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Figure 1. RLC circuit.

to neglect it and replace the second-order RLC equation (1)
by the first-order RC equation

RCv̇ + v = u (2)

in Fig. 2. Neglecting several such ‘‘parasitic’’ parameters
(small time constants, masses, moments of inertia, etc.) often
leads to a significant simplification of a high-order model. To
validate such simplifications, we must examine whether, and
in what sense, a lower-order model approximates the main
phenomenon described by the original high-order model.

To see the issues involved, consider the RLC circuit in Eq.
(1) with u � 0. Its free transients are due to the amount of
energy stored in C and L, that is, the initial conditions v(0)
and v̇(0), respectively. The simplified model in Eq. (2) disre-
gards the transient due to v̇(0), that is, the dissipation of en-
ergy stored in the inductance L. When L is small, this tran-
sient is fast, and after a short initial time, the RC equation

. (2) provides an adequate description of the remaining slow
transient due to the energy stored in C.

The RLC circuit in Eq. (1) with a small L is a two-time-
scale system, and the RC circuit in Eq. (2) is its slow time-
scale approximation. In higher-order models, several small
parameters may cause a multi-time-scale phenomenon, which
can be approximated by ‘‘nested’’ two-time-scale models. In
this article we consider only the two-time-scale systems.

In this example, a parameter perturbation from L 
 0 to
L � 0 has resulted in a model order reduction. Such parame-
ter perturbations are called singular, as opposed to regular
perturbations, which do not change the model order. For ex-
ample, if instead of L, the small parameter is R, then its per-
turbation from R 
 0 to R � 0 leaves the order of the RLC
equation (1) unchanged. The resulting undamped sinusoidal
oscillation is due to both v(0) and v̇(0).

In the engineering literature of the past 30 years, singular
perturbation techniques and their applications have been dis-
cussed in hundreds of papers and a dozen of books. This arti-
cle presents only the basic singular perturbation tools for
reduced-order modeling and systematic approximation of two-
time-scale systems. Our main sources are the textbook by
Kokotovic, Khalil, and O’Reilly (1) and the IEEE collection ofSINGULARLY PERTURBED SYSTEMS

Many models of dynamic systems contain small parameters
multiplying some of the time derivatives. When such small
parameters are neglected, the dynamic order of the model is
usually reduced, as illustrated by the series RLC circuit

LCv̈ + RCv̇ + v = u (1)
u v
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in Fig. 1, where v is the capacitor voltage and u is the applied
voltage. If the inductance L is very small, then it is common Figure 2. RC circuit.
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benchmark papers edited by Kokotovic and Khalil (2). These clear that we cannot expect z to converge to its quasi-steady
state z unless certain stability conditions are satisfied.books and the references therein are recommended for fur-

ther reading. To analyze the stability of the fast transient, we perform
the change of variables y � z � �(x, t), which shifts the quasi-
steady state of z to the origin. Then Eq. (3b) becomes

TIME-SCALE PROPERTIES OF THE STANDARD MODEL

Several examples in the next section will show that a common
state-space model of many two-time-scale systems is

εẏ = g(x, y + φ(x, t), ε, t) − ε
∂φ

∂t
− ε

∂φ

∂x
f (x, y + φ(x, t), ε, t),

y(t0) = z0 − φ(x0, t0) (7)

Let us note that �ẏ may remain finite even when � tends to
zero and ẏ tends to infinity. We introduce a fast time variable

ẋ = f (x, z, ε, t), x(t0) = x0 (3a)

εż = g(x, z, ε, t), z(t0) = z0 (3b)
� by setting

where x � Rns, z � Rnf, and � 
 0 is the small singular pertur-
bation parameter. The parameter � represents the small time
constants and other ‘‘parasitics’’ to be neglected in the slow ε

dy
dt

= dy
dτ

; hence,
dτ

dt
= 1

ε

time-scale analysis.
and use � � 0 as the initial value at t � t0. The fast timeThe rate of change of z in Eq. (3b) is of order 1/�, that is,
variable � � (t � t0)/� is ‘‘stretched’’: if � tends to zero, � tendsż � O(1/�), which means that z exhibits a fast transient.
to infinity even for finite fixed t only slightly larger than t0. InWhen this fast transient settles, the longer-term behavior of
the � scale, system (7) is represented byx and z is determined by the quasi-steady-state equation

g(x, z, 0, t) = 0 (4)

where the bar indicates that this equation is obtained by set-

dy
dτ

= g(x, y + φ(x, t), ε, t) − ε
∂φ

∂t
− ε

∂φ

∂x
f (x, y + φ(x, t), ε, t),

y(0) = z0 − φ(x0, t0) (8)
ting � � 0 in Eq. (3b). This equation will make sense only if
it has one or several distinct (‘‘isolated’’) roots In the fast time-scale �, the variables t and x are slowly

varying because t � t0 � �� and x � x(t0 � ��). Setting � � 0
freezes these variables at t � t0 and x � x0 and reduces Eq.z = φ(x, t) (5)
(8) to the autonomous system

for all x and z of interest. If this crucial requirement is satis-
fied, for example, when det(g/z) � 0, then we say that sys-
tem (3) is a standard model.

dy
dτ

= g(x0, y + φ(x0, t0), 0, t0), y(0) = z0 − φ(x0, t0) (9)

The substitution of Eq. (5) into Eq. (3a) results in the re-
duced model which has equilibrium at y � 0. The frozen parameters (x0,

t0) in Eq. (9) depend on the given initial state and initial time.
ẋ = f (x, φ(x, t), 0, t), x(t0) = x0 (6)

Tikhonov’s Theorem
If Eq. (4) has several distinct roots as shown in Eq. (5), then

In our investigation of the stability of the origin of the systemeach of them leads to a distinct reduced model as shown in
in Eq. (9), we should allow the frozen parameters to take anyEq. (6). The singular perturbation analysis determines which
values in the domain of interest. Therefore, we rewrite theof these models provides an O(�) approximation of the slow
system in Eq. (9) asphenomenon in system (3).

When, and in what sense, will x(t), z(t) obtained from Eqs.
(6) and (5) be an approximation of the true solution of system

dy
dτ

= g(x, y + φ(x, t), 0, t) (10)
(3)? To answer this question, we examine the variable z,
which has been excluded from the reduced model in Eq. (6) where (x, t) are treated as fixed parameters. We refer to the
by z � �(x, t). In contrast to the original variable z, which system in Eq. (10) as the boundary-layer system and assume
starts at t0 from a prescribed z0, the quasi-steady state z is its exponential stability, uniform in the frozen parameters;
not free to start from a prescribed value, and there may be a that is,
large discrepancy between z(t0) � �(x0, t0) and the prescribed
initial state z0. Thus, z(t) cannot be a uniform approximation ‖y(τ )‖ ≤ k‖y(0)‖e−ατ (11)
of z. The best we can expect is that the approximation z �
z(t) � O(�) will hold on an interval excluding t0, that is, for

for some positive constants k and �. Furthermore, we assumet � [tb, tf] where tb 
 t0. On the other hand, it is reasonable to
that y(0) belongs to the region of attraction of the origin. Un-expect the approximation x � x(t) � O(�) to hold uniformly
der these conditions, a fundamental result of singular pertur-for all t � [t0, tf] because x(t0) � x(t0). If the error z � z(t) is
bation theory, called Tikhonov’s Theorem, guarantees thatindeed O(�) over [tb, tf], then it must be true that during the
the approximationsinitial (‘‘boundary-layer’’) interval [t0, tb] the variable z ap-

proaches z. Let us remember that the speed of z can be large
since ż � g/�. In fact, having set � � 0 in Eq. (3b), we have
made the transient of z instantaneous whenever g � 0. It is

x = x(t) + O(ε) (12a)

z = φ(x(t), t) + ŷ(t/ε) + O(ε) (12b)
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hold uniformly for t � [t0, tf], where ŷ(�) is the solution of the which �(x, �) must satisfy for all x of interest and all � � (0,
�*]. This is a partial differential equation, which, in general,system in Eq. (9). Moreover, given any tb 
 t0, the approxima-
is difficult to solve. However, its solution can be approximatedtion
by the power series

z = φ(x(t), t) + O(ε) (13)
φ(x, ε) = ϕ0(x) + εϕ1(x) + ε2ϕ2(x) + · · · (21)

holds uniformly for t � [tb, tf].
where the functions �0(x), �1(x), . . ., can be found by equat-Local exponential stability of the boundary-layer system
ing the terms with like powers in �. To this end, we expandcan be guaranteed with the eigenvalue condition
f and g as power series of �

Re
[
λ

{
∂g
∂z

(x, φ(x, t), 0, t)
}]

≤ −c < 0 (14)
f (x, ϕ0(x) + εϕ1(x) + · · · ) = f (x, ϕ0(x)) + ε

∂ f
∂z

ϕ1(x) + · · · (22)

for all (x, t) in the domain of interest, where � denotes the
eigenvalues and c is a positive constant. Alternatively, it can g(x, ϕ0(x) + εϕ1(x) + · · · ) = g(x, ϕ0(x)) + ε

∂g
∂z

ϕ1(x) + · · · (23)

be verified by a Lyapunov analysis if there is a Lyapunov
where all the partial derivatives are evaluated at x and z �function W(x, y, t) that depends on (x, t) as parameters and
�0(x).satisfies

We substitute Eqs. (22) and (23) into Eq. (20). The terms
with �0 yieldc1‖y‖2 ≤ W (x, y, t) ≤ c2‖y‖2 (15)

g(x, ϕ0(x)) = 0, that is, φ(x, 0) = ϕ0(x) (24)∂W
∂y

g(x, y + φ(x, t), 0, t) ≤ −c3‖y‖2 (16)

which is the quasi-steady-state manifold M. Equating the �1

terms, we getover the domain of interest, where c1 to c3 are positive con-
stants independent of (x, t).

∂g
∂z

ϕ1(x) = ∂ϕ0(x)

∂x
f (x, ϕ0(x)) (25)

Slow Manifold

For the standard model, det(g/z) � 0, that is, g/z is non-In the state-space Rns � Rnf of (x, z), the equation g(x, z, 0, t)
singular, so that� 0 forces x and z to lie in an ns-dimensional quasi-steady-

state manifold M, explicitly described by Eq. (5). It can be
shown that, under the conditions of Tikhonov’s Theorem,
there exists an �* 
 0 such that for all � � (0, �*], the system

ϕ1(x) =
(

∂g
∂z

)−1
∂ϕ0(x)

∂x
f (x, ϕ0(x)) (26)

in Eq. (3) possesses an integral manifold M� that is invariant:
This recursive process can be repeated to find the higher-whenever x(t0), z(t0) � M�, then x(t), z(t) � M� for all t � [t0,
order terms in Eq. (21).tf]. The slow manifold M� is in the �-neighborhood of the quasi-

The fast off-manifold variable issteady-state manifold M. We will characterize M� in the spe-
cial case when f and g in the system in Eq. (3) do not depend y = z − φ(x, ε) (27)
on t and �:

In the x,y coordinates, the system in Eq. (17) becomes
ẋ = f (x, z) (17a)

εż = g(x, z) (17b)

A derivation of slow manifolds for systems with f and g also

ẋ = f (x, φ(x, ε) + y) (28a)

εẏ = g(x, φ(x, ε) + y) − ε
∂φ

∂x
f (x, φ(x, ε) + y) (28b)

dependent on t and � is given in Ref. (26).
In these coordinates, the slow manifold M� is simply y � 0,We will seek the graph of M� in the explicit form M� : z �
that is, the equilibrium manifold of Eq. (28b). The geometry�(x, �). The existence of M� gives a clear geometric meaning
of a third-order system in Eq. (17) with x � R2 and z � R1 isto the slow subsystem of the full-order model in Eq. (17): it is
illustrated in Fig. 3. Starting from an off-manifold initial con-the restriction of the model in Eq. (17) to the slow manifold

M�, given by

ẋ = f (x, φ(x, ε)) (18)

To find M�, we differentiate the manifold z � �(x, �) with
respect to t

ż = d
dt

φ(x, ε) = ∂φ

∂x
ẋ (19)

and, upon the multiplication by � and the substitution for ẋ
and ż, we obtain the slow manifold condition

M

x1

x2

z z(0)

x(0)

Figure 3. Trajectory converging to a slow manifold.
ε
∂φ

∂x
f (x, φ(x, ε)) = g(x, φ(x, ε)) (20)
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dition (x(0), z(0)), the state trajectory rapidly converges to M� applied to Eq. (32) results in the block-diagonal system
and then slowly evolves along M�.

Linear Two-Time-Scale Systems

The manifold condition in Eq. (20) is readily solvable for lin-
ear two-time-scale systems

[
ξ̇

εẏ

]
=

[
A11 − A12L 0

0 A22 + εLA12

][
ξ

y

]

+
[

B1 − H(B2 + εLB1)

B2 − εLB1

]
u

(39)

with the initial condition
ẋ = A11x + A12z + B1u, x(t0) = x0 (29a)

εż = A21x + A22z + B2u, z(t0) = z0 (29b)

where A22 is nonsingular, which corresponds to det(g/z) �
0, and u � Rm is the control input vector. The change of vari-

[
ξ (t0)

y(t0)

]
=

[
x0 − εH(z0 + Lx0)

z0 + Lx0

]
(40)

ables

For � sufficiently small, Eq. (38) admits a unique solutiony = z + L(ε)x (30)
H(�) that can be expressed as

where the nf � ns matrix L(�) satisfies the matrix quadratic
equation H(ε) = A12 A−1

22 + O(ε) (41)

A21 − A22L + εLA11 − εLA12L = 0 (31) The solution H(�) can also be computed iteratively as

transforms the system in Eq. (29) into a block-triangular sys-
tem

Hk+1 = A12 A−1
22 + ε((A11 − A12L)Hk + HkLA12)A−1

22 ,

H0 = A12 A−1
22 (42)

If L is available from the recursive formula (36), we can use
Lk�1 instead of L in Eq. (42).

[
ẋ
εẏ

]
=

[
A11 − A12L A12

0 A22 + εLA12

][
x
y

]
+

[
B1

B2 − εLB1

]
u

(32)
From the block-diagonal form in Eq. (39), it is clear that

with the initial condition the slow subsystem of Eq. (29) is approximated to O(�) by

ξ̇ = A0ξ + B0u, ξ (t0) = x0 (43)
[

x(t0)

y(t0)

]
=

[
x0

z0 + Lx0

]
(33)

where A0 � A11 � A12A�1
22 A21 and B0 � B1 � A12A�1

22 B2. The fast
subsystem is approximated to O(�) byNote that Eq. (31) is the slow manifold condition in Eq. (20)

for linear systems.
Given that A22 is nonsingular, the implicit function theo- εẏ = A22 y + B2u, y(t0) = z0 − A−1

22 A21x0 (44)
rem implies that Eq. (31) admits a solution L(�) for � suffi-

Thus as � � 0, the slow eigenvalues of Eq. (29) are approxi-ciently small. Furthermore, an asymptotic expansion of the
mated by �(A0), and the fast eigenvalues are approximatedsolution to Eq. (31) is given by
by �(A22)/�. It follows that if Re��(A0)� � 0 and Re��(A22)� � 0,
then there exists an �* 
 0 such that (29) is asymptoticallyL(ε) = A−1

22 A21 + εA−2
22 A21(A11 − A12A−1

22 A21) + O(ε2) (34)
stable for all � � (0, �*]. Furthermore, if the pair (A0, B0) and

We can readily verify that for � � 0, Eq. (31) reduces to the pair (A22, B2) are each completely controllable (stabiliza-
ble), then there exists an �* 
 0 such that Eq. (29) is com-

A21 − A22L(0) = 0 (35) pletely controllable (stabilizable) for all � � (0, �*].

whose solution is the first term in Eq. (34). Furthermore, to
solve for the higher-order terms, an iterative scheme EXAMPLES

Example 1. An RLC CircuitLk+1 = A−1
22 A21 + εA−1

22 Lk(A11 − A12Lk), L0 = A−1
22 A21 (36)

To complete our introductory example, we represent the RLC
can be used. circuit in Eq. (1) using the state variables x � v and z � v̇:

Although the fast variable y in the triangular system in
Eq. (32) is now decoupled from the slow variable x, the slow
variable x is still driven by the fast variable y. To remove this
influence, the change of variables

ẋ = z (45a)

εż = −z − 1
RC

(x − u) (45b)

ξ = x − εH(ε)y (37)
where � is the small time constant L/R. The unique solution
of the quasi-steady-state equation (5) is z � �(x � u)/(RC),where the ns � nf matrix H(�) satisfies the linear matrix equa-
which yields the reduced-order modeltion

RCẋ = −x + u (46)ε(A11 − A12L)H − H(A22 + εLA12) + A12 = 0 (38)
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As expected, this is the RC equation (2). The boundary-layer
system Eq. (9) for y � z � (x � u)/(RC) is

dy
dτ

= −y, y(t0) = z(t0) + 1
RC

(x(t0) − u(t0)) (47)

Its solution y � e��y(t0) � �e�(R/L)ty(t0) approximates the fast
transient neglected in the slow subsystem in Eq. (46). Tikho-
nov’s Theorem is satisfied, because the fast subsystem in Eq.
(47) is exponentially stable.

Example 2. A dc Motor
A common model for dc motors, shown in Fig. 4, under con-
stant field excitation, consists of a mechanical torque equa-
tion and an equation for the electrical transient in the arma-
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ture circuit, namely,
Figure 5. dc motor step response.

Jω̇ = Ki − TL (48a)

Li̇ = −Kω − Ri + u (48b)
The parameters of a 1 hp (746 W) dc motor with a rated

speed of 500 rpm (52.3 rad/s) are R � 7.56 �, L � 0.055 H,where i, u, R, and L are the armature current, voltage, resis-
K � 4.23 Vs/rad, and J � 0.136 kg m2. At the rated steadytance, and inductance, respectively, J is the combined mo-
state condition, TL � 14.3 N m, i � 3.38 A, and u � 246.8 V.ment of inertia of the motor and the load, � is the angular
The time constants are �e � 0.0073 s and �m � 0.115 s, re-speed, TL is the load torque, and K is a motor design constant
sulting in � � 0.063. The response to a 1 V step increase in usuch that Ki and K� are, respectively, the motor torque and
of the full model in Eq. (48) (solid curves) and the slow sub-the back emf (electromotive force).
system in Eqs. (51) and (52) (dashed curves) is shown Fig. 5.We consider the case in which the electrical time constant
Note that x is a good approximation of x. Initially there is a�e � L/R is much smaller than the mechanical time constant
fast transient in z. After this ‘‘boundary layer’’ has decayed,�m � JR/K2 (3). Defining � � �e/�m, x � �, and z � i, we rewrite
z becomes a good approximation of z.Eq. (48) as

The fast electrical transient is approximated by the bound-
ary-layer system

τm
dy
dτ

= −y, y(0) = z(0) − u(0) − Kx(0)

R
(53)

ẋ = R
τmK

z − 1
J

TL (49a)

εż = − K
τmR

x − 1
τm

z + 1
τmR

u (49b)

which has the unique solutionSetting � � 0, we obtain from Eq. (49b)

y = e−τ /τm y(0) = e−t/τe y(0) (54)0 = −K x − Rz + u (50)

Thus the quasi-steady state of z is
Example 3. Multiple Slow Subsystems
To illustrate the possibility of several reduced-order models,z = u − K x

R
(51)

we consider the singularly perturbed system

which, when substituted in Eq. (49a), yields the slow mechan-
ical subsystem

ẋ = x2(1 + t)/z (55a)

εż = −[z + (1 + t)x] z [z − (1 + t)] (55b)

where the initial conditions are x(0) � 1 and z(0) � z0. Settingτmẋ = −x + 1
K

u − τm

J
TL (52)

� � 0 results in

0 = −[z + (1 + t)x] z [z − (1 + t)] (56)

which has three distinct roots

z = −(1 + t)x; z = 0; z = 1 + t (57)

Consider first the root z � �(1 � t)x. The boundary-layer
system in Eq. (10) is

u

Ri L

J

TL

+

– ω

Figure 4. dc motor.

dy
dτ

= −y[y − (1 + t)x][y − (1 + t)x − (1 + t)] (58)
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Taking W(y) � y2/2, it can be verified that W satisfies the
inequalities in Eqs. (15) and (16) for y � (1 � t) x. The reduced
system

ẋ = −x, x(0) = 1 (59)

has the unique solution x(t) � e�t for all t 	 0. The boundary-
layer system with t � 0 and x � 1 is

dŷ
dτ

= −ŷ(ŷ − 1)(ŷ − 2), ŷ(0) = z0 + 1 (60)

and has a unique exponentially decaying solution ŷ(�) for z0 �
1 � 1 � a, that is, for z0 � �a � 0 where a 
 0 can be
arbitrarily small.

Consider next the root z � 0. The boundary-layer system
Road

surface
Reference

Tire

Car
body

ms

bs

ds

du

dr

mu

kt

ks

in Eq. (10) is

Figure 7. Quarter-car model.dy
dτ

= −[y + (1 + t)x] y [y − (1 + t)] (61)

By sketching the right-hand side function, it can be seen that full model (solid curves) and two for each reduced model
the origin is unstable. Hence, Tikhonov’s Theorem does not (dashed curves).
apply to this case and we rule out this root as a subsystem.
Furthermore, ẋ is not defined at z � 0.

Example 4. A Quarter-Car ModelFinally, the boundary-layer system for the root z � 1 � t
A simplified quarter-car model is shown in Fig. 7, where msis
and mu are the car body and tire masses, ks and kt are the
spring constants of the strut and the tire, and bs is the
damper constant of the shock. The distances ds, du, and dr are

dy
dτ

= −[y + (1 + t) + (1 + t)x][y + (1 + t)]y (62)
the elevations of the car, the tire, and the road surface, re-
spectively. From Newton’s Law, the balance of forces actingAs in the first case, it can be shown that the origin is expo-
on ms and mu results in the modeling equationsnentially stable uniformly in (x, t). The reduced system

ẋ = x2
, x(0) = 1 (63)

has the unique solution x(t) � 1/(1 � t) for all t � [0, 1).

msd̈s + bs(ḋs − ḋu) + ks(ds − du) = 0 (65a)

mud̈u + bs(ḋu − ḋs) + ks(du − ds) + kt(du − dr) = 0 (65b)

Notice that x(t) has a finite escape time at t � 1. However,
In a typical car, the natural frequency �kt/mu of the tireTikhonov’s Theorem still holds for t � [0, tf] with tf � 1. The

is much higher than the natural frequency �ks/ms of the carboundary-layer system, with t � 0 and x � 1,
body and the strut. We therefore define the parameter

dŷ
dτ

= −(ŷ + 2)(ŷ + 1)ŷ, ŷ(0) = z0 − 1 (64)

ε =
√

ks/ms

kt/mu
=

√
ksmu

ktms
(66)

has a unique exponentially decaying solution ŷ(�) for z0 

a 
 0.

The mass-spring system in Eq. (65) is of interest because itIn summary, only two of the three roots in Eq. (57) give
cannot be transformed into a standard model without an �-rise to valid reduced models. Tikhonov’s Theorem applies to
dependent scaling. From Eq. (66), the tire stiffness kt �the root � � �(1 � t)x if z0 � 0 and to the root � � 1 � t if
O(1/�2) tends to infinity as � � 0. For the tire potential en-z0 
 0. Figure 6 shows z for four different values of z0 of the
ergy kt(du � dr)2/2 to remain bounded, the displacement du �
dr must be O(�), that is, the scaled displacement (du � dr)/�
must remain finite. Thus to express Eq. (65) in the standard
singularly perturbed form, we introduce the slow and fast
variables as

x =
[

ds − du

ḋs

]
, z =

[
(du − dr)/ε

ḋu

]
(67)

and u � ḋr as the disturbance input. The resulting model is

2

1

0

–1

–2
0.20.180.160.140.120.1

Time (s)
0.080.06

z

0.040.020

Figure 6. Response of system in Eq. (55) illustrating two slow sub-
systems.

ẋ = A11x + A12z + B1u (68a)

εż = A21x + A22z + B2u (68b)
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where Following the input signal VR, the voltage E modulates the
supply voltage VB(x) to control Efd. The supply voltage VB(x) is
a function of x and is typically within the range of 4–8 per
unit on the base field voltage.

Under normal operating conditions, the product of the rec-
tifier gain and the supply voltage KMVB(x) is very high. This
motivates us to define � as

A11 =
[

0 1
−ks/ms −bs/ms

]
, A12 =

[
0 −1
0 bs/ms

]
, B1 =

[
0
0

]

A21 =
[

0 0
αks/ms αbs/ms

]
, A22 =

[
0 1

−ks/ms −αbs/ms

]
,

B2 =
[
−1

0

]
(69) ε = 1

KMV B

� 1 (73)

where VB is a constant of the order of magnitude of VB(x), thatand
is, the ratio �(x) � VB(x)/VB � O(1). Using Efd as the state
variable instead of E, Eq. (72) is rewritten as

α =
√

ksms

ktmu
(70)

The parameters of a typical passenger car are ms � 504.5
kg, mu � 62 kg, bs � 1,328 Ns/m, ks � 13,100 N/m, kt �

TMĖfd = −
[
1 + KGKMVB(x) − TM

VB(x)
γ (x,Efd)

]
Efd

+ KMVB(x)VR

(74)

252,000 N/m, and � � 0.65. In this case, � � 0.08 and the
where �(x, Efd) � [VB(x)/x]ẋ is bounded. Using �, Eq. (74)time scales of the body (slow) and the tire (fast) are well sepa-
becomesrated.

To illustrate the approximation provided by the two-time-
scale analysis, the slow and fast eigenvalues of the uncor- εĖfd = −

[
KGβ(x) + ε

TM
− ε

VB(x)
γ (x, Efd)

]
Efd + β(x)

TM
VR (75)

rected subsystems in Eqs. (43) and (44) are found to be
�2.632 � j6.709 and �10.710 � j62.848, respectively, which which yields, as � � 0, the quasi-steady state
are within 4% of the eigenvalues �2.734 � j7.018 and �9.292
� j60.287 of the full-order model. If a higher accuracy is de-
sired, the series expansion in Eq. (34) can be used to add the

Efd = 1
KG

VR (76)

first-order correction terms to the diagonal blocks of Eq. (39),
resulting in the approximate slow eigenvalues �2.705 � In a typical rectifier system, KG � 1, KM � 7.93, and TM �
j6.982 and fast eigenvalues �9.394 � j60.434, and thus re- 0.4 s. For VB � 6, we obtain � � 0.021. The time-scales are
ducing the errors to less than 0.5%. well separated, which allows us to achieve high accuracy with

singular perturbation approximations.
Example 5. A High-Gain Power Rectifier

Example 6. Slow Manifold in a Synchronous MachineMany modern control systems include power electronic recti-
We now proceed to illustrate the use of the slow manifold con-fiers as actuators. An example is a static excitation system
cept as a modeling tool. In most cases, the solution of thethat controls the field voltage Efd of a synchronous machine
manifold condition in Eq. (20) is evaluated approximately asshown in Fig. 8 (4). The synchronous machine is modeled as
a power series in �. However, for a synchronous machine
model, the slow manifold, which excludes stator circuit tran-
sients, can be calculated exactly, as shown by Kokotovic and

ẋ = f (x, Efd) (71a)

VT = h(x) (71b)
Sauer (5).

The synchronous machine model with one damper windingwhere x is the machine state vector including the flux vari-
in the quadrature axis isables and the scalar output VT is the generator terminal volt-

age. Here we focus on the exciter system which, from Fig. 8,
is described by

TMĖ = −E − KMKGEfd + KMVR (72a)

Efd = VB(x)E (72b)

where TM is a time constant and KM and KG are gains.

dδ

dt
= ω − ωs (77a)

2H
ωs

dω

dt
= Tm +

(
1

L′
q

− 1
L′

d

)
ψdψq + 1

L′
q
ψdE ′

d + 1
L′

d

ψqE ′
q (77b)

T ′
do

dE ′
q

dt
= −Ld

L′
d

E ′
q − Ld − L′

d

L′
d

ψd + Efd (77c)

T ′
qo

dE ′
d

dt
= −Lq

L′
q

E ′
d − Lq − L′

q

L′
q

ψq (77d)

1
ωs

dψd

dt
= −Ra

L′
d

ψd + Ra

L′
d

E ′
q + ω

ωs
ψq + V sin δ (77e)

1
ωs

dψq

dt
= −Ra

L′
q
ψq − Ra

L′
q

E ′
d − ω

ωs
ψd + V cos δ (77f)+

Synchronous
machine

–

KG

×
KM E Efd

VB(x)

1 + sTM

VR VT

where �, �, and H are the generator rotor angle, speed, and
inertia, respectively, (E�d, E�q), (�d, �q), (T�do, T�qo), (Ld, Lq), andFigure 8. Static excitation system.
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(L�d, L�q) are the d- and q-axis voltages, flux linkages, open-
circuit time constants, synchronous reactances, and transient
reactances, respectively, Ra is the stator resistance, Tm is the
input mechanical torque, Efd is the excitation voltage, and �s

is the system frequency.
In the model shown in Eq. (77), the slow variables are �,

�, E�d, and E�q, and the fast variables are �d and �q. The singu-
lar perturbation parameter can be defined as � � 1/�s.

If the stator resistance is neglected, that is, Ra � 0, it can
be readily verified that the slow manifold condition in Eq. (20)
gives the exact slow invariant manifold

3

2

1

0

–1

–2

–3
2–2 –1.5 –1 –0.5

D′

A′A

D

B

x

z

C

0 0.5 1 1.5
ψd = V cos δ, ψq = −V sin δ (78)

Figure 9. Phase portrait of the Van der Pol oscillator.
These expressions can be substituted into Eqs. (77a)–(77d) to
obtain a fourth-order slow subsystem.

If the initial condition [�d(0), �q(0)] is not on the manifold
than boundary) layers, from B to D� and from C to A� is clearshown in Eq. (78), then using the fast variables
from this phase portrait. The relaxation oscillation forming
the limit cycle A�-B-D�-C consists of the slow motions fromyd = ψd − V cos δ, yq = ψq + V sin δ (79)
A� to B and D� to C, connected with fast jumps (layers) from
B to D� and from C to A�. When � is increased to a smallwe obtain the fast subsystem
positive value, this limit cycle is somewhat deformed, but its
main character is preserved. This observation is one of the
cornerstones of the classical nonlinear oscillation theory (7),
which has many applications in engineering and biology.

ε
dyd

dt
= ω

ωs
yq, yd(0) = ψd(0) − V cos δ(0) (80a)

ε
dyq

dt
= − ω

ωs
yd, yq(0) = ψq(0) + V sin δ(0) (80b)

STABILITY ANALYSISwhere the state � appears as a time-varying coefficient.
When the stator resistance Ra is nonzero, the slow mani-

We consider the autonomous singularly perturbed system infold condition can no longer be solved exactly. Instead, the
Eq. (17). Let the origin (x � 0, z � 0) be an isolated equilib-leading terms in the power series expansion in Eq. (21) can
rium point and the functions f and g be locally Lipschitz in abe computed to obtain any desired approximation of the slow
domain that contains the origin. We want to analyze stabilitymanifold.
of the origin by examining the reduced and boundary-layer
models. Let z � �(x) be an isolated root of 0 � g(x, z) definedExample 7. Van der Pol Oscillator
in a domain D1 � Rn that contains x � 0, such that �(x) isA classical use of the slow manifold concept is to demonstrate
continuous and �(0) � 0. With the change of variables y �the relaxation oscillation phenomenon in a Van der Pol oscil-
z � �(x), the singularly perturbed system is represented inlator, modeled in the state-space form as (6)
the new coordinates as

ẋ = z (81a)

εż = −x + z − 1
3 z3 (81b)

ẋ = f (x, y + φ(x)) (84a)

εẏ = g(x, y + φ(x)) − ε
∂φ

∂x
f (x, y + φ(x)) (84b)

For � small, the slow manifold is approximated by

The reduced system ẋ � f (x, �(x)) has equilibrium at x � 0,g(x, z) = −x + z − 1
3 z3 = 0 (82)

and the boundary-layer system dy/d� � g(x,y � �(x)) has
equilibrium at y � 0. The main theme of the two-time-scalewhich is shown as the curve ABCD in Fig. 9. For the roots
stability analysis is to assume that, for each of the two sys-z � �(x) on the branches AB and CD
tems, the origin is asymptotically stable and that we have a
Lyapunov function that satisfies the conditions of Lyapunov’s
Theorem. In the case of the boundary-layer system, we re-

∂g
∂z

= 1 − z2 < 0 (83)

quire asymptotic stability of the origin to hold uniformly in
the frozen parameter x. Viewing the full singularly perturbedand the eigenvalue condition of Tikhonov’s Theorem is satis-

fied because z2 
 1. Therefore, the branches AB and CD are system (84) as an interconnection of the reduced and bound-
ary-layer systems, we form a composite Lyapunov functionattractive, that is, trajectories converging to these two

branches will remain on them, moving toward either the candidate for the full system as a linear combination of the
Lyapunov functions for the reduced and boundary-layer sys-point B or C. However, the root on the branch BC is unstable

because z2 � 1; hence, this branch of the slow manifold is re- tems. We then proceed to calculate the derivative of the com-
posite Lyapunov function along the trajectories of the full sys-pulsive.

Figure 9 shows vertical trajectories converging toward AB tem and verify, under reasonable growth conditions on f and
g, that it is negative definite for sufficiently small �.and CD, because � � 0. The mechanism of two interior (rather
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Let V(x) be a Lyapunov function for the reduced system The right-hand side of the last inequality is a quadratic form
in (�1(x), (�2(y)). The quadratic form is negative definite whensuch that

d(1 − d)α1

(α2

ε
− γ

)
> 1

4 [(1 − d)β1 + dβ2]2 (93)∂V
∂x

f (x, φ(x)) ≤ −α1ψ
2
1 (x), ∀ x ∈ D1 (85)

For any d, there is an �d such that Eq. (93) is satisfied forwhere �1(x) is a positive definite function. Let W(x, y) be a
� � �d. The maximum value of �d occurs at d* � �1/(�1 � �2)Lyapunov function for the boundary-layer system such that
and is given by

∂W
∂y

g(x, y + φ(x)) ≤ −α2ψ
2
2 (y), ∀(x,y) ∈ D1 × D2 (86)

ε∗ = α1α2

α1γ + β1β2
(94)

where D2 � Rm is a domain that contains y � 0, and �2(y) is a
It follows that the origin is asymptotically stable for all � � �*.positive definite function. We allow the Lyapunov function W
Note that the functions �1(x) and �2(x) and the interconnectionto depend on x because x is a parameter of the system and
conditions in Eqs. (90) and (91) should be carefully con-Lyapunov functions may, in general, depend on the system’s
structed so that �* may not be unnecessarily conservative.parameters. Because x is not a true constant parameter, we

As an illustration of the preceding Lyapunov analysis, con-must keep track of the effect of the dependence of W on x. To
sider the second-order systemensure that the origin of the boundary-layer system is asymp-

totically stable uniformly in x, we assume that W(x, y) satis-
fies ẋ = f (x, z) = x − x3 + z (95a)

εż = g(x, z) = −x − z (95b)
W1(y) ≤ W (x, y) ≤ W2(y), ∀(x,y) ∈ D1 × D2 (87)

which has a unique equilibrium point at the origin. Let y �
for some positive definite continuous functions W1 and W2. z � �(x) � z � x. For the reduced system ẋ � �x3, we take
Now consider the composite Lyapunov function candidate V(x) � ��x4, which satisfies Eq. (85) with �1(x) � �x�3 and �1 �

1. For the boundary-layer system dy/d� � �y, we take
ν(x, y) = (1 − d)V (x) + dW (x, y), 0 < d < 1 (88) W(y) � ��y2, which satisfies Eq. (86) with �2(y) � �y� and �2 �

1. As for the interconnection conditions in Eqs. (90) and (91),
where the constant d is to be chosen. Calculating the deriva- we have
tive of � along the trajectories of the full system in Eq. (84),
we obtain ∂V

∂x
[ f (x, y + φ(x)) − f (x, φ(x))] = x3y ≤ ψ1ψ2 (96)

∂W
∂y

f (x, y + φ(x)) = y(−x3 + y) ≤ ψ1ψ2 + ψ2
2 (97)

Note that W/x � 0. Hence, Eqs. (90) and (91) are satisfied
with �1 � �2 � � � 1. Therefore, the origin is asymptotically

ν̇ = (1 − d)
∂V
∂x

f (x, φ(x)) + d
ε

∂W
∂y

g(x, y + φ(x))

+ (1 − d)
∂V
∂x

[ f (x, y + φ(x)) − f (x, φ(x))]

+ d
(

∂W
∂x

− ∂W
∂y

∂φ

∂x

)
f (x, y + φ(x))

(89)

stable for � � �* � 0.5. Because all the conditions are satisfied
globally and �(x, y) � (1 � d)V(x) � dW(y) is radially un-

We have represented the derivative �̇ as the sum of four bounded, the origin is globally asymptotically stable for � �
terms. The first two terms are the derivatives of V and W 0.5.
along the trajectories of the reduced and boundary-layer sys- The preceding two-time-scale stability analysis can be ex-
tems. These two terms are negative definite in x and y, re- tended to the nonautonomous singularly perturbed system in
spectively, by the inequalities in Eqs. (85) and (86). The other Eq. (3). For sufficiently smooth f , g, and �, it can be shown
two terms represent the effect of the interconnection between that if the origin of the reduced system is exponentially sta-
the slow and fast dynamics, which is neglected at � � 0. Sup- ble, and the origin of the boundary-layer system is exponen-
pose these terms satisfy the interconnection conditions tially stable, uniformly in (t, x), then the origin of the full sys-

tem in Eq. (3) is exponentially stable for sufficiently small �.
The same conditions ensure the validity of Tikhonov’s Theo-

∂V
∂x

[ f (x, y + φ(x)) − f (x, φ(x))] ≤ β1ψ1(x)ψ2(y) (90)
rem for all t 	 t0. Note that the earlier statement of Tikho-
nov’s Theorem, which does not require exponential stability of
the reduced system, is valid only on a compact time interval

(
∂W
∂x

− ∂W
∂y

∂φ

∂x

)
f (x, y + φ(x)) ≤ β2ψ1(x)ψ2(y) + γψ2

2 (y) (91)

[t0, tf] for a given tf.
for some nonnegative constants �1, �2, and �. Using the in-
equalities in Eqs. (85), (86), (90), and (91), we obtain

COMPOSITE FEEDBACK CONTROL

The impetus for the systematic decomposition of the slow and
fast subsystems in singularly perturbed systems can be
readily extended to the separate control design of the slow
and fast dynamics. As will be shown, the crucial idea is to
compensate for the quasi-steady state in the fast variable.

ν̇ ≤ −
[

ψ1(x)

ψ2(y)

]T [
(1 − d)α1 − 1

2 (1 − d)β1 − 1
2 dβ2

− 1
2 (1 − d)β1 − 1

2 dβ2 d
( α2

ε
− γ

)
]

[
ψ1(x)

ψ2(y)

]
(92)
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Consider the nonlinear singularly perturbed system have the desired properties. Thus the composite control in Eq.
(99) is

u = G0x + G2[z + A−1
22 (A21 + B2G0)x] = G1x + G2z (111)

ẋ = f (x, z,u) (98a)

εż = g(x, z, u) (98b)

whereand suppose the equation 0 � g(x, z, u) has a unique root z �
�(x, u) in a domain D that contains the origin. A separated
slow and fast design is succinctly captured in the composite G1 = (Im + G2 A−1

22 B2)G0 + G2 A−1
22 A21 (112)

control
When Eq. (111) is applied to the full-order model in Eq. (29),
the slow and fast dynamics of the closed-loop system are ap-u = us + uf (99)
proximated to O(�) by the slow and fast subsystems in Eqs.

where us is a slow control function of x (109) and (110), respectively.
If the pairs (A0, B0) and (A22, B2) are completely controlla-

us = �s(x) (100) ble, the results here point readily to a two-time-scale pole-
placement design in which G0 and G2 are designed separatelyand uf is a fast control function of both x and z
to place the slow eigenvalues of A0 � B0G0 and the fast eigen-
values of (A22 � B2G2)/� at the desired locations. Then theuf = �f(x, z) (101)
eigenvalues of the closed-loop full-order system will approach
these eigenvalues as � tends to zero.Applying the control in Eq. (99) to the full model in Eq.

The composite feedback control is also fundamental in(98), we obtain
near-optimal control design of linear quadratic regulators for
two-time-scale systems. Consider the optimal control of the
linear singularly perturbed system in Eq. (29) to minimize

ẋ = f (x, z, �s(x) + �f(x, z)) (102a)

εż = g(x, z, �s(x) + �f(x, z)) (102b)
the performance index

The fast control �f(x, z) must guarantee that z � �(x, �s(x)) is
a unique solution to the equation J(u) = 1

2

∫ ∞

0
(qTq + uT Ru) dt, R > 0 (113)

0 = g(x, z, �s(x) + �f(x, z)) (103)
where

in the domain D. Furthermore, we require the fast control to
be inactive on the manifold in Eq. (103), that is, q(t) = C1x(t) + C2z(t) (114)

Following the slow and fast subsystem decomposition in�f(x, φ(x, �s(x))) = 0 (104)
Eqs. (43) and (44), we separate q(t) into its slow and fast com-

Then the slow and fast subsystems become, respectively, ponents as

ẋ = f (x, φ(x, �s(x)),�s(x)) (105) q(t) = qs(t) + qf(t) + O(ε)) (115)
εż = g(x, z, �s(x) + �f(x, z)) (106)

where
To obtain controllers so that the equilibrium (x � 0, z � 0)

qs(t) = C0ξ + D0us (116)is asymptotically stable, �s(x) must be designed so that a Lya-
punov function V(x) satisfying Eq. (85) can be found for the

withslow subsystem in Eq. (105), and �f(x, z) must be designed so
that a Lyapunov function W(x, z) satisfying Eq. (86) can be C0 = C1 + C2A−1

22 A21, D0 = −C2A−1
22 B2 (117)

found for the fast subsystem in Eq. (106). Furthermore, the
interconnection conditions corresponding to Eqs. (90) and (91) and
must be satisfied, so that a composite Lyapunov function sim-
ilar to Eq. (88) can be used to establish the asymptotic stabil- qf(t) = C2y (118)
ity of the equilibrium.

Specializing the composite control design to the linear sin- From the subsystems in Eqs. (43) and (44) and the decomposi-
gularly perturbed system in Eq. (29), we design the slow and tion in Eq. (115), the linear quadratic regulator problem in
fast controls as Eq. (113) can be solved from two lower-order subproblems.

�s = G0x = G0ξ + O(ε) (107) Slow Regulator Problem

Find the slow control us for the slow subsystem in Eqs. (43)�f = G2[z + A−1
22 (A21x + B22G0x)] � G2y (108)

and (116) to minimize
such that the closed-loop subsystems in Eqs. (43) and (44) to
O(�)

ξ̇ = (A0 + B0G0)ξ (109)

εẏ = (A22 + B2G2)y (110)

Js(us) = 1
2

∫ ∞

0
(qT

s qs + uT
s Rus) dt, R > 0

= 1
2

∫ ∞

0
(ξTCT

0 C0ξ + 2uT
s DT

0 CT
0 ξ + uT

s R0us) dt
(119)
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where applied to the system in Eq. (29) achieves an O(�) ap-
proximation of Jopt, that is,

R0 = R + DT
0 D0 (120)

J(us) = Jopt + O(ε) (129)

If the triple (C0, A0, B0) is stabilizable and detectable (ob-
In Theorem 1.1, an asymptotic expansion exists for the so-servable), then there exists a unique positive-semidefinite

lution to the matrix Riccati equation associated with the full(positive-definite) stabilizing solution Ks of the matrix Riccati
linear regulator problem. Theorem 1.3 is one of the ro-equation
bustness results with respect to fast unmodeled dynamics,
that is, if the fast dynamics is asymptotically stable, a feed-
back control containing only the slow dynamics would not de-

0 = − Ks(A0 − B0R−1
0 DT

0 C0) − (A0 − B0R−1
0 DT

0 C0)T Ks

+ KsB0R−1
0 B0Ks − CT

0 (I − D0R−1
0 NT

0 )C0 (121) stabilize the fast dynamics.

and the optimal control is
APPLICATIONS TO LARGE POWER SYSTEMS

us = −R−1
0 (DT

0 C0 + BT
0 Ks)ξ = G0ξ (122)

In this section, we analyze a large power system as an exam-
ple of time-scales arising in an interconnected systems. A

Fast Regulator Problem power system dispersed over a large geographical area tends
to have dense meshes of power networks serving heavily pop-Find the fast control uf for the fast subsystem in Eqs. (44)
ulated areas and many fewer transmission lines interconnect-and (118) to minimize
ing these urban centers. When such a system is subject to a
disturbance, it is observed that groups of closely located ma-
chines would swing coherently at a frequency that is lower
than the frequency of oscillation within the coherent groups.
Singular perturbation techniques have been successfully ap-

Jf(uf) = 1
2

∫ ∞

0
(qT

f qf + uT
f Ruf) dt, R > 0

= 1
2

∫ ∞

0
(yTCT

2 C2y + uT
f Ruf) dt

(123)

plied to these large power networks to reveal this two-time-
scale behavior (9).

If the triple (C2, A22, B2) is stabilizable and detectable (ob- Consider the linearized electromechanical model of an
servable), then there exists a unique positive-semidefinite n-machine power system in the second-order form with damp-
(positive-definite) stabilizing solution Kf of the matrix Riccati ing neglected
equation

Mδ̈ = Kδ (130)
0 = −Kf A22 − AT

22Kf + Kf B2R−1B2Kf − CT
2 C2 (124)

where � � Rn is the machine rotor angle vector, M is the diag-
onal matrix of machine inertias, and K is the stiffness matrixand the optimal control is
determined by the network impedances. Assume that the sys-
tem in Eq. (130) has r tightly connected areas, with the con-uf = −R−1BT

2 Kf y = G22 y (125)
nections between the areas being relatively fewer. In this
case, we decompose K intoThe following results are from Reference (8).

K = KI + εKE (131)
Theorem 1.

where K I is the stiffness matrix due to the impedances inter-
1. If the triples (C0, A0, B0) and (C2, A22, B2) are stabilizable nal to the areas, and K E is the stiffness matrix due to the

and detectable (observable), then there exists an �* 
 0 impedances external to the areas and scaled by the small pa-
such that for all � � (0, �*], an optimal control exists rameter � that represents the ratio of the external to the in-
for the linear regulator problem (113) with an optimal ternal connection strength.
performance Jopt. For illustrative purposes, we let r � 2, with r1 machines in

area 1 and r2 machines in area 2. Arranging the machines in2. The composite control in Eq. (111)
area 1 to appear first in �, K I has a block-diagonal structure

KI = block-diag(KI
1, KI

2) (132)
uc = − [(I − R−1BT

2 Kf A−1
22 B2)R−1

0 (DT
0 C0 + BT

0 Ks)

+ R−1BT
2 Kf A−1

22 A21]x − R−1BT
2 Kf z

(126)

A particular property of the ri � ri matrix K I
i, i � 1, 2, is that

each of the rows in K I
i will sum to zero. If � � 0, this conserva-applied to the system in Eq. (29) achieves an O(�2) ap-

tion property results in a slow mode in each area. Whenproximation of Jopt, that is,
� � 0, the slow mode from each area will interact to form the
low-frequency interarea oscillatory mode.J(uc) = Jopt + O(ε2) (127)

To reveal this slow dynamics, we define a grouping matrix

3. If A22 is stable, then the slow control in Eq. (122)

us = −R−1
0 (DT

0 C0 + BT
0 Ks)x (128)

U =
[

1r1
0

0 1r2

]
(133)
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where 1ri
is an ri � 1 column vector of all ones. Using U, we The composite control has also been applied to solve opti-

mal regulator problems for nonlinear singularly perturbedintroduce the aggregate machine angles weighted according
to the inertia as the slow variables systems (15). Recently, composite control results for H� opti-

mal control of singularly perturbed systems have been ob-
tained (16, 17). The composite control idea can also be usedδa = (UT MU )−1UT Mδ = Cδ (134)
to establish the time scales in a closed-loop system induced

and the difference angles with respect to the first machine in by a high-gain control (18).
each area as the fast variables Singular perturbation methods also have significant appli-

cations in flight control problems (19, 20). For example, two-
δd = Gδ (135) point boundary-value problems arising from trajectory opti-

mization can be solved by treating the fast maneuvers and
where the slower cruise dynamics separately.

The slow coherency and aggregation technique is also ap-
plicable to other large-scale systems, such as Markov chains
(21) and multi-market economic systems (22). These systems

G =
[
−1r1−1 Ir1−1 0 0

0 0 −1r2−1 Ir2−1

]
(136)

belong to the class of singularly perturbed systems in the non-
standard form, of which an extended treatment can be foundNoting that CM�1K I � 0 and K IU � 0, that is, C is in the left
in Ref. 23.null space of M�1K I and U is in the right null space of K I, the

A topic not covered here is the filtering and stochastic con-system in Eq. (130) in the new variables become
trol of singularly perturbed systems with input noise. As
� � 0, the fast dynamics will tend to a white noise. Although
the problem can be studied in two-time-scales, the conver-

δ̈a = εCM−1KEUδa + εCM−1KEG+δd (137a)

δ̈d = εGM−1KEUδa + (GM−1KIG+ + εGM−1KEG+)δd (137b) gence of the optimal solution requires that the noise input in
the fast dynamics be either colored or asymptotically small

where G� � GT(GGT)�1. The system in Eq. (137) clearly points (24).
to the two-time-scale behavior in which the right-hand side of Another topic not covered is the control of distributed pa-
Eq. (137a) is O(�), indicating that �a is a slow variable. The rameter systems possessing two-time-scale properties. Aver-
method can readily be extended to systems with r 
 2 areas. aging and homogenization techniques are also a class of two-

Based on this time-scale interpretation, a grouping algo- time-scale methods (25). More developments are expected in
rithm using the slow eigensubspace has been proposed to find this area.
the tightly connected machines if they are not known ahead In more complex singularly perturbed systems, jump be-
of time. Then the areas whose internal dynamics are of less haviors may arise not only at the end points but also in inte-
interest can be aggregated into single machine equivalents to rior layers. Reference 27, beside being an introductory text to
capture only the slow dynamics. This concept, together with singular perturbations, contains a detailed treatment of such
some more recently developed algorithms, has been imple- phenomena. It also contains a historical development of sin-
mented in computer software to reduce large power systems gular perturbations.
to smaller models suitable for stability analysis and control The singular perturbation results presented in this article
design (10). represent developments over a period of three decades and

contribute to the advances of modern control theory. As new
control problems are proposed and new applications are dis-FURTHER READING
covered for systems with time-scales, we expect that singular
perturbation methods will also be extended accordingly toSingular perturbation techniques have been successfully ap-

plied to the analysis and design of many control systems other provide simpler models to gain useful design insights into
these new problems.than those discussed in this article. For our concluding re-

marks, we briefly comment on some of these applications as
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