
NONLINEAR CONTROL SYSTEMS, DESIGN METHODS 519

The feedback linearization approach applies to a small
class of systems for which it is possible to use a nonlinear
control law which, given an appropriate coordinate change,
cancels all nonlinearities in the system. The rationale behind
this approach is that the resulting closed-loop system is lin-
ear, and thus linear control theory is then applicable. A draw-
back is that this technique may fail if one does not know the
plant’s model accurately; this uncertainty can lead to instabil-
ity or, in the best case, to a steady-state error.

An alternative approach is the so-called passivity-based
control. This technique applies to a certain class of systems
which are ‘‘dissipative with respect to a storage function’’ (2).
Passive systems constitute a particular case of dissipative
systems for which the storage function happens to be an en-
ergy function. Hence, the rationale behind the passivity-based
approach is physical: Roughly speaking, a passive system is a
system from which one cannot pull out more energy than is
fed in. A very simple example of a passive system is a conven-
tional RLC network, which dissipates part of the supplied
electrical energy in the form of heat. A fundamental property
of passive systems is that the interconnection of two passive

NONLINEAR CONTROL SYSTEMS, systems is passive. With this motivation, in passivity-based
control one aims at designing passive controllers, so that theDESIGN METHODS
closed-loop system have some desired energy properties. In
many cases, seeking for passive controllers results in compen-A basic problem in control theory may be described as follows:

Given a plant, design a control mechanism in such a way that sating instead of canceling the nonlinearities of the system,
which can give considerably more robust results than usingthe plant together with the controller meets certain design

specifications. The above regulation problem arises in numer- feedback linearization.
Modern control theory leans on the so-called Lyapunov sta-ous situations; for instance, the temperature in a house is reg-

ulated by a thermostat to keep the temperature in the house bility theory which was launched by the Russian mathemati-
cian A. M. Lyapunov in his celebrated article (3). The Lyapu-constant, notwithstanding changing external effects such as

outdoor temperature, wind, open doors, and so on. Other reg- nov theory consists of a set of mathematical tools, including
comparison equations, which help us to analyze the asymp-ulation devices in everyday life are easy to find: washing ma-

chines, modern automobiles, and so on. totic behavior of the solutions of a (possibly nonlinear and
time-varying) differential equation. The advantage of thisProbably the first mathematical study on regulation ever

published was written by J. C. Maxwell (1831–1870). His pa- theory is that it allows us to know the asymptotic behavior of
the solutions without solving the differential equation. Theper ‘‘On governors’’ published in the Proceedings of the Royal

Society of London in 1868 treats the problem of tuning centrif- price paid for this is that one must find a suitable Lyapunov
function for the system in question, which satisfies some de-ugal governors to achieve fast regulation towards a constant

speed, thereby avoiding oscillatory motions (‘‘hunting’’) of a sired properties. More precisely, the Lyapunov function is
positive definite while its time derivative is negative definite.steam engine.

Clearly, in the past century a lot of theoretical and practi- This is in general not an easy task.
Thus, the Lyapunov control approach consists of proposingcal work has been carried out on the regulation problem, and

it is certainly beyond the scope of this article to present a a positive definite Lyapunov function candidate and designing
the control input in such a way that its time derivative be-historical review of the subject; readers further interested in

the subject are referred to Ref. 1. However, one particular comes negative definite. Then, some conclusions about the
stability of the system can be drawn.type of controllers, the so-called proportional integral differ-

ential (PID) controller, originally proposed by N. Minorsky in Although in general, it is very difficult to find a suitable
Lyapunov function, often a good start is to use the total en-1922, deserves separate mentioning.

In a PID controller the control signal is built up as a ergy function (if available) of the system in question. This
may motivate us to think that the passivity-based approachweighted sum of three terms; a proportional term (propor-

tional to the error between the actual and desired value of the and Lyapunov control are very related since, for a physical
system, the storage function is the total energy of the system.to-be-controlled plant’s output) drives the plant’s output to

the reference. An integral term (of the error) compensates for Nevertheless, it must be pointed out that the passivity-based
approach is based upon the input–output properties of thethe steady-state error caused by uncertainties in the plant’s

model, and a differential term (proportional to the time deriv- system; that is, the system is viewed as an operator which
transforms an input into some output, regardless of the inter-ative of the plant’s output) speeds up the convergence towards

the desired reference. The PID controller has had and still nal state of the system. The Lyapunov control approach is
based upon the asymptotic behavior of the system’s state.has many applications in technical systems.

More recent methods in nonlinear control theory that Both methods are complementary to one another.
We consider in more detail passivity-based and feedbackshould be mentioned are feedback linearization, passivity-

based control, and Lyapunov control. linearization schemes, and the reader may consult Ref. 4 and

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.
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5 for introductory texts on Lyapunov theory. We consider sumed to be linear (see Refs. 10), the observer and observer–
controller problems turn out to be difficult in general. At thefrom a mathematical perspective the regulation problem of

an important class of nonlinear passive systems: the so-called moment, very few general results are at hand (11); as an illus-
tration in the last section we discuss one specific mathemati-Euler–Lagrange (EL) systems. This class of systems includes

various mechanical systems such as the robot manipulators. cal example of a single-input single-output nonlinear system.
Notation. In this article, �x� �

� 	x�x is the Euclidean normOur motivation to illustrate these control techniques by
addressing the regulation problem for EL systems is multiple: of x � �n. The largest and smallest eigenvalues of a square

symmetric matrix K are kM and km, respectively. The extendedNot only are EL systems passive (hence passive controllers do
a good job for this class), but also the stability theory of Lya- space of square integrable signals is L n

2e �
� u � �n, T �

0 : �T

0 �u(t)�2 dt � ��. We denote B� � x � �n : �x� 	 �� a ballpunov was inspired upon the previous work of J. H. Poincaré
(1854–1912) on second-order nonlinear systems and, in par- of radius �, centered at the origin in �n.
ticular, mechanical systems. Moreover, even though the La-
grangian formulation is most popular in mechanics, it must

THE REGULATION PROBLEMbe remarked that it applies to a wide class of physical systems
which are modeled using variational principles. Thus, on one

We define the general regulation problem for NL systems ashand, the EL class is fairly wide; hence the available results
follows:are applicable to many physical (industrial) systems. On the

Tracking Control of NL Systems. Consider the systemother hand, the theory is simple enough to be treated in a few
pages and to give the reader a general appreciation of the ẋ = f (t, x, u) (1)
flavor of nonlinear systems control design in this context.

We consider the regulation problem which consists of de- y = h(x) (2)
signing a feedback that enforces asymptotic tracking of the

where x � �n is the state, u � �k is the control input, y �output to be controlled (e.g., the endpoint of a rigid manipula-
�m is the output to be controlled, and functions f and h aretor) towards a given desired trajectory. Provided that an exact
continuous in their arguments and t � 0. Given a desiredmodel of the plant is given and assuming that full state (that
reference output trajectory yd(t) assume that there exists ais, joint position and velocity) measurements are available, a
(unique) ‘‘desired’’ state xd(t) and input ud(t) trajectories whichtracking controller can easily be designed, like for instance
generate yd(t), that is,the computed torque controller (6). See, for example, Refs. 7,

8, and 18 for a literature review.
Unfortunately, in many cases, neither an exact model is ẋd = f (t, xd, ud ) (3)

available, nor are joint velocities measured. The latter prob- yd = h(xd) (4)
lem can be resolved by introducing an observer, a dynamic
system which uses only position information (or more general, Then the tracking control problem consists in finding, if possi-
the measurable output) to reconstruct the velocity signal (or ble, a smooth control law u such that for any bounded initial
more general, the unmeasured part of the state). Then, the conditions (t0, x0), x0 � x(t0),
controller is implemented by replacing the velocity by its esti-
mate. It is interesting to note that even though it is well lim

t→∞
ỹ(t) � lim

t→∞
(y(t) − yd(t)) = 0 (5)

known that the separation principle (see section entitled ‘‘Lin-
ear Time-Invariant Systems’’) does not apply for nonlinear

Remark 1. It is important to note that we have assumed thatsystems (specifically, an observer that asymptotically recon-
there exists xd(t) and ud(t) which are solutions of Eq. (3). Thisstructs the state of a nonlinear system does not guarantee
point is crucial since in practical applications one should paythat a given stabilizing state feedback law will remain stable
attention to the definition of the desired output trajectory,when using the estimated state instead of the true one), the
which may not be realizable due to the structure of the sys-rationale behind this approach is precisely that the estimate
tem. In this article we do not address the so-called ‘‘trajectorywill converge to the true signal and, in some particular cases
generation problem’’ (see, for instance, Ref. 12) or the inver-of EL systems, this in turn entails stability of the closed loop.
sion problem considered in Ref. 13, but we simply assumeTo cope with a nonexact plant model, one may proceed in
that the triple (xd, ud, yd) is given.different ways, depending on to what extent the model uncer-

tainties appear. In essence, discussion in this article will be
Note that in the problem formulation above we have notlimited to the occurrence of some unknown (linearly de-

imposed any specific structure for the control law; however,pending) parameters, such as an unknown mass of the end-
one can distinguish (at least) the following variants of thetool, or there will be limited discussion of the model structure.
tracking control problem depending on the measurementsIn the first case a parameter adapting or a PID controller can
which are available:be used whereas in the last case we return to a (high-gain)

PD controller design. Some of the above-mentioned results for
1. (State feedback). Assume that the full state is availableEL plants are discussed in some detail in the following sec-

for measurement; then find, if possible, a control law utions and can be found in the literature (8,9). See also Ref. 7
of the formfor a comprehensive tutorial on adaptive control of robot ma-
(a) (Static state feedback) u � �(t, x, xd), ornipulators.

One may wonder whether results as announced above for (b) (Dynamic state feedback) u � �(t, x, xd, xc), ẋc � �(
t, x, xd, xc) with xc being the dynamic compensatorfully actuated systems also extend to other classes of nonlin-

ear systems. Apart from the case where the system is as- state, say xc � �l.



NONLINEAR CONTROL SYSTEMS, DESIGN METHODS 521

2. (Output feedback). Assume that only an output z �
� as if they were the true ones, that is,

k(x) is measurable; then find, if possible, a control law
u of the form u = −Kx̂ (12)

(a) (Static output feedback) u � �(t, z, z, xd),or
where x̂ follows from Eq. (9). To find an answer to this ques-(b) (Dynamic output feedback) u � �(t, z, xd, xc), ẋc �
tion we write the overall controlled system plus observer:

�(t, z, xd, xc) with, again, xc � �l being the dynamic
compensator state. [

ẋ
˙̃x

]
=

[
A − BK BK

0 A − LC

][
x
x̃

]
(13)

LINEAR TIME-INVARIANT SYSTEMS and calculate the roots of its characteristic polynomial—that
is, the roots of

Before presenting some results on state and output feedback
control of nonlinear systems we briefly revisit some facts
about linear systems theory. It is well known that the control- p(s) = det

[
sI − A + BK −BK

0 sI − A + LC

]
ler–observer design problem for linear systems is, completely
solved (10), but the static output feedback problem is only or, equivalently, the roots of
partially understood. Consider the linear time-invariant (LTI)
forced system p(s) = det(sI − A + BK) det(sI − A + LC)

That is, the characteristic polynomial of the overall system is
the product of the characteristic polynomials of the observer

ẋ = Ax + Bu

y = Cx
(6)

[Eq. (11)] and the controlled system [Eq. (8)]. Thus one can
where y � �m, x � �n, u � �k, and A, B, and C are matrices design the controller and observer separately without caring
of suitable dimensions. Assume that we wish to achieve the if the true states are available or if the observer will be used
tracking control for system (6), which in the linear case boils in open or closed loop. This nice property is called the separa-
down to solving the tracking problem for xd � 0, with corre- tion principle and, unfortunately, in general it is exclusive to
sponding yd � 0 and ud � 0. In order to do so we use the linear systems.
linear state-feedback controller For this reason, we are obliged to explore new techniques

to achieve output feedback control for nonlinear systems.
u = −Kx (7)

FEEDBACK LINEARIZATIONwhere K is chosen in a way that the closed-loop system

Consider a single input nonlinear systemẋ = (A − BK)x (8)

ẋ = f (x) + g(x)u (14)is exponentially stable; that is, the matrix (A � BK) must be
Hurwitz. Indeed a necessary and sufficient condition for the

where x � �n, u � �, and f and g are smooth vector fields onmatrix K to exist is the stabilizability of the system [Eq. (6)].
�n; that is, their derivatives exist and are continuous up toNow, as we have mentioned we are also interested in the
infinite order. In this section we describe the feedback linear-output feedback control problem. To date, even for linear sys-
ization approach for system [Eq. (14)] around an equilibriumtems the tracking control problem using static output feed-
point x0 � �n; that is, f (x0 � 0. The local feedback lineariza-back is not yet completely solved, and we therefore look at
tion problem for the system [Eq. (14)] is to find—if possi-the observer-design problem. For system [Eq. (6)] a linear ob-
ble—a static state feedback lawserver is given by

u = α(x) + β(x)v, β(x0) 
= 0 (15)˙̂x = Ax̂ + Bu + L(y − ŷ) (9)

and a smooth, local coordinate transformationŷ = Cx̂ (10)

where L is an ‘‘output-injection’’ matrix. Note that the estima- z = S(x), S(x0) = 0 ∈ Rn (16)
tion error x̃ � x � x̂ dynamics has the form

such that the closed-loop system [Eqs. (14)–(15)] in the z coor-
dinates is a controllable system and without loss of generality˙̃x = (A − LC)x̃ (11)
may be assumed to be in the Brunovski form:

It is clear that one can find an L such that Eq. (11) be asymp-
totically stable—thus x̃ � 0 as t � �—if the pair (A, C) is
detectable (10).

At this point we have successfully designed an asymptoti-
cally stabilizing feedback and a asymptotically converging ob-
server. The natural question which arises now is whether it
is possible to use the state estimates in the feedback Eq. (7)

d
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The local linearization problem is solvable only under quite 2. For any two vector fields X1, X2 in the set
�adi

f g, i � 0, . . ., n � 2� we haverestrictive conditions on f and g. In order to see this we will
derive a set of sufficient conditions for the solvability of the
linearization problem. Assuming there exists a feedback (15)
and a coordinate transformation (16) that linearize the closed- [X1, X2](x) =

n−2∑
1=0

φi(x)adi
f g(x)

loop system, we note the following. Let zi � Si(x), i � 1, . . .,
n; then we have, using the first equation of Eq. (17) for certain functions �0, . . ., �n�2.

Note that the theorem above gives necessary and sufficient
conditions for local feedback linearizability. For global re-
sults, further conditions on f and g are required. In the follow-

ż1 = ∂S1(x)

∂x
(x) · ẋ = ∂S1(x)

∂x
(x) · f (x)

+ ∂S1(x)

∂x
(x) · g(x)u = z2 = S2(x)

(18)

ing example of a flexible joint pendulum the local solution
extends to the full state space and thus become global.Defining Lf S(x) � �S(x)/�x � f (x) as the directional or Lie deriv-

ative of function S(x) in the direction of f , we obtain from Eq.
Example 1. Consider the model of a robot link with a flexible(18) that
joint (15,16)

S2(x) = L f S1(x) (19)

0 = LgS1(x) (20)

{
Iq̈1 + mgl sin q1 + k(q1 − q2) = 0
Jq̈2 − k(q1 − q2) = u

(27)

In an analogous way we derive, using the ith equation of Eq.
where q1 is the angle of the link, q2 is the angle of the motor(17)
shaft, and u is the torque applied to the motor shaft. The
flexibility is modeled via a torsional spring with constant k,Si+1(x) = L f Si(x), i = 1, . . . , n − 1 (21)

m is the mass of the link, and l is the distance from the motor0 = LgSi(x), i = 1, . . . , n − 1 (22)
shaft to the center of mass of the link. J and I are the mo-
menta of inertia of motor and link, respectively. With x �If we introduce the Lie bracket of two vector fields g1 and g2
(q1, q̇1, q2, q̇2) we obtain a system of the form Eq. (14) withon �n denoted by [g1, g2] as

[g1, g2](x) = ∂g2

∂x
(x)g1(x) − ∂g1

∂x
(x)g2(x) (23)

then it follows that the function S1(x) should satisfy S1(x0) �
0 and the n � 1 conditions

LgS1(x) = L[ f,g]S1(x) = L[ f,[ f,g]]S1(x) = L[ f,... ,[ f,g]... ]S1(x) = 0
(24)

In other words, if the local feedback linearization problem is
solvable, then there exists a nontrivial function S1(x) that sat-

f (x) =




x2

−mgl sin x1 − k
I
(x1 − x3)

x4
k
J

(x1 − x3)




g(x) =




0
0
0

1/J




(28)

isfies the n � 1 partial differential equations [Eq. (24)]. The
functions � and � in the feedback [Eq. (15)] are given as fol- One may verify that conditions (1) and (2) for feedback linear-
lows. Since ization are fulfilled about the equilibrium x0 � 0. In order to

find the linearizing coordinate change [Eq. (16)] and feedbackżn = f (x)Sn(x) + LgSn(x)u = v (25)
[Eq. (15)], we first solve Eq. (24). Using Eq. (28), this set of
partial differential equations reads aswe obtain from Eq. (15)

α(x) = −(LgSn(x))−1L f Sn(x), β(x) = (LgSn(x))−1 (26) ∂S1(x)

∂x2
= ∂S1(x)

∂x3
= ∂S1(x)

∂x4
= 0

In general one may not expect that a nontrivial function
having as a (nonunique) nontrivial solutionS1(x) exists that fulfills Eq. (24). Writing the iterated Lie

brackets of the vector fields f and g as adk
f g � [f , adk�1

f g], k �
z1 = S1(x) = x1 (29)1, 2, . . ., with ad0

f g � g, one can derive the following neces-
sary and sufficient conditions for the existence of S1(x) (see,

which via Eq. (21) impliesfor example, Refs. 13 and 14).

Theorem 1. Consider the system [Eq. (14)] about an equilib- z2 = S2(x) = L f S1(x) = x2 (30)

rium point x0. The local feedback linearization problem is
solvable about x0 if and only if z3 = S3(x) = L f S2(x) = −mgl

I
sin x1 − k

I
(x1 − x3) (31)

1. The vector fields adi
fgi � 0, . . ., n � 1 are linearly inde-

pendent.
z4 = S4(x) = L f S3(x) = −mgl

I
x2 cos x1 − k

I
(x2 − x4) (32)
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Finally using Eq. (26) we find the linearizing feedback Eq. In order to better understand the passivity concept we should
(15) as think of a system like a black box which transforms some

input into some output. More precisely, we say that a system
with input u and output y defines a passive operator u � y if
the following energy balance equation is verified:

β(x) = (LgS4(x))−1 = IJ
k

α(x) = (LgS4(x))−1L f S4(x)

= IJ
k

[
mgl

I
sin x1

(
x2

2 + mgl
I

cos x1 + k
I

)

+k
I
(x1 − x3)

(
k
I

+ k
J

+ mgl
J

cos x1

)]

As a matter of fact, the above derivations are globally defined,
and in addition Eqs. (29)–(32) have a physical interpretation.

H(T ) − H(0) +
∫ T

0
δi‖u(t)‖2dt︸ ︷︷ ︸

stored energy

+
∫ T

0
δo‖y(t)‖2dt︸ ︷︷ ︸
dissipated

=
∫ T

0
u(t)y(t)dt︸ ︷︷ ︸
supplied

(35)

In a similar way, the feedback linearization problem may where H(T) is the total energy of the system at time instant
be stated and solved for multivariable nonlinear systems but T. Expressed in words, the energy balance equation (35) es-
it is beyond the scope of this article to go further into this tablishes that one cannot pull more energy out of a passive
topic; interested readers are referred to Refs. 13 and 14. How- system than the energy which was fed in. To illustrate this
ever, let us mention a simple example: the computed torque simple idea, consider an ordinary RLC (with all elements con-
controller for rigid joint robot manipulators (EL systems), nected in series) network: In this case, y �

� i is the current
whose dynamical model is running through the resistor, while u �

� v is the input voltage.
Hence, if we look at Eq. (35), the term �T

0 �i�u(t)�2 dt corre-D(qp)q̈p + C(qp, q̇p)q̇p + g(qp) = u (33)
sponds to the (electrical) potential energy stored in the capaci-
tor, while the term �T

0 �o�y(t)�2 dt corresponds to the (electrical)where qp � �n is the vector of link positions (generalized posi-
potential energy dissipated in the resistor (considering R �tion coordinates), D(qp) � D�(qp) � 0 is the inertia matrix,
�o). The energy stored in the inductance corresponds to theC(qp, q̇p) is the Coriolis and centrifugal forces matrix, g(qp) is
(magnetic) kinetic energy which has been considered in thethe gravitational vector, and u � �n is the vector of control
terms H(T) � H(0).torques.

The stored energy in the capacitor plus the term H(T) isThe tracking control problem for system [Eq. (33)] is to
called available storage and since H(0) � 0, it satisfiesmake the link position qp follow a desired trajectory yd(t) �

qpd(t). The computed torque controller is a feedback lineariza-
tion approach which, since it was proposed in Ref. 6, has be-
come very popular. The control law is given by

H(T ) +
∫ T

0
δi‖v(t)‖2 dt <

∫ T

0
v(t)i(t)dt −

∫ T

0
δo‖i(t)‖2 dt

u = D(qp)v + C(qp, q̇p)q̇p + g(qp) (34) that is, we can recover less energy than what was fed to the
circuit. Formally, the definition of passivity we will use is thewhere v is a ‘‘new’’ input to be defined. It is easy to see that
following (4):by substituting Eq. (34) in Eq. (33) we obtain the linear

closed-loop dynamics q̈p � v; then in order to solve the
Definition 1. Let T � 0 be any. A system with input u �tracking problem for Eq. (33) we choose v � �Kp(qp � qpd) �
L n

2e and output y � L n
2e defines a passive operator � : u � y ifKd(q̇p � q̇pd) � q̈pd and we obtain that the closed loop is glob-

there exists a � � � such thatally exponentially stable for any positive definite matrices of
Kp and Kd.

Note that in this simple example, the feedback lineariza-
tion—which is global—does not require any change of coordi-

∫ T

0
u(t)Ty(t) dt ≥ β (36)

nates like Eq. (17). On the other hand, one may verify that
The operator � is output strictly passive (OSP) if moreover,system [Eq. (33)] does fulfill multivariable conditions similar
there exists �o � 0 such thatto those given in Theorem 1 that guarantee the feedback lin-

earizability.
Except from several more recent modifications of the com-

puted torque controller (see Ref. 17 and references therein)

∫ T

0
u(t)Ty(t) dt ≥ δo

∫ T

0
‖y(t)‖2 dt + β (37)

the computed torque controller [Eq. (34)] requires full state
feedback in order to obtain a linear closed-loop system; and Finally, � is said to be input strictly passive (ISP) if there
in fact, output feedback will never lead to linear dynamics in exists �i � 0 such that
closed loop. It is therefore attractive to investigate alternative
tracking strategies. ∫ T

0
u(t)Ty(t) dt ≥ δi

∫ T

0
‖u(t)‖2 dt + β (38)

PASSIVITY-BASED CONTROL

The Passivity Concept It should be noted that mainly every physical system has
some passivity property; this has motivated researchers toAs we mentioned in the introduction, the physical interpreta-

tion of the passivity concept is related to the system’s energy. use passivity-based control, that is, to exploit the passivity
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properties of the plant in order to achieve the control task by where the entries of the matrix C(q, q̇) are called the ‘‘Coriolis
and centrifugal forces’’; the kjth entry ispreserving the passivity in closed loop. The literature on pas-

sive systems is very diverse. We will illustrate this technique
on a class of passive systems, the Euler–Lagrange systems.
It is worth remarking that the robot manipulators belong to

Ck j (q, q̇) �

n∑
i

ci jk(q)q̇i (46)

this class.

The Lagrangian Formulation
ci jk(q) �

1
2

(
∂Dik(q)

∂qj
+ ∂Djk(q)

∂qi
− ∂Di j (q)

∂qk

)
(47)

Euler–Lagrange (EL) systems can be characterized by the EL
With these definitions of matrices D(q) and C(q, q̇) the follow-parameters
ing properties hold:

{T(q, q̇,V (q), F (q̇)} (39)
P1. The matrix D(q) is positive definite, and the matrix

N(q, q̇) � Ḋ(q) � 2C(q, q̇) is skew symmetric, that is,where q � �n are the generalized coordinates and n corre-
N � �N�. Moreover, there exist some positive con-sponds to the number of degrees of freedom of the system.
stants dm and dM such thatWe focus our attention on fully actuated EL systems—that is,

systems for which there is a control input available for each
dmI < D(q) < dMI (48)generalized coordinate. Moreover, we assume that the kinetic

energy function is of the form
P2. The matrix C(x, y) is bounded in x. Moreover, it is easy

to see from Eq. (46) that C(x, y) is linear in y, then for
all z � �nT(q, q̇) = 1

2
q̇TD(q)q̇ (40)

where the inertia matrix D(q) satisfies D(q) � D�(q) � 0. C(x, y)z = C(x, z)y (49)

Next, V(q) represents the potential energy which is assumed ‖C(x, y)‖ ≤ kc‖y‖, kc > 0 (50)
to be bounded from below; that is, there exists a c � � such
that V(q) � c for all q � �n, and F (q̇) � ��q̇�Rq̇ with R � Furthermore we will focus our attention on those systems for
R� � 0 is the Rayleigh’s dissipation function. which the following additional property on the potential en-

EL systems are defined by the EL equations ergy holds:

P3. There exists some positive constants kg and kv such
d
dt

(
∂L (q, q̇)

∂q̇

)
− ∂L (q, q̇)

∂q
= Q (41)

that

where L (q, q̇) �
� T(q, q̇) � V(q) is the Lagrangian function.

We assume that the external forces, Q � �n, are composed kg ≥ sup
q∈Rn

∥∥∥∥∂2V (q)

∂q2

∥∥∥∥ , ∀q ∈ Rn (51)
only of potential forces (derived from a time-invariant poten-
tial V(q)) u � �n and dissipative forces ��F (q̇)/�q̇, hence

kv ≥ sup
q∈Rn

∥∥∥∥∂V (q)

∂q

∥∥∥∥ , ∀q ∈ Rn (52)

It is well known (7) that EL systems have some nice energy
Q = u − ∂F (q̇)

∂q̇
(42)

dissipation properties:
At this point, we find it convenient to partition the vector q
as q �

� col[qp qc] where we call qp the undamped coordinates Proposition 1. (Passivity). An EL system defines a passive
and call qc the damped ones. With this notation we can distin- operator from the inputs u to the actuated generalized veloci-
guish two classes of systems: An EL system with parameters ties q̇, with storage function, the total energy function. More-
[Eq. (39)] is said to be a fully damped EL system if (� � 0) over, it is output strictly passive if there is a suitable dissipa-

tion—that is, if q̇�(�F (q̇)/�q̇) � �o�q̇�2 for some �o � 0.
q̇T ∂F (q̇)

∂q̇
≥ α‖q̇‖2 (43)

Below, we present other properties of EL systems which
are related to the stability in the sense of Lyapunov. For the

An EL system is underdamped if sake of clarity, we distinguish two classes of EL systems, fully
damped and underdamped systems.

The proposition below establishes conditions for internal
stability of fully damped EL systems. After Joseph L. La

q̇T ∂F (q̇)

∂q̇
≥ α‖q̇c‖2 (44)

Grange, the equilibria of a mechanical system correspond to
It is also well known (18) that the Lagrangian equations [Eq. the minima of the potential energy function (see Ref. 19 for a
(41)] can be written in the equivalent form [note that Eq. (45) definition). Inspired by this well-known fact, we can further
is exactly the same as Eq. (33) with Raleigh dissipation zero] establish the following:

Proposition 2. (GAS with full damping). The equilibria of a
fully damped free EL system (i.e., with u � 0) are (q, q̇) �

D(q)q̈ + C(q, q̇)q̇ + g(q) + ∂F (q̇)

∂q̇
= u (45)
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(q, 0), where q is the solution of ties of Lagrangian systems described in previous sections, it
becomes natural to consider El controllers (22) with general-
ized coordinates qc � �nc and EL parameters �Tc(qc, q̇c), Vc(qc,
qp), F c(q̇c)�. That is, the controller is a Lagrangian system with

∂V (q)

∂q
= 0 (53)

dynamics

The equilibrium is unique and stable if it is a global and
unique minimum of the potential energy function V(q) and V
is proper (4). Furthermore, this equilibrium is globally as-
ymptotically (GAS) stable if the map defined by the Rayleigh

Dc(qc)q̈c + Ḋc(qc)q̇c − ∂Tc(qc, q̇c)

∂qc
+ ∂Vc(qc, qp)

∂qc
+ ∂Fc(q̇c)

∂q̇c
= 0

(54)
dissipation function is input strictly passive.

Note that the potential energy of the controller depends on
the measurable output qp, and therefore qp enters into theAs far as we know, the first article which establishes suffi-
controller via the term �Vc(qc, qp)/�qc. On the other hand, thecient conditions for asymptotic stability of underdamped La-
feedback interconnection between plant and controller is es-grangian systems is more than 35 years old (20). In the propo-
tablished bysition below we show that global asymptotic stability of a

unique equilibrium point can still be ensured even when en-
ergy is not dissipated ‘‘in all directions,’’ provided that the
inertia matrix D(q) has a certain block diagonal structure and

u = −∂Vc(qc, qp)

∂qp
(55)

the dissipation is suitably propagated.

then the closed-loop system is Lagrangian and its behavior is
Proposition 3. (GAS with partial damping). The equilib- characterized by EL parameters �T(q, q̇), V(q), F (q̇)�, where
rium (q̇, q) � (0, q) of a free (u � 0) underdamped EL system
is GAS if the potential energy function is proper and has a
global and unique minimum at q � q, and if

T(q, q̇) � Tp(qp, q̇p) + Tc(qc, q̇c),

V (q) �Vp(qp) + Vc(qc, qp),

F (q̇) � Fp(q̇p) + Fc(q̇c)

The resulting feedback system is the feedback interconnection
of the operator �p : up � qp, defined by the dynamic equation
[Eq. (33)] and the operator �c : qp � up, defined by Eqs. (54)
and (55).

Note that the EL closed-loop system is damped only

1. D(q) �

[
Dp(qp) 0

0 Dc(qc)

]
, where Dc(qc) ∈ Rnc ×nc .

2. q̇T ∂F (q̇)

∂q̇
≥ α‖q̇c‖2 for some α > 0.

3. For each qc, the function
∂V (q)

∂qc
= 0 has only isolated

zeros in qp. through the controller coordinates qc. From the results pre-
sented in section entitled ‘‘The Lagrangian Formulation’’ we
see that to attain the GAS objective, V(q) must have a global

Condition (2) establishes that enough damping is present and unique minimum at the desired equilibrium, q � qd, and
in the coordinates qc while the other two conditions help to F (q̇) must satisfy Eq. (44). These conditions are summarized
guarantee that the energy dissipation suitably propagates in the proposition below whose proof follows trivially from
from the damped coordinates to the undamped ones. Hence, Proposition 3.
one can think of an underdamped EL system as the intercon-
nection of two EL systems. As a matter of fact the feedback Proposition 4. (Output feedback stabilization) (22).
interconnection of two EL systems yields an EL system. Consider an EL plant (33) where u � �m, m � n, with EL

parameters �Tp(qp, q̇p), Vp(qp), F p(q̇p)�. An EL controller (54),
Output-Feedback Set-Point Control (55) with EL parameters �Tc(qc, q̇c), Vc(qc, qp), F c(q̇c)�, where

In this section we illustrate the passivity-based control ap-
proach by addressing the position-feedback set-point control
problem of EL systems. The results we will present are based

q̇T
c
∂Fc(q̇c)

∂q̇c
≥ α‖q̇c‖2

on the so-called energy shaping plus damping injection meth-
odology. Launched in the seminal paper (21), this methodol- for some � � 0, solves the global output feedback stabilization
ogy aims at shaping the potential energy of the plant via a problem if
passive controller in such a way that the ‘‘new’’ energy func-
tion has a global and unique minimum at the desired equilib-

1. (Dissipation propagation) For each trajectory such thatrium. It is worth remarking that this methodology was origi-
qc � const and �Vc(qc, qp)/�qc � 0, we have that qp �nally proposed in the context of robot control; however, it has
const.been proved useful in the solution of other control problems

2. (Energy shaping) �V(q)/�q � 0 admits a constant solu-as it will be clear from this section. Also, it shall be noticed
tion q such that qpd � [Inp

� 0]q, and q � q is a globalthat the passivity property of robot manipulators was first
and unique minimum of V(q), and V is proper. For in-pointed out in Ref. 7.
stance, this is the case if �2V(q)/�q2 � In	 � 0, 	 � 0 
 qMotivated by the energy shaping plus damping injection

technique of Takegaki and Arimoto, as well as by the proper- � �n.
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A simple example of EL controllers is the dirty derivatives stability. As far as we know, the first nonlinear PID controller
is due to Ref. 24 [even though Kelly (24) presented his resultfilter, widely used in practical applications:
as an ‘‘adaptive’’ controller, in the sequel it will become clear
why we use the ‘‘PID’’ qualifier] which was inspired upon theq̇c = −A(qc + Bqp) (56)
results of Tomei (25). In order to motivate the nonlinear PID

ϑ = (qc + Bqp) (57)
of Ref. 24, let us first treat in more detail the PD-like adaptive
control law of Tomei

where A, B are diagonal positive definite matrices. With an
obvious abuse of notation this system lies in the EL class and

u = −Kpq̃p − Kd
˙̃qp + �(qp)θ̂ (60)has the EL parameters:

together with the update law
Tc(qc, q̇c) = 0, Fc(q̇c) = 1

2
q̇T

cB
−1A−1q̇c

Vc(qc, qp) = 1
2

(qc + Bqp)TB−1(qc + Bqp) ˙̂
θ = −�(qp)T

[
γ ˙̃qp + 2 ˙̃qp

1 + 2‖q̃p‖2

]
(61)

The controller above injects the necessary damping to achieve
where � is a suitably defined positive constant. Tomei (25)asymptotic stability and its action has the following nice pas-
proved that under this adaptive control law, the position errorsivity interpretation. First, we recall that the EL plant Eq.
is globally asymptotically convergent. The normalization used(41) defines a passive operator u � �q̇p. On the other hand,
in Eq. (61), probably first introduced by Koditschek (26), helpsthe controller Eq. (54) defines a passive operator q̇p � �Vc(qp,
in guaranteeing the globality, in the un-normalized case beingqc)/�qp. These properties follow, of course, from the passivity
only semiglobally convergent.of EL systems established in Proposition 1. It suffices then to

Note that the result of Tomei is based on a PD plus gravitychoose u as in Eq. (55) to render the closed-loop passive.
cancellation; since the gravity vector is not well known, an
adaptive update law must be used. Let us consider that in-
stead of cancelling the gravity term, we compensate it at the

CONTROL UNDER MODEL AND desired position, then we will be aiming at estimating the con-
PARAMETER UNCERTAINTIES stant vector �(qpd)�̂. More precisely, consider the control law

(24)
In all the results presented above, we assumed that we had
accurate knowledge about the system’s model and its parame- u = −K ′

Pq̃p − KD
˙̃qp + �(qpd)θ̂ (62)

ters; however, this rarely happens to be the case in practical
applications. It is of interest then to use techniques such as

together with the update lawrobust and/or PID control.

PID Control ˙̃
θ = ˙̂

θ = − 1
γ

�(qpd)T

[
q̇p + εq̃p

1 + ‖q̃p‖
]

(63)

PID control was originally formulated by Nicholas Minorsky
in 1922; since then it has become one of the most applied

where 	 � 0 is a small constant. Kelly (24) proved that thiscontrol techniques in practical applications. In the western
‘‘adaptive’’ controller in closed loop with Eq. (33) results in aliterature, the first theoretical stability proof of a PID in
globally convergent system. As a matter of fact, since the re-closed loop with a robot manipulator is due to Ref. 23. We
gressor vector �(qpd) is constant, the update law [Eq. (63)],reformulate below the original contribution of the authors.
together with the control input [Eq. (62)], can be implemented
as a nonlinear PID controller by integrating out the velocities

Proposition 5. Consider the dynamic model [Eq. (33)] in vector from Eq. (63):
closed loop with the PID control law

u = −KPq̃p − KDq̇p + ν (58) θ̂ = − 1
γ

�(qpd)T

[
q̃p +

∫ t

0
ε

q̃p

1 + ‖q̃p‖ dt
]

+ θ̂ (0)

ν̇ = −KIq̃pν(0) = ν0 ∈ Rn (59)

Note that the choice KP � KP � KI, with KI � 1/� �(qpd)
Then, if KP � kgI and KI is sufficiently small, the closed loop �(qpd)�, yields the controller implementation
is asymptotically stable.

u = −KPq̃p − KDq̇p + ν (64)
The proposition above establishes only local asymptotic

stability. By looking at the proof (see Ref. 23) of the above
result we see that what hampers the global asymptotic stabil-

ν̇ = −εKI
q̃p

1 + ‖q̃p‖ , ν(0) = ν0 ∈ Rn (65)

ity is the quadratic terms in q̇p contained in the Coriolis ma-
trix. This motivates us to wonder about the potential of a lin- Following Ref. 24, one can prove global asymptotic stability

of the closed-loop system [Eqs. (33), (64), (65)]. An alternativeear controller designed for a nonlinear plant.
As a matter of fact, with some smart modifications one can trick to achieve GAS is the scheme of Arimoto (27), who pro-

posed the following nonlinear PID:design nonlinear PIDs which guarantee global asymptotic
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Proposition 6. Consider the dynamic model [Eq. (33)] in also qp besides q̇p, at the output. This can be accomplished
with a storage function that includes cross terms. Very re-closed loop with the PID control law
cently, Ref. 27 showed, by using a saturation function sat( � ),
that the nonlinear PID (66) can be regarded as the feedbacku = −KPq̃p − KDq̇p + ν (66)
interconnection of two passive operators �1 : �z � 	 sat(q̃p) �ν̇ = −KI sat(q̃p), ν(0) = ν0 ∈ Rn (67)
q̇p and �2 : �	 sat(q̃p) � q̇p � z; hence the closed loop system
is also passive. The same can be proven for the normalizedThen, if KP � kgI and if KI is sufficiently small, the closed loop
scheme of Kelly [Eqs. (64) and (65)]. As a matter of fact it canis asymptotically stable.
be proven that �1 is OSP (17).

Instrumental in proving OSP for �1 is the use of either aIt is clear from the proof (see Ref. 27) that the use of a
normalization or a saturation function; unfortunately in thesaturation function in the integrator helps to render the sys-
case of the PI2D controller, these ‘‘tricks’’ do not lead us totem globally asymptotically stable, just as the normalization
OSP actually, and the output strict passifiability property wedid in Tomei’s and Kelly’s schemes.
can establish is only local. That is, the property holds only forIn the sequel we assume that velocities are not available
inputs that restrict the operator’s output to remain within afor measurement. In general it is a difficult problem to design
compact subset (29). Nonetheless, this compact subset can beadaptive output feedback controllers for nonlinear systems
arbitrarily enlarged with high gains, and this explains theand achieve global convergence. The result we present below
semiglobal—instead of global—nature of this result.is inspired by the work of Kelly and the key observation that

when compensating with the (unknown) gravity vector evalu-
Robust Controlated at the desired position, one can simply integrate the ve-

locities out of the update law. We have assumed so far that even though the plant’s model
is known, some uncertainties over the parameters exist. Nev-

Proposition 7. Consider the dynamic model of the EL plant ertheless, in some applications it may happen that we have
Eq. (33) in closed loop with the PI2D control law only a very rough idea of the plants model. For instance, some

lightweight robot manipulators with direct-drive motors pres-
u = −KPq̃p − KDϑ + ν (68) ent highly nonlinear and coupled dynamics for which a model

is not known. It is good to know that, at least for a certainν̇ = −KI (q̃p − ϑ), ν(0) = ν0 ∈ Rn (69)
class of EL plants, still a high-gain PD control can be used,

q̇c = −A(qc + Bqp) (70) leading to some robustness satisfactory results. In particular,
for the EL plant model we haveϑ = qc + Bqp (71)

Let KP, KI, KD, A �
� diag�ai�, and B �

� diag�bi� be positive defi- D(qp)q̈p + C(qp, q̇p)q̇p + g(qp) + F(q̇p) + T = u (74)
nite diagonal matrices with

where F(q̇p) is the vector of frictional torques which satisfies
�F(q̇p)� � kf1

� kf2
�q̇p� for all q̇p and T is the vector of load

disturbances which is bounded as �T� � kt; we have the follow-
B >

4dM

dm
I (72)

ing result (30):
KP > (4kg + 1)I (73)

Proposition 8. Consider the EL plant [Eq. (74)], let e �where kg is defined by Eq. (49), and define x �
� col[q̃p, q̇p, �,

qp � qpd be the position error, and let ê an estimate of it. Con-
� � g(qpd)]. Then, given any (possibly arbitrarily large) initial

sider the control lawcondition �x(0)�, there exist controller gains that ensure
limt�� �x(t)� � 0.

u = −Kd
˙̂e − Kpê (75)

In Ref. 28, precise bounds for the controller gains are ˙̂e = w + Ld(e − ê) (76)
given, depending on bounds on the plant’s parameters.

Note that the PI2D controller is linear and, as in the case ẇ = Lp(e − ê) (77)
of a conventional PID scheme, it only establishes semiglobal
asymptotic stability. The technical limitation is the high non- Then for any set of bounded initial conditions (t0, x(t0)) we can

always find sufficiently large gains Kp, Kd, Lp, and Ld suchlinearities in the Coriolis matrix. See Ref. 28 for details.
In the sequel we give an interpretation of the nonlinear that the trivial solution of the closed-loop system: x(t) �

�

col[e, ė, ê, ė̂ � 0 is uniformly ultimately bounded. That is, forPID controllers above, as well as the PI2D scheme, from the
passivity point of view, or more precisely passifiability—that every bounded initial conditions (t0; x(t0)) there exist a finite

constant � � 0 and a time instant t1(�, �x(t0)�) such thatis, the possibility of rendering a system passive via feedback.
From Proposition 1 we know that the plant’s total energy

function T(qp, q̇p) � V(qp) qualifies as a storage function for ‖x(t)‖ ≤ η, ∀t ≥ t0 + t1

the supply rate w(u, q̇) � u�q̇p. From this property, output
Moreover, in the limit case, when Lp, Ld � � the origin isstrict passifiability of the map u � q̇p follows taking u � �
asymptotically stable.KDq̇p � u1, with u1 an input which shapes the potential

energy.
Other applications, including the present study of PI con- A particular case of the result above is presented in Ref.

31 where velocity measurements are used. Like in Ref. 31 thetrollers, require a passifiability property of a map including
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uniform ultimate boundedness result of Proposition 8 is of lo- in closed loop with Eq. (78) is GAS. Now, let us suppose that
only x2 and x3 are measurable. In this particular case, a non-cal nature because the controller gains depend on the initial

conditions x(t0); nevertheless, it is important to remark that linear observer for x1 can be easily designed using the Lyapu-
nov control approach (4). Motivated by the control law Eq.the Proposition states that ‘‘for any set of finite initial condi-

tions there always exist control gains . . .’’; that is, the result (81), consider the control law u �
� u(x2, x3, x̂1):

is semiglobal.
However, even without the knowledge of bounds over the u = −x3(x̂1 − b) − c − k1x̂1 − k2x2 − k3x3 (82)

plant’s parameters, the closed loop system can be made uni-
where x̂1 is the estimate of x1. Consider the functionformly ultimately bounded by selecting the control gains suf-

ficiently large. Hence there is no need to quantify these
bounds a priori. V (x, x̂1) = 1

2

[
x2

1 + x2
2 + x2

3 + x̂2
1

]+ εx2(x3 − x1) (83)
It is also important to remark that the linear control

scheme [Eq. (75)–(77)] allows quick response in an online im-
where x̃1 � x1 � x̂1 is the estimation error and 	 � 0 is suffi-plementation, due to its simplicity. Since this control scheme
ciently small to ensure that V(x) is positive definite and radi-completely ignores the system dynamics, however, the condi-
ally unbounded. Then, let V(x) be a Lyapunov function candi-tions of Proposition 8 (see [30] for details) may require that
date for system Eq. (78) in closed loop with the control lawKd and Ld be large to obtain an acceptable tracking perfor-
Eq. (82). We proceed now with the design of a reduced ob-mance. Such high gain implementations are not always desir-
server ẋ̂1 � f (x2, x3, x̂1). First, evaluating the time derivativeable in practical applications. For this reason it may be
of V(x, x̂1) along the trajectories of the closed loop Eqs. (78),profitable to add model-based compensation terms to the con-
(82) we get after some boundingtrol input, when available. See, for instance, Ref. 17 and refer-

ences therein. V̇ (x, x̂1) ≤ −γ1x2
1 − γ2x2

2 − γ2x2
3 + (x3 + εx2)(k1 + x3)x̃1 + x̃1

˙̃x1

where �1, �2, and �3 are positive constants. Hence, by settingTHIRD-ORDER FEEDBACK LINEARIZABLE SYSTEMS

˙̃x1 = −(x3 + εx2)(k1 + x3)So far we considered n coupled second-order (fully actuated
EL) systems to illustrate different control design methods for

the Lyapunov function becomes negative semidefinite. A sim-nonlinear systems. Even though the class of EL plants in-
ple analysis using the Krasovskii–LaSalle’s invariance princi-cludes a large number of physical systems it is interesting to
ple shows that the closed-loop system is GAS. Note, moreover,investigate output feedback control of higher-order systems.
that the observer can be implemented asAs a matter of fact, the topic of output feedback control of

nonlinear systems is one of the most studied in the literature ˙̂x1 = (x3 + εx2)(k1 + x3) − (x2 + x3)and very few particular results exist guaranteeing global as-
ymptotic stability; see, for example, a recent study of the sem-

without measurement of x1.iglobal problem (11).
In the case when more variables are unmeasurable, oneIn this section we illustrate this problem by addressing the

may think that a similar procedure leads to the design of anpartial state feedback control of a complex system, the so-
observer for the unavailable variables. Unfortunately, thiscalled Rössler system (see, for instance, Ref. 32)
seems not the case when only x2 or x3 are considered available
for measurement. Moreover, the lack of a physical interpreta-ẋ1 = −(x2 + x3) (78)
tion for the Rössler system makes this task more difficult.

ẋ2 = x1 + ax2 (79) The lesson one can take from this illustrative example is that
observer-based schemes become complicated even if the sys-ẋ3 = x3(x1 − b) + c + u (80)
tem itself is feedback-linearizable. The lack of (physical) pas-
sivity properties hampers the use of passivity-based control.where a, b, and c are positive constants. It can be seen from

simulations that the trajectories of this system have a chaotic
behavior, for instance if a � 0.2, b � 5, and c � 0.2. A behav- CONCLUSION
ior is chaotic if it has a sensitive dependence on initial condi-
tions. By this, we mean that the difference between two solu- We have briefly illustrated different control design methods
tions of a differential equation with a slight difference in the for nonlinear systems. We derived necessary and sufficient
initial conditions grows exponentially (32). conditions to solve the local feedback linearization problem

The motivation to consider the Rössler system is to investi- and illustrated this approach on the flexible joints robots case.
gate to what extent the techniques used for second-order sys- We focused our attention into a special class of second-or-
tems can be successfully used for third-order feedback linear- der systems, the EL systems. However, the Lagrangian for-
izable systems. mulation applies to all fields in which variational principles

Note for the Rössler system that if the whole state is sup- can be used to model the plant in question; hence this class
posed to be measured, then it is easy to see that there exist includes a wide number of physical systems such as robot ma-
positive gains k1, k2, and k3 such that the feedback linearizing nipulators.
control law We saw that the EL class has some nice energy properties

which can be exploited by using passivity-based control. The
u = −x3(x1 − b) − c − k1x1 − k2x2 − k3x3 (81) goal of this methodology is to design a controller and a dy-
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