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with initial conditions

y(0) = y0 and
d
dt
y(0) = v0

Here y(t) is the angular displacement, m is the mass, and g isOPTIMAL CONTROL
the gravitational acceleration. Further, u(t) represents the ap-
plied force, which will be chosen from a specified class of func-Optimal control theory is concerned with the development of
tions in such a way that the system described by Eq. (1) be-techniques that allow one to control physical phenomena de-
haves in a desired way. We refer to y and u as the state andscribed by dynamical systems in such a manner that a prede-
control variables. Due to the appearance of the sine function,scribed performance criterion is minimized. The principal
Eq. (1) constitutes a nonlinear control system. It will be con-components of an optimal control problem are the mathemati-
venient to express Eq. (1) as a first-order system. For thiscal model in the form of a differential equation, a description
purpose, we define x(t) � col(x1(t), x2(t)), where x1(t) � y(t) andof how the control enters into this system, and a criterion
x2(t) � (d/dt)y(t). Then we obtain the first-order form of Eq.describing the cost.
(1), which is of dimension n � 2:The start of optimal control theory, as a mathematical dis-

cipline, dates back to the mid 1940s. The increasing interest
in and use of methods provided by optimal control theory is
linked to the rise of the importance of mathematical models

d
dt

�
x1(t)
x2(t)

�
=
�

x2(t)
−g sin x1(t) + u(t)

�
(2)

in many diverse areas of science—including chemistry, medi-
cine, biology, management, and finance—and to ever increas- with initial condition x(0) � x0 � (y0, v0) � R2, where we as-
ing computing power, which allows the realization of optimal sume m � 1. In general, a control system is written in the
control strategies for practical systems of increasing difficulty form
and complexity. While optimal control theory has its roots in
the classical calculus of variations, its specific nature has ne-
cessitated the development of new techniques. In contrast

d
dt

x(t) = f (t, x(t), u(t)), x(0) = x0 (3)

with general optimization problems, whose constraints are
typically described by algebraic equations, the constraints in with state vector x(t) � Rn, control input u(t) � Rm, and f :
optimal control problems are given by dynamical systems. R1 � Rn � Rm � Rn. If f is independent of time t [f � f (x, u)],
The dynamic programming principle, the Pontryagin maxi- then the system is said to be autonomous.
mum principle, the Hamilton–Jacobi–Bellman equation, the Next we formulate a sample control system associated to
Riccati equation arising in the linear quadratic regulator Eq. (1). For that purpose, note that the stationary solutions
problem, and (more recently) the theory of viscosity solutions to the uncontrolled system, which are characterized by f (x,
are some of the milestones in the analysis of optimal control u) � 0 for u � 0, are given by (0, 0) and (�, 0). Our objective
theory. is to regulate the state x(t) � R2 to the stationary state (�, 0).

Analyzing an optimal control problem for a concrete sys- Thus a control u must be determined that steers the system
tem requires knowledge of the systems-theoretic properties described by Eq. (1) from the initial state x0 to the vertical
of the control problem and its linearization (controllability, position (y � �) or into its neighborhood (inverted-pendulum
stabilizability, etc.). Its solution, in turn, may give significant problem). This objective can be formulated as an optimal con-
additional insight. In some cases, a suboptimal solution that trol problem: minimize the cost functional
stabilizes the physical system under consideration may be the
main purpose of formulating an optimal control problem,
while an exact solution is of secondary importance.

In the first section we explain some of the concepts in opti-
mal control theory by means of a classical example. The fol-

J(x, u) =
∫ t f

0
[|x1(t) − π |2 + |x2(t)|2 + β|u(t)|2] dt

+ α[|x1(t f ) − π |2 + |x2(t f )|2]
(4)

lowing sections describe some of the most relevant techniques
subject to Eq. (2), over u � L2(0, tf; R1), the space of square-in the mathematical theory of optimal control.
integrable functions on (0, tf). The nonnegative constants �Many monographs, emphasizing either theoretical or con-
and � are the weights for the control cost and target con-trol engineering aspects, are devoted to optimal control the-
straint at the terminal time tf � 0, respectively. The inte-ory. Some of these texts are listed in the bibliography and
grand �x1(t) � ��2 � �x2(t)�2 describes the desired performancereading list.
of the trajectory [the square of distance of the current state
(x1(t), x2(t)) to the target (�, 0)]. The choice of the cost func-
tional J contains a certain freedom. Practical considerationsDESCRIPTIVE EXAMPLE AND BASIC CONCEPTS
frequently suggest the use of quadratic functionals.

A general form of optimal control problems is given byControl Problem

We consider the controlled motion of a pendulum described
by min

∫ t f

0
f 0(t, x(t), u(t))dt + g(t f , x(t f )) (5)

subject to Eq. (3), over u � L2(0, tf; Rm) with u(t) � U a.e. in
(0, tf), where U is a closed convex set in Rm describing con-

m
d2

dt2 y(t) + mg sin y(t) = u(t), t > 0 (1)
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straints that must be observed by the class of admissible con- at x � (0, 0) and
trols. In the terminology of the calculus of variations, Eq. (5)
is called a Bolza problem. The special cases with f 0 � 0 and
with g � 0 are referred to as the Lagrange and the Mayer

A =
�

0 1
g 0

�
and B =

�
0
1

�
(6b)

problem, respectively. If tf � 0 is finite, then Eq. (5) is called
at x � (�, 0). The linearized control system for the inverteda finite-time-horizon problem. In case g � 0 and tf � �, we
pendulum is given byrefer to Eq. (5) as an infinite-time-horizon problem. The

significance of the latter is related to the stabilization of
Eq. (3).

If Eq. (5) admits a solution u*, we refer to it as the optimal
d
dt

x(t) =
�

0 1
g 0

�
x(t) +

�
0
1

�
u(t)

control, and the associated state x* � x(u*) is the optimal
where x1(t) is the relative angle from �.trajectory. Under certain conditions, the optimal control can

be expressed as a function of x*, that is, u*(t) � K(t, x*(t)) for
Stabilityan appropriate choice of K. In this case u* is said to be given

in feedback or closed-loop form. In this and the following subsection we restrict our attention
If the final time tf itself is a free variable and f 0 � 1, then to linear control systems of the form (7). One of the main ob-

Eq. (5) becomes the time optimal control problem. jectives of optimal control is to find controls in state feedback
For certain analytical and numerical considerations, the form u(t) � �Kx(t) with K � Rm�n such that the closed-loop

treatment of the fully nonlinear problem (5) can be infeasible system
or lengthy. In these cases, a linearization of the nonlinear
dynamics around nominal solutions will be utilized. d

dt
x(t) = Ax(t) − BKx(t) = (A − BK)x(t) (8)

Linearization is asymptotically stable, in the sense that �x(t)�Rn � 0 as t �
� for all x0 � Rn. Recall that a system of the formWe discuss the linearization of the control system (3) around

stationary solutions. Henceforth x stands for a stationary so-
lution of f (x, u) � 0, where u is a nominal constant control.

d
dt

x(t) = Ax(t)
Let A � Rn�n and B � Rn�m denote the Jacobians of f at (x,
u); that is, is asymptotically stable if and only if all eigenvalues � of the

matrix A satisfy Re � � 0. For example, for the matrices in
Eqs. (6a) and (6b) we haveA = fx(x, u) and B = fu(x, u) (6)

Defining z(t) � x(t) � x and v(t) � u(t) � u and assuming
that f is twice continuously differentiable, Eq. (3) can be ex-

det(λI − A) = λ2 + g = 0 �⇒ λ = {±√
gi}

(marginal stability)
pressed as

and

det(λI − A) = λ2 − g = 0 �⇒ λ = {±√
g} (instability)d

dt
z(t) = Az(t) + Bv(t) + r(z(t),v(t))

respectively. In particular, this implies that the uncontrolled
inverted-pendulum problem is unstable in the sense of Liapu-where the residual dynamics r satisfy
nov stability theory. For the closed-loop feedback system (8)
associated with the inverted pendulum with feedback matrix|r(z(t),v(t))|Rn ≤ const. [|z(t)|2 + |v(t)|2]
chosen in the form

This implies that the residual dynamics r are dominated by K = (0 γ ) ∈ R1×2

the linear part Az(t) � Bv(t) if �(z(t), v(t))� is sufficiently small.
We obtain the linearization of the control system (3) around we find that the eigenvalues of A � BK are given by ���(��

� ��2 � 4g) and hence the closed-loop system is asymptoti-(x, u):
cally stable for appropriately chosen � � 0. Moreover, if we
apply the feedback u(t) � �Kz(t) with z(t) � x(t) � (�, 0) to
the original system (2), then the closed system is locally as-

d
dt

x(t) = Ax(t) + Bu(t), x(0) = x0 − x (7)
ymptotically stable by Liapunov stability theory.

where now x(t) and u(t) represent the translated coordinates Linear Quadratic Regulator Problem
x(t) � x and u(t) � u, respectively. We refer to Eq. (7) as a

In order to construct the optimal stabilizing feedback lawlinear control system.
u(t) � �Kx(t) for the linear system (7), we consider the infi-For the example of the pendulum we find
nite-time-horizon linear quadratic regulator (LQR) problem

min
∫ ∞

0
[xt (t)Qx(t) + ut (t)Ru(t)] dt (9)A =

�
0 1

−g 0

�
and B =

�
0
1

�
(6a)
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subject to Eq. (7), where Q, G � Rn�n are symmetric nonnega- the initial and terminal times. Also we shall not systemati-
cally discuss the bang–bang principle, which states that, fortive definite matrices and R � Rm�m is symmetric and positive

definite. The optimal solution u*( 	 ) to Eq. (9) is given in feed- certain control systems with controls constrained to lie in a
convex compact set, the optimal controls are achieved in theback form by
extremal points of the admissible control set.

u∗(t) = −R−1BtPx∗(t) (10)

Existence of Optimal Controls
where the optimal trajectory x*( 	 ) satisfies

The problem of the existence of admissible control–trajectory
pairs (x, u) and of solutions to the optimal control problem
(12)–(15) has stimulated a significant amount of research.

d
dt

x∗(t) = (A − BR−1BtP)x∗(t), x∗(0) = x0

Here we can only give the flavor of some of the relevant as-
and the symmetric nonnegative definite matrix P � Rn�n sat- pects required to guarantee existence of optimal controls.
isfies the matrix Riccati equation Let us assume in this subsection that tf is fixed. Then the

optimal control problem can be stated in the form of a nonlin-
ear mathematical programming problem for (x, u) � H1(0, tf,AtP + PA − PBR−1BtP + Q = 0 (11)
Rn) � L2(0, tf, Rm):

In the section titled ‘‘Linear Quadratic Regulator Problem’’
we shall return to a detailed discussion of this equation and min J(x,u) (16)
its significance in optimal control theory.

subject to the equality constraints
EXISTENCE AND NECESSARY OPTIMALITY

In this section we consider the optimal control problems of
Lagrange type

E(x,u) =



d
dt

x(t) − f (t, x, u)

ϕ(t f , x(t f ))


 = 0 (17)

andmin J(x,u) =
∫ t f

0
f 0(t, x(t), u(t))dt (12)

u ∈ K = {u(t) ∈ U a.e. in (0, t f )} (18)
subject to the dynamical system

with K a closed convex subset of L2(0, tf; Rm) and E considered
as a mapping from H1(0, tf; Rn) � L2(0, tf; Rn) � L2(0, tf; Rn) �

d
dt

x(t) = f (t, x(t), u(t)) (13)
Rp. Question (a) above is equivalent to the existence of feasi-
ble points satisfying the equality and control constraints (17)control constraints
and (18). The existence of optimal controls can be argued as
follows: Under an appropriate assumption the state functionu(t) ∈ U (a closed set in Rm ) (14)
x � x( 	 , u) � L2(0, tf; Rn) can be defined as the unique solution
to Eq. (13) with initial condition x(0) � x0, so that the controland initial and target constraints
problem (12)–(15) can be written as

x(0) = x0 and ϕ(t f , x(t f )) = 0 (15)
min J(x(u),u) over u ∈ K with ϕ(t f , x(u)(t f )) = 0

(19)over u � L2(0, tf; Rm), where f : R� � Rn � Rm � Rn, f 0 : R� �
Rn � Rm � R, and 
 : R � Rn � Rp are C1 functions. In con-

Suppose that the admissible control set K is compact, thattrast with Eq. (5), we generalize the control problem in that
is, every bounded sequence in K has a strongly convergentwe restrict the trajectory to reach a target described by the
subsequence in K, and the solution map u � L2(0, tf; Rm) �manifold 
(tf, x(tf)) � 0. If, for example, tf � 0 is free, f 0(t, x,
(x(u), x(u)(tf)) � L2(0, tf, Rn) � Rn is strongly continuous. More-u) � 1, and 
(t, x) � x, then the objective is to bring the sys-
over, assume that the functional J is lower semicontinuous,tem to rest in minimum time. Typical forms of the control
that is,constraint set U are given by U � �u � Rm : �u� � �� and U �

�u � Rm : ui � 0, 1 � i � m�.
In order to obtain a first insight into the problem of (12)– J(lim xn, lim un) ≤ lim inf J(xn, un)

(15), one needs to address the questions of (a) the existence of
admissible candidates (x, u) satisfying Eqs. (13)–(15), (b) the for all strongly convergent sequences �(xn, un)� in L2(0, tf, Rn)

� L2(0, tf, Rm). Then the control problem (12)–(15) has a solu-existence and uniqueness of solutions to the optimal control
problem (12)–(15), and (c) necessary optimality conditions. tion. In fact, let � � inf J(x(u), u) over u � K with 
(tf,

x(u)(tf)) � 0, and let �un� be a minimizing sequence, that is,In the remainder of this section we shall present some of
the ideas that were developed to answer these questions. For J(x(u1), u1) � J(x(u2), u2) � 	 	 	 , with limn�� J(x(un), un) � �

and the constraints in Eq. (19) are satisfied. Due to the com-detailed information we refer to the bibliography and reading
list and to additional references given in the listed works. pactness assumption for K, there exists a subsequence �unk

�
of �un� such that unk

� u* for some u* � K. The continuityIn spite of their importance, in practice we shall not con-
sider problems with constraints on the trajectories except at assumption for the control to solution mapping implies that
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(tf, x(u*)(tf)) � 0, and from the semicontinuity of J it follows the fact that it is in general not a sufficient optimality
condition, that is, (x*, u*, �̂*) can be an extremal ele-that
ment without (x*, u*) being a solution to the control
problem in (12)–(15).

2. We refer to the literature for the proof of the maximum

J(x(u∗), u∗) = J(lim x(unk
), lim unk

)

≤ lim inf J(x(unk
), unk

) = η

principle. A proof is sketched in the next subsection. We
also mention that the following fact plays an essentialThis implies that J(x(u*), u*) � � and u* is a solution to
role. Let s � [0, tf], and consider the problem (12)–(15)Eqs. (12)–(15).
with initial time 0 replaced by s and initial conditionAlternatively to the compactness assumption for K, we
x(s) � x*(s). Then the optimal state–control pair re-may assume that either lim�u��� J(x(u), u) � �, or that K is
stricted to [s, tf] is optimal for the control problem start-bounded. We then also require that the solution map u �
ing at s with x(s) � x*(s).L2(0, tf; Rm) � (x(u), x(u)(tf)) � L2(0, tf; Rn) � Rn be continuous

when L2(0, tf; Rm) is endowed with the weak topology and that 3. Suppose tf is fixed, that is, 
0(t) � t � tf and that the
the functional J is weakly sequentially lower semicontinuous. target constraint is described by p additional conditions
Then, using arguments similar to the ones above, the exis- 
i(x) � 0, i � 1, . . ., p. Then the transversality condi-
tence of a solution to Eqs. (12)–(15) again follows. tion can be expressed as

Pontryagin Maximum Principle

An important step toward practical realization of optimal con-

(H(t f , x∗(t f ), u∗(t f ), λ̂(t f )),−λ(t f ))

= µ0(1, 0, . . ., 0) + (0,µϕx(x∗(t f ))

trol problems is the derivation of systems of equations that
for some (�0, �) � R � Rp. Here we set �
x(x*(tf)) �must be satisfied by the optimal controls and optimal trajecto-
�p

i�1 �i grad 
i(x*(tf)).ries. The maximum principle provides such a set of equations.
It gives a set of necessary optimality conditions for the opti- 4. If one can ascertain that �0 � 0 (normality), then with-
mal control problem (12)–(15). out loss of generality we can set �0 � �1, and conditions

We shall require the Hamiltonian associated with Eqs. 2–3 of Theorem 1 can be equivalently expressed as
(12)–(15) given by

d
dt

λ(t) = −Hx(t, x∗, u∗, λ̂) λ(t f ) = −µϕx(x∗(t f )) (21)H(t, x, u, λ̂) = λ0 f 0(t, x, u) + λ f (t, x, u) (20)

If tf is fixed and no other target constraints are given,where �̂ � (�0, �) � R � Rn.
then normality holds. In fact, from the adjoint equation
and the transversality condition we haveTheorem 1. Assume that f 0, f , 
 are sufficiently smooth, and

suppose that (x*, u*) minimizes the cost functional in Eq. (12)
subject to Eqs. (13)–(15). Then there exists �̂(t) � (�0, �(t)) � d

dt
λ(t) = −λ0 f 0

x (t, x∗(t), u∗) − λ(t) fx(t,x∗(t), u∗(t))
Rn�1 with �0 � 0 such that �̂(t) never vanishes on [0, tf], and

with �(tf) � 0. If �0 were 0, then �(t) � 0 on [0, tf], which1. Maximum condition:
gives a contradiction.

5. The maximum principle is based on first-order informa-
tion of the Hamilton H. Additional assumptions involv-

H(t, x∗(t),u∗(t), λ̂(t)) ≥ H(t, x∗(t), u, λ̂(t))

for all u ∈ U
ing, for example, convexity conditions or second-order
information are required to ascertain that a pair (x*,2. Adjoint equation:
u*) satisfying conditions 1–3 of Theorem 1 is, in fact, a
solution to the problems in Eqs. (16)–(18). Some suffi-
cient optimality conditions are discussed in the next

d
dt

λ(t) = −Hx(t, x∗(t), u∗(t), λ̂(t))

two subsections.
3. Transversality:

Example. We conclude this subsection with an example. Let
us denote by x1, x2, x3 the rates of production, reinvestment,(H(t f , x∗(t f ), u∗(t f ), λ̂(t f )),−λ(t f )) ⊥ Tf
and consumption of a production process. Dynamical con-
straints are given bywhere Ttf

is the tangent space to the manifold described by

(t, x) � 0 at (tf, x*(tf)). d

dt
x1(t) = x2(t), x1(0) = c > 0

An admissible triple (x*, u*, �̂*) that satisfies the conclu-
sions of Theorem 1 is called an extremal element. The func-

and it is assumed that x1 � x2 � x3 and xi 
 0 for i � 1, 2, 3.tion x* is called the extremal trajectory, and u* is called the
The control function is related to the state variables and isextremal control.
chosen as u(t) � x2(t)/x1(t). The objective consists in maximiz-
ing the total amount of consumption � given byRemarks

1. The maximum principle provides a necessary condition
for optimality. It is simple to find examples illustrating

� =
∫ T

0
x3(t) dt
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on the fixed operating period [0, T] with T 
 1. Setting x � the problem (22), it follows that the optimal control is given
byx1, this problem can be formulated as a Lagrange problem:

min J =
∫ T

0
[u(t) − 1]x(t) dt (22) u∗(t) =

{
1 on [0,T − 1]

0 on (T − 1, T]

Lagrange Multiplier Rulesubject to

Here we present a necessary optimality condition based on
the Lagrange multiplier rule and establish the relationship tod

dt
x(t) = u(t)x(t), x(0) = c and u(t) ∈ U = [0, 1]

the maximum principle. As in the section titled ‘‘Existence of
Optimal Controls,’’ it is assumed that tf is fixed. We recall the

To apply the maximum principle, note first that x(t) � 0 definition of E in Eq. (19) and define the Lagrange functional
on [0, T] for all admissible control u. The Hamiltonian H is L : H1(0, tf, Rn) � L2(0, tf, Rm) � L2(0, tf, Rn) � Rp � R given by
given by

L(x, u, λ, µ) = J(x, u) + ((λ,µ), E(x,u))L2 (0,t f ,Rn )×Rp

H = λ0(u − 1)x + λ ux

Further define H1
L(0, tf, Rn) as the set of functions in H1(0, tf,

the adjoint equation is Rn) that vanish at t � 0.
We have the Lagrange multiplier rule:

Theorem 2. Assume that (x(u*), u*) minimizes the cost func-
d
dt

λ = −Hx = −λ0(u − 1) − λu

tional in Eq. (16) subject to Eqs. (17) and (18) and that the
regular point conditionand the transversality condition implies that �(T) � 0. Since

(�0, �(t)) � 0 on [0, T], it follows that �0 � 0. Thus normality
of the extremals holds, and we set �0 � �1. The maximum 0 ∈ int{E ′(x(u∗), u∗)(h,v − u∗) : h ∈ H1

L(0, t f , Rn) and v ∈ K}
(23)condition implies that

holds. Then there exists a Lagrange multiplier (�, �) � L2(0,
tf, Rn) � Rp such that

[1 − u∗(t)]x∗(t) + λ(t)x∗(t)u∗(t) ≥ (1 − u)x∗(t) + λ(t)x∗(t)u

for all u ∈ [0, 1]

Since necessarily x*(t) � 0, the sign of �(t) � 1 determines
u*(t), that is,

Lx(h) = Jx(x∗, u∗)h + ((λ,µ), Ex(x∗, u∗))h = 0

for all h ∈ H1
L(0, t f , Rn) (24)

(Lu, u − u∗) ≥ 0 for all u ∈ K

where the partial derivatives Lx and Lu are evaluated at (x*,
u*, �, �).

u∗(t) =
{

1 if λ(t) − 1 > 0

0 if λ(t) − 1 ≤ 0

Let us establish the relationship between the LagrangeThe adjoint equation is therefore given by
multiplier (�, �) and the adjoint variable � of the maximum
principle. From the first line in Eq. (24) one deducesd

dt
λ = (1 − λ)u∗ − 1, λ(T ) = 0

We can now derive the explicit expression for the extremal

∫ t f

0

�
[ f 0

x (t, x∗, u∗) − λ fx(t, x∗, u∗)]h + λ
d
dt

h
�

dt

+ µϕx(x∗(t f ))h(t f ) = 0
elements. Since � is continuous, there exists a � � 0 such
that �(t) � 1 on [�, T]. On [�, T] we have u*(t) � 0. It follows

for all h � H1
L(0, tf; Rn). An integration-by-parts argument im-that �(t) � T � t on [�, T], and hence � reaches 1 at � � T �

plies that1. Since (d�/dt)�(�) � �1 and (d�/dt)�(�) � 0, there exists an
� � � such that (d/dt)� � 0 on [�, �]. This implies that �(t) �
1 and thus u*(t) � 1 on [�, �], and consequently

λ(t) = e−(t−δ) and x∗(t) = ξet−δ on [η, δ]

∫ t f

0

�∫ t

ft

[ f 0
x (s, x∗, u∗) − λ fx(s, x∗, u∗)] ds

+ µϕx(x∗(t f )) + λ
� d

dt
h(t) dt = 0

for some � � 0. Now we can argue that � is necessarily 0 and and thus
that on [0, �]

u∗(t) = 1, x∗(t) = cet , and λ(t) = e−(t−δ) λ(t) =
∫ t f

t
[− f 0

x (s, x∗, u∗) + λ fx(s, x∗, u∗)] ds − µϕx(x∗(t f ))

a.e. in (0, tf). If f and f 0 are sufficiently regular, then � �We have thus derived the form of the only extremal on [0,
T]. Since one can easily argue the existence of a solution to H1(0, tf, Rn) and (�, �) satisfy Eq. (21).
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For certain applications, a Hilbert space framework may pose we introduce additional scalar components for the dy-
namical system and for the target constraint bybe too restrictive. For example, f (u) � sin u2 is well defined

but not differentiable on L2(0, tf; R). In such cases, it can be
more appropriate to define the Lagrangian L on W1,�(0, tf;
Rn) � L�(0, tf; Rn) � L�(0, tf; Rn) � Rp.

d
dt

xn+1 = 0 and ϕp+1(x) = g(x) − txn+1

Let us briefly turn to sufficient optimality conditions of sec-
where x � (x1, . . ., xn) as before, and the augmented costond order. To simplify the presentation, we consider the case
functional isof minimizing J(x, u) subject to the dynamical system (13)

and initial and target constraints [Eq. (15)], but without con-
straints on the controls. If (x*, u*) satisfy the maximum prin- f̃ 0 = f 0(t,x, u) + xn+1

ciple and f 0, f are sufficiently regular, then
We find

Huu(t) ≤ 0 for t ∈ [0, t f ]

where H(t) � H(t, x*(t), u*(t), �(t)). A basic assumption for
second-order sufficient optimality is given by the Legendre–
Clebsch condition

∫ t f

0
f̃ 0(t,x(t), u(t)) dt =

∫ t f

0
f 0(t, x(t), u(t)) dt + t f xn+1

=
∫ t f

0
f 0(t, x(t), u(t)) dt + g(x(t f ))

For the augmented system, the initial conditions are x(0) �Huu(t) < 0 for t ∈ [0, t f ] (25)
x0, while xn�1(0) is free. The maximum principle can be gener-
alized to allow for trajectories that are constrained to lie on

This condition, however, is not sufficient for u* to be a local
an initial manifold M0 � Rn�1. In this case a transversality

minimizer for the control problem in Eqs. (12)–(15). Sufficient
condition at t � 0 must be added to part 3 of Theorem 1:

conditions involve positivity of the Hessian of the Lagrange
functional L at (x*, u*, �, �) with (�, �) as in Theorem 2. This

(H(0,x∗(0),u∗(0), λ̂(0)),−λ(0)) ⊥ T0condition, in turn, is implied by the existence of a symmetric
solution Q to the following matrix Riccati equation:

where T0 is the tangent space to M0 at (0, x*(0)). For the Bolza
problem the initial manifold is characterized by t � 0 and
x � x0 � 0, and thus the transversality condition at t � 0
implies �n�1(0) � 0. The adjoint condition 2 of Theorem 1
turns out to be




Q̇ = −Q fx(t) − fx(t)T Q + Hxx(t)
− [Q fu(t) − Hxu(t)]Huu(t)−1[ f T

u (t)Q − Hxu(t)]
Q(t f ) = µϕxx(x(t f )) on ker ϕx(x(t f ))

(26)

where f (t) � f (t, x*(t), u*(t)). We have the following result:

Theorem 3. Let (x*, u*) denote a pair satisfying Eqs. (13)

d
dt

λ(t) = −Hx(t,x∗(t), u∗(t), λ̂(t))

d
dt

λn+1(t) = −λ0, λn+1(0) = 0
and (15), and assume the existence of a Lagrange multiplier
(�, �) in the sense of Theorem 2 with U � Rm. If, further, f where the Hamiltonian H is defined by Eq. (20), and the
and f 0 are sufficiently regular, Eq. (25) holds, and Eq. (26) transversality condition 3 of Theorem 1 is given by
admits a symmetric C1-solution, then u* is a local solution of
Eq. (12). Moreover, there exist c � 0 and � � 0 such that (H(t f ),−λ(t f )) + λ0(0,gx(x(t f ))) ⊥ Tt f

If we assume that tf fixed and that no target constraints at tf
J(x, u) ≥ J(x∗, u∗) + c|(x, u) − (x∗, u∗)|2L2 (0,t f ;Rn+m )

are present, then normality holds and conditions 2–3 of Theo-
rem 1 can be expressed asfor all (x, u) satisfying Eq. (13), Eq. (15), and �(x, u) � (x*,

u*)�L�(0,tf;R
n�m) � �. d

dt
λ(t) = −Hx(x∗u∗, λ̂) λ(t f ) = −gx(x∗(t f )) (27)

The fact that perturbations (x, u) are only allowed in L� so
as to obtain an L2 bound on variations of the cost functional For a restricted class of Bolza problems, the maximum
is referred to as the two-norm discrepancy. principle provides a sufficient optimality condition. We have

the following result:
Bolza Problem

Theorem 4. Consider the Bolza problem
Here we discuss the maximum principle for a Bolza type prob-
lem, where the cost functional of Eq. (12) is replaced by

min
∫ t f

0
[ f 0(t, x(t)) + h0(t, u(t))] dt + g(x(t f ))

subject to
min J(x,u) =

∫ t f

0
f 0(t, x(t), u(t)) dt + g(x(t f ))

with g : Rn � R. Augmenting the system (13), the Bolza prob-
lem can be expressed as a Lagrange problem. For this pur-

d
dt

x(t) = Ax(t) + h(t,u(t)), x(t) = x0
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and the control constraint u(t) � U, where tf is fixed and g subject to the linear control system
and f 0 are C1 functions that are convex in x. If (�0 � �1, �(t),
x*(t), u*(t)) is extremal, then u* is optimal. d

dt
x(t) = Ax(t) + Bu(t) + f (t), x(0) = x0 (30)

Proof. From the maximum condition
where f (t) � L2(0, tf; Rm) represents a disturbance or an exter-
nal force, Q, G � Rn�n are symmetric and nonnegative matri-
ces, and R � Rm�m is symmetric and positive definite. This

− h0(t, u∗(t)) + λ(t)h(t,u∗(t)) ≥ −h0(t, u) + λ(t)h(t,u)

for all u ∈ U (28)
problem is referred to as the finite-time-horizon linear qua-
dratic regulator problem. The Hamiltonian H is given bywhere �(t) satisfies

H = − 1
2 (xtQx + utRu) + λ(Ax + Bu + f (t))d

dt
λ(t) = f 0

x (t,x∗(t)) − λ(t)A, λ(t f ) = −gx(x∗(t f ))

where we have used the fact that �0 � �1 established in the
For all admissible pairs (x, u) satisfying last subsection. From Eq. (27) we obtain the form of the ad-

joint equation for �(t):
d
dt

x(t) = Ax + h(t, u), x(0) = x0 d
dt

λ(t) = −λ(t)A + xt (t)Q, λ(t f ) = −xt (t f )G
we have

and the maximum condition implies that

u∗(t) = R−1Btλt (t)

d
dt

(λx) = d
dt

λx + λ
d
dt

x = ( f 0
x − λA)x + λ(Ax + h)

= f 0
x (·,x∗ )x + λh(·,u)

Thus the maximum principle reduces to a two-point boundary
Combined with Eq. (28), this implies value problem. If we define p � ��, then the optimal triple

(x, u*, p) is characterized by u*(t) � �R�1Btp(t) and
d
dt

(λx∗) − f 0
x (·,x∗ )x∗ − h0(·, u∗) ≥ d

dt
(λx) − f 0

x (·, x∗)x − h0(·,u)

Integration of this inequality on [0, tf] yields

d
dt

x(t) = Ax(t) − BR−1Bt p(t) + f (t), x(0) = x0

d
dt

p(t) = −At p(t) − Qx(t), p(t f ) = Gx(t f )

(31)

In the section titled ‘‘Linear Quadratic Regulator Theory and
Riccati Equations’’ we discuss the solution to Eq. (31) in terms
of matrix Riccati equations. There we shall also consider the

λ(t f )x
∗(t f ) −

∫ t f

0
[ f 0

x (t, x∗)x∗ + h0(t, u∗)] dt

≥ λ(t f )x(t f ) −
∫ t f

0
[ f 0

x (t, x∗)x + h0(t, u)] dt

infinite-time-horizon problem with tf � �.
By Eq. (27), the last inequality implies

Time Optimal Control

A time optimal control problem consists of choosing a control
in such a way that a dynamical system reaches a target mani-
fold in minimal time. Without control constraints, such prob-

gx(x∗(t f ))[x(t f ) − x∗(t f )] +
∫ t f

0
f 0
x (t, x∗ )(x − x∗) dt

≥
∫ t f

0
[h0(t, u∗) − h0(t, u)] dt

lems may not have a solution. In the presence of control con-
straints, the optimal control will typically be of bang–bang

Note that �(x) 
 �(x*) � �x(x*)(x � x*) for all x, x* for any type. The following class of examples illustrates this behavior.
convex and C1 function �. Since g, f 0 are convex, we have We consider the time optimal control problem

min t f =
∫ t f

0
1 dt (32)

subject to the linear control system

g(x(t f )) +
∫ t f

0
[ f 0(t, x) + h0(t, u)] dt

≥ g(x∗(t f )) +
∫ t f

0
[ f 0(t,x∗ ) + h0(t, u∗)] dt

which implies that u* is optimal. d
dt

x(t) = Ax(t) + Bu(t) x(0) = x0 (33)

LINEAR QUADRATIC REGULATOR PROBLEM
and control as well as target constraints

We consider the special optimal control problem ui ∈ [−1,1] for 1 ≤ i ≤ m, and x(t f ) = 0

Assume that (A, B) is controllable, that is, for every x0 � Rn

and every target x1 at tf there exists a control u � L2(0, tf,
Rm) that steers the system (33) from x0 to x1. We recall that,

min J(x0, u)

= 1
2

�∫ t f

0
[xt (t)Qx(t) + ut (t)Ru(t)] dt + xt (t f )Gx(t f )

�
(29)
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for the linear autonomous control system (33), controllability that u* � 1. Then the equations (d/dt)x1(t) � x2(t), (d/dt)x2(t)
� 1 have solutions of the formis equivalent to the requirement that the Kalman rank (B,

AB, . . ., ABn�1) � n. A sufficient condition for the existence
of an optimal control to Eq. (32) for arbitrary initial condi-
tions x0 in Rn is that (A, B) is controllable and that A is x2(t) = t + c1 and x1(t) = (t + c1)2

2
+ c2

strongly stable (the real parts of all eigenvalues of A are
strictly negative). Thus, the orbit is on the manifold x1 � x2

2/2 � c2 oriented up-
The Hamiltonian for Eq. (32) is wards. Similarly, for u* � �1 the orbit is on the manifold

x1 � �x2
2/2 � ĉ2 oriented downwards. Since the optimal con-

trols have at most one switch and the orbits must terminateH = λ01 + λ(Ax + Bu)

at (0, 0), it follows that the optimal control u* is given in
feedback form byand the adjoint equation is given by

d
dt

λ = −λA u∗(t) = U (x1(t), x2(t)) =
{

−1 if (x1, x2) is above S

1 if (x1, x2) is below S

The transversality condition implies that H(tf) � 0 and hence where S is the switching curve consisting of x1 � �x2
2/2 (x1 �

�(t) � �eA(tf�t) for some � � R1�n. As a consequence of the maxi- 0) and x1 � x2
2/2 (x1 
 0). The feedback law is in general ro-

mum condition, we find bust, since it possesses the self-correcting property.

λ(t)Bu∗(t) ≥ λ(t)Bu for all u ∈ [−1, 1]n

DYNAMIC PROGRAMMING PRINCIPLE AND
HAMILTON–JACOBI–BELLMAN EQUATIONand hence

In this section we discuss Bellman’s dynamic programmingu∗
i (t) = sign gi(t), for 1 ≤ i ≤ m

principle (Refs. 1,2) for optimal control problems.

where g(t) :� �(t)B � �eA(tf�t)B. We claim that g(t) is nontrivial.
Derivation of the Hamilton–Jacobi–BellmanIn fact, if g(t) � 0 for some t � [0, tf], then, since (A, B) is

controllable, � � 0 and �(t) � 0. We have Consider the Bolza problem

H(t f ) = λ0 + λ(t f )[Ax(t f ) + Bu(t f )] = λ0 = 0
min J(s,y; u) =

∫ t f

s
f 0(t,x(t), u(t)) dt + g(x(t f )) (34)

and thus (�0, �(t)) is trivial if g(t) � 0. This gives a contradic-
tion to Theorem 1. subject to

In the remainder of this subsection we consider a special
linear control system (rocket sled problem) and provide its
solution. Let y(t), the displacement of a sled with mass 1 on a

d
dt

x(t) = f (t, x(t), u(t)), x(s) = y, u(t) ∈ U (35)

friction-free surface be controlled by an applied force u(t) with
constraint �u(t)� � 1. By Newton’s second law of motion, where U is a closed convex set in Rm. Under appropriate con-
(d2/dt2)y(t) � u(t). If we define x1(t) � y(t) and x2(t) � ditions on f , Eq. (35) has a unique solution x � x(t; (s, y)), and
(d/dt)y(t), then the state x(t) � col(x1(t), x2(t)) satisfies Eq. (33) moreover x � C(s, tf; Rn) depends continuously on (s, y) � [0,
with tf] � Rn and u � L1(s, tf; Rm). As discussed in the preceding

section, sufficient conditions on f 0 and g, which guarantee the
existence of an optimal pair (x*, u*) for each (s, y) � [0, tf] �
Rn, are well known. We define the minimum-value functionA =

�
0 1
0 0

�
and B =

�
0
1

�
V(s, y) by

We observe that the system (A, B) is a single-input controlla-
ble system that is marginally stable. This implies existence of

V (s, y) = min
u∈K

J(s,y; u)

an optimal control u*. From the above discussion it follows
Then V satisfies the optimality principle:that u* must satisfy

u∗(t) = sign λ2(t)

The adjoint equation implies that � � (�1(t), �2(t)) is given by

min
{∫ σ

s
f 0(t, x(t), u(t)) dt + V (σ ,x(σ )) : u ∈ U on [s, σ ]

}
= V (s, y) (36)

In fact, the cost functional J is additive in the first variable:λ1(t) = µ1 and λ2(t) = µ1(T − t) + µ2
for � � [s, tf],

for some nonzero � � (�1, �2). Hence the optimal control as-
sumes at most the values �1 and 1 (bang–bang control) and
it has at most one switch between these two values. Assume

J(s,y; u) =
∫ σ

s
f 0(t, x(t), u(t)) dt + J(σ ,x(σ );u) (37)
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and thus for all u(s) � u � U, and

Vt (s, y) + f (s, y, u∗(s))Vx(s, y) + f 0(s, y, u∗(s)) = 0
∫ σ

s
f 0(t, x(t), u(t)) dt + V (σ ,x(σ )) ≤ J(s,y; u)

which is Eq. (38). Moreover, we have the following dynamical
programming principle.for all u � K. Thus,

Theorem 5. (Verification Theorem). Let V be a solution of
the HJB equation (38) such that V � C1((0, tf) � Rn) and V(tf,
x) � g(x). Then we have

1. V(s, x) � J(s, x; u) for any admissible control u.

V (s, y)

≤ min
{∫ σ

s
f 0(t,x(t), u(t)) dt + V (σ , x(σ )) : u ∈ Uad on [s, σ ]

}
≤ V (s, y)

2. If u* � �(t, x) � U is the unique solution to
which implies Eq. (36).

Suppose that V is continuously differentiable. Then V sat-
isfies the so-called Hamilton–Jacobi–Bellman (HJB) equa-
tion:

f (t, x, u∗)Vx(t, x) + f 0(t,x, u∗)

= min
u∈U

[ f (t, x, u)Vx(t, x) + f 0(t, x, u)] (40)

and the equationVt (s, y) + min
u∈U

[ f (s, y, u)Vx(s, y) + f 0(s, y, u)] = 0 (38)

We derive Eq. (38) using the optimality principle (36). Let
d
dt

x(t) = f (t, x(t), µ(t, x(t))) x(s) = y
û � K be of the form

has a solution x*(t) � C1(s, tf; Rn) for each (s, y) � [0, tf]
� Rn, then the feedback solution u*(t) � �(t, x*(t)) is
optimal, that is, V(s, y) � J(s, y; u*).û =

{
u on (s, σ )

ũ on (σ , t f )

Proof. Note that for u � K
where u(t) � U on (s, �) and ũ minimizes J(�, x(�); u) over
the interval [�, tf]. From Eq. (37) we have d

dt
V (t,x(t)) = Vt (t,x(t)) + f (t, x(t), u(t))Vx(t,x(t))

and for any pair (x, u) � Rn � U,J(s,x; û) =
∫ σ

s
f 0(t, x(t), u(t)) dt + V (σ ,x(σ ))

Vt + f (t, x, u)Vx(t,x) + f 0(t, x, u) ≥ 0
If we set u(t) � u*(t) on [s, �], then, from Eq. (36) ũ(t) �
u*(t) on [�, tf] minimizes J(�, x*(�); 	 ) on [�, tf] and and thus

V (s, y) =
∫ σ

s
f 0(t, x∗(t), u∗(t)) dt + V (σ ,x∗(σ )) (39) d

dt
V (t, x(t)) ≥ − f 0(t,x(t), u(t))

Hence we haveSince V is assumed to be C1, we have

d
dt

V (t,x(t)) = Vt + Vx
d
dt

x(t) = Vt + f (t, x(t), u(t)) · Vx V (s, y) ≤
∫ t f

s
f 0(t,x(t), u(t)) dt + g(x(t f )) = J(s,y; u)

for all admissible controls u. Similarly, if u*(t) � U attainsor equivalently,
the minimum in Eq. (40) with x � x*(t), then

V (σ , x(σ )) = V (s, y) +
∫ σ

s
(Vt + fVx ) dt

Now, since V(s, y) � J(s, x; û), the equation above Eq. (39)

d
dt

V (t,x∗(t)) = Vt (t, x∗(t)) + f (t, x∗(t),u∗(t))Vx(t, x∗(t))

= − f 0(t, x∗(t), u∗(t))
implies

and thus

V (s, y) =
∫ t f

s
f 0(t, x∗(t), u∗(t)) dt + g(x∗(t f )) = J(s,x; u∗)

∫ σ

s
[Vt (t, x(t), u(t)) + f (t, x(t), u(t))Vx(t, x(t))

+ f 0(t, x(t), u(t))] dt ≥ 0

Relation to the Maximum Principlewhere, from Eq. (39), the equality holds if u � u* on [s, �].
Thus, In this section we discuss the relation between the dynamic

programming and the maximum principle. Define the Hamil-
tonian Ĥ by

Ĥ(t,x, u, p) = − f 0(t, x, u) − ( f (t, x, u), p)Rn (41)

lim
σ →s+

1
σ − s

∫ σ

s
[Vt + f (t, x(t), u(t)) · Vx + f 0(t, x(t), u(t))] dt

= Vt (s, y) + f (t, y, u(s))Vx(s, y) + f 0(s, y, u(s)) ≥ 0



OPTIMAL CONTROL 373

We assume that Ĥ(t, x, u, p) attains the maximum over u � subject to Eq. (35), where � � inf �x(t) � �� is the exit time
from an open set � in Rn. It can be shown that, if we defineU at the unique point û � �(t, x, p) and that � is locally

Lipschitz. Let us define the value function V(y) � infu�U J(y, u), then it satisfies the
HJB equation

H(t, x, p) = max
u∈U

Ĥ(t,x, u, p)

Then Eq. (38) can be written as
min
u∈U

[ f 0(x, u) + f (x, u) · Vx] = 0, V (x) = g(x) on x ∈ ∂


(47)

Vt − H(t, x,Vx) = 0 (42) For the specific case f (x, u) � u, f 0 � 1, g � 0, U � [�1, 1],
and � � (�1, 1), with x, u � R, the HJB equation (47) be-Assume that V � C1,2((0, tf) � Rn). Then, defining p(t) � Vx(t, comesx*(t)), we obtain

−|Vx(x)| + 1 = 0 with V (±1) = 0 (48)d
dt

p(t) = Ĥx(t, x∗(t), u∗(t), p(t)), p(t f ) = gx(x∗(t f )) (43)
It can be proved that Eq. (48) has no C1 solution, but there
are infinitely many Lipschitz continuous solutions that satisfyand u*(t) � �(t, x*(t), p(t)) is an optimal control. In fact, by
it a.e. in (�1, 1). The viscosity method is developed as a math-Eq. (42)
ematical concept that admits non-C1 solutions and selects the
solution corresponding to the optimal control problem to the
HJB equation.

We return now to the general problem presented in the
first subsection of this section.

Definition 1. A function v � C((0, tf] � Rn) is called a viscos-
ity solution to the HJB equation vt � H(t, x, vx) � 0 provided

d
dt

Vx(t, x∗(t)) = ∂Vx

∂t
(t, x∗(t)) + Vxx(t, x∗(t))

d
dt

x∗(t)

= Hx(t, x,Vx(t,x∗(t)))

+ Vxx(t,x∗(t))Hp(t, x,Vx(t,x∗(t)))

+ Vxx(t,x∗(t)) f (t,x∗(t), u∗(t))

= Ĥx(t, x∗(t),u∗(t),Vx(t,x∗(t)))
that for all � � C1(�), if v � � attains a (local) maximum at

where Vxx � ��2V/�xi �xj� � Rn�n. Here we have used the fact (t0, x0), then
that

ψt − H(t, x, ψx) ≥ 0 at (t0, x0)

and if v � � attains a (local) minimum at (t0, x0), then

ψt − H(t, x, ψx) ≤ 0 at (t0, x0)

Hp(t,x, p) = − f (t, x, û)

and

Hx(t,x, p) = − fx(t, x, û)t p − f 0
x (t, x, û)t

It is clear that a C1 solution to Eq. (42) is a viscosity solu-where û � �(t, x, p) � U maximizes Ĥ(t, x, u, p) over U. We
tion, and if v is a viscosity solution of Eq. (42) and Lipschitzobserve that Eq. (43) represents the adjoint equation of the
continuous, then vt � H(t, x, vx) � 0 a.e. in (0, tf) � Rn. Themaximum principle with adjoint variable � given by �Vx( 	 ,

x*). viscosity solution concept is derived from the vanishing vis-
Next let us set U � Vx. Then U satisfies cosity method illustrated by the following theorem.

Theorem 6. Let V�(t, x) � C1,2((0, tf) � Rn) be a solution to
the viscous equation

Ut (t, x) + f (t, x, µ(t, x,U (t, x)))

· Ux(t, x) − Hx(t, x,U (t, x)) = 0
(44)

Hence, setting u(t) � �(t, x(t), p(t)), the necessary optimality V ε
t − H(t, x,V ε ) + ε �V ε = 0, V ε (t f , x) = g(x) (49)

conditions
If V�(t, x) � V(t, x) uniformly on compact sets as � � 0�, then
V(t, x) is a viscosity solution to Eq. (42).

Proof. We need to show that

ψt − H(t, x, ψx) ≥ 0 at (t0, x0)

d
dt

x(t) = f (t, x, u(t))

d
dt

p(t) = Hx(t, x, p(t))

d
dt

V (t) = − f 0(t, x, u(t))

(45)

for all � � C1((0, tf) � Rn) such that V � � attains a local
are the characteristic equations of the first order partial dif- maximum at (t0, x0).
ferential equations (PDEs) (42) and (44). Choose a function � � C1((0, tf) � Rn) such that 0 � � � 1

for (t, x) � (t0, x0) and �(t0, x0) � 1. Then (t0, x0) is a strict local
Viscosity Solution Method maximum of V � � � �. Define �� � V� � � � �, and note

that, since V� � V uniformly on compact sets, there exists aIn this section we discuss the viscosity solution method for
sequence (t�, x�) such that (t�, x�) � (t0, x0) as � � 0� and ��the HJB equation. For motivation, we first consider the exit
attains a local maximum at (t�, x�). The necessary optimalitytime problem
condition yields

�ε
t = 0, �ε

x = 0, �ε
xx ≤ 0 at (t, ε, xε )

min J(y, u) =
∫ τ

0
f 0(x(t),u(t)) dt + g(x(τ )) (46)
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It follows that Here h* denotes the conjugate function of h, which is defined
by

ψt − H(t, x, ψx) + ε �ψ ≥ ζt − H(t, x, ζx) + ε �ζ at (tε , xε )

h∗(v) = sup
u∈U

{vu − h(u)} (50)
Since � is an arbitrary function with the specified properties,
�t � H(t, x, �x) 
 0 at (t0, x0).

We assume that h* is Gateaux-differentiable with locally
Lipschitz Gateaux derivative h*p . Then we have û � h*p (v),For example, let V�(x) be the solution to
where û � U attains the maximum of (v, u) � h(u) over u �
U. In this case, the HJB equation is written as−|Vx(x)| + 1 + εVxx = 0, V (−1) = V (1) = 0

Then the solution V� is given by Vt + a(x) · Vx − h∗(−b(x)tVx) + l(x) = 0 (51)

with V(tf, x) � g(x). As a specific case, we may consider theV ε (x) = 1 − |x| + ε(e−1/ε − e−|x|/ε )
linear quadratic control problem where

and we have lim V�(x) � 1 � �x� as � � 0�. Moreover, V(x) �
1 � �x� is a viscosity solution to ��Vx(x)� � 1 � 0. We can also
check that any other Lipschitz continuous solution is not a

f (t, x, u) = A(t)x + B(t)u + f (t),

f 0(t, x, u) = 1
2 [xtQ(t)xt

uR(t)u]
viscosity solution. It can be proved, in a general context, that
the viscosity solution is unique (Refs. 3,4).

and U � Rm. Then we haveAs we saw for the exit time problem, the value function V
is not necessarily differentiable. But it always superdiffer-
entiable. Here we call a function 
 superdifferentiable at y0 if Vt + [A(t)x + f (t)]Vx − 1

2 | − R−1(t)Bt(t)Vx|2R + 1
2 xtQ(t)x = 0

(52)there exists p � Rn such that

Suppose that g(x) � ��xtGx. Then V(t, x) � �� xtP(t)x � xv(t) is a
solution to Eq. (52), where P(t) � Rn�n satisfies the differentiallim sup

y→y0

ϕ(y) − ϕ(y0) − (p,y − y0)

|y − y0|
≥ 0

Riccati equation

and we denote the set of p such that the above inequality
holds by D�
(y0). Based on the notion of viscosity solution, one
can express the dynamic programming and the maximum
principle without assuming that V is C1 as follows (see, e.g.,

dP
dt

(t) + At (t)P(t) + P(t)A(t)

− P(t)B(t)R−1(t)Bt (t)P(t) + Q(t) = 0
(53)

Ref. 2).
with P(tf) � G, and the feedforward v(t) satisfies

Theorem 7. The value function V(s, y) is continuous on (0,
tf) � Rn, and locally Lipschitz continuous in y for every s �
[0, tf]. Moreover, V is a viscosity solution of the Hamilton–

d
dt

v(t) = −[A − BR−1BtP(t)]tv(t) = P(t) f (t), v(t f ) = 0

(54)Jacobi–Bellman equation, and every optimal control u* to the
problem Eqs. (34)–(35) is given by the feedback law

In the control-constrained case with U � �u � Rm : �u� � 1�
and h(u) � ���u�2, we findu∗(t) = µ(t, x∗(t), η(t)) for some η(t) ∈ D+

x V (t, x∗(t))

for every t � [0, T], where x*( 	 ) is the optimal trajectory of
Eq. (35) corresponding to u*.

h∗(p) =
{

1
2 |p|2 if |p| < 1

|p| − 1
2 if |p| ≥ 1

Applications and
Here we consider the case

f (t, x(t),u(t)) = a(x) + b(x)u and f 0(t, x, u) = l(x) + h(u) h∗
p(p) =

{
p if |p| < 1

p/|p| if |p| ≥ 1

where it is assumed that h : U � R is convex, is lower semi-
so that h* � C1(Rm) � W2,�(Rm).continuous, and satisfies

h(u) ≥ ω|u|2 for some ω > 0 LINEAR QUADRATIC REGULATOR THEORY
AND RICCATI EQUATIONS

We find

In this section we first revisit the finite-horizon LQR problem
in Eqs. (29)–(30) and show that the optimal control u*(t) can
be expressed in the feedback form

u∗(t) = −R−1Bt [P(t)x(t) + v(t)] (55)

min
u∈U

{ f 0(t, x, u) + p · f (t, x, u)}
= a(x) · p + l(x) − max

u∈U
{−u · b(x)t p − h(u)}

= a(x) · p − h∗(−b(x)t p)
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where the symmetric matrix P(t) and the feedforward v(t) sat- We turn to the infinite-time-horizon problem:
isfy Eqs. (53) and (54). The matrix K(t) � R�1BtP(t) describing
the control action as a function of the state is referred to as
the feedback gain matrix. The solution in the form of Eq. (55)

min J(x0, u) = 1
2

∫ ∞

0
[xt (t)Qx(t) + u(t)Ru(t)] dt (60)

can be derived from the dynamical programming principle in
subject to the linear control systemthe preceding subsection, but here we prefer to give an inde-

pendent derivation based on the two-point boundary value
problem (31). Since this equation is affine, we can assume
that

d
dt

x(t) = Ax(t) + Bu(t), x(0) = x0

This problem need not admit a solution. For example, con-p(t) = P(t)x(t) + v(t) (56)
sider the system

More precisely, let (x(t), p(t)) denote a solution to Eq. (31).
Then for each t � [0, tf], the mapping from x(t) � Rn to p(t) �
Rn defined by forward integration of the first equation in Eq.

d
dt

x(t) =
�

1 1
0 1

�
x(t) +

�
1
0

�
u(t)

(31) with initial condition x(t) on [t, tf] and subsequent back-
ward integration of the second equation of Eq. (31) with ter- and let Q � I and R be arbitrary. Then there exists no admis-
minal condition p(tf) � Gx(tf) on [t, tf] is affine. Substituting sible control u � L2(0, �; Rm) such that J(x0, u) is finite, un-
Eq. (56) into the second equation of Eq. (31), we obtain less x2(0) � 0.

Under the assumption that for each x0 � Rn there exists at
least one admissible control such that J(x0, u) is finite (finite-d

dt
P(t)x(t)+ P(t)

d
dt

x(t)+ d
dt

v(t) = −Qx(t) − At [P(t)x(t)+ v(t)]
cost condition), it can be shown that the optimal control is
given in feedback form by

and from the first equation in Eq. (31) we derive

u∗(t) = −R−1BtP∞x∗(t)

where the nonnegative symmetric matrix P� is defined in the
following theorem. A sufficient condition for the finite-cost

� d
dt

P(t)t + AP(t) + P(t)A − P(t)BR−1BtP(t) + Q
�

x(t)

+ d
dt

v(t) + [A − BR−1BtP(t)]tv(t) + P(t) f (t) = 0
condition is that the pair (A, B) is stabilizable, that is, there
exists a matrix K � Rm�n such that A � BK is asymptotically

This equation holds if Eqs. (53) and (54) are satisfied. By stable. In this case, the closed-loop system with feedback con-
standard results from the theory of ordinary differential trol u(t) � �Kx(t) is exponentially stable, and we have J(x0,
equations, there exists a unique symmetric and nonnegative �Kx(t)) � M�x0�2 for some M � 0 independent of x0 � Rn.
solution Ptf

(t) � C1(0, tf; Rn�n) with Ptf
(t) � G to the Riccati The following result is referred to as LQR theory. It relies

equation (53). If x*(t) is a solution to on the notions of detectability and observability. The pair (A,
Q1/2) is called detectable if there exists a matrix G such that
A � GQ1/2 is asymptotically stable. Further (A, Q1/2) is calledd

dt
x∗(t) = [A − BR−1BtPt f

(t)]x∗(t) − BR−1Btv(t) + f (t) (57)
observable if, for some � � 0, the kernel of the mapping x �
Q1/2eA�x is trivial. Observability of (A, Q1/2) is equivalent to con-

where v(t) is a solution to Eq. (54), and if we set p(t) � trollability of (At, Q1/2).
P(t)x*(t) � v(t), then the pair (x*(t), p(t)) is a solution to Eq.

Theorem 8 (LQR)(31). Thus, the triple (x*(t), u*(t), �pt(t)) satisfies the maxi-
mum principle. From Theorem 3 or from Eq. (58) below, it
follows that the feedback solution (55) is optimal. 1. Assume that for each x0 � Rn there exists at least one

The formula (56) is called the Riccati transformation. It admissible control such that J(x0, u) is finite. For any
transforms the TPBV problem (31) into a system of initial tf � 0, let Ptf

( 	 ) denote the solution to the Riccati equa-
value problems backwards in time. Moreover, the feedback tion Eq. (53) with G � 0. Then Ptf

(0) converges monoton-
solution given by Eq. (55) is unique. This follows from the fact ically to a nonnegative symmetric matrix P� as tf � �,
that for arbitrary u � L2(0, tf; Rm), multiplying Eq. (57) from and P� satisfies the algebraic Riccati equation
the left by [Ptf

(t)x*(t)]t using Eqs. (53) and (54), and integrat-
ing the resulting equation on [0, tf], we have AtP∞ + P∞A − P∞BR−1BtP∞ + Q = 0 (61)

The controlJ(x0, u) = J(x0, u∗) + 1
2

∫ t f

0
|u(t) + R−1Bt[Pt f

x(t) + v(t)]|2R dt

(58) u∗(t) = −R−1BtP∞x∗(t)

where �y�2R � ytRy and is the unique solution to the LQR problem (60), and

J(x0, u∗) = 1
2 xt

0P∞x0 = min
u∈L2 (0,∞;Rm )

J(x0, u)

Conversely, if there exists a nonnegative symmetric so-
lution P to Eq. (61), then for all x0 � Rn there exists an

J(x0, u∗) = 1
2

�
xt

0Pt f
(0)x0 + 2v(0)tx0

+
∫ t f

0
[−vt (t)BR−1Btv(t) + 2vt (t) f (t)] dt

� (59)
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admissible control u such that J(x0, u) is finite and where f � L2(0, �; Rn). Assume that (A, B) is stabilizable and
that (A, Q1/2) is detectable. Then there exists a unique optimalP� � P.
solution u* given by2. Suppose that (A, Q1/2) is detectable and that Eq. (61)

admits a solution. Then the closed-loop matrix A �
u∗(t) = −R−1Bt[P∞x∗(t) + v(t)]BR�1BtP� is asymptotically stable, and P� is the unique

nonnegative symmetric solution to Eq. (61). If, more- where P� is the unique solution to Eq. (61) and v � L2(0, �;
over, (A, Q1/2) is observable, then P� is positive definite. Rn) satisfies

Proof. For part 1 note that, due to Eq. (59), we have for
tf � t̂f

d
dt

v(t) + (A − BR−1BtP∞)v(t) + P∞ f (t) = 0, v(∞) = 0

xt
0Pt f

(0)x0 ≤ xt
0P

t̂ f
(0)x0

Proof. From Theorem 8 it follows that A � BR�1BtP� is as-
ymptotically stable and thus v � L2(0, �; Rn) and u*(t) �

Thus, Ptf
(0) � Pt̂f

(0) for tf � t̂f. The assumption on the exis- L2(0, �; Rm). Since (A, Q1/2) is detectable, there exists a matrix
tence of admissible controls shows that et

iPtf
(0)ei and (ei � G � Rn�n such that A � GQ is asymptotically stable. For arbi-

ej)tPtf
(0)(ei � ej) are monotonically nondecreasing and bounded trary admissible controls u � L2(0, �; Rn)

with respect to tf. Here ei denotes the ith unit vector in Rn.
Defining P� � limtf�� Ptf

(0), it follows that P� is symmetric, is
nonnegative, and moreover satisfies the steady-state equation x(t) = e(A−GQ)tx0 +

∫ t

0
e(A−GQ)(t−s)[GQx(t) + Bu(t) + f (t)] dt

Eq. (61). It can then be argued that the feedback control
u*(t) � �R�1BtP�x*(t) is the unique optimal solution to the From the Fubini inequality
LQR problem (60). To prove the last assertion of part 1, sup-
pose that P is a nonnegative symmetric solution to Eq. (61).
Let x(t) be the solution to (d/dt)x(t) � (A � BR�1BtP)x(t) with

∫ ∞

0
|x(t)|2 dt ≤ M(|x0|2 + |u|2L2 (0,∞;Rm )

+ | f |2L2 (0,∞;Rn )
)

x(0) � x0, and let u(t) � �R�1BtPx(t). Then
for some M � 0. Thus limt�� x(t) exists and is zero. Taking
the limit tf � � in Eq. (58), we obtaind

dt
[xt (t)Px(t)] = 2xt (t)P(A − BR−1BtP)x(t)

= −xt (t)(Q + PBR−1BtP)x(t) J(x0, u) = J(x0, u∗) + 1
2

∫ ∞

0
|u(t) + R−1Bt[P∞x(t) + v(t)]|2R dt

Integration of this equation on [0, tf] implies
which proves the theorem.

Assume that (A, B) is stabilizable. Then there exists a solu-
∫ t f

0
(xtQx + utRu) dt + x(t f )

tPx(t f ) = xt
0Px0

tion P� to Eq. (61), for which, however, A � BR�1BtP� is not
necessarily asymptotically stable. The following theoremand thus J(x0, u) � ��xt

0Px0 and xt
0P�x0 � xt

0Px0 for every
shows that there exists a maximal solution P� to the Riccatix0 � Rn.
equation (61) and gives a sufficient condition such that A �To verify part 2, note that
BR�1BtP� is asymptotically stable.

Theorem 10. Assume that (A, B) is stabilizable. For � � 0
let P� be the nonnegative symmetric solution P� to the Riccati

(A − BR−1BtP∞)tP∞ + P∞(A − BR−1BtP∞)

+ Q + P∞BR−1BtP∞ = 0
equation

It can be shown that (A � BR�1BtP�, (Q � P�BR�1BtP�)1/2) is
detectable (observable) if (A, Q1/2) is detectable (observable). AtP + PA − PBR−1BtP + Q + εI = 0
Hence, it follows from the Liapunov criterion (5) that A �

Then P� converges monotonically to a nonnegative symmetricBR�1BtP� is asymptotically stable and moreover that P� is
matrix P� as � � 0�. The matrix P� is a solution to Eq. (61),positive definite if (A, Q1/2) is observable. For the proof of
and P � P� for all nonnegative symmetric solutions P to Eq.uniqueness we refer to the literature (see, e.g., Ref. 5).
(61). Moreover, if we assume that the Hamiltonian matrix

In the following theorem we consider the LQR theory with
external forcing. H =

�
A −BR−1Bt

−Q −At

�
(62)

Theorem 9. Consider the infinite-time-horizon problem
has no eigenvalues on the imaginary axis, then A �
BR�1BP� is asymptotically stable. For the stability-con-
strained LQR problem of minimizing Eq. (60) subject tomin

1
2

∫ ∞

0
[xt (t)Qx(t) + ut (t)Ru(t)] dt

subject to

d
dt

x(t) = Ax(t) + Bu(t) + f (t), x(0) = x0

d
dt

x(t) = Ax(t) + Bu(t) + f (t),

x(0) = x0 and
∫ ∞

0
|x(t)|2 dt < ∞
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the unique optimal control u* is given by Assume that U11 is nonsingular, and define P � U21U�1
11 . Since

PU11 � U21, we have
u∗(t) = −R−1[BtP + x(t) + v(t)]

(A − WP)U11 = U11S11 and (−Q − AtP)U11 = PU11S11where v(t) � L2(0, �, Rn) satisfies

Thus P(A � WP)U11 � (�Q � AtP)U11, and moreover A � WP
� U11S11U�1

11 .
d
dt

v(t) + (A − BR−1BtP+)v(t) + P+ f (t) = 0, v(∞) = 0
Conversely, if P satisfies AtP � PA � PWP � Q � 0. Then

Due to the importance of finding the stabilizing feedback
gain, solving Eq. (61) is of considerable practical importance.
We therefore close this section by describing the Potter–Laub H

�
I 0
P I

�
=
�

A − WP −W
−Q − AtP −At

�
method. We also refer to Refs. 6, 7 for iterative methods based
on the Newton–Kleimann and Chandrasekhar algorithms. and
The Potter–Laub method uses the Schur decomposition of the
Hamiltonian matrix (62) and is stated in the following
theorem.

�
I 0
P I

��
A − WP −W

0 −At + PW

�
=
�

A − WP −W
P(A − WP) −At

�

Theorem 11
Thus

1. Let Q, W be symmetric n � n matrices. Solutions P to
the algebraic Riccati equation AtP � PA � PWP � Q �
0 coincide with the set of matrices of the form P � H

�
I 0
P I

�
=
�

I 0
P I

��
A − WP −W

0 −At + PW

�
VU�1, where the n � n matrices U � [u1, . . ., un], V �
[v1, . . ., vn] are composed of upper and lower halves of

The proof of assertions 2–4 can be found in Ref. 6.n real Schur vectors of the matrix

In summary, the stabilizing solution P corresponds to the
stable eigen subspace of H, and the eigenvalues of the re-H =

�
A −W

−Q −At

�
sulting closed-loop system coincide with those of S11.

and U is nonsingular.
2. There exist at most n eigenvalues of H that have nega- NUMERICAL METHODS

tive real part.
3. Suppose [u1, . . ., un] are real Schur vectors of H corre- In this section we discuss numerical methods for the nonlin-

sponding to eigenvalues �1, . . ., �n, and �i � ��j for 1 ear regulator problem
� i, j � n. Then the corresponding matrix P � UV�1 is
symmetric.

4. Assume that Q, W are nonnegative definite and (A, min J(x0, u) =
∫ T

0
[l(x(t)) + h(u(t))] dt + g(x(T )) (63)

Q1/2) is detectable. Then the solution P is symmetric and
nonnegative definite if and only if Re �k � 0, 1 � k � subject to
n.

Proof. We prove part 1. Let S be a real Schur form of H, that d
dt

x(t) = f (x(t), u(t)), x(0) = x0, u(t) ∈ U (64)
is, HU � US with UtU � I and

We assume that
S =

�
S11 S12

0 S22

�
( f (x, u) − f (y, u), x − y) ≤ ω|x − y|2 for all u ∈ U (65)

Thus
and moreover either that U � Rm is bounded or that h(u) 

c1�u�2 and

H

�
U11

U21

�
=
�

U11

U21

�
S11

( f (x, u),x) ≤ ω|x|2 + c2|u|2 (66)
where

for constants �, c1, c2 � 0, independent of x, y � Rn and u �
U. Also we assume that for each (x, p) � Rn � Rn the mapping

�
U11

U21

�

u → h(u) + (p, f (x, u))

is made up of n Schur vectors of H corresponding to the S11

block. We observe that admits a unique minimizer over U, denoted by �(x, p). Fi-
nally, we assume that l, h, g, and f are sufficiently smooth
with l and g bounded from below.AU11 − WU21 = U11S11 and − QU11 − AtU21 = U21S11
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Discrete-Time Approximation Proof. First, we show that x̃N and p̃N are uniformly Lipschit-
zian in N. It will be convenient to drop the tilde in the nota-

We consider the discretized problem
tion for these sequences. In the case that U is bounded, we
proceed by taking the inner product of Eq. (68) with xk and
employing Eq. (65):min JN (uN ) =

N∑
k=1

[l(xk) + h(uk)] �t + g(xN ) (67)

subject to

1
2 (|xk|2 − |xk−1|2) ≤ �t [ω|xk|2 + | f (0, uk)| |xk|]

≤ �t [(ω + 1
2 )|xk|2 + 1

2 | f (0, uk)|2]

In case U is unbounded, Eq. (66) implies thatxk − xk−1

�t
= f (xk, uk) and uk ∈ U 1 ≤ k ≤ N (68)

1
2 (|xk|2 − |xk−1|2) ≤ �t (ω|xk|2 + c2|uk|2)

where N �t � T, which realizes the implicit Euler scheme for
time integration of Eq. (64) and first-order integration of the and, by assumption on h, �N

k�1 �uk�2 �t is bounded uniformly
cost functional (63). Note that if � �t � 1, then the mapping in N. In either case, by the discrete-time Gronwall’s inequal-
�(x) � x � �t f (x, u) is dissipative, that is, (F(x1, u) � F(x2, ity we obtain that �xk� � M1 for some M1 � 0 uniformly in k
u), x1 � x2) 
 (1 � �t �)�x1 � x2�2. Thus for u � �uk�N

k�1 in U and N. The condition (65) implies that
there exists a unique x � �xk�N

k�1, satisfying the constraint Eq.
(68) and depending continuously on u. Moreover, if � �t � 1, ( fx(x, u)p, p) ≤ ω|p|2
then there exists an optimal pair (xk, uk) to the problem Eqs.
(67), (68). The necessary optimality condition for that problem and taking the inner product of Eq. (69) with pk, we obtain
is given by

1
2 (|pk|2 − |pk+1|2) ≤ �t [ω|pk|2 + |lx(xk)| |pk|]

≤ �t [(ω + 1
2 )|pk|2 + 1

2 |lx(xk)|2]

Thus �pk� � M2 for some M2 uniformly in k and N. Due to the
Lipschitz continuity of �, we find that �uk� bounded uniformly
in k and N, and from Eq. (69),

xk − xk−1

�t
= f (xk, uk)

− pk+1 − pk

�t
= fx(xk, uk)t pk + lx(xk)

uk = �(xk, pk) ∈ U

(69)

for 1 � k � N, with x0 � x0 and pN�1 � gx(xN). It is noted that
Eq. (69) is a sparse system of nonlinear equations for

∣∣∣∣xk − xk−1

�t

∣∣∣∣ ,
∣∣∣∣ pk − pk+1

�t

∣∣∣∣ are bounded uniformly

col(col(x1, . . ., xN), col(p1, . . ., pN)) � RnN � RnN. We have the
following result: Using Lipschitz continuity of � a second time, we find that

(uk � uk�1)/�t is uniformly bounded as well. By the compact-
ness of Lipschitz continuous sequences in L2(0, T), there ex-Theorem 12. Assume that � is Lipschitz continuous, that
ists a subsequence N̂ such that (xN̂, uN̂, pN̂) converges to (x*,� �t � 1, and that �uN��

N�1 is a sequence of solutions to Eqs.
u*, p*) in L2(0, T; Rn � Rm � Rn) and pointwise a.e. in (0, T).(67), (68) with associated primal and adjoint states �(xN,
From Eq. (69),pN)��

N�1 such that Eq. (69) holds. Let ũN denote the step func-
tion defined by ũN(t) � uk on (tk�1, tk), 1 � k � N, and let x̃N

and p̃N be the piecewise linear functions defined by xN (t) = x0 +
∫ t

0
f (x̂N (t),uN (t)) dt

where x̂N is the piecewise constant sequence defined by xk,x̃N (t) = xk−1 + xk − xk−1

�t
(t − tk−1)

1 � k � N. By Lebesgue’s dominated convergence theorem,
we find that x* coincides with the solution x(t; u*) to Eq. (64)and
associated with u*. For v � L2(0, T; Rm) let vN be the piecewise
constant approximation of v, defined by vk � (1/N) �tk

tk�1 v(t)
dt, 1 � k � N. Thenp̃N (t) = pk + pk+1 − pk

�t
(t − tk−1)

Then the sequence (x̃N, ũN, p̃N) in H1(0, T; Rn) � L2(0, T; Rm) JN (uN ) ≤ JN (vN ) for all v
� H1(0, T; Rn) has a convergent subsequence as �t � 0, and

and x(t, vN) � x(t, v) as N � �, and thus, by the Lebesguefor every cluster point (x, u, p), u � K is an optimal control of
dominated convergence theorem, J(x0, u*) � J(v; x0) for allEqs. (63), (64), and (x, u, p) satisfies the necessary optimality
admissible control, that is, (x*, u*) is an optimal pair.condition

It is not difficult to argue that the triple (x*, u*, p*) satis-
fies the necessary optimality [Eq. (70)].

Construction of Feedback Synthesis

The numerical realization of feedback synthesis for problems
that are not of the LQR type has not received much research
attention up to now. In this subsection we propose a method

d
dt

x(t) = f (x(t), u(t)), x(0) = x0

− d
dt

p(t) = fx(x(t), u(t))t p(t) + lx(x(t)), p(T ) = gx(x(T ))

u(t) = �(x(t), p(t)) ∈ U
(70)
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for the construction of the feedback synthesis K to the prob- best interpolation W � Wad based on the stationary equation
f (x) 	Vx � h*(�BtVx) � l(x) � 0 bylem (63)–(64), which is still under investigation.

As we discussed in the Section titled ‘‘Dynamic Program-
ming Principle and Hamilton–Jacoby–Bellman Equation,’’
the optimal feedback law is given by K(t, x(t)) � KT(t, x(t)) �
�(x(t), Vx(t, x(t)), where V(t, x) is the solution to HJB Eq. (38)
and we stress the dependence of K on T. Let us assume that

min
∑

k

|[ f (xk) · Wx(xk) − h∗(−BtWx(xk)) + l(xk)]+|2

+
∑

x0∈∑ |Wx(x0) − px0
(0)|2 (74)

f (x, u) � f (x) � Bu, and h � �/2�u�2. Then
over Wad, where x� � max(0, x). Then we set K(x) � �(x, Wx).

KT (t, x(t)) = − 1
β

BtVx(t, x(t)) (71)
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