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Table 1. List of Manufacturers

AAI Corporation Murphy Software
P.O. Box 126 Company
Hunt Valley, MD 21030-0126 1000 Town Center, Suite
Tel: 800-655-2616 1950
Fax: 410-628-8616 Southfield, MI 48075

Tel: 248-351-0900
Cape Software, Inc.

Fax: 248-351-0906
333-T N. Sam Houston Parkway, E.
Houston, TX 77060-2403 ProModel Corporation
Tel: 281-448-5177 1875-T S. State Street,
Fax: 281-448-2607 Suite 3400

Orem, UT 84097-8075Design Technology Corporation
Tel: 801-223-46005 Suburban Park Drive
Fax: 801-226-6046Billerica (Boston), MA 01821

Tel: 508-663-7000 Scientific and Engineering
Fax: 508-663-6841 Software

4301-T Westbank DriveMicroMath Research Ltd.
Austin, TX 78746-6546P.O. Box 71550
Tel: 512-328-5544Salt Lake City, UT 84171-0550
Fax: 512-327-6646Tel: 801-483-2949

Fax: 801-483-3025
Wolfram Research, Inc.

Mitech Corporation 100-T Trade Center Drive,
43-T Nagog Park Suite 600
Acton, MA 01720 Champaign, IL 61820-4853
Tel: 978-263-7999 Tel: 217-398-0700
Fax: 978-263-8081 Fax: 217-398-0747

general control systems. It is a graphical method that relates
the stability of a closed-loop system to the open-loop fre-
quency response and the locations of poles and zeros. The Ny-
quist diagram method was found to be very useful in the de-
sign of linear feedback systems of all types. An important
application in World War II was the feedback control of di-
rection of guns that employed electromechanical feedback-
controlled servomechanisms. Before computers became
widespread, Nyquist diagrams were largely obtained by calcu-NYQUIST CRITERION, DIAGRAMS,
lations and hand-drawn graphics. But, today many companiesAND STABILITY
offer a diverse range of computer software for simulation,
analysis and design of control problems. Some of these manu-H. Nyquist (1889–1976), born in Sweden, is known for his
facturers are listed in Table 1. Popular software such ascontributions to telephone transmission problems in the
MATLAB, MATHCAD, and SIMULINK include control sys-1920s. He is also well known for his contributions in the sta-
tem tools.bility of feedback systems.

In design and stability analysis, the Nyquist method exhib-In 1927 H. S. Black invented the negative feedback ampli-
its distinct features. It provides the same information on thefier. Part of the output signal was returned to the amplifier’s
stability of a control system, as does the Routh–Hurwitz cri-input to reduce the total system gain. This resulted in a flat-
terion. In addition, the Nyquist method indicates the relativeter frequency response, a wider bandwidth, and a decrease in
stability or instability of the system. Properties of the fre-the nonlinear distortion, since improperly designed amplifiers
quency-domain plots of the loop transfer function G(s)H(s)were unstable, producing undesired results. In the late 1920s
provide an alternative approach to root locus, and give infor-and early 1930s, H. Nyquist and H. W. Bode, a colleague at
mation on the frequency-domain characteristics of the closed-the Bell Telephone Laboratories, developed a mathematical
loop system. One other major feature of the Nyquist methodanalysis for feedback amplifiers. Later developments evolved
is that it relates a closed-loop system to the transient re-into sinusoidal frequency analysis and design techniques ap-
sponse and steady-state errors.plied to feedback control systems. Although, at that time, the

stability criteria for vibrating mechanical systems already ex-
isted and had been applied to feedback systems, the idea of ENCIRCLEMENTS AND ENCLOSURES
algebraic problems on complex roots of polynomials were just
arising. The Nyquist criterion offered geometrical solutions Before embarking into the Nyquist stability criterion, the con-

cepts of encirclement and enclosures need to be established.and was much easier to apply to amplifiers.
Later, the Nyquist criterion was used to provide vital infor- These concepts are essential in the interpretation of the Ny-

quist plots and stability analysis.mation on stability essential in the analysis and design of
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By taking the absolute value of both sides of Eq. (1) yields

|c(t)| =
∣∣∣∣
∫ ∞

0
r(t − τ )g(τ ) dτ

∣∣∣∣ (2)

or

|c(t)| ≤
∫ ∞

0
|r(t − τ )||g(τ )| dτ (3)
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Figure 1. Encirclements and enclosures of points by contours. Let the input r(t) be bounded by a finite positive number R
such that

In a complex plane, a point is said to be encircled by a |r(t)| ≤ R (4)
closed path if it lies inside the path. If the closed path has a
direction assigned for being in a clockwise or counterclockwise Thus, Eq. (2) becomes
direction, then the region inside the path is considered to be
encircled in that prescribed direction.

A point or a region is said to be enclosed by a path if it is |c(t)| ≤ R
∫ ∞

0
|g(τ )| dτ (5)

encircled in the counterclockwise direction. Alternatively, the
point or region is enclosed if it lies on the left of the path If c(t) is also to be bounded by a positive finite number C,
when the path is traversed in any prescribed direction. The with
second definition is more useful in situations where only some
portion of the closed path is drawn. |c(t)| ≤ C < ∞ (6)

As an example, consider the two cases illustrated in Fig.
1. In accordance with the foregoing definitions, the contour then
�1 encircles the point A twice. The point B is encircled only
once, whereas points C and D are not encircled at all by �1.
As the contour �1 traverses in the counterclockwise direction, R

∫ ∞

0
|g(τ )| dτ ≤ C < ∞ (7)

the points A and B lie on the left side; therefore, they are
both enclosed, and the points C and D are not enclosed. The Dividing Eq. (7) through by R and letting C/R equal to Q, a
contour �2 encircles only the point D in the clockwise direc- positive finite number, results in
tion. Interestingly enough, the contour �2 does not enclose the
point D, but it encloses other points A, B, and C. A path � can
encircle a point N number of times, and the magnitude of N

∫ ∞

0
|g(τ )| dτ ≤ Q < ∞ (8)

can be determined by drawing a phasor from the point to an
arbitrary point s1 along the path �, as illustrated for point A For Eq. (8) to hold, the integral of the absolute value of g(t)
in the contour �1. The point s1 is traversed along � until it must be finite.
returns to its starting position. The net number of revolutions The Laplace transform may be used to show the relation-
traversed by the phasor is N and the total angle traced is ship between the roots of the characteristic equation and Eq.
2�N radians. (8). For g(t)

STABILITY CONDITIONS L[g(t)] =
∫ ∞

0
g(t)e−st dt = G(s) (9)

The stability of linear time-invariant systems depends upon
Where s is a complex number having real and imaginary com-the roots of the characteristic equation on the s-plane. In con-
ponents on the s-plane as s � � � j�. Taking the absolutetrast to root locus plots, the Nyquist criterion does not give
value on both sides of the equation yieldsthe exact locations of the roots of the characteristic equation

but indicates the locations of the roots with respect to the left
or the right half of the s-plane.

In many control systems, the relations of the bounded-in-
|G(s)| =

∣∣∣∣
∫ ∞

0
g(t)e−st dt

∣∣∣∣ ≤
∫ ∞

0
|g(t)‖e−st | dt (10)

puts to the bounded-outputs (BIBO) define the stability. The
But sincedefinition states that if bounded inputs yield to bounded out-

puts, then the system is considered stable. The BIBO rela- |e−st | = |e−σ t | (11)tionship can also be related to the roots of the characteristic
equation as shown next.

Let’s take a linear time-invariant system, as illustrated in
Fig. 2, with r(t) as the input, c(t) as the output, and g(t) as r(t) c(t)

g(t)
the impulse response. The convolution integral relating the
function r(t), c(t), and g(t) is given by Figure 2. Block diagram representation of a linear time invariant

system. The relation between input and output is given by the im-
pulse response transfer function g(t). The g(t) may be a simple gain
or a complex function involving derivatives and integrals.

c(t) =
∫ ∞

0
r(t − τ )g(τ ) dτ (1)
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substituting Eq. (11) into Eq. (10) gives

∞ ≤
∫ ∞

0
|g(t)‖e−σ t | dt (12)

Note that the imaginary part, j�, of the complex variable s
does not bear any importance in the proof leading to the BIBO
stability. All that is needed is the mathematical relation be-
tween real parts of the poles in the s-plane, that is whether
they lie in the right half or the left half of the complex plane.

If one or more roots of the characteristic equation lies in
the right half of the s-plane, or on the j�-axis if � is greater
than or equal to zero, then

Table 2. Calculation of Points for the Illustration of Mapping
for Contours in Fig. 3

�1 s � 1 � j s � 1 � j s � �1 � j s � �1 � j

F(s) �
7
5

� j
4
5

�
7
5

� j
4
5

�
7

13
� j

4
13

�
7

13
� j

4
13

�2 s � 5 � j s � 5 � j s � 3 � j s � 3 � j
F(s) 5 � j4 5 � j4 �3 � j4 �3 � j4

�3 s � �3 � j s � �3 � j s � �5 � j s � �5 � j

F(s) �
3

25
� j

4
25

�
3

25
� j

4
25

5
41

� j
4

41
5

41
� j

4
41

�4 s � 7 � 3j s � 7 � 3j s � �7 � 3j s � �7 � 3j

F(s)
7
3

� j
4
3

7
3

� j
4
3

21
65

� j
12
65

21
65

� j
12
65

|e−σ t | ≤ R = 1 (13)

Substitution of Eq. (13) into Eq. (12) yields
trarily chosen continuous closed path �s in the s-plane, then
the values of s in �s maps a new closed continuous path �F on
the complex F(s)-plane. Some examples of mapping are pre-∞ ≤

∫ ∞

0
R|g(t)| dt =

∫ ∞

0
|g(t)| dt (14)

sented in Table 2 and illustrated in Fig. 3. In Fig. 3, it can be
seen that for every closed contour on the s-plane there is aNote that Eq. (14) does not satisfy the BIBO relation because
corresponding contour on the F(s)-plane. If the contour �s tra-the equation is not bounded as in Eq. (8). Hence, to satisfy
verses in a selected direction say counterclockwise, Fig. 3the BIBO stability, the roots of the characteristic equation or
shows that the direction of traverse of �F can either be in thethe poles of G(s) must lie on the left side of the j�-axis. A
same or opposite direction depending on the number of polessystem is classified to be marginally stable if the first-order
and zeros of function F(s) located on contour �s. Lets expresspoles, poles of conjugate pairs, lie on the j�-axis. However,
F(s) in the following familiar form as seen in the control the-multiple-order poles or repeating conjugate pairs of poles rep-
oryresent an unstable system. In addition, a system is classified

as unstable if more than one pole exists at the origin.
Another definition that is worth mentioning and that helps

in the understanding of the Nyquist criterion is the steady-
state error. Steady-state error is the difference between the
input and the output as t � � for a given test input.

The steady state errors are generally described for three

F(s) =

Z∏
i=1

(s + zi)

P∏
k=1

(s + pk)

(15)

main types of test inputs: the step, the ramp, and the para-
By using the Lucas formula, F�(s)/F(s) can be written asbolic. Often, control systems are subjected to these inputs to

test their ability to give the required outputs. Usually, these
test inputs are in the form of electrical signals that have de-
fined waveforms. For example, the parabolic input has a con-

F ′(s)
F(s)

=
Z∑

i=1

1
(s + zi)

−
P∑

k=1

1
(s + pk)

(16)

stant second derivative, which represents acceleration with
where F�(s) is the first derivative of F(s) with respect to s.respect to accelerating targets. In general, the output of any

system can be represented by the sum of the natural response
To illustrate this important point, let’s take an exampleand the forced response. In relation to the Nyquist stability

criterion, a steady state error can be calculated from the
closed-loop transfer function of the system M(s) or the loop F(s) = s + 1

(s + 2)(s + 3)
(17)

transfer function G(s)H(s).

Calculate
THE PRINCIPAL ARGUMENT

The Nyquist criterion is based on a theorem using the theory F ′(s) = −s2 − 2s + 1
(s + 2)2(s + 3)2 (18)

of complex variables, which leads to the principal argument.
The principal argument may be presented in a number of The ratio of F�(s)/F(s) can be found to be
ways. Here, two approaches will be presented.

CASE 1. In this case, a rigorous mathematical approach may
F ′(s)
F(s)

= −s2 − 2s + 1
(s + 1))(s + 2)(s + 3)

(19)

be employed by using theories of contours and mappings in
complex planes. Assume that F(s) is a function of s and single- Writing the partial fractions
valued, that is, for each point in the s-plane there exist a cor-
responding point, including infinity, in the F(s)-plane, and the
function consists of a finite number of poles and a finite num-
ber of zeros in the s-plane. Now, suppose that there is an arbi-

F ′(s)
F(s)

= −s2 − 2s + 1
(s + 1)(s + 2)(s + 3)

= A
(s + 1)

+ B
(s + 2)

+ C
(s + 3)

(20)
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the f (s)-plane. The theorem shows that if a complex function
f (s) is analytical (differentiable) bounded in a region by a sim-
ple closed curve �, then∫

γ

f (s) ds =
∮

γ

f (s) ds = 0 (22)

However, consider a complex function f (s) � 1/(s � a) with a
pole at �a on the s-plane. Let’s draw a unit circle centered at
s � �a on the s-plane described by �(t) � �a � ej� where the
angle � is 0 	 � 	 2�k, and k is the number of encirclements
of the point �a by the unit circle.

Then the integral becomes

∫
γ

f (s) ds =
∫

γ

1
(s + a)

ds = ln(s + a)|γ (23)

The right-hand side of this equation can be evaluated by sub-
stituting values of s(t) � �a � ej� yielding

ln(s + a)|γ = ln(e jθ − a + a)|γ = jθ |γ (24)

Substituting the values of � as 0 	 � 	 2�k gives

∫
γ

f (s) ds =
∫

γ

1
(s + a)

ds = 2πkj (25)

On the contrast to Eq. (22) where f (s) is analytic in the s-
plane, for f (s)) having a singular point in the contour in the
s-plane, the resulting closed contour is no longer zero but
equal to multiples of 2�j. This indicates that the contour on
the f (s)-plane containing all the values of s on the s-plane goes
through k number of revolutions around the origin. The num-
ber of revolutions around the origin depends on the number
of times the point �a is encircled in the s-plane. The encircle-
ment k now can be expressed as
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Figure 3. Mapping of s-plane contours to F(s)-plane. If the addition
of number of poles and zeros of F(s) in the s-plane is other than zero, If only one encirclement has taken place in the s-plane, k �
the contour on the F(s)-plane encircles the origin. This is clearly illus- 1, the result of this integration equals 1, indicating one revo-
trated by the corresponding contours of �2 and �3. lution around the origin. Previously, a unit circle was consid-

ered, but the theory can be generalized for any closed contour
around the pole �a.

it can be proven that A � 1, B � �1, and C � �1, thus giving We know that a complex function expressed as a ratio, as
in Eq. (15), can be expressed as Eq. (16). Now, let’s write Eq.
(16) asF ′(s)

F(s)
= 1

(s + 1)
− 1

(s + 2)
− 1

(s + 3)
(21)

and verifying the general Eq. (16). Equations (16) and (21) f (s) = F ′(s)
F(s)

=
Z∑

i=1

1
(s + zi)

−
P∑

k=1

1
(s + pk)

(27)
indicate that the zeros of F(s) appear as the denominators of
the new equation with positive signs. The poles of F(s) still

where f (s) can be viewed as the residues of F(s). Now, substi-appear in the denominators, but they have negative signs.
tute this Eq. (27) into Eq. (25)After having stated this important point, we can turn our

attention to Cauchy’s theorem. Although Cauchy’s theorem
may be of great mathematical interest, the intention of this
article is not to discuss the intricacies involved in the theorem

∫
γ

f (s) ds =
∫

γ

Z∑
i=1

1
(s + zi)

ds −
∫

γ

P∑
k=1

1
(s + pk)

ds (28)

but rather to use it to illustrate relevant points in order to
establish a solid understanding of Nyquist stability criteria. Making use of the similarities between Eq. (23) and Eq. (28)

will yield the following conclusions. There will be Z numberCauchy’s theorem is based on the complex integrals, map-
ping of points and closed contours between the s-plane and of revolutions around the origin, one for each zi for k � 1.
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Also, there will be P number of revolutions around the origin
as a result of pole pk, but this time they will be in the opposite
direction, which is indicated by the negative sign of Eq. (28).
From Eq. (26), the following may be written

R(s) E(s)
G(s)

C(s)

H(s)

+

–

Figure 4. Block diagram of a closed-loop system. A closed-loop sys-
1

2π j

∫
γ

f (s) ds = Z − P (29)
tem has a forward path transfer function G(s) and a feedback path
transfer function H(s). The relation between the input and output can

This equation indicates that the number of times the origin be expressed in terms of these two terms in the form of a system
is encircled depends on the difference between the zeros and transfer function to be used in analysis and design of systems.
poles, which are located on the contour of the s-plane.

There are many other approaches to arrive at similar con-
clusions, and further information may be found in the bibliog- Fig. 4. Writing the transfer functions in Laplace transforms
raphy at the end of this article. This illustrative approach as
clarifies for readers many points, which otherwise might have
been difficult to understand without intensive mathematical
knowledge. G(s) = NG(s)

DG(s)
(31)

As a result of these explanations, the principle argument
can now be stated as follows: Let F(s) be a singled-valued and
function with a finite number of poles in the s-plane, and let
�s be chosen such that it does not pass through the poles or
zeros of F(s). Thus the corresponding �F locus mapped in the H(s) = NH(s)

DH(s)
(32)

F(s)-plane will encircle the origin given by the formula

then
N = Z − P (30)

where G(s)H(s) = NG(s)NH(s)
DG(s)DH(s)

(33)

N � number of encirclements of the origin made by the Hence, the characteristic equation
path �F,

Z � number of zeros of F(s) encircled by the path �s,
P � number of poles of F(s) encircled by the path �s. 1 + G(s)H(s) = DG(s)DH(s) + NG(s)NH(s)

DG(s)DH(s)
(34)

The values of N can be positive, zero, or negative depending and the closed-loop transfer function
upon the number of zeros and the number of poles of F(s)
encircled by �s.

M(s) = G(s)
1 + G(s)H(s)

= NG(s)DH(s)
DG(s)DH(s) + NG(s)NH(s)

(35)

1. N � 0 (or Z � P). The path �s encircles more zeros than
poles of F(s) in either the clockwise or counterclockwise From Eqs. (31) to (34), it can be observed that the poles of
direction, and �F will encircle the origin of the F(s)- 1 � G(s)H(s) are the same as the poles of G(s)H(s). But more
plane N times in the same direction as that of �s. importantly, the zeros of the function 1 � G(s)H(s) are the

2. N � 0 (or Z � P). The path �s encircles an equal number same as the poles of M(s) of the closed-loop system. Although
of poles and zeros, or no poles and zeros of F(s) in �s, simple, this observation bears particular importance in the
and �F will not encircle the origin in the F(s)-plane. understanding of the Nyquist criterion.

3. N � 0 (or Z � P). This is similar to the case N � 0 but Assume that �(s) equals 1 � G(s)H(s) and has poles and
�F encircles the origin of the F(s)-plane in the opposite zeros in the s-plane, as shown in Fig. 5. As any point s1 of
direction as that of �s. contour �s is substituted in �(s), it maps to a point on contour

��.
For the purposes of illustration, assume that �s encloses aIn this analysis, for convenience, the origin of the F(s)-plane

pole and two zeros. Also, two poles and a zero lie outside oris selected to be the critical point from which the value of N
are unbounded by the contour. As the point s1 moves aroundis determined. However, it is possible to designate other
the contour in a chosen clockwise direction, each of the polepoints in the complex plane as the critical point depending on
and zero vectors connected to that point trace angles. Takethe requirement of the application. In the case of the Nyquist
the general equationcriterion, the critical point is the �1 on the real axis of the

F(s)-plane.

CASE 2. Another way of presenting the principal argument
�(s) = (s + z1)(s + z2) · · · (s + zZ)

(s + p1)(s + p2) · · · (s + pP)
, m, n ∈ {1, 2, . . .} (36)

may be to begin with the derivation of the relationship be-
This is equivalent totween the open-loop and closed-loop poles or zeros viewed

from the characteristic equation. Let’s take a closed-loop con-
�(s) = |�(s)|��(s) (37)trol system with single input and single output as shown in
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As a matter of interest, similar conclusions can be drawn
from the Eqs. (27)–(29), taking �(s) analogous to F(s)

1
2π j

∫
γ

f (s) ds = 1
2π j

∫
γ

F ′(s) ds
F(s)

= 1
2π j

∫
γ

d[ln F(s)] = Z − P

(40)

and writing this equation as

1
2π j

∫
γ

d[lnF(s)] = 1
2π j

∫
γ

d[ln |F (s)|] + j arg[ln F(s)] = Z − P

(41)
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θ
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Figure 5. Angles traced by poles and zeros. As the point s1 traverses For a closed contour, the first part of the integration, d[ln
around the closed contour, each pole and zero trace 360�. The angles F(s)] will be zero, but the second term is the 2� times the net
traced by the poles and zeros outside the contour go to a minimum

encirclement of the origin.and then to a maximum and then back to the original value tracing
As discussed earlier, the poles of characteristics equationthe same path in the opposite direction. The net angle traced be-

�(s) � 1 � G(s)H(s) are also the poles of G(s)H(s). Becausecomes zero.
the denominator DG(s)DH(s) of Eq. (34) is much simpler than
the numerator DG(s)DH(s) � NG(s)NH(s), the poles of the equa-
tion can be determined relatively easily. Also, the zeros en-
closed by �s are the zeros of �(s), and they are the unknownwhere
poles of the closed-loop system. Therefore, P equals the num-
ber of enclosed open-loop poles, and Z equals the number of
enclosed closed-loop poles. Thus, Z � N � P indicates that|�(s)| = |s + z1||s + z2| · · · |s + zZ|

|s + p1||s + p2| · · · |s + pP| (38)

the number of closed-loop poles inside the contour equals the
number of open-loop poles of G(s)H(s) inside the contour,

and �s � z1� � � � �s � zz�, �s � p1� � � � �s � pP� are length of hence the number of clockwise rotations of the mapping about
vectors and the angles are

the origin.
If the contour in the s-plane includes the entire right half

plane (RHP), as illustrated in Fig. 6, the number of closed-
loop poles enclosed by the contour determines the stability of

��(s) =�(s + z1) + · · · +�(s + zZ) − �(s + p1)

− · · · − �(s + pP)
(39)

the system. Because it is possible to count the number of
open-loop poles P (usually by inspection) inside the boundingFrom Fig. 5, we can deduce that as the point s1 traverses
contour in the RHP, the number of enclosures of the origin Naround the contour once, the poles and zeros encircled by the
indicates the existence of the closed-loop poles on the RHP.contour �s go through a complete rotation, each tracing an

The poles and zeros of G(s)H(s) are usually known and ifangle of 2� radians. On the other hand, the poles or zeros that
the mapping function is taken to be �(s) equals G(s)H(s) in-lie outside of �s undergo a net angular change of 0 radians.
stead of 1 � G(s)H(s), the resulting contour is the same exceptBecause of the positive and negative signs of the Eq. (39), the
that it is translated one unit to the left. Thus the number ofnet number of rotation is equal to the difference between the

number of zeros and poles lying inside contour �s. rotations about the point �1 in the G(s)H(s)-plane may be

Figure 6. The Nyquist path. The Nyquist
path covers the entire right half of the s-
plane, avoiding poles and zeros located on
the imaginary axis, as shown in (a). The
existence of closed-loop poles on the RHP
indicates unstable conditions. In (b), poles
and zeros on the imaginary axis are in-
cluded in the Nyquist path.
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R

LHP LHP

jω jω
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With the new critical point at (�1, j0), it will be necessary
to define two sets of N, Z, and P as follows:

N0 � number of encirclement around the origin made by
F(s).

Z0 � number of zeros F(s) encircled by the Nyquist path in
the right half of the s-plane.

P0 � number of poles F(s) encircled by the Nyquist path in
the right half of the s-plane.

N�1 � number of encirclement around the point (�1, j0)
made by F(s).

Z�1 � number of zeros 1 � F(s) encircled by the Nyquist

Table 3. The Possible Outcomes of Number of Poles and
Zeros on the s-Plane

�(s)-Plane Locus

Encircles
Direction of of the Direction of

N � Z � P s-Plane Locus Origin Encirclement

N � 0 Clockwise N Clockwise
Counterclockwise N Counterclockwise

N � 0 Clockwise N Counterclockwise
Counterclockwise N Clockwise

N � 0 Clockwise 0 None
Counterclockwise 0 None

path in the right half of the s-plane.
P�1 � number of poles 1 � F(s) encircled by the Nyquist

path in the right half of the s-plane.
counted instead of the origin. Hence the Nyquist criterion
may be stated as follows: When the closed-loop system has only a single feedback sys-

tem having the loop transfer function of G(s)H(s), then
If a contour �s encircles the entire right half plane, the num- F(s) � G(s)H(s). Now it becomes clear that

ber of closed-loop poles Z in the RHP of the s-plane can be
determined by the number of open-loop poles P in the P0 = P−1 (42)
RHP and the number of revolutions N of the resulting con-
tour around the point �1 in the G(s)H(s)-plane. because F(s) and 1 � F(s) always have the same poles. The

result is similar to the one derived earlier in the discussion.
The other stability requirements are that for the closed-loopThis mapping is called the Nyquist diagram or the Nyquist
stabilityplot of G(s)H(s). A summary of all the possible outcomes of

the principle argument is given in Table 3.
The method discussed is also called the frequency response Z−1 = 0 (43)

technique. Around contour �s in the RHP the mapping of the
points on the j�-axis through G(s)H(s) is the same as using and for the open-loop stability
the substitution s equals j�, hence forming the frequency re-
sponse G( j�)H( j�). Thus the frequency response over the pos- P0 = 0 (44)
itive j�-axis from � � 0� to � � � are used to determine the
Nyquist plot. That is, instead of tracing the entire RHP, it is Z�1 must be zero because of the zeros of 1 � G(s)H(s) and the
sufficient to use just a part of the contour �s. The Nyquist poles of the closed-loop transfer function M(s) as discussed
criteria could have easily been built upon the tracing of the earlier; any poles that lie in the left-hand plane causes system
left half plane (LHP); however, the solution is a relative one. instability. For the case of the open-loop stability, the P0 is

In Fig. 6(a,b) it can be seen that the contour �s encircles the number of poles of F(s) encircled by the Nyquist path in
the entire right half of the s-plane in the counterclockwise the right half of the s-plane and must be zero for stability con-
sense. The reason for this is because in mathematics counter- ditions.
clockwise is traditionally defined to be positive. The discussions presented so far may be summarized as

Observe on Fig. 6(a) that small semicircles are drawn follows:
along the j�-axis because the Nyquist path must not go
through any of the poles or zeros of �(s). If any poles or zeros 1. For a given feedback control system, the closed-loop
fall on the j�-axis, then the path �s should detour around transfer function is given by Eq. (35), and the denomi-
these points. Only the poles or zeros that lie in the RHP of nator function represent the closed-loop transfer func-
the s-plane need to be encircled by the Nyquist path. tion as given by Eq. (34), which is equal to �(s). The

From the principal argument the stability of a closed-loop Nyquist path is defined in accordance with the pole and
system can be determined, after the Nyquist path is specified, zero properties of F(s) on the j�-axis.
by plotting the function �(s) � 1 � F(s) where F(s) equals to 2. The Nyquist plot of F(s) is constructed in the [G(s)H(s)]-
G(s)H(s) and the s variable is chosen along the Nyquist path. plane.
The behavior of the �(s) plot, or the new path ��, is referred

3. The value of N0 is determined by observing the behaviorto as the Nyquist plot of �(s), with respect to the critical point,
of the Nyquist plot of F(s) with respect to the origin.the origin. Because the function F(s) is usually known and is
Similarly the value N1 is determined with respect to themuch simpler to construct, the Nyquist plot of F(s) arrives at
point (�1, j0).the same conclusion about the stability of a closed-loop sys-

4. After determining N0 and N1, the value of P0, if not al-tem. This is simply done by shifting the critical point from
ready known, can be obtained fromthe origin to the point (�1, j0) on F(s)-plane. This is because

the origin of the [1 � F(s)]-plane corresponds to (�1, j0) of
N0 = Z0 − P0 (45)the F(s)-plane.
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if Z0 is known. With P0 determined, P�1 is also known Also, two quantities �1 and �2 will be defined to represent
the total angle traversed by the Nyquist plots of F(s) withvia Eq. (42), and Z�1 can then be calculated with
respect to the point (�1, j0), corresponding to the points �s1

and �s1, respectively. Thus the two new quantities may beN−1 = Z−1 − P−1 (46)

written as
and from Eq. (43) Eq. (46) simplifies to

θ1 = 2π · N−1,1 = 2π(Z−1 − P−1) (50)
N−1 = −P−1 (47)

and
Now the Nyquist criterion may also be stated in the follow-
ing manner.

θ2 = 2π · N−1,2 = 2π(Z−1 − Pω − P−1) (51)

For a closed-loop system to be stable, the Nyquist plot of
To analyze the Nyquist path, it is best to consider the pathF(s) must encircle the critical point (�1, j0) as many times
having three major sections. The first section is the portionas the number of poles of F(s) that lie in the right half of
from s equals to �j� to �j� along the semicircle having anthe s-plane. The encirclements, if any, must be in the
infinite radius, the second portion is the path along the j�-clockwise direction when the Nyquist path is defined in
axis excluding the small indentations, and the final sectionsthe counterclockwise sense.
include the small indentations. Because the Nyquist plot is
symmetrical at j� � 0, the angles traversed are identical for
positive and negative values of �. Hence

SIMPLIFIED NYQUIST CRITERIA

θ1 = 2θ11 + θ12 + θ13 (52)
The Nyquist criterion discussed previously requires the con-
struction of the Nyquist plot corresponding to the Nyquist and
path in the s-plane. Complication arises when the F(s)-plane
poles or zeros that lie on the j�-axis, as in Fig. 6(a), indicate θ2 = 2θ11 − θ12 + θ13 (53)
small indentations around these points. As pointed out in Kuo
(1), Yeung and Lai came up with a simplified version of the where
Nyquist criterion for closed-loop systems that requires only
the Nyquist plot corresponding to the positive j�-axis of the

�11 � angle traversed by the Nyquist plot of F(s) with respects-plane.
to (–1, j0) corresponding to the positive or negativeIn the development of this simplified criterion, two paths
side of the j�-axis, excluding the small indentationsas shown in Fig. 6(a,b) are considered. The first path �s1 encir-
and the factor of two emmerging in Eq. (52) and Eq.cles the entire right half of the s-plane excluding all the poles
(53).and zeros that lie on the j�-axis. The second path �s2 encircles

�12 � angle traversed by the Nyquist plot of F(s) with respectthe excluded poles and zeros that may exist. Now new quanti-
to (–1, j0) corresponding to the small indentationsties may be defined as follows:
along the j�-axis �s1. Also, with the direction of the
small indentations of �s2 different from that of its coun-Z�1 � number of zeros of 1 � F(s) in the right half of the
terpart, the negative sign emerges in Eq. (53).s-plane.

�13 � angle traversed by the Nyquist plot of F(s) with respect
P�1 � number of poles of 1 � F(s) in the right half of the to (–1, j0) corresponding to the semicircle with infinite

s-plane, and is equal to P0, which are poles of F(s) in the radius on the Nyquist path.
right half of the s-plane.

P� � number of poles F(s) or 1 � F(s) that lie on the j�- Generally, for a physical realizable transfer function, the
axis including the origin. number of poles cannot exceed the number of zeros of F(s).

N�1,1 � number of times the point (�1, j0) of the F(s)-plane Therefore, the Nyquist plot of F(s) corresponding to the infi-
is encircled by the Nyquist plot of F(s) corresponding to nite semicircle must be a point on the real axis or a trajectory
�s1. around the origin of the F(s)-plane. The angle �13 traversed by

N�1,2 � number of times the point (�1, j0) of the F(s)-plane the phasor from the point at (–1, j0) to the Nyquist plot along
is encircled by the Nyquist plot of F(s) corresponding to the semicircle is always zero.
�s2. Combining Eq. (52) and Eq. (53) yields

According to the Nyquist criterion, θ1 + θ2 = 4θ11 (54)

N−1,1 = Z−1 − P−1 (48) since �13 is zero,

and θ1 + θ2 = 2π(2Z−1 − Pω − 2P−1) (55)

N−1,2 = Z−1 − Pω − P−1 (49)
hence

where Eq. (49) includes the number of poles of F(s) or 1 �
F(s) that lie on the j�-axis. θ11 = π(Z−1 − 0.5Pω − P−1) (56)
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Equation (56) means that the net angle traversed by the pha- SOLUTION. To obtain the Nyquist plot, rearrange this equa-
tion, substitute s � j�, and assign the nominal value, K � 1,sor from the (�1, j0) point to the F(s) Nyquist plot correspond-

ing to the positive j�-axis of the s-plane excluding any of the
small indentations, that is G( jω)H( jω) = (1 + jω)(1 + 0.05 jω)

jω(1 + 5 jω)(1 + 2.5 jω)
(59)

The number of zeros of 1 � F(s) in the right half of the s-
Find magnitudes and angles in terms of variable � asplane minus the sum of half the poles on the j�-axis and

the number of poles of F(s) in the right half of the s-plane
multiplied by � radians. |G( jω)H( jω)| =

√
1 + ω2

√
1 + (0.05ω)2

ω
√

1 + (5ω)2
√

1 + (2.5ω)2
(60)

This means that the Nyquist plot can be constructed corre-
sponding to s � 0 to s � j� portion of the Nyquist path. For and
an unstable closed-loop system, the number of roots of the
characteristic equation that fall in the right half of the s-
plane can be determined via Eq. (55).

〈G( jω)H( jω) = tan−1ω + tan−10.05ω − 90◦

− tan−15ω − tan−12.5ω
(61)

As mentioned earlier, a closed-loop system is stable only if
Z�1 is equal to zero.

Now Nyquist contour may be applied by substituting val-Hence,
ues of � from zero to � on the positive part of the imaginary
axis on the s-plane. By avoiding the pole located on the origin

θ11 = −π(0.5Pω + P−1) (57)
and substituting small positive values on the positive and
negative side of zero, it is possible to observe the following

This indicates that for closed-loop system stability the phase features:
traversed by the Nyquist plot of F(s) where s varies from zero
to j� with respect to (�1, j0) point cannot be positive because
P� and P�1 cannot be negative.

ω → 0+ |G( jω)H( jω)| → ∞ and 〈G( jω)H( jω) → −90◦

ω → ∞ |G( jω)H( jω)| → 0 and 〈G( jω)H( jω) → −90◦

ω → −∞ |G( jω)H( jω)| → 0 and 〈G( jω)H( jω) → 90◦

ω → 0− |G( jω)H( jω)| → ∞ and 〈G( jω)H( jω) → 90◦
NYQUIST DIAGRAMS

These features indicate that for a clockwise rotation in theThe Nyquist analysis is based on the assumption that the
s-plane covering the entire right half plane, the graph startscontrol systems are linear; hence, the dynamic performances
from the infinity on the imaginary axis (in either the fourthare described by a set of linear differential equations. Because
or the third quadrant) and approaches zero again from theof the nature of feedback control systems, the degrees of nu-
�90� for 0� 	 � 	 ��. Similarly, the graph starts from 0 atmerator of the loop transfer function F(s) � G(s)H(s) is always
an angle �90� and approaches to infinity with the same angleless than or equal to the degree of the denominator. All the
�90� for �� 	 � 	 0�.Nyquist diagrams presented here are based on these two as-

By substituting intermediate values for �, the results insumptions.
Table 4 may be obtained. We can see that the plot goes nu-As explained previously, when plotting Nyquist diagrams,
merically above �180� between � � 0.4 rad/s and � � 0.5it is sufficient to assign values for the complex variable s on
rad/s. It also falls back to be numerically less than �180�the j�-axis avoiding possible poles and zeros on the imaginary
after � � 2.0 rad/s. This means that it crosses the real axisaxis. The frequency response of G(s)H(s) can be determined
on the negative side of the s-plane twice.by substituting s � j� and by finding the imaginary and com-

At this point, a polar plot graph paper may be used toplex components of G( j�)H( j�). Alternatively, G( j�)H( j�)
sketch the curve outlined in Table 4. Or a second table, whichcan be written in polar form, and magnitudes and angles are
shows the real and imaginary components of G( j�)H( j�), maydetermined for plotting on a polar graph paper. These tech-
be made from Table 4 by using the relation [Rej� � R cos � �niques will be illustrated in the following examples.
Rj sin �] as in Table 5. An alternative approach to calculate
the real and imaginary components of G( j�)H( j�) is intro-

Example 1. Plot the Nyquist diagram of a closed-loop control duced in the next example.
system as in Fig. 4 with a loop transfer function The Nyquist plot of Table 5 is shown in Fig. 7. It is worth

noting that Table 5 could also have been drawn by rearrang-
ing Eq. (59) as real and imaginary components. This is a long
procedure, but using it allows us to calculate the exact values

G(s)H(s) = K(s + 1)(s + 20)

250s(s + 0.2)(s + 0.4)
(58)

Table 4. Calculation of Magnitudes and Angles of G( j�)H( j�)

� rad/s 0� 0.1 0.4 0.5 1.0 2.0 4.0 �

�G( j�)H( j�) �90� �124� �175� �181.6� �188.9� �182.8� �174.2� �90�

�G( j�)H( j�)� � 9.0 0.79 0.55 0.1 0.021 0.005 0
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Table 5. Calculation of Real and Imaginary Components of G( j�)H( j�)

� rad/s 0� 0.1 0.4 0.5 1.0 2.0 4.0 �

�G( j�)H( j�) 0 �5.03 �0.787 �0.55 �0.099 �0.021 �0.005 0
�G( j�)H( j�)� �� �7.46 �0.069 �0.018 �0.015 0.0001 �0.0005 0

of the gain and phase margins if an approximate estimation transfer function G( j�)H( j�) and assign the nominal value
(K � 1)from the plot is not permissible.

By using Eqs. (60) and (61), it can be shown that
�G( j�)H( j�)� � 0.51 and �G( j�)H( j�) � �180� for � � 0.481
rad/s. Remember that value is for the nominal K where K �

G( jω) = (1 + j2ω)

jω( jω − 1)
(64)

1. For other values of K, Eq. (60) should have been written as
Find magnitudes and angles in terms of variable � as

|G( jω)H( jω)| = K

√
1 + ω2

√
1 + (0.05ω)2

ω
√

1 + (5ω)2
√

1 + (2.5ω)2
(62) G( jω) =

√
1 + 4ω2

ω
√

1 + ω2
(65)

Therefore, the curve will pass to the left-hand side of the �1 and
point on the real axis if �G( j�)H( j�)� � 1. Hence K � 0.51 �
1 gives the value K � 1.9 in which the plot will encircle the 〈G( jω) = tan−12ω − 90◦ − tan−1ω/(−1) (66)
�1 � j0 point in the clockwise direction, thus leading to insta-

Let’s consider the nominal value of K. Observing the ex-bility. This indicates that there is a zero of the characteristic
treme values for � in the clockwise direction and startingequation on the RHP of the s-plane or a RHP pole of the
from 0� givesclosed loop transfer function, hence the instability.

From the preceding analysis, it is known that the plot
crosses the real axis again at a frequency slightly greater
than � � 2.0 rad/s. By substituting a value � � 2.57 rad/s,
from Eqs. (60) and (61), it can be shown that �G( j�)H( j�)� �
0.011 and �G( j�)H( j�) � �180�. As explained previously the

ω → 0+ |G( jω)H( jω)| → ∞ and 〈G( jω)H( jω) → −270◦ or 90◦

ω → ∞ |G( jω)H( jω)| → 0 and 〈G( jω)H( jω) → +270◦or − 90◦

ω → −∞|G( jω)H( jω)| → 0 and 〈G( jω)H( jω) → +90◦

ω → 0− |G( jω)H( jω)| → ∞ and 〈G( jω)H( jω) → −90◦

corresponding value of K � 91 obtained from K � 0.011 � 1.
It is important to highlight the angle equation �tan�1�/(�1)For K � 91 and above, the system becomes stable again.
because the negative sign in the denominator indicates what
quadrant the angle is for varying �. These features indicateExample 2. Plot the Nyquist diagram of unity feedback con-
that for a clockwise rotation of a contour in the s-plane cov-trol system which has a forward gain transfer function
ering the entire right half plane, the graph starts from the
infinity on the imaginary axis from the first or second quad-
rant and approaches zero from the �90� for 0� 	 � 	 ��.G(s) = (1 + 2s)

s(s − 1)
(63)

Similarly, the graph starts from 0 at an angle �90� and
approaches infinity with the same angle �90� for �� 	SOLUTION. In this example, because G(s) has a pole on the
� 	 0�.RHP of the s-plane, it is open-loop unstable. As before, in or-

Table 6 may be obtained by substituting values for �, butder to obtain the Nyquist plot, substitute s � j� in the loop
this time for only 0� 	 � 	 ��. The Nyquist plot is given in
Fig. 8. The open-loop transfer function has one pole on the
RHP, and therefore P � 1. In order for this system to be sta-
ble, N must be equal to �1, that is, one counterclockwise en-
circlement of the �1 � j0 point. As shown in Fig. 8, the rota-
tion of the curve is in a counterclockwise direction, and it
encircles the origin once; hence, the system is stable.

From Table 6, we can see that the graph crosses the real
axis between � � 0.6 rad/s and � � 1.0 rad/s. By guessing
and by using the trial-and-error method, this crossover fre-
quency may be determined as � � 0.7 rad/s. At this fre-
quency, the magnitude is 2.0. As in the case of Example 1,
the critical value of the gain can be found from K � 2.0 � 1
to be K � 0.5.

An alternative mathematical approach can be employed to

–1

Im
G(s)H(s)-plane

Re

R ∞

ω =0–

ω = 0+

find the real and imaginary components of the loop transfer
Figure 7. The Nyquist plot of Example 1. As the Nyquist path on

function asthe s-plane traverses in the clockwise direction, the corresponding
path of G(s)H(s) traverses in the same direction on the G(s)H(s)-plane.
Because the Nyquist plot does not encircle the critical �1 � j0 point,
this system is stable.

G( jω) = (1 + j2ω)

jω( jω − 1)
= (1 + j2ω)

ω2 − jω
= −3ω2 + j(ω − 2ω3)

ω2 + ω4 (67)
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Table 6. Calculation of Magnitudes and Angles of G( j�)H( j�)

� rad/s 0� 0.1 0.4 0.6 1.0 4.0 10.0 �

�G( j�)H( j�) 90� 107.0� 150.5� 171.16� 198.4� 248.8� 261.4� 270�

�G( j�)H( j�)� � 10.15 2.97 2.23 1.58 0.49 0.02 0

The graph crosses the real axis when the imaginary part is Phase margin is the angle, in degrees, by which the locus
must be rotated in order that gain crossover pointequal to zero, that is (� � 2�3) � 0 or � � 1/�2 rad/s. The

intersection can be calculated by substituting the value of � passes through �1 � j0.
in the real component of G( j�)H( j�) as

The gain margin is measured in decibels and expressed in
phase-crossover frequency as−3ω2

ω2 + ω4 = −3 × (1/2)

(1/2) + (1/4)
= −2 (68)

GM = 20 log10 = 1
|G( jωc)H( jωc)| dB (69)

There are many examples of Nyquist plots in control engi-
neering books (1–5). Figure 9 illustrates typical Nyquist plots

When the loop transfer function G( j�)H( j�) passes throughof some of the selected control systems.
the �1 � j0 point, the gain margin is 0 dB. The negative or
positive value of gain margin depends on the number of poles

Stability Margins and zeros of G( j�)H( j�) on the RHP. If the stability is evalu-
ated when the locus crosses the real axis on the right of theIn the preceding examples, we have demonstrated that the
�1 � j0 point (Example 1), the gain margin is positive. If theNyquist plots of the loop transfer function, G( j�)H( j�), de-
stability is evaluated on the left of the �1 � j0 point (Exam-pends on the values of K. This is illustrated in Fig. 10. As the
ple 2), then the gain margin is negative.K is increased or decreased, as the case may be, at a certain

The phase margin can be determined by calculating thevalue the locus passes through �1 � j0 point. At this point,
gain-crossover frequency when the gain of the G( j�)H( j�) �the system exhibits sustained oscillations. As K increases fur-
1 and by evaluating the phase angle of the system at thatther, the system becomes unstable.
frequency. That isGenerally, oscillations increase as the locus of G( j�)H( j�)

gets closer to the �1 � j0 point. The closeness of the locus to
the critical point is measured by the stability margins usually PM = 〈G( jω)H( jω) − 180◦ (70)
expressed in the form of phase and gain margins, as illus-

As in the case of gain margin, the sign of phase margin istrated in Fig. 10. These margins indicate relative stability
relative to stability condition and the shape of the locus. Inand hence help the design of control systems to achieve de-
Example 1, a negative value for the PM indicates unstablesired responses. The gain and phase margins may be defined
condition whereas in Example 2, the negative value impliesas follows.
stability.

Gain margin is the amount of gain that can be allowed to
Effects of Adding Poles and Zerosincrease before the closed loop system becomes unsta-

ble. Control systems are often designed by introducing additional
poles and zeros to the system. Extra poles and zeros in the
system change the shape of the Nyquist diagrams and alter
phase and gain margins. The influences of additional poles
and zeros on the Nyquist locus can be evaluated by comparing
the loci of different systems given in Fig. 9. Some observa-
tions may be made as follows.

The mathematical difference between parts (a) and (b) in
Fig. 9 is the additional pole. In this case, the Nyquist
locus is shifted by �90� as � � �, occupying quadrants
3 and 4 instead of quadrant 4 only. Adding an extra pole
introduces further �90�, and the locus occupies three
quadrants. In this case, the risk of instability exists be-
cause the possibility of encirclement of �1 � j0 is intro-

Im

G(s)H(s)-plane

Re

ω =0–

ω = 0+

–1

duced.
Figure 8. The Nyquist plot of Example 2. The open-loop transfer

In Fig. 9, the effect of adding a pole at s � 0 can be seenfunction of this control system has a pole on the RHP; hence, the
by observing parts (a) and (d) or (b) and (e). In bothsystem is open-loop unstable. However, the Nyquist plot encircles the
cases, Nyquist loci are rotated by �90� for all frequen-critical �1 � j0 point once in the counterclockwise direction, indicat-
cies. Adding a finite pole increases the risk of instabil-ing that there are no closed-loop poles on the RHP. Therefore, the

system is stable. ity.
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Figure 9. The Nyquist plots of selected control systems.
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Figure 11. The effect of time delays. Pure time delays do not intro-Figure 10. Phase and gain margins. The closeness of the locus to
the critical �1 � j0 point is measured by the margins. Good gain and duce any extra poles and zeros into the system. However, the magni-

tude is equal to unity for all frequencies, the phase (� ��T) affectsphase margins are obtained for K1. As K increases, both gain and
phase margins become zero (for K2) indicating critical stability. Fur- the stability. For large values of time delay T, the system may be un-

stable.ther increase in K leads to unstable conditions. Note the changes in
the gain and phase margins for varying K.

tion of a single loop, single input and single output of a
The effect of adding a zero into the system can be seen in system may be written as

parts (c) and (f) in Fig. 9. In this case, the loop transfer
function increases the phase of G(s)H(s) by �90� as � �
�. This result confirms the general knowledge that ad- M(z) = C(z)

R(z)
= G(z)

1 + GH(z)
(73)

dition of a derivative control or a zero makes the system
more stable.

where z is the z-transform defined as z � esT.
The stability of the system can be studied by investigating

the zeros of the characteristic equation 1 � GH(z) � 0. ForEFFECTS OF TIME DELAYS
the system to be stable, all the roots of the characteristic
equation must be inside the unit circle in the z-plane. As inThe Nyquist criterion can be utilized to evaluate the effects
the continuous-time systems, the investigation of the Nyquistof time delays on the relative stability of feedback control sys-
plot of GH(z) with respect to critical point, �1 � j0, indicatestems. With the pure time delays, the loop transfer function
the system stability. The general theory presented for contin-may be written as
uous time control systems is applicable to discrete time sys-
tems with minor modifications. Here, an example will be

G(s)H(s) = e−sT G1(s)H1(s) (71) given to illustrate the use of Nyquist in discrete time control
systems.

where T is the time delay. The term e�sT does not introduce
any additional poles or zeros within the contour. However, it
adds a phase shift to the frequency response without altering
the magnitude of the curve. This is because

|G( jω)H( jω)| = |e− jωT ||G1( jω)H1( jω)|
= | cos(ω) − j sin(ω)||G1( jω)H1( jω)| (72)

The term containing the time delay is �cos(�) � j sin(�)� � 1,
but the phase is tan�1(�sin �T/cos �T) � ��T. This shows
that the phase grows increasingly negative in proportion to
the frequency. A plot of the effect of time delay is given in Fig.
11. Because of the addition of the phase shift, the stability of
the system is affected for large values of T. ω

–1

–0.0231

= 0

Re z

Im z

G(z)H(z)-plane

= 3.14ω

NYQUIST STABILITY CRITERION FOR DIGITAL SYSTEMS Figure 12. Nyquist plot of Example 3. The Nyquist path on the z-
plane must have small indention at z � 1 on the unit circle. The

The Nyquist stability criterion can equally be applied to lin- Nyquist plot of path of GH(z) in the GH(z)-plane intersects the nega-
ear continuous-data discrete time systems to graphically de- tive real axis at �0.231 when � � 3.14 rad/s. For stability, the value

of K must be less than 4.33.termine the stability. Generally, the closed-loop transfer func-
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THE INVERSE NYQUIST AND NYQUIST
PLOT FOR MULTIVARIABLE SYSTEMS

Inverse Nyquist is simply the reciprocal of the complex quan-
tity in the Nyquist plot. They find applications particularly
in multiple loop and multivariable systems where graphical
analysis may be preferred.

The Nyquist stability criterion applied to inverse plots can
be stated as a closed loop system stable, if the encirclement
of the critical �1 � j0 point by the 1/G(s)H(s) is in the coun-
terclockwise direction for a clockwise Nyquist path in the s-
plane. As in the case of a normal Nyquist, the number of en-
circlements must equal the number of poles of 1/G(s)H(s) that
lie in the right half of the s-plane.

Inverse Nyquist plots is particularly useful in the analysis
of multi-input–multi-output control systems. In the multi-
variable feedback control systems, the relations between in-
puts and outputs may be expressed in matrix form as

C(s) = [I + KG(s)H(s)]−1G(s)KR(s) (75)

where G(s), H(s) and K are n � n matrices.
Similar to single-input–single-output systems, the output

Im

Re–1

G(s)H(s)-plane

G(s) =

H(s) = I

1.5

s3 +2s2 +2s+1
x

x
4s+1

1

is exponentially stable iff det[I � KG(s)H(s)]�1 has no poles
Figure 13. Examples of Nyquist plots of multivariable systems. The in the right half of the s-plane. The Nyquist diagrams can be
Nyquist plot for multivariable systems carries similar information as obtained by appropriately considering the K values as K �
in the single-input–single-output systems. The number and the direc- diag�k1, k2, . . ., kn� and the gij(s) elements of G(s). A typical
tion of encirclements of the critical �1 � j0 point conveys the message example of a Nyquist diagram of a multivariable control sys-
about the stability. But rigorous mathematical analysis is necessary tems is shown in Fig. 13. This example is also given by West-
because matrices are involved.

phal (5); interested readers could refer to that book for fur-
ther details.
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SOLUTION. The loop transfer function GH(z) does not have
any poles outside the unit circle, but it has one pole on the HALIT EREN

unit circle. As in the case of s-plane zeros on the imaginary BERT WEI JUET WONG

Curtin University of Technologyaxis, the Nyquist path on the z-plane must have small inden-
tion at z � 1 on the unit circle. The Nyquist path, shown in
Fig. 12, intersects the negative real axis of the GH(z)-plane

NYQUIST STABILITY. See NYQUIST CRITERION, DIA-at �0.231 when the value of � � 3.14 rad/s. The critical �1
� j0 point may be encircled if 0.231K � 1, that is K � 4.33. GRAMS, AND STABILITY.


