SELF-TUNING REGULATORS

A self-tuning regulator (STR) is a controller that automati-
cally finds its parameters in the control law. Another name
or synonym is self-adjusting controller. STR is a class of
adaptive controllers used when the process to be controlled
has constant but unknown parameters. However, STR can
also be used in an adaptive context.

BASIC IDEA

Controller Design Procedure

The design of a controller contains several steps:

1. Finding specifications for the closed-loop system

2. Determination of a model for the process to be con-
trolled

3. Decision on a design method
4. Calculation of the parameters in the controller

In many cases, it is desirable to automate these steps. This
is the idea behind adaptive and self-tuning regulators.

The specifications for the closed-loop system depend on
such things as quality constraints on the controlled vari-
able, available magnitude (power) of the control signal, and
nonlinearities of the system to be controlled. This implies
that the specifications are determined by the process en-
gineer at the start of the design procedure. The specifica-
tions often lead to a natural choice of the design method.
For instance, if the main specification is to keep the pro-
cess output constant and if the disturbances are occasional
large disturbances, then the design procedure can be a
method that as quickly as possible eliminates the influ-
ence of the disturbance. The choice of specifications and
design method is thus usually made by the designer of the
control loop. In STRs, as well as in adaptive controllers,
steps 2 and 4 above are automatically taken care of by the
controller.

The structure of a self-tuning controller is best described
from the block diagram in Fig. 1. The self-tuning regulator
consists of two closed loops. The first loop is a conventional
controller feedback-loop consisting of the process and the
controller where the output of the process is measured and
compared with the desired output (reference signal) of the
closed-loop system. The mismatch between the reference
and output signals is used to compute the control action
that is sent to the process. The controller has parameters
that determine its properties. These parameters are deter-
mined by the second loop in the STR, the updating loop.

In Fig. 1, the updating loop has two main blocks. The
first block is an estimator, which determines a mathemat-
ical model of the process based on the measured inputs
and outputs. The second block carries out the design of the
controller. This block uses the process model and the speci-
fications to determine the controller parameters that then
are sent to the controller.

It is necessary that the controller feedback-loop be
closed all the time to take care of the influence of distur-
bances and changes in the reference signal. The updating

loop for the controller parameters can be switched off as
soon as the estimated parameters have converged to their
final values, that is, when the controller has tuned or ad-
justed itselfto the specifications and the process. The result
is a self-tuning regulator. However, if the process is chang-
ing over time it is necessary to update continuously the pro-
cess model and the controller parameters. We then have an
adaptive controller. This implies that an STR is an adap-
tive controller if the parameter updating is not switched off.
The STRs are thus a special class of adaptive controllers.

One of the first descriptions of the idea of STRs is found
in Kalman (1) where updating using parameter estimation
and design is described. The term self-tuning regulator was
coined by Astrém and Wittenmark (2) who gave the first
analysis of the steady-state properties of the STR based
on minimum variance control. The stability of the closed-
loop system and the convergence properties were ana-
lyzed in Goodwin, Ramadge and Caines (3). More details
of the properties of self-tuning and adaptive controllers
can be found in Wellstread and Zarrop (4) and Astrém and
Wittenmark (5).

Classification of Self-Tuning Regulators

The STR in Fig. 1 contains both a block for estimation and
a block for design. An STR in this configuration is usu-
ally called an indirect self-tuning regulator. The reason is
that the controller parameters are obtained indirectly by
first finding a process model. In many cases it is possi-
ble to make a reparameterization of the process and the
controller such that the controller parameters can be esti-
mated directly. This leads to a direct STR. Ways to do this
reparameterization are discussed below.

Applications of Self-Tuning Regulators

The computations in an STR are quite straightforward,
but contain nonlinear and logical operations. This implies
that STRs are implemented using computers. The algo-
rithm can be a block in a software package that is used
for larger process control applications, or the STR can be
implemented in dedicated hardware for a few control loops.

Self-tuning control has, since the mid-1970s, been used
for many applications, mainly in the process industry. Ap-
plications are found in areas of pulp and paper, chemical
reactors, autopilots, and dialysis machines.

Self-tuning regulators and adaptive controllers in gen-
eral have found their main uses in three categories of ap-
plications:

* When the process has long time delays
* When feedforward can be used

* When the disturbances acting on the process have
time-varying characteristics

The main reason self-tuning or adaptive controllers have
a great advantage in these cases is that for good control
of these types of processes it is necessary to have models
of the process and/or of the disturbances to be controlled.
The estimator part of the self-tuning controller can make
an estimate of the process and use that in the design.

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright © 2007 John Wiley & Sons, Inc.

2 Self-Tuning Regulators

1 Self-tuning regulator i
1
Specification | Process parameters '
: !
! Y Y '
H 1
1 Controller - s 0
R > i -
E design Estimation :
1 1
i Controller i
: ‘ parameters e mm J
Reference | [|
i Controller i »f Process
: > Input ! Output
] |
!)

Figure 1. Block diagram of a self-tuning regulator.

Linear STRs are not appropriate to use when the pro-
cess is very nonlinear. The updating mechanism will then
not be sufficiently fast. In such cases the nonlinearities
should be built into the process model and the controller.

ALGORITHMS FOR SELF-TUNING CONTROL

This section describes in more detail how STRs are con-
structed. It also gives the main properties of STRs. To de-
scribe the algorithms we need to specify the process model,
the specifications, the controller, the estimator, and the de-
sign method. We will use discrete-time models for the pro-
cess and the controller since most implementations of STRs
are done using computers. It is, however, also possible to
derive continuous-time STRs.

Process Model

The process is described as a sampled-data linear system.
The process is also assumed to have a single input and a
single output. The model is given as a difference equation

yR)+ayk -1 +...+anyk —n)

=boutk —d)+byutk—d—-1)+:--+bjrutk—d-—m) (1)

where y(k) is the output signal at sampling instant £ and
u(k) is the control signal. Disturbances will be introduced
below. It is assumed that the time is scaled such that the
sampling period is one time unit. The parameter d is the
time delay of the system. Equation (1) is a general descrip-
tion of a linear sampled-data system. To get a more compact
way of describing the system, we introduce the backward-
shift operator 1. The backward-shift operator is defined
in the following way

g lyk) =yk - 1)

That is, operating on a time sequence it shifts the time
argument one step backwards. Using the backward-shift
operator and the polynomials

A*(gH=1 +alq‘1+a2q‘2 +...+a,g7"
B* @) =by+ba7 + 5,72 +... 4 bmg ™

the system can be written as

A* (g Yy(k) =B*(@ Hu(k - d) (2)
or
_B*g™ .y
y(k)—A—*(q_l)u(k d)=H(q)uk-d)

where H(qg™!) is called the pulse-transfer function.

Specifications

The specifications give the desired performance of the
closed-loop system. The specifications can be given in many
different ways depending on the purpose of the closed-loop
system. It is common to distinguish between the servo and
regulator cases.

In the servo case, we give the desired performance in the
form of the time or frequency response when the reference
value is changed or when an occasional large disturbance
has influenced the system. The typical specifications are
bandwidth or response time. Further, things as overshoot
or damping can be specified. One way to give the specifica-
tions is in the form of a reference model H,, defining the
desired output y,,

B (@Y
A (g™Y)

where u, is the reference signal. Normally, d,,, = d, but may
also be longer.

In the regulator case, we study the closed-loop perfor-
mance when disturbances essentially are acting on the
system while the reference signal is constant. The distur-
bance is then usually modeled as a stochastic process, in
general, filtered white noise. Typical performance indices
are to minimize the variance of the output signal around
a desired reference value or to minimize a combination of
output and input variations.

Ym(k) = u(k—dy) =H,(@ Yuk-d,) (3)

Controller
The controller is defined as

R*(g"Yuk) = —S* (@ Hyk) + T* (g Huc(k) (4)

The controller has a feedback part defined by the polyno-
mials R*(g~!) and S*(g~!) and a feedforward part defined
by R*(g~!) and T*(g!). Using Eq. (4) on the process of Eq.
(2) gives the closed-loop system

B*(@g~HT*(@™Y)

k)= (k—d
Y= @ DR @D +B @ 5@ =Y
=H.(q Yuctk —d)
Estimator

Estimation of process models can be done in many dif-
ferent ways. Summaries of methods and their properties
can be found in Ljung (6), Soderstrom and Stoica (7), and
Johansson (8). Here only the recursive least squares (RLS)
method will be discussed. Define the vectors

6T =[a},ap,....an, by ..., bl
¢Tk—1) = [-y(k — 1), —y(k - 2),...,
—yk—n)uk-d),..,.utk—d—m)]

The vector 6 contains the unknown process parameters,
while the vector ¢ contains known old inputs and outputs
of the process. The process model can now be written as

y(k) = T (k — 18

The least squares method, first stated in Gauss (10), im-
plies that the estimate of 6 should be chosen as &, which
minimizes the loss function

A 14 .
V6. k) =5} [y - TG~ 1A 6)
i=1

Given an initial value of the parameters #(0) and the un-
certainty of the parameter estimate P(0), it is possible to
derive a recursive solution to the least squares problem.
The parameter estimate can be updated recursively using

b(k) =0k — 1) + K(k)y(k) — T (k — 1Ak - 1)]
K(k) = P¢e)p(R)I + T (R)P(k — 1) (k)]
P(k) = P(k— 1) — P(k — Dp(R)I + ¢ T (R)P(k — 1)p(R)] (T)
oT(R)P(k - 1)
=[I-Kk)")Pk - 1)

This is called the recursive least squares algorithm. The es-
timate at time % is obtained as an update of the estimate at
time £ — 1. The correction term depends on the latest pro-
cess output, which is compared with the predicted output
based on the parameter estimate at time 2 — 1. The matrix
P(k) can be interpreted as an estimate of the uncertainty of
the parameter estimate at time £. The statistical interpre-
tation can be made rigorous by making assumptions about
the disturbances that are acting on the system.

The recursive least squares method is well suited for
process parameter estimation when there are no distur-
bances or when a white noise process is added to the right-
hand side of Eq. (2). For other noise or disturbance as-
sumptions, there are variants of the recursive least squares
method that can be used.

Self-Tuning Regulators 3

Since the updating formulas of Eq. (7) are recursive,
they can be used also for a continuous updating of the pa-
rameters. In such cases it is, however, necessary to intro-
duce a weighting of old inputs and outputs. The loss func-
tion of Eq. (6) puts equal weight on all data. A measurement
collected a long time ago is as important as the latest mea-
surement. Newer measurements can be given more weight
by changing the loss function of Eq. (6) to

k
V@.k) = % 2 MTya) - T (- DA
i=1

where 1 is the forgetting factor. Since the weights are ex-
ponentially decaying, the resulting algorithm is called re-
cursive least squares with exponential forgetting. The up-
dating formulas are only slightly modified into

6(k) =0k — 1) + K(k)ly(k) — ¢ T(R)o(k — 1)]
K(k) = P(k)p (k)M + T (R)P(k — 1)p(k)]~?
P(k) = (P(k — 1) — P(k — 1)p (k)M + o7 (k)P(k — 1)p(k)]™?
oI (R)P(k — 1)) /1
= - K®&)y" (k)P — 1)/1

In the following we will use the recursive least squares
algorithm, with or without exponential forgetting, to illus-
trate the properties of STRs.

Design Methods

The final step in the construction of an STR is the de-
sign procedure. The basic STRs are based on the certainty
equivalence principle. This implies that the process param-
eter estimates obtained from the estimator are used as if
they are the true ones. The design principles can, how-
ever, be extended to include also the uncertainty of the
estimates, given by the P matrix. This leads to so-called
cautious or dual controllers.

Two different design principles will be discussed in de-
tail, pole-placement design and minimum variance control.
In-depth treatments of the design methods can be found in
Astrom and Wittenmark (9).

Pole-Placement Design. We will now discuss how the pa-
rameters in the controller in Eq. (4) can be determined
using the method of pole placement for the design of the
controller. The closed-loop system is defined by Eq. (5). The
closed-loop characteristic polynomial is thus

A*R*+ B*S* = A} 8)

where A*, is given as a specification by the designer. The
key idea is now to find the controller polynomials R* and S*
that fulfill this equation. Equation (8) is called a diophan-
tine equation. The desired closed-loop system from the ref-
erence signal to the output defined by Eq. (3) requires that
the following condition must hold

B‘T* _B'T* _B,

AR +BS - A A4, ©

This design procedure is called model-following design, and
also pole-placement design, if the poles only are specified.

4 Self-Tuning Regulators

Whether model following can be obtained depends on the
model, the process, and the complexity of the controller.

The characteristic polynomial of Eq. (8) will, in gen-
eral, have higher degree than the model polynomial A% .
This implies that there must be a pole—zero cancellation in
Eq. (9). The consequences of this will now be discussed. The
B* polynomial of the process is first factored into

B* =B**B~*

where B™ corresponds to the process zeros that can be
cancelled in the design. These zeros must be located inside
the unit circle. The zeros corresponding to B~*, which are
not allowed to be canceled, must then be a factor of B;,,
which must have the form

B;, =B~*Bj,

Since B** is canceled, it must be a factor of A*. The closed-
loop characteristic polynomials is thus of the form

A* =AXA* B** = A*R* + B*S* (10)

The polynomial A is called the observer polynomial, and
can be interpreted as the dynamics of a state observer. The
observer polynomial influences, for instance, how fast the
system will recover after a disturbance. A} is determined
by the designer and should be a stable polynomial.

Since B** is a factor of B* and A, it follows from
Eq. (10) that it also is a factor of R*, which implies that

R* =R¥B**
and the diophantine equation reduces to
A*RY + B™*S* = AJA},
Finally, the polynomial 7% is given by
T* =A}B;,

The design procedure can now be summarized into:

Data. Given the process polynomials A*, B¥ = B™*B~*,
and the observer polynomial A}

Step 1. Solve the diophantine equation with respect to
R* and S*.

Step 2. The controller is given by Eq. (4) with R* =
R*¥B** and T* = A*B? .

The diophantine equation can always be solved if there are
no common factors between the A* and B* polynomials and
if the controller polynomial has sufficiently many parame-
ters.

Minimum Variance Control. Most design procedures can
be interpreted as a pole-placement or model-following de-
sign. For instance, the minimum variance controller can
easily be formulated in this form. The minimum variance
controller is a controller that minimizes the variance of the
output from the process. In this case, we add a disturbance
term C*#(q~1)e(k) on the right-hand side of Eq. (2), where C*
is a stable polynomial and e(k) is white noise. The minimum

variance controller is obtained by solving the diophantine
equation

C*@) =A* @ HF* (g +q7%G @Y (11)
and using the control law

_8*@™
R*@™Y

G*(q™)

p=__ 6@
18 = - g O F @D

yk) = yk) (12)

Also, linear quadratic gaussian controllers can be inter-
preted as solving a special form of the diophantine equa-
tion, see Astréom and Wittenmark (9).

Design of Self-Tuning Regulators

The design of STRs can be summarized by the following
procedure:

Specifications. Determine the class of controller by de-
termining the specifications on the closed-loop sys-
tem.

Estimation. Estimate the process parameters using, for
instance, the recursive least squares algorithm of
Eq. (7).

Design Procedure. Determine the controller parame-
ters using the estimated process parameters as if
they are the correct ones. The controller design is
usually reduced to the solution of an equation such
as the diophantine Eq. (8).

Control. Update the parameters of the controller, for in-
stance, in the form of the controller in Eq. (4).

The estimation, design, and control steps are done at each
sampling interval. In some situations, it may be sufficient
to update the estimation at a slower rate than the rate
of the control loop. The behavior of the basic indirect self-
tuning algorithm will be described by an example.

Example 1: Indirect Deterministic Self-Tuning Regu-
lator Assume that the open-loop process is described by
the continuous-time system

The process has an integrator and a time constant of 1 s.
There are no disturbances acting on the system and the
specifications are that the controlled system should be able
to follow constant reference signals without too much over-
shoot. Sampling the system with the sampling interval
h = 0.5 s gives the sampled-data description

beg~ +byg~2 0.1065¢~ +0.0902¢2

H@™ Y = =
@ = T e Traye-2 ~ 1 1.600659-1+ 0.6065q-2

There is a process zero in —b;/bg = —0.85. The zero is inside
the stability boundary, but it is still decided not to cancel
the zero. Let the desired closed-loop system be

B: @Y _ K(0.1065¢71 4 0.09027"2)
At (g-1) T 1-1.3206g-14 0.49669-2

Output

Input

|
0 100 200
Time

Figure 2. Process output and input when an indirect self-tuning
regulator is used to control the process in Example 1. The specifi-
cations are changed at time 100. The reference signal is shown as
a dashed curve.

This corresponds to a continuous-time system with natural
frequency w = 1 and a damping of ¢ = 0.7 sampled with the
sampling period 2 = 0.5. The gain K is chosen such that the
steady-state gain from the reference signal to the output is
equal to one, that is, B}, (1)/A}, (1) = 1. The controller solving
the design problem will have the structure

A+ g~ Huk) = —(sp + 5197 Dyk) + g + 19~ Huc (k)

Figure 2 shows the output and the control signal when
the process is controlled by a self-tuning controller. The
reference signal is a square wave. It is seen that the output
behaves well already at the second change of the reference
signal. At time 100 the design specifications are changed
and the damping is changed from ¢ = 0.7 to ¢ = 1. The
closed-loop response is immediately changed. The process
model has four unknown parameters, by, b1, a1, and as.
These parameters are estimated using the RLS algorithm,
and the estimated process parameters are shown in Fig. 3.
The example shows that the STR can find good controller
parameters very quickly and that the design parameters
can be changed. The transient in the beginning depends on
the choice of initial values in the estimator.

Direct Self-Tuning Regulators

The self-tuning algorithm described above relies on a sep-
aration between the estimation and the design. The design
step is repeated at each sampling instant. It can, on some
occasions, be desirable to avoid the computations done in
the design step, for instance, because of computing time
limitations. One way to do this is to convert the indirect
STR into a direct STR. This implies that the controller pa-
rameters are estimated instead of the process parameters.
How to do this reparameterization will be illustrated on
the minimum variance controller.
Let the system to be controlled be described by

A*(q Yy(k) =B*(@ Huk —d) +C*(@ Hek) (13)

Self-Tuning Regulators 5

-

Estimated
parameters

Estimated
parameters

o

o

100 200
Time

Figure 3. Parameter estimates corresponding to the simulation
in Fig. 2. Upper diagram: 4; (full) and 42 (dashed), lower diagram:
bo (full) and b, (dashed). The true parameter is shown by dashed-
dotted lines.

The design specification is to minimize the variance of the
output signal. Minimum variance control is equivalent to
predicting the output signal d steps ahead and choosing the
control signal such that the predicted value is equal to zero,
or any other desired set point value. The prediction horizon
should be equal to d, which is the delay in the process.

From Ref. 5 or Ref. 9 it follows that the output of
Eq. (13) can be written as

* ¥

G* B*F
yk+d) =F*e(k +d)+ay(k)+?u(k) (14)

where F* and G* are obtained from the diophantine
Eq. (11). The predicted output d steps ahead is given by
the second and third terms on the right-hand side of Eq.
(14). The prediction error is given by the first term on the
right-hand side of Eq. (14). The prediction error is a mov-
ing average stochastic process that is independent of the
predicted output. The predicted output is zero if the control
law is chosen according to Eq. (12). Using the underlying
design principle, it has been possible to reparameterize the
model of Eq. (13) such that the reparameterized model ex-
plicitly contains the controller parameters. The controller
parameters then can be estimated directly. Using the min-
imum variance controller, the closed-loop system becomes

yk) = F*(g"Ve(k)

The idea behind the basic direct STR is to estimate the
parameters in the prediction model

yk+d) =8*(q k) + R* (" Yuk) + etk +d) (15)
and use the controller

S*(q™)

k)= —
uk) R+(g~1)

y(k)

The estimated parameters are thus the same as the con-
troller parameters, and the design step has been elimi-
nated.

6 Self-Tuning Regulators

I

o

=]

S
|
1

Accumulated
loss

0 |
0 250 500
Time

Figure 4. The accumulated loss function V(k) when the direct
self-tuning algorithm (full) and the optimal minimum variance
controller (dashed) are used on the process in Example 2.

|

Controller
gain

0]
0 250 500
Time

Figure 5. The controller gain 3y/Iy when the self-tuning algo-
rithm is used (full). The gain of the optimal minimum controller
is shown as a dashed line.

Example 2: Direct Minimum Variance Self-Tuning
Algorithm Assume that the open-loop process is de-
scribed by the sampled-data model

y(k) — 0.9y(k — 1) = Su(k — 1) +e(k) + 0.3e(k — 1)

where e(k) is white noise with variance 1. The time delay
in the system is d = 1. Estimate the parameters ry and sg
in the model

y(k+1) =sgyk)+rouk) + ek + 1)

and use the controller

$o (k)

u(k) = —;D(k)y

(k)

The optimal minimum variance controller is given by
u(k) = —0.2y(k), which is a proportional controller. Using
this controller gives the output y(k) = e(k), that is, the out-
put should be white noise with a variance of 1. One way
to compare the optimal and the self-tuning regulators is to
compare the accumulated loss functions

k
V) =) ¥
i=1

The slope of the accumulated loss function is an estimate
of the variance of the output.

Figure 4 shows the loss function when the self-tuning
algorithm and when the optimal minimum variance con-
troller is used. After a short initial transient, the slopes of
the loss functions are the same, which indicates that the
STR has converged to the optimal minimum variance con-
troller. This can also be seen by looking at the gain of the
controller shown in Fig. 5.

Elimination of Disturbances

We will now see how the influence of disturbances can be
reduced by introducing integrators and by using feedfor-
ward.

Introduction of Integrators. Consider the process

%/ -1

98 = 2oL Dtuh - d) + ok (16)
which is a slight variant of Eq. (2). The signal v(k) is an
input load disturbance. If this is, for instance, a step, then
there needs to be an integrator in the controller to elim-
inate the influence of this disturbance. There are several
ways to cope with this in an STR. One way is to estimate
the magnitude of the disturbance and to compensate for
it in the controller. To do so, the tuning has to be active
all the time since the disturbance may change over time.
A recommended way is to introduce an integrator directly
into the controller. This can be done by postulating that
the R* polynomial contains the factor 1 — g~. This can be
done in the direct as well as in the indirect algorithms.

In the indirect algorithm, it is necessary to modify the
estimator since the disturbance will change the relations
between the inputs and outputs. Load disturbances such
as steps have a particularly bad influence on the estimated
model in the low-frequency range. Let the disturbance be
modeled as

Aju(k) =e(k)
where e(k) is a pulse, a set of widely separated pulses, or

white noise. For instance, a step disturbance is generated
by

The model can now be described as
AjA*y(k) = AyB*[u(k — d) + v(k)] = A B*u(k — d) + e(k)

Introduce the filtered signals yq(k) = A}y(k) and us(k) =
Aju(k). We thus get

A%y (k) = B'ug(k — d) +e(k) (17)

The new model has the equation error e(k) instead of v(k).
The process model can now be estimated from Eq. (17).
Based on the estimated model the controller design is done
by solving the diophantine equation

A*R¥(1-q 1)+ B~*S* = AXA;,
and using the controller
R¥Ajuk) = -S*yk) + T*u (k)
The controller now contains the factor A, which will elim-
inate the influence of the disturbance v.
In the direct minimum variance self-tuning algorithm

an integrator can be introduced by changing the model of
Eq. (16) and estimating the controller parameters from

y(k +d) = S*(g V)y(k) + R*(g~) Au(k) + e(k + d)

where Au(k) = u(k) — u(k — 1) and using the controller
__ S*@™h
(1-g HR*(g™)

S* -1
uhy= ——~9) 4y =

k
ARG y(k)

which contains an integrator.

Feedforward from Measurable Disturbances. On many oc-
casions it is possible to measure some of the disturbances
acting on the system. A typical example is control of indoor
temperatures. By measuring the outdoor temperature also
it is possible to use this signal to compensate for chang-
ing outdoor temperatures before the disturbance has in-
fluenced the process too much. One way to introduce feed-
forward in STRs is exemplified with the direct algorithm.
The estimated model is changed from Eq. (15) to

y(k+d) =S*(g”V)y(k) + R* (g~ Mu(k)
—T*(@ YYomk) + ek +d)

where v,, (k) is the measurable disturbance. The controller
is now

_Sta@™h
R+(qg™Y)

T*(q™)
R*(g~1)

uk) = y(k) + U (k)

The first part of the controller is the feedback from the mea-
surement y(k) and the second is the feedforward from the
measurable disturbance v, (k). Feedforward is, in general,
very useful in STRs because to make effective feedforward,
it is necessary to have a good model of the process. By com-
bining the measurement of the disturbance and the self-
tuning property of the controller it is possible to eliminate
much of the disturbance before it reaches the output of the
process.

SOME THEORETICAL PROBLEMS

The previous section described the basic ideas of STRs.
Self-tuning regulators are inherently nonlinear. The non-
linearities are due to the estimation part and the changing
parameters in the controller. This makes the analysis of
STRs very difficult. The STRs contain two feedback loops
and it is necessary to investigate the stability and conver-
gence properties of the closed-loop systems. This is a dif-
ficult question because of the interaction between the two
feedback loops. One way to circumvent this problem is to
make a time separation between the two loops. The con-
troller loop is assumed to be fast compared to the updating
loop. This makes it possible to use averaging theory to an-
alyze the updating loop on a much longer time-scale. This
approach has made it possible to derive results concerning
stability and convergence of STRs.

Astrom and Wittenmark (2) showed how to characterize
the stationary properties of STRs, that is, the properties if
and when the parameter estimation has converged. The
algorithms were used in a number of applications before
several of the theoretical problems were solved. Goodwin,
Ramadge, and Caines (3) gave the first results showing
when the algorithm converges and that the closed-loop sys-
tem remains stable during the estimation phase. These

Self-Tuning Regulators 7

results have lately been refined and extended [see Well-
stead and Zarrop (4) and Astrém and Wittenmark (5)].

One important theoretical aspect is the influence of un-
modeled dynamics. Unmodeled dynamics are present if the
estimator is trying to fit a too-simple model to the data. The
unmodeled dynamics may cause severe stability problems,
which must be avoided by introducing counter measures
such as careful filtering of the signals in the STR. This type
of problem has successfully been analyzed using averaging
theory.

It is important that a controller is robust against as-
sumptions and choices of controller parameters. Much the-
oretical research has been devoted to make STRs and
adaptive controllers more robust. This work has resulted
in practical rules of thumb for their implementation (see
Ref. 5). Robust design methods are complementary to self-
tuning and adaptive control. In robust control one fixed
controller is designed to cope with a variety of processes.
By using tuning and adaptation the parameters of the con-
troller are instead tuned to adjust to the present process
dynamics.

PRACTICAL ISSUES AND IMPLEMENTATION

Some problems in the implementation of STRs are dis-
cussed briefly in this section. Self-tuning regulators as well
as adaptive controllers will run unattended on the pro-
cesses. It is therefore very important that there be a good
safety net around the self-tuning algorithm.

There are many aspects of STR implementation that
are important for implementations of digital controllers in
general [see Astrom and Wittenmark (9)]. Some important
issues for STRs are

¢ Organization of the computer code
¢ Sampling and filtering

¢ Antireset windup

¢ Design calculations

¢ Excitation

e Safety nets

It is important that the computer code be organized so that
as little delay as possible is introduced by the controller. In
STRs this usually implies that the estimation and the de-
sign calculations are done after the controlled signal is sent
out to the process. The latest measurement is thus used
in the computation of the control signal. The estimation
and the design are then performed, which implies that the
controller parameters are based on estimates from the pre-
vious sampling instant. This is usually no drawback since
the estimated parameters are changing very little between
samples, after the initial transient.

In all sampled-data controllers it is important that the
sampling interval be chosen properly. The sampling inter-
val should be chosen in relation to the desired closed-loop
behavior. A common rule of thumb is that there should be
four to ten samples per rise time of the closed-loop sys-
tem. It is also necessary to filter the analog signals before
they are sampled. The reason is the aliasing effect, which

8 Self-Tuning Regulators

implies that all frequencies over the Nyquist frequency 7/h,
where & is the sampling period, will be interpreted as a
lower frequency signal after the sampling. These filters are
called antialiasing filters. In the design of the controllers
it is important also to incorporate the dynamics of the an-
tialiasing filters since they introduce a phase lag in the
system. The dynamics of the antialiasing filters will au-
tomatically be included in the estimated dynamics when
self-tuning or adaptive controllers are used. It may be nec-
essary only to increase the order of the estimated model to
incorporate the filters into the estimated dynamics.

The indirect STRs contain a design calculation that nor-
mally involves the solution of a diophantine equation such
as Eq. (8). This equation has no solution if the A* and B*
polynomials have a common factor that is not also a factor
in A%. This also implies that the solution of the diophan-
tine equation is a numerically ill-conditioned problem if
there are almost common factors in A* and B*. These poly-
nomials are obtained through estimation and there is no
guarantee that there are no common factors. The factors
that are close must thus be eliminated before solving the
diophantine equation.

Parameter estimation is a crucial element of STRs. The
estimation is relatively simple for processes with distur-
bances and set-point changes that excite the process all the
time. If there is not enough excitation of the process, it is
necessary to introduce a logical condition in the algorithm
that ensures that controller parameters are not changed
when there is no excitation of the process. The design of a
good safety net for an STR is a difficult task that requires
thorough knowledge of the details of the algorithms and an
understanding of where difficulties may occur. Experience
shows that a good safety net normally occupies much more
code than the basic controller algorithm.

BIBLIOGRAPHY

1. R. E. Kalman, Design of self-optimizing control systems.
ASME Trans., 80: 468-478, 1958.

2. K. J. Astrom, B. Wittenmark, On self-tuning regulators. Auto-
matica, 9: 185-199, 1973.

3. G.C. Goodwin, P. J. Ramadge, P. E. Caines, Discrete-time mul-
tivariable adaptive control, IEEE Trans. Autom. Control, AC-
25: 449-456, 1980.

4. P.E. Wellstead, M. B. Zarrop, Selftuning Systems: Control and
Signal Processing, Chichester, U.K.: Wiley, 1991.

5. K.J. Astrom, B. Wittenmark, Adaptive Control, 2nd ed. Read-
ing, MA: Addison-Wesley, 1995.

6. L. Ljung, System Identification—Theory for the User.
Englewood Cliffs, NJ: Prentice-Hall, 1987.

7. T. Soderstrom, P. Stoica, System Identification. Hemel Hemp-
stead, UK.: Prentice-Hall International, 1988.

8. R.Johansson, System Modeling and Identification. Englewood
Cliffs, NdJ: Prentice-Hall, 1993.

9. K. J. Astrém, B. Wittenmark, Computer-Controlled Systems,
3rd ed. Englewood Cliffs, NJ: Prentice-Hall, 1997.

10. K. F. Gauss, Theoria motus corposum coelestium, (1809). En-
glish translation, Theory of the Motion of the Heavenly Bodies.
New York: Dover, 1963.

BJORN WITTENMARK
Lund University
Lund, Sweden

