos(nw(t — 1)+ ¢n] .
N T T (15)

+ [1 — cos(nwAt)]sin(nwE — ¢1) + ¢,]}

e(t) =

where g, = |G(jon)| and ¢, = Z/G(jwn). Using the A loci, de-
fined by

As0,w) =Re Ag 8, w) + jIm A8, w)

o0 .
ReA;@, w) = Z Vg(nw) sin(nf) + Ug(nw) cos(né) S
n=12)
i |
ImAg(8,w) = Z — (Vg (nw) cos(n8) — Ug (nw) sin(n@)}
n=1(2)
(17)
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Figure 13. Relay output waveform.

where Ug(nw) =g, cos ¢, and Vg(nw)=g, sin ¢, - Eq. (15)
can be written as

2h
c(t) = T{ImAG(—a.t + et w) — Im Ag(—at + wt; + wAt, w)}
Similarly, ¢2(¢) can be shown to be given by
. 2wh .
c(t) = T{R&Ac{-—ﬂt +{.¢t1, w) — RBAG[“wt+th + wit, w)}

To satisfy the above-mentioned switching conditions at
times ¢; and #; + At, assuming #; to be zero without loss of
generality, and bearing in mind that x2(¢;) should be posi-
tive and x2(¢; + At)negative, we require that

Ag(0,w) — Ag(wht, w) must have IP=-—m(5+ A)/2h,
RP <0

Ag(0, w) — Ag(—wAt, w) must have IP=—-m(5 — A)/2h,
RP <0

where RP and IP denote the real and imaginary parts, re-
spectively. The IP expressions give two nonlinear algebraic
equations which, if they have solutions, yield the unknown
parameters At and T of possible limit cycles. Using these
solution values, the corresponding relay input waveform
x(t) can be found, from which the RP conditions can be
checked, as can the continuity conditions

xt)>8—A forO<t< At and —(8+A)<x(t) <(5+A)
for At <t <T/2

to confirm that the relay input signal does not produce
switchings other than those assumed.

Since closed-form expressions exist for the A loci of sim-
ple transfer functions, analytical solutions can be obtained
for the exact frequencies, 1/T, of limit cycles for some spe-
cific systems, especially those in which the relay has no
dead zone. Then wAt=7 and the above two nonlinear al-
gebraic equations are identical since only one unknown,
T, remains. When the nonlinear algebraic equations are
solved computationally the closed-form expressions for the
A loci may be used, or their value may be determined by
taking a finite number of terms in the series of Egs. 16 and
17 (6, 9). Another interesting feature of this method is that
it is also possible to determine whether a solution to the
nonlinear algebraic equations corresponds to a stable or an
unstable limit cycle (10). The analysis has assumed a sym-
metrical odd limit cycle but can be extended to situations
where this is not the case. More nonlinear algebraic equa-
tions have then to be solved to obtain any possible limit
cycle solutions. It is also possible to extend the approach to
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Figure 14. Graphs giving exact and approximate solutions for
limit cycle.

find multi-pulse type limit cycles which may exist in relay
control of resonant plant transfer functions.

Two Examples

As a simple application of the above method, consider a
relay with no dead zone—that is, § = 0—so that one has the
single relationship

A;0,w) musthave IP=-xA/4h, RP <O

which yields the frequency of the limit cycle. If G(s) = K/s(1+
s7), then the above expression gives the equation

(w/2k) — tanh(x/21) = A/hK~

where A = wt for the limit cycle frequency w. This compares
with the DF solution for the same problem, which yields
the equation

M1+A2) = 4hKr/n A

It is also interesting that, since the line with RP <0 and
IP=—nA/4h corresponds to C(a), the negative reciprocal
of the DF, the exact and approximate DF solutions can be
compared graphically. This is done in Fig. 14, which shows
the G(jw) and Ag(0, ®) loci for K=7=1 and the C(a) locus
for h/A =3. The exact limit-cycle frequency is 1.365 rad/s,
and the approximate solution using the DF method is 1.352
rad/s. The accuracy of the DF result may be used to con-
firm the filter hypothesis, since it can be shown that as
is increased, thus making G(s) a better low-pass filter, the
error in the DF solution for the frequency of the limit cycle
decreases.

Consider as a second example a feedback system hav-
ing a relay with output +1 and dead zone +1, along with
a transfer function G(s)=5/s(s®>+3s+1). Use of the DF
method indicates that the system has two limit cycles, both
of frequency 1.000 rads/s, with the larger amplitude one
stable and the smaller amplitude one unstable. Two non-
linear algebraic equations need to be solved using the Tsyp-
kin method to find the frequency and pulse width of any
limit cycles. Software with graphical facilities is available
to do this and the two limit cycles shown in Figs. 15 and
Fig. 16 are found. The larger amplitude limit cycle of 15
are found. The larger amplitude limit cycle of 15 is shown
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Figure 15. Stable limit cycle solution.
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Figure 16. Unstable limit cycle solution.

by the method to be stable with frequency 0.988 rads/s and
pulse width 1.967 s, and the smaller amplitude one of Fig.
16 with frequency 0.736 rads/s and pulse width 0.716 s is
unstable. It should also be noted that the larger amplitude
limit cycle is much closer to a sinusoid so that its frequency
is nearer the DF solution of 1.000 rads/s.

SLIDING MODE CONTROL METHODS

For ease of exposition, consider the uncertain linear time
invariant system with m inputs given by

X)) =Ax(t)+ But)+ f(t,x,u) (18)

where A € R™™ and B € R™™ with 1 <m. Without loss of
generality it is assumed that the inputs are independent.
The nonlinear function f: R x R* x R™ — R" is assumed to
be unknown but bounded by some known functions and
represents the parameter uncertainties, nonlinearities, or
disturbance signals which are present in the system. Let
S be the hyperplane defined by

S =[x e R s(x) =Sx =0} (19)

where S € R™*® is of full rank. This will define the switch-
ing function. It should be noted that the choice of S need



not be restricted to a hyperplane and more general, non-
linear, possibly time-varying switching functions may be
chosen.

If there exists a finite time ¢, such that the solution to
Eq. (61) satisfies

s(x)=0 for allt > ¢,

then a sliding motion is taking place for all ¢ > ¢.

This section will first consider how to design the switch-
ing function so that the sliding motion is stable. The prob-
lem of designing variable structure control laws so that in
finite time the system states are forced on to and subse-
quently remain on the hyperplane S is considered next.
The total insensitivity to a particular class of uncertainty
is then demonstrated. The section will conclude with a
straightforward example to illustrate the mathematical
concepts.

For sliding mode design it is necessary that the system
assumes an appropriate canonical form. This so-called reg-
ular form is obtained using the orthogonal matrix T'; € R™™

whereby
n2= 3]

where By € R™*™ and is full rank. The transformation ma-
trix exists as B is full rank and can be readily found via QR
decomposition. By using the coordinate transformation x
< T1x then the nominal linear system can be written as

.il(t) —_-Allx]_‘..t) +A12x2(tj

R . ‘ . (20)
2y(t) = Apyxy(2) + Apaxy(t) + Byu(t)

where x; € R®™, x; € R™. Effectively, the system has been
decomposed into two connected subsystems, only one of
which is directly affected by the system input. If the switch-
ing function matrix from Eq. (62) is partitioned compatibly
in this coordinate system, then

S =[8,S;]

where S; € R™*®™ and Sy € R™™, During ideal sliding,
the motion is given by

Sx,)+Syxy(t)=0 forallt >z,

Assuming S; is chosen by design to be nonsingular, it fol-
lows that

x,(t) = —Mx,(t) forallt >¢, (21)

where M =S"1,S;. It further follows that in the sliding
mode, m of the states can be expressed in terms of the re-
maining (n —m) and thus a reduction in order occurs. The
reduced order motion is determined from substituting for
x9(¢) from Eq. (21) in Eq. (20) as

£1() = (A, — A My t) (22)

The hyperplane design problem can therefore be consid-
ered to be one of choosing a state feedback matrix M to
prescribe the required performance to the reduced order
subsystem defined by (A11, A;2). It can be shown that con-
trollability of the nominal (A, B) pair is sufficient to guar-
antee controllability of the (A;1,A12) pair.
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Having defined the switching function, it is necessary
to establish sufficient conditions which guarantee that an
ideal sliding motion will take place. These will amount to
ensuring that in a certain domain enclosing the sliding sur-
face, the trajectories of s(¢) must be directed toward it. The
associated so-called reachability condition is perhaps most
succinctly expressed as

ss <0 (23)

This choice is readily justified by considering the func-
tion

1

which is positive definite. Its time derivative along any tra-
jectory is
V =ss

It follows that if Eq. (70) holds, then V tends to zero and
therefore s tends to zero. This guarantees that a sliding
mode is attained. The control signal must thus be defined
to satisfy Eq. (70). Subject to this constraint, there are obvi-
ously a great many possible control configurations. A com-
mon structure is given by

ut) =u () +ua. @) (24)
where u(¢) is a linear state feedback law and u,(¢) is a
discontinuous or switched component of the form
un,(t) = p(t,x) sign(s)

The extensive interest in sliding mode control is primarily
due to its robustness properties. When sliding, a system is
completely insensitive to any uncertainty which is implicit
in the channels of the input distribution matrix; such un-
certainty is termed matched uncertainty. The reason for

this invariance property is easily demonstrated by a con-
sideration of the uncertain state space system

x=Ax+Bu+f) (25)

where f is an unknown but bounded forcing function. In
the sliding mode

s=sx=0
and thus
§=sx=0 (26)
Substituting from Eq. (75) into Eq. (77),
SAX+ sB(Ueqg+ ) =0

where u.q is not the applied control signal—which will be
of the form of Eq. (73)—but does denote the equivalent lin-
ear control that would be required to maintain the sliding
mode. This may be expressed as

Ueq = —sB) lsAx - f

Substituting this expression for the equivalent control in
Eq. (75) yields

£=(I- (sB) 's)Ax
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The dynamics in the sliding mode are thus completely in-
variant to the signal f. The system behavior will be deter-
mined entirely by Eq. (69) when sliding despite the pres-
ence of such matched uncertainty. Any unmatched uncer-
tainty will affect the dynamics of Eq. (69), but such un-
matched effects can be minimized by designing M such that
the subsystem of Eq. (69) is maximally robust.

In order to illustrate the theoretical concepts of VSCS,
consider the double integrator system

y=u

The system can be expressed in the state-space form

i't—o lxt) Ou't
& =15 ofx®+]|e®

where x; =y and x3 = y2. This system is already in an ap-
propriate regular form for sliding mode design. Consider
application of a negative feedback law

u = —kx,(t)

The phase portraits when £=0.5 and k£ =1.5 are shown in
Fig. 17. Neither control law yields an acceptable transient
when employed as the sole controller; an oscillation is seen
to exist in both cases. Consider instead the VSCS defined
by
) —l.ax,(t) ifxx, >0
ut) = .
—0.5x¢,(t) otherwise

An asymptotically stable motion is seen to result as shown
in Fig. 18. By introducing a rule for switching between
two control structures, which independently do not pro-
vide stability, a stable closed-loop system is formed. Such
heuristic arguments can be used to motivate the advan-
tages of a variable structure control approach. However, for
design purposes a more logical algorithmic approach is re-
quired.<figureAnchor figures="W1024-fig-0017 W1024-fig-
0018"/>
Consider now the switching function defined by

s=mx,(t) +x,(2), m=>0

This is seen to provide a first-order motion in the sliding
mode where the pole defining the transient response is de-
termined by the selection of m. The control signal is defined
by solving for u from the relationship

§ = —k sign(s) (27)

This clearly ensures that the reachability condition [Eq.
(23)] is satisfied. Essentially, the switching function is dif-
ferentiated and the resulting state derivatives are replaced
with the original system dynamics. Equation (27) thus
yields an expression for the control signal in terms of the
states and the value of the switching function. The re-
sulting controller will find the switching function at least
locally attractive. For simulation, the double integrator
model is subject to a disturbance signal —a; sin (x1(2))
which acts in the range of the input distribution matrix.
In this way a controller designed for a nominal double in-
tegrator model is implemented upon a normalized pendu-
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Figure 17. (a) u = —1.5x3;(b) u = —0.5x7. Double integrator con-
trol.

lum system. The design parameters m and % are both set
equal to unity. Figure 19 shows the resulting phase plane
plot. The system enters a sliding mode and the normalized
pendulum is forced to behave as the free first-order system

#)(E) = —x,¢)

during this phase of motion. The dynamics in the sliding
mode have been wholly specified by the choice of switch-
ing function despite the presence of a matched uncertainty
contribution.

OTHER DESCRIBING FUNCTIONS

In a previous section the discussion on describing func-
tions was primarily restricted to the sinusoidal describ-
ing function, SDF, since this is used extensively in looking
at the effects of nonlinearity in practical systems. Many
control systems, however, are subject to inputs or distur-
bances which cannot be defined deterministically but only
as random signals with a given frequency spectrum and
amplitude probability density function. The most common
amplitude probability density function, p(x), considered is
the Gaussian density function which, when it has a zero
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Figure 18. Double integrator with variable structure control sys-
tem.
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Figure 19. Normalized pendulum with sliding mode control.

mean, is given by

_ 2
& 2 2a

1
X)) = —/—
pP(x) ST

A general way to define a DF, as mentioned earlier, is that
it is that value of gain, K., which, when fed with the same
input as the nonlinearity n(x), will give a minimum value
for the mean-squared error between the nonlinearity out-
put and the gain output. It is then relatively easy to show
that

1 o0
K =N(o) = ;[m.m(x)p(x)d.t

when the input signal x has a Gaussian distribution. When
this result was first found, the gain was called the equiva-
lent gain, hence the notation K., not the random describ-
ing function (RDF) by which name it is now usually known.
The result for x with any zero-mean amplitude probability
density function p(x) is

[+4] o0
Keq :f xn(x)p(x]dx/f x2p(x)dx
—00 —00

a formula which can be used for a single-valued nonlinear-
ity with sinusoidal or Gaussian inputs when the appropri-
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ate p(x) is used. When the input x is a sinusoidal or Gaus-
sian signal, however, it can also be shown that the error
signal between the nonlinearity and linear gain outputs—
that is, n(x) — Keqx—is uncorrelated with the input x (6).
Typically, when dealing with Gaussian inputs to a simple
nonlinear feedback system, the mean-squared values of the
signals at various points in the loop can be calculated ap-
proximately using the RDF for the nonlinearity.

In many feedback systems it may be necessary to take
account of bias, as well as other signals, due to constant in-
put or disturbance signals or because of asymmetry in non-
linear characteristics. In this case the nonlinearity, again
using the minimum mean-squared error definition, may
be modeled by two DFs, one for the bias, y, and one for the
other input (6, 7). When the other input is considered as a
sinusoid of amplitude a, then the two DF's for the single-
valued nonlinearity n(x) are given by

N(a,y) =(2/a2)f xn(x+y)p(x)dx
-a

and
a
N,a,y)= (ljy)f n(x+ y)px)dx

-a
the former being the DF for the sinusoid and the latter for
the bias. Here p(x) = 1/n(a?— x%)¥/2 for the sinusoidal signal.
Use of this DF allows, amongst other possibilities, for the
determination of limit cycles with bias. For example, if in
Fig. 1 the input r(¢) has a constant value R, then balancing
the bias and fundamental of the limit cycle gives the two
equations

RG.(0)— yN,(a,y)G0)=y
1+N@,y)G(jw)=0

The equations can be solved to find the bias y and sinu-
soidal amplitude a of the limit cycle at the input to the
nonlinearity.

The above approach can be used in principle to obtain a
DF representation for a nonlinearity whose input consists
of any number of uncorrelated signals, but for practical
reasons the approach is difficult to justify for more than
two or possibly three components. A difficulty in applying
such multiple input describing functions is understanding
the errors which are caused by neglecting not only “higher
harmonics of the input signals” but also “cross-modulation
products” which may be produced at frequencies lower than
those in the nonlinearity input signal.

Reasonably successful use, however, of the DF approach
for two related frequency sinusoidal inputs to a nonlin-
earity has been achieved to give results of some value in
control system design. This requires consideration of two
inputs such as a cos wt and b cos(3wt + ¢) so that the de-
scribing functions for the two signals become functions of
the three parameters a, b and ¢, not just a and b (6). An-
alytically, results can only be obtained for simple nonlin-
earities such as a cubic; but by using computational meth-
ods, other characteristics can be considered (11). This pro-
cedure has been used to investigate subharmonic oscilla-
tions and synchronization phenomena when the feedback
loop of Fig. 1 has an input r(¢) which is sinusoidal, and it
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Figure 20. K. and w, from the Nyquist plot.

has also been used for the more accurate determination of
limit cycle waveforms by balancing both the fundamental
and another harmonic, usually the third.

RELAY AUTOTUNING

A relatively recent application of the DF approach in con-
trol system design is its use in the relay autotuning method
for setting PID controller parameters. The procedure is
very useful in those cases where it is difficult to obtain
a good mathematical model for the process or retuning has
to be done on site by an operator. The basic concept em-
ployed is that knowledge of the critical frequency, ., and
gain, K., of a process illustrated on a plant frequency re-
sponse shown in Fig. 20 can often provide sufficient infor-
mation for setting the parameters of a PID controller. The
approach was suggested many years ago by Ziegler and
Nichols (12), where K. and o, were found by placing the
PID controller in the P mode and adjusting the gain un-
til oscillation took place. There were difficulties doing this
in practice, however, one problem being that the oscillation
amplitude is only limited by saturation in the controller, ac-
tuator or plant. More recently therefore, Astrom and Hag-
glund (13) recommended estimating w. and K, from results
obtained by replacing the controller with an ideal relay, a
feature, as illustrated in Fig. 21, which can easily be built
into a modern microprocessor controller. When this is done
the amplitude of the limit cycle, a, at the relay input and
its frequency, w., are measured. Then according to DF the-
ory, w.=wo and K. =4h/ax. Strictly speaking, a should be
the amplitude of the fundamental frequency component,
and the results are only exact when the limit cycle is si-
nusoidal. In many cases, however, these formulae provide
reasonable estimates for w. and K. which may then be used
in an appropriate algorithm (many of which have been put
forward recently) for setting the PID parameters. If the
form of the plant transfer function is known but not its pa-
rameters, then it may be possible, certainly for low-order
transfer functions, to make use of the known Tsypkin so-
lution for the limit cycle to estimate the plant parameters.
When the plant has several unknown parameters, more
than one autotuning test may have to be done using differ-
ent values of hysteresis in the relay or possibly with bias
signals introduced into the loop.

Obviously, the relay on—off levels control the limit cycle
amplitude; and if these are varied, some information may
be found about any nonlinearity in the plant (14, 15). In
such cases it may be possible to make the system behavior
more linear by incorporating appropriate nonlinearity in
the PID elements of the controller.

MULTIVARIABLE SYSTEMS

So far in this presentation, only simple nonlinear feedback
systems such as Fig. 1 have been considered, apart from
when discussing the phase plane. In principle there is no
difficulty in extending use of both the DF and Tsypkin ap-
proaches to feedback loops with more than one nonlinear
element, although for the latter approach the nonlinear-
ities must be of the relay type. The problem with using
the sinusoidal describing function approach is that the as-
sumption of a sinusoidal input to all the nonlinearities
must be reasonable for the situation under investigation.
For some configurations of nonlinearities and linear dy-
namic elements in a feedback loop, this will not be true. Us-
ing the Tsypkin approach, more nonlinear algebraic equa-
tions are formulated and their possible solutions must be
investigated (6, 16).

Several investigators have produced results for studies
on the multivariable, typically two-input—-two-output ver-
sion of Fig. 1. Here the nonlinearity consists of four individ-
ual, or in many cases only two on the diagonal, nonlinear el-
ements. Using describing function analysis for this config-
uration can often be justified since good filtering may exist
for all the—or in the case of two input—-two output, two—
feedback loops. Software written to investigate such sys-
tems, using both the DF and Tsypkin methods, has been de-
scribed in the literature (17-19). Absolute stability results,
similar to those given earlier but which result in more com-
plicated graphical procedures, have been extended to the
two-input—two-output multivariable system (20). Like the
situation for the single-input—single-output system, how-
ever, the results they produce are often very conservative
and may not be of value for practical problems.

SLIDING MODE CONTROL

The detailed discussion here comments further on uncer-
tain systems. It is obviously desirable to consider other
nominal nonlinear system descriptions in order to broaden
the applicability of the method. Some work in this area
has considered problems relating to a particular applica-
tion area—for example, robotics—and has developed slid-
ing mode controllers for such specific classes of nonlinear
system (21). Other work has tried to consider more gen-
eral nonlinear system descriptions. Some of the conditions
placed upon the particular system representation can be
quite restrictive. One example of this is the class of feed-
back linearizable systems. It is possible to augment the
traditional linearizing feedback with a sliding mode com-
ponent which will provide robustness to some uncertainty
in the sliding mode. However, the conditions which must be
satisfied to feedback linearize the system initially are quite
restrictive and so limit the applicability of the methodol-
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Figure 21. Block diagram for relay autotun-
ing.

ogy. Perhaps the most widely applicable method to date
has resulted from the development of sliding mode control
schemes for differential input—output system representa-
tions (22). These yield dynamic controllers which act as a
natural filter on any discontinuous elements of the control
signal and are applicable to a fairly broad class of nonlin-
ear systems. This is thus a considerable breakthrough in
the development of robust controllers for nonlinear system
descriptions.

The previous exposition relates to state-feedback based
sliding mode control schemes (23). For practical applica-
tion, controllers based upon measured output information
arerequired (24). There are two ways to approach this prob-
lem. A dynamical system, or observer, may be used to es-
timate unmeasurable system states. Because of the inher-
ent robustness of sliding mode controllers, some significant
work has considered the development of an associated slid-
ing mode observer (25, 26). The robustness properties have
been shown to transfer. However, there are restrictions on
the (4, B, C) triple used for observer design. In particular,
the invariant zeros of (A, B, C) are shown to play a crucial
role in determining the zero dynamics in the sliding mode.
It thus follows that these invariant zeros must be stable.
Despite this restriction, the closed-loop robustness proper-
ties of such a sliding mode controller—observer scheme are
excellent. The sliding observer is also finding a promising
area of application relating to fault detection and isola-
tion. The second approach to output feedback based slid-
ing mode control is to develop design methodologies which
produce output dependent control strategies (27). This re-
stricts the class of systems which may be considered as
the switching surface must be output-dependent, and thus
S must lie in the range of the output distribution ma-
trix. Again the sliding mode dynamics will be dependent
upon the location of the system transmission zeros. The
development of design methodologies and associated case
studies relating to output feedback-based sliding mode con-
trol strategies and sliding mode controller—observer strate-
gies require further development. The development of slid-
ing mode controllers based upon output measurements for
nonlinear systems is very much an open research problem.
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