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SOFTWARE FOR CONTROL SYSTEM ANALYSIS AND DESIGN: SYMBOL
MANIPULATION

The computer revolution has radically changed every area of engineering, and control/systems engineering is
not an exception. Indeed, computers have become essential tools in modeling, analysis, design, and implemen-
tation of control systems. In particular, they enable the design engineer to tackle problems of ever increasing
complexity (1). The topic of this article is the effectiveness of symbolic computation software so-called computer
algebra, in the analysis and design of control systems.

Symbolic computation software should be distinguished from numerical computation software. The former
performs exact computation and can manipulate whole mathematical (symbolic) expressions, whereas the latter
is limited to approximate computation based on numerical expressions. MATLAB (The Mathworks, Inc.) and
SCILAB (Copyright INRIA; freely available via http://www-rocq.inria.fr/scilab/ are popular numerical software
packages in the control engineering community. Such software assists in a wide variety of control engineering
tasks, from modeling to real-time control implementation. The simulation facilities offered in these packages
make them very popular in educational programs. Similarly, there are a number of readily available symbolic
computation software packages. Mathematica (Wolfram Research, Inc.), Maple (Wiferloo Maple Inc.), REDUCE
( c©Anthony C. Hearn), DERIVE (Software House Inc., Texas Instruments), Macaulay, COCOA, (freely available
via http://cocoa.dima.unige.it and MACSYMA (Macsyma, Inc.) are some of the more popular ones. Most of
these software packages incorporate numerical as well as symbolic computation so that the user can resort
to numerical analysis of symbolic expressions if required. Observe also that MATLAB, through its Symbolic
Math Toolbox, adds to its numerical core symbolic manipulation capability. In general the distinction between
purely numerical and symbolic computation software begins to blur, the trend being to offer both capabilities
in the same software environment.

In general, a particular control problem can be approached using numerical and/or symbolic software.
More precisely, all computational problems can be classified as (2 p. 275):

(1) Purely Numerical Problems Problems that can be handled only using numerical software and for which
there is no symbolic solution, such as the computation of roots of a univariate polynomial.

(2) Numerically Reducible Problems Problems for which both symbolic and numerical solutions exist, such as
finding the greatest common divisor of a set of univariate polynomials.

(3) Numerically Irreducible Problems Problems that can be handled only using symbolic software, such as the
computation of Gröbner based for multivariate polynomials.

From the above classification it is clear that a familiarity with symbolic and numerical software can
benefit the control/systems engineer enormously. In this article, the power and usefulness of symbolic software
are brought to the fore. It is of course understood that numerical software is an equally indispensable tool
in the control engineer’s toolbox, since, in general, the control designer needs to resort to both symbolic and
numerical software to successfully carry out control design.
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At first contact, symbolic software is reminiscent of university-level engineering analysis and calculus. It
offers the flexibility, excitement, and expectation of computing exactly with a completely abstract representation
of the problem at hand. Unfortunately, it shares the same drawback, in that the problems that can be dealt with
are limited in their complexity. Nevertheless, using symbolic computation, software computations that involve
cumbersome algebraic expressions that are far beyond error-prone manual manipulations become routine. As
a result, symbolic computation software has significantly pushed the boundaries of what can be regarded as an
analytically tractable mathematical problem, and so it has become an invaluable tool in the control designer’s
toolbox for modeling, design, and analysis of control systems.

A plethora of symbolic computation algorithms targeting control system analysis and design are avail-
able. Symbolic computation is useful in almost every step of control system modeling and the analysis and
controller design of linear and nonlinear control systems. In particular, symbolic manipulation of bond graphs
and multidimensional Laplace transforms, which are important tools in the modeling of nonlinear control
systems, are facilitated by computer algebra. The analysis of qualitative and quantitative system properties
under parameter variations is supported by symbolic computation through sensitivity and bifurcation analysis.
Robust control problems in either linear or nonlinear systems are facilitated by computer algebra software.
The important geometric approach to nonlinear control design (e.g., computing a linearizing feedback or deter-
mining zero dynamics) is enabled by commercially available symbolic software. A more elaborate overview of
other symbolic software algorithms used in modeling, analysis, and design of control systems is provided in 2.

In this article, polynomial control system analysis and design are targeted, and in particular three impor-
tant methods are discussed: Gröbner bases, differential algebra (in particular, Ritt’s algorithm), and quantifier
elimination. In essence, these methods deal with polynomials. Computation of Gröbner bases is implemented in
most commercial symbolic software packages such as Maple and Mathematica. On the other hand, Ritt’s algo-
rithm is not as yet commercially available, but software implementations may be obtained from the specialists
working in the field. Quantifier elimination has been implemented in Mathematica.

Polynomial systems are a natural generalization of linear systems; they possess a nice algebraic structure,
and their analysis is amenable to computer algebra. Moreover, as polynomials are universal approximators,
polynomial control models can be used as valid models for almost any physical system. Furthermore, the
restriction to polynomial systems is not severe, since any nonlinear function that satisfies a polynomial differ-
ential or algebraic equation, such as trigonometric functions, can be handled by introducing artificial states;
see 3 and 4 for more details.

The state-space model of a polynomial control system is given by

Here x ∈ n, y ∈ p, u ∈ m represent respectively the state, the observed output, and the manipulated control
input of the system. The operator σ is either the derivative σx(t) = dx(t)/dt for continuous-time systems (when
t ∈ ) or the forward difference σx(t) = x(t + 1) for discrete-time systems (when t ∈ ). The symbols , , ,
and denote respectively the sets of real, rational, natural, and complex numbers. The vector functions f and
h are assumed to have entries that are polynomial functions in all their variables. Moreover, for computational
reasons the polynomials are assumed to have rational coefficients. Continuous-time (or discrete-time) linear
systems
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form a special subclass of polynomial control systems (1). A wide range of systems can be adequately modeled
using Eq. (1). Indeed, systems as diverse as biochemical reactors, grain dryers, satellites, robots, and airplanes
have been successfully modeled using polynomial systems (1) (see, e.g., 5).

In the context of polynomial control systems, problems like determining equilibria, estimating a domain
of attraction of a stable equilibrium, and locating approximately periodic solutions, as well as testing control-
lability and observability properties, reduce naturally to the analysis of sets of algebraic polynomial equations.
Such problems can be addressed using the Gröbner basis method. In any modeling exercise, the elimination
of variables from sets of differential and algebraic equations plays a crucial role. This problem also arises
naturally in the context of determining if two state representations are equivalent. Differential algebra and
Ritt’s algorithm are very useful in this context. A range of different control problems can be formulated as
questions involving quantifiers “there exists” and “for all,” and this naturally leads to the so-called quantifier
elimination algorithms.

The Gröbner Basis Method

Central objects in the Gröbner basis theory are polynomial ideals and affine varieties (6). Let p1,. . ., ps be
multivariate polynomials in the variables x1,. . . , xn whose coefficients are in the field k. For the collection of
ordered n-tuples of elements of k the notation kn is used. The variables x1,. . . , xn are considered as “place
markers” in the polynomial. The notation p1,. . . , ps ∈ k[x1,. . . , xn] is adopted. The affine variety (or variety)
defined by the s polynomials p1,. . . , ps is the collection of all solutions in kn of the system of equations

Formally, the variety is

For instance, a straight line, a parabola, an ellipse, a hyperbola, and a single point are all examples of varieties
in 2. The polynomial ideal I that is generated by p1,. . . , ps is a set of polynomials obtained by combining these
polynomials through multiplication and addition with other polynomials: formally,

The polynomials pi, i = 1,. . . , s, form a basis for the ideal I. A very useful interpretation of a polynomial ideal
I is in terms of the equations (3). On multiplying pi by arbitrary polynomials gi ∈ k[x1,. . . , xn] and adding the
products, the implication of Eq. (3) is that f = g1p1 + ··· + gs ps = 0, and of course f ∈ I. Hence, the ideal I =
〈p1,. . . , ps〉 contains all the “polynomial consequences” of the equations (3).

A notion at the core of the Gröbner basis method is that of the monomial ordering (a monomial is a
polynomial consisting of a single term), since it introduces an appropriate extension of the notion of the leading
term and the leading coefficient familiar from univariate polynomials to multivariate polynomials. One can
define many different monomial orderings [lexicographic, graded lexicographic, graded reverse lexicographic,
etc. (6)], but to be specific, consider the so-called lexicographic, or lex, ordering. Let α,β be two n-tuples of
integers [α = (α1,. . ., αn), β = (β, . . . , βn) ∈ n. The n-tuple α is said to succeed β (in lex ordering), denoted as α

� β, if in the vector difference α−β = (α1 − β1,. . ., αn − βn) the leftmost nonzero entry is positive. Obviously, it
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is possible to define n! different lex orderings for polynomials in n variables. For the polynomial f = 2x1
3x2x3

3

+ 4x1
3x3

5, using the lex ordering x1 � x2 � x3 the monomial x1
3x2x3

3 succeeds the monomial x1
3x3

5, as the
multidegrees of the monomials satisfy (3,1,3) � (3,0,5). With this ordering, the leading coefficient and the
leading term are respectively LC(f ) = 2 and LT(f ) = 2x1

3x2x3
3. Using the alternative lex ordering x1 � x2 � x1,

the leading term becomes LT(f ) = 4x1
3x3

5.
In general, an ideal I does not have a unique basis, but given any two different bases 〈p1,. . . , ps〉 and

〈g1,. . . , gm〉 of I, the varieties V(p1,. . . , ps) and V(g1,. . . , gm) are equal. In other words, a variety only depends
on the ideal generated by its defining equations. Some bases of an ideal may be simpler than other bases.
Intuitively, if all the polynomials in a given basis of an ideal have a degree that is lower than the degree of
any other polynomial in the ideal with respect to a particular monomial ordering, then this basis is in some
sense the simplest basis. In particular, a Gröbner basis of an ideal (for a given monomial ordering) has such a
property and can be thought of as the simplest or canonical basis. Given an ideal I and a monomial ordering,
denote the set of leading terms of elements of I as LT(I). The ideal generated by elements of LT(I) is denoted
〈LT(I)〉. In general, the ideal generated by the leading terms of a particular ideal I is not the same as the
ideal generated by the leading terms of the polynomials in a basis for that particular ideal I. A Gröbner basis
is a special basis for which this property holds, and it is formally defined as the set of polynomials g1,. . . ,
gm for which 〈LT(I)〉 = 〈LT(g1),. . . , LT(gm)〉. When computing Gröbner bases, the user specifies a monomial
ordering; different monomial orderings produce different Gröbner bases. Given a monomial ordering, the two
most important properties of Gröbner bases are:

(1) Every ideal I ⊂ k[x1,. . . , xn], other than the trivial ideal 〈0〉, has a Gröbner basis. Furthermore, any Gröbner
basis of an ideal I is a basis for I.

(2) Given an ideal I ⊂ k[x1,. . . , xn], other than the trivial ideal 〈0〉, a Gröbner basis of I can be computed in a
finite number of algebraic operations.

The first algorithm for computation of Gröbner bases, published in the 1960s, is attributed to B. Buch-
berger (6). Since then a number of improvements have been reported and the algorithm has been imple-
mented in most commercial symbolic software packages. Buchberger’s algorithm generalizes two well-known
algorithms: Gauss elimination for sets of multivariate linear algebraic equations, and Euclid’s algorithm for
computing the greatest common divisor of a set of univariate polynomials.

Solving Sets of Multivariate Polynomial Equations. Gröbner bases facilitate solving a set of mul-
tivariate polynomial equations (3) in the same way as the Gauss elimination algorithm facilitates solving a
set of linear algebraic equations. Indeed, in a given lex ordering the Gröbner basis has a triangular structure
reminiscent of the triangular structure in Gauss elimination. If the Gröbner basis is given by {1}, then the
system of polynomial equations has no solution.

Equilibria for Polynomial Systems. Consider a polynomial system without inputs σx(t) = f (x(t)). A state
x∗ ∈ n is called an equilibrium of this system if x(0) = x∗ implies that x(t) ≡ x∗ ∀t. Equilibria for polynomial
systems are therefore obtained as solutions of a set of polynomial equations of the form f (x) = 0 or f (x) = x for
continuous-time or discrete-time systems respectively. Gröbner bases facilitate finding all equilibria.

Example: The equilibria of the polynomial system
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are obtained as solutions of the set of polynomial equations

which is hard to solve. The Gröbner basis for the ideal 〈p1, p2, p3〉 using the lexicographic ordering x1 � x2 � x3
is computed using Maple:

By construction the equations gi = 0, i = 1, 2, 3, 4, have the same solutions as Eq. (6). But obviously the
polynomials gi have a much simpler structure than the polynomials pi. Indeed, g4 depends only on x3, and this
allows g4 = 0 to be solved numerically for x3. The solutions can be substituted into g2 = 0 and g3 = 0 to obtain
polynomials in x2 only that can then be solved numerically. This process of back-substitution can be continued
until all solutions are found.
Observe that a basis for an ideal does not have a fixed number of basis polynomials, and indeed the “simpler”
Gröbner basis contains more polynomials than the original basis. As may be observed, it even contains more
polynomials than there are variables.

Periodic Solutions for Polynomial Systems. Consider the system f (dny/dtn, . . . , dy/dt, y, t) = 0, where
y can be thought of as the output of a closed-loop control system. Let f be a polynomial in all its variables.
To approximately compute a periodic solution y(t) of this system, the method of harmonic balancing can be
used. It can be shown that under mild conditions an approximate periodic solution implies the existence of
an exact periodic solution “close” to the approximate one (7). A truncated Fourier series can be considered
as a candidate approximate periodic solution y(t) = �k = − N

N Cke− jωkt, ck ∈ , where ck and c− k are complex
conjugates. Postulating that y(t) is a solution leads to a set of polynomial equations, because f is polynomial.
Using the Gröbner basis method with lex ordering, this set of equations can be solved for the unknowns c0,
c1,. . . , cN and ω to obtain y(t).

In practice the actual solution may not be so important, and it often suffices to know that a periodic
solution exists and to know its oscillation frequency ω. This can be achieved by finding the Gröbner basis of
the polynomial equations with any lex ordering where ω is the lowest-ranking variable.

Example: Consider the van der Pol equation (8) ÿ − a (1 − by2) ẏ + y = 0, and postulate a periodic solution y(t)
= �, where ck = ckr + cki j, k = 0, 1, 2, 3, and j = . Substituting y(t) into the van der Pol differential equation
and equating the coefficients on the left-hand and right-hand sides of the equation leads to
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and c0 = 0, c2 = 0, and c1i = 0. The coefficients a and b are regarded as variables. To simplify the computations,
p1 is divided by c1τ, and p2 by ac1τω. A Gröbner basis of the ideal 〈p1, p2, p3, p4〉 with the lex ordering c3τ � c3i
� c3τ � b � a � ω contains seven polynomials of nontrivial complexity (42 pages of Maple output). It contains
one polynomial in ω and a only:

Obviously, for a = 0 the van der Pol oscillator is a simple harmonic oscillator with frequency ω = 1. In the
presence of nonlinear damping a 	= 0, the solution of g7 = 0, which continues ω = 1, can be expanded as

and using Maple, the coefficients αi are obtained: .

Gröbner Bases and Elimination. Gröbner bases can be used to eliminate some variables of interest
from a set of polynomial equations, as illustrated by Example 1, where x1 and x2 are eliminated from g4 in Eq.
(7). The variables that are ranked higher in the lex ordering are eliminated first. This feature of Gröbner bases
can be used to obtain an estimate of the domain of attraction of equilibria for polynomial systems.

Estimation of the Domain of Attraction. If the closed-loop control system is stable, it is of interest to
determine those initial conditions from which the solutions converge to a specified equilibrium. The collection
of all the initial conditions that converge to the same equilibrium is called the domain of attraction of that
particular equilibrium. Estimating domains of attractions is a hard problem. One way of obtaining a (conser-
vative) estimate for the domain of attraction is to use Lyapunov functions. It is a standard result in Lyapunov
theory that if x = 0 is an equilibrium point for the continuous-time system d/dt x = f (x), if D ⊂ n is a domain
containing x = 0, and if W : D → is a continuously differentiable function such that W(0) = 0 and for all x ∈ D
− {0} one has W(x) > 0 and ∂W/∂x f (x) < 0, then x = 0 is asymptotically stable. Given such a Lyapunov function,
consider the sets � = {x ∈ n : ∂W/∂xf (x) < 0} and Bd = {x ∈ n : W(x) ≤ d}. If Bd ⊂ � for some d > 0, then
the set Bd is an estimate for the domain of attraction. For polynomial systems with a polynomial Lyapunov
function W, Gröbner bases can be used to compute Bd systematically. Indeed, it is feasible to construct the
largest such set by finding d such that Bd is as large as possible and still inside �. For polynomial systems
with polynomial Lyapunov functions, W(x) − d and ∂W/∂x f (x) are polynomials, and hence the boundaries of
the sets Bd and � are varieties. At the points where the varieties V(W − d) and V (∂W/∂xf (x)) touch each other,

the gradients of W and are parallel. Using this information, a system of n + 2 polynomial equations in n + 2
variables is obtained:

computing a Gröbner basis for the above system of equations, where the variable d has the least rank in the
lex ordering, a polynomial equation in d only is obtained. The least positive solution to this equation is the
“best” value of d for which Bd ⊂ �, and this yields in turn the best estimate for the domain of attraction that
could be obtained with the particular Lyapunov function W.



SOFTWARE FOR CONTROL SYSTEM ANALYSIS AND DESIGN: SYMBOL MANIPULATION 7

Example: Consider the system (8)

with the Lyapunov function W(x) = 3x2
1 + 4x1x2 + 4x2

2. The polynomials (8) are in this case

and using the lexicographic ordering x2 � λ � x1 � d, the Gröbner basis of the ideal 〈p1, p2, p3, p4〉 is computed.
It contains the polynomial g(d) = 4d4 − 147d3 + 786d2 + 2048d. The approximate solutions of g(d) = 0 are
−1.9223, 0, 8.9657, 29.707. The smallest positive value of d for which there is a solution to the system of
equations pi = 0 is 8.9657. The corresponding estimate for the domain of attraction is therefore {x ∈ 2 : W(x)
≤ 8.9657}.

Equality of Ideals. A special type of a Gröbner basis can be used to decide if two ideals are the same
or not. This is the so-called reduced Gröbner basis. A reduced Gröbner basis for an ideal I is a Gröbner basis
G for I such that LC(p) = 1 for all p ∈ G, and for all p ∈ G, no monomial of p lies in 〈LT(G − {p})〉. The main
property of reduced Gröbner bases is that given an arbitrary ideal I 	= 〈0〉 and a particular monomial ordering,
I has a unique reduced Gröbner basis. Hence, two ideals J1 and J2 are the same if and only if their reduced
Gröbner bases G1 and G2 are the same (G1 and G2 must be computed with the same monomial ordering).
Most commercial computer algebra systems, such as Maple and Mathematica, provide finite algorithms for
computing reduced Gröbner bases.

Analysis of Discrete-Time Polynomial Systems. Fundamental control-theoretic concepts such as con-
trollability or observability can be reduced to the problem of computing maximal control-invariant varieties.
This is well known for linear systems (computation of control-invariant subspaces), but it holds equally well
for discrete-time polynomial systems of the form x(t + 1) = f (x(t),u(t)). For such systems, a variety V is control-
invariant if f (V,u) ⊂ V for all possible control inputs u. The computation of the maximal control-invariant
subset of a given variety V can be completed in finitely many operations. Consider the defining ideal of the
variety V; say J1 = 〈g1,1,. . ., g1,m1〉, where gj,k ∈ [x]. If the variety corresponding to J1 were control-invariant,
then g1,k

◦ f (x,u) ≡ 0 for all u and all k = 1,. . . , m1. The polynomials g1,k
◦ f (x,u) can be viewed as polynomials

in u with coefficients in [x]. Denote the collection of all these coefficients as g2,k, k = 1, 2,. . . , m2, and the
corresponding ideal as J2 = 〈g2,1,. . . , g2,m2〉. Invariance would imply that J1 = J2, and if this is not the case,
then obviously J1 ⊂ J2 and the corresponding varieties satisfy V1 ⊃ V2. This process can be continued to
construct an ascending chain of ideals (or descending chain of varieties) J1 ⊂ J2 ⊂ J3 ⊂ ···. This chain must
terminate in finitely many steps (6). That is, there exists an integer N such that ··· ⊂ JN − 1 ⊂ JN = JN+1 =
···. The variety V(JN) is the maximal control-invariant subset of V(J1). The check whether Jk = Jk+1 can be
completed via the computation of reduced Gröbner bases for Jk and Jk+1.
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Observability. The discrete-time polynomial system

as said to be observable if for each pair of initial states ζ 	= η, there exists an integer N and an input sequence UN
= {u(0),. . . , u(N−1)} such that the solutions starting at ζand η produce different outputs after N steps, that is
h(x(N, ζ, UN)) 	= h(x(N, η, UN)). The polynomial h(x(N, ζ, UN)) − h(x(N, η, UN)) can be regarded as a polynomial
in elements of UN with coefficients in [ξ, η]. A chain of ideals Jk is constructed using these coefficients, and
at each step the condition Jk = Jk+1 is tested. It can be shown that if JN for some N has a reduced Gröbner
basis {ζ1 − η1,. . . ,ζn − ηn}, then JN+1 = JN and the system is observable. The above-discussed algorithm
for computing invariant sets streamlines these computations and allows a systematic determination of the
integer N.

Example: Consider the simple Wiener system (9)

The system consists of a linear dynamical system and a quadratic static output nonlinearity. The ideal J1 =
〈η1

2− ζ1
2〉 and the output equation (12) are used to construct the following ideals:

Using the lex ordering ζ1 � ζ2 � η1 � η2, the reduced Gröbner basis for J4 is G4 = {η1 − ζ1, η2 − ζ2}, and therefore
the system (12) is observable with N = 4.

A Brief Overview of the Literature and Related Problems. Gröbner bases are useful for a range of other
control problems, such as the inverse kinematic problem and motion planning in robotics (6), the computation
of the switching surfaces in the solution of time optimal control problems (10,11), identifiability, input–output
equivalence of different state-space realizations, normal forms and zero dynamics (12), analysis of hybrid
control systems, computation of limit cycles for discrete-time polynomial systems, observability of continuous-
time polynomial systems, and forward accessibility of discrete-time polynomial systems.

In control design for linear systems, the linear functional observer problem, the model-matching problem,
the deterministic identification problem, and the disturbance decoupling problem play a central role. All these
problems can be seen as the characterization of a maximally control-invariant subspace of a given subspace
of the state space (2). In control theory this problem is known as the cover problem. The cover problem can be
solved via a computation of elementary divisors of matrix pencils, which in turn leads to multilinear equations
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where the unknowns are the basis vectors of the invariant subspace. The Gröbner basis method facilitates the
analytic solution of this problem. The elegance of this approach stems from the fact in one single algorithm all
possible (typically infinitely many) control-invariant subspaces can be explicitly characterized. The degrees of
freedom established in this process can then be further exploited to optimize other desirable system properties,
such as sensitivity.

We have focused on the use of Gröbner bases for commutative rings over infinite fields, that is, finding
Gröbner bases in the context of polynomials with rational coefficients. Two important related areas are Gröbner
bases for commutative rings over finite fields and Gröbner bases in the context of noncommutative rings. The
former is of interest in the context of discrete-event dynamic systems (13,14) and coding theory in communi-
cations. The latter is useful for control-theoretic problems involving polynomial matrices (15). In particular, in
15 a new extra term in the expansion of the classical state-feedback optimal control problem in the singular
perturbation form was obtained using noncommutative Gröbner bases.

An important drawback of Buchberger’s algorithm is that even with the best known versions of the
algorithm, it is easy to generate examples for which the computation of a Gröbner basis requires inordinate
amounts of computer resources (time and/or memory). The main bottlenecks are that the total degrees of the
intermediate polynomials that the algorithm generates may be quite large and that the coefficients of the
Gröbner basis may be complicated rational numbers. This may be the case even if the original ideal generators
are polynomials of small degrees with small integer coefficients. In general, the intermediate polynomials
observed in the computation of a Gröbner basis can have total degrees of the order of 22d, where d is the
total degree of the ideal generators. Although this appears to be a rather negative result, it typifies the
worst-case scenario. It appears that the running time and the storage requirements seem to be much more
manageable on average. It is important to emphasize that different monomial orderings may produce very
different computational times, and some experimentation with the ordering may yield significant reductions
in computation time.

Differential Algebra In Control

In the 1980s differential algebra was applied to control problems (16). Differential algebra can be used to
transform a polynomial system from one representation to another. In general differential algebra plays an
important role in the realization theory of nonlinear control systems. In the context of control, the problems
that lend themselves to differential algebra are varied: the determination of observability, identifiability, the
calculation of zero dynamics, regulator computations, tracking control, etc.

Differential-Algebraic Tools. Differential algebra provides tools for dealing with systems of poly-
nomial differential equations. In this algebra the derivative operation occupies center stage. A multivariate
polynomial in variables y1,. . . , yN and their derivatives is called a differential polynomial in y1,. . . , yN . For
instance, f (dny/dtn, . . . , dy/dt, y) is a differential polynomial in y if f is a polynomial in all its variables.

The concept of ranking is introduced for differential polynomials. It is very similar to the concept of
monomial ordering for polynomials. Ranking is a total ordering of all variables and their derivatives. Examples
involving two variables are

and
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where ≺ denotes “is ranked lower than.” Any ranking is possible provided it satisfies two conditions:

for all variables u and y, all nonnegative integers µ and v, and all positive integers σ. The highest-ranking
variable or derivative of a variable in a differential polynomial is called the leader. The ranking of variables
gives a ranking of differential polynomials. They are simply ranked as their leaders. If two have the same
leader, they are considered as polynomials in their leader and the one of lower degree is ranked lower.

Let A, B be two differential polynomials, and let A have the leader v. Then B is said to be reduced with
respect to A if there is no derivative of v in B and if B has lower degree than A when both are regarded as
polynomials in v. A set

of differential polynomials is called autoreduced if all the Ai are pairwise reduced with respect to each other.
Normally autoreduced sets are ordered so that A1,. . ., Ap are in increasing rank. Autoreduced sets are ranked
as follows. Let A = A1,. . . , Ar and B = B1,. . . , Bs be two ordered autoreduced sets. A is ranked lower if either
there is an integer k, 0 ≤ k ≤ min(s, r), such that

or else if r > s and

A characteristic set for a given set of differential polynomials is an autoreduced subset such that no other
autoreduced subset is ranked lower.

The separant SA of a differential polynomial A is the partial derivative of A with respect to the leader,
while the initial IA is the coefficient of the highest power of the leader in A. If a differential polynomial f is not
reduced with respect to another differential polynomial g, then either f contains some derivative of the leader
ug of g or else f contains ug to a higher power. In the former case one can differentiate g a suitable number (say
σ) of times and perform a pseudodivision to remove that derivative, giving a relation

where S is the separant of g and R does not contain the highest derivative of ug that is present in f . If f contains
ug to a higher power, a pseudodivision of f by g can be performed to obtain

where I is the initial of g, and R is reduced with respect to g.
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Observability. In control theory a system is called observable if it is possible to compute the state from
inputs and outputs. Using differential algebra, the observability question can be answered in a constructive
manner for continuous-time polynomial systems (1).

Example: Consider the system

which is in state-space form. Suppose an input–output description (i.e., a description directly relating u and y)
is called for. The original set of equations is equivalent to

It is now possible to eliminate the derivative of x2 by forming

From this construction it follows that p = 0 whenever the equations of (19) are satisfied. The last equation of
(19) can be replaced by p = 0 to get the system description

From (Eq. 20) it follows that every solution of Eq. (19) also solves Eq. (21). If, moreover, it is known that x2 	=
0, then the converse is also true, and Eqs. (19) and (21) are equivalent. It is now possible to form

and it readily follows that

is equivalent to (Eq. 21) if also u 	= 0. Finally form

to conclude that, provided ux2 	= 0, Eq. (19) is equivalent to the following system description:
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The leftmost equation is an input–output relation, while the middle and right equations show how x1 and x2
can be computed from the input and output. This establishes the observability, and more.
Using the terminology of differential algebra, the state-space form is an autoreduced set under the ranking

while Eq. (25) is an autoreduced set under the ranking

Autoreduced sets thus give a generalization of several of the standard forms for dynamic systems.

Global Identifiability. A polynomial system that is parametrized with a (constant) parameter θ as

as said to be globally identifiable if, given input and output measurements u(t) and y(t) over an interval t ∈
[0,T], there is only one constant value of θ that satisfies Eq. (26). Global identifiability of polynomial systems
(1) can be checked in a constructive manner using the tools from differential algebra. Moreover, conditions on
u and y under which the system is not globally identifiable can also be obtained, as is illustrated below.

Example: Consider the system

where θ is a constant parameter. Can θ be identified by observing the output y? Using the notation p = ÿ +
2θ ẏ + θ2y, compute the expression

It follows readily that θ is uniquely determined by y (and its derivatives), provided that along the output
trajectory

This is thus an excitation condition that guarantees global identifiability.

The Algorithms of Ritt and Seidenberg. The concepts of the previous section were introduced in the
1930s by the American mathematician Ritt, (17). He devised an algorithm by which it is possible to start with
an arbitrary number of differential polynomials, introducing a suitable ranking of the variables and performing
successive operations of the type described by Eqs. (14), (15) to arrive at an equivalent representation in the
form of an autoreduced set of equations. This set has the property that an f belonging to the original differential
polynomials can be reduced to zero using (Eqs. 14) and (15) for different g’s belonging to the set. If certain
factorization conditions are met, then Ritt showed that the generated autoreduced set is a characteristic set,
not only for the explicitly generated polynomials, but also for an infinite set of polynomials constituting the
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so-called differential ideal. Ritt used his algorithmic procedure to produce an extensive theory for polynomial
systems of differential equations. Later a more systematic algebraic treatment was given by Kolchin (18). The
theory was also extended to partial differential equations (18) and difference equations (19).

From the viewpoint of practical calculations, a major drawback of Ritt’s algorithm is the factorization it
requires, since this is a task of high computational complexity. Seidenberg (20) has proposed an algorithm for
deciding the solvability of systems of equations and inequations. The algorithm uses (Eqs. 14), (15) repeatedly
to eliminate variables and reduce the problem to the single-variable case. As in the simple example above,
equivalence of the original and final sets of equations requires the separant S and initial I of (Eqs. 14), (15) to
be nonzero. To handle this, Seidenberg’s algorithm splits the problem into different subproblems, considering
the cases S = 0, S 	= 0 (or I = 0, I 	= 0) together with the original equations and inequations. By repeated
splitting a tree of subproblems is generated. Each subproblem is finally reduced to a single-variable problem
for which solvability can be decided. In recent years several variations of Ritt’s and Seidenberg’s algorithms
have been implemented in symbolic manipulation languages like Maple or Mathematica.

Other Control Problems. Differential-algebra calculations can be used to compute the zero dynamics
of a system. This dynamics is obtained by restricting the output to be zero. By adding the equation y = 0 and
using Ritt’s algorithm with a suitable ranking, it is possible to obtain a description of the resulting dynamics. In
a similar manner a regulator description can be obtained. Suppose a differential equation describing the desired
response from reference signal to output is given. Using this equation together with the system dynamics as
the input to Ritt’s algorithm, it is possible to arrive at an equation containing the control signal together with
the reference and output signals. This equation can be interpreted as a description of the regulator, although
it can be difficult to implement due to its implicit nature in the general case.

Quantifier Elimination

Quantifier elimination is a method for rewriting formulae that include quantifiers such as “for all” (∀) and “there
exists” (∃) in an equivalent form without the quantifiers and the quantified variables. According to a theorem
by Tarski (21), it is always possible to eliminate the quantified variables in formulae consisting of logical
combinations of multivariate polynomial equations and inequalities. Tarski provided a constructive proof in
the late 1940s, but the corresponding algorithm has such complexity that it is impractical for most problems.
In the mid 1970s Collins (22) presented a new method, the so-called cylindrical algebraic decomposition, which
exhibits much better complexity. Since then the algorithmic development has made significant progress (23,24,
25). Nevertheless, cylindrical algebraic decomposition and quantifier elimination are known to be inherently
complex (26). It is therefore of importance to identify classes of problems for which the computational complexity
is much lower, and for which specialized algorithms can be developed (27,28). Implementations of cylindrical
algebraic decomposition and quantifier elimination are available in for example Mathematica (29). Depending
on the specific nature of the problem posed, different algorithms are used in order to minimize the computational
burden. The algorithmic developments are ongoing.

Introductions to cylindrical algebraic decomposition and quantifier elimination can be found in Ref. 30.
An extensive bibliography covering early papers can be found in Ref. 31, and a survey of the algorithmic
development of cylindrical algebraic decomposition is given in Ref. 32.

An early application of quantifier elimination techniques in control theory was made by Anderson et al.
(33). This contribution predates the introduction of efficient computational tools, and so it was of theoretical
interest only. With the availability of the experimental software QEPCAD (23), the number of papers related to
control increased. Now, as these methods are implemented in widely available symbolic computation software
packages like Mathematica, the control practitioner can explore their potential.

Systems of Real Algebraic Equations and Inequalities. In the context of polynomial equations
with real coefficients, inequalities arise naturally, for example to express when a quadratic polynomial has
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real solutions. The need of using not only equations but also inequalities in describing computational problems
triggered the development of methods for doing symbolic computations with so-called semialgebraic sets. A
semialgebraic set is a generalization of an algebraic set or variety, as it is the solution set of a system of real
algebraic equations and inequalities.

An algebraic expression in variables {x1,. . . , xn} is an expression constructed with {x1,. . . , xn} and
rational numbers, using addition, multiplication, rational powers, and algebraic numbers and functions. A
system of real algebraic equations and inequalities in variables {x1,. . . , xn} is a logical combination of equations
and inequalities with both sides being algebraic expressions in {x1,. . . , xn}. The notation ∧ (and), ∨ (or), ⇒
(implies) for Boolean operators is used.

The following is an example of a system of real algebraic equations and inequalities in the variables a, b,
x, y:

Alternatively, a semialgebraic set can be characterized as a set obtained by finitely many unions, intersections,
and complementations of sets of the form {x ∈ | f (x) ≥ 0}. Here f is a multivariate polynomial with rational
coefficients. Semialgebraic sets are thus closed under projection, union, and intersection. As Gröbner bases
provide a way to replace a system of multivariate polynomials by a simpler equivalent set, there are systematic
ways to simplify a system of real algebraic equations and inequalities. It can be shown that the set of solutions of
any system of real algebraic equations and inequalities in variables {x1,. . . , xn} can be written as a disjunction
of a finite number of cylindrical parts of the form

In the above expression, � stands for one of <, ≤, and =; and f i and gi are either −∞, ∞, or algebraic expressions
in the variables {x1,. . . , xi − i} that are real-valued for all tuples of real numbers {a1,. . . , ai − i} satisfying

The method of rewriting a real algebraic system as a disjunction of the above form is called cylindrical algebraic
decomposition; see Refs. 22,30,32. Observe the triangular nature of the resulting system.

Example: An example of a script in Mathematica for computing a cylindrical algebraic decomposition of an
ellipsoid in 3 is
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Here the functions f i and gi can be expressed in terms of simple algebraic operations and radicals. More
typically the full generality offered by algebraic functions is required:

In Mathematica algebraic functions are represented by special Root objects. In the above case the placeholder
variable #1 is a function of x and y. The last argument enumerates the branches of the algebraic function,
which in this case are the first two roots according to Mathematica’s enumeration scheme of the 12 possible
complex roots.
A quantified system of real algebraic equations and inequalities in variables {x1,. . . , xn} is an expression of
the form

where the Qi’s are the quantifiers ∃ or ∀, and S is a system of real algebraic equations and inequalities in
{x1,. . . , xn; y1,. . . , ym}. According to Tarski’s theorem the solution set of quantified systems of real algebraic
equations and inequalities is a semialgebraic set, which means that QS always can be rewritten as an equivalent
expression without any quantifiers and quantified variables. The process of eliminating quantified variables
from such systems is called quantifier elimination. The yi’s in QS are called bounded variables, and the xi’s free
variables. Problems without free variables are called decision problems.

Example: The proof of the well-known inequality between the arithmetic and the geometric mean of two real
positive numbers can be formulated as a decision problem:

The notation for quantifiers in Mathematica is

where Q is either ∀ or ∃, var is a single variable or list of variables, and cond gives additional conditions
on the variables such as their domain and/or semialgebraic constraints. The command to perform quantifier
elimination in Mathematica is called Resolve.
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Projection of semialgebraic sets is equivalent to quantifier elimination on existential quantifiers. Consider for
example the projection of the ellipsoid in Example 7 onto the xy plane:

Set inclusion for semialgebraic sets is another useful property that can be formulated as a decision problem: A
⊆ B is the decision problem ∀x∈AB:

Sets of Equilibria. As illustrated before, Gröbner bases are useful to determine equilibria for polyno-
mial systems. In polynomial control systems it is of importance to describe the steady-state solutions: the set of
reachable equilibria, for admissible input values. Characterizing the set of reachable equilibria in state space
is a quantifier elimination problem.

Example: Add a control input to the last equation in Example 1. Let this input be constrained to the interval
−1 ≤ u ≤ 1. Compute the projection of the set of corresponding equilibria onto the x1x2 plane.

Stability. To determine the local stability of equilibria of dynamic systems the stability tests of Routh
and Hurwitz (34) may be used. These stability tests give explicit conditions on the coefficients of the charac-
teristic equation of the Jacobian of the dynamical system at equilibrium in terms of a number of polynomial
inequalities. Hence the Routh–Hurwitz test can be handled using cylindrical algebraic decomposition and
quantifier elimination. A less well-known, but equivalent stability test is the Lienard–Chipart criterion (34),
which has the advantage over the Routh criterion that it involves polynomial inequalities of lower degree.

Given a polynomial in [s] a0sn + a1sn − 1 + ··· + an − 1s + an, ai > 0, the Lienard–Chipart criterion states
that all its zeros have strictly negative real parts if and only if the following inequalities holds:
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where Di, i = 1,. . . , n, are the so-called Hurwitz determinants of order i, which are defined as follows:

where ak = 0 for k > n.

Example: Consider the following polynomial system with real parameters a and b. Determine for which values
of a and b the origin is a stable equilibrium (this is an essential step in any bifurcation analysis of a dynamical
system—the classification of possible asymptotic behaviors of the system):

For zero input u = 0 the zero state is an equilibrium. Linearizing the system around (x,u) = (0,0) and computing
the characteristic polynomial of the resulting state transition matrix gives

Compute the solution set corresponding to the Lineard–Chipart stability inequalities for this polynomial:

Example: Consider the problem of stabilizing in a unit-feedback scheme an unstable system G, using a lead
compensator F that is parametrized by the parameters B and b, where

The Lienard–Chipart inequalities for the closed-loop system are
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These can be rewritten using cylindrical algebraic decomposition to either

or

depending on the choice of the order for b and B. Using quantifier elimination, questions like “For which values
of b can it be guaranteed that for all values of 5 < B < 10 the closed loop system is stable?” can be answered:

Numerically this corresponds to 0.65359 < b < 1.34641.

Nonlinear Tracking. Tracking a particular output is an important control objective. There are many
control design methods that deal with this problem, mainly based on optimization techniques. However, most
(analytic) methods do not take the ever present constraints on control signals or states into account. As a
consequence the resulting control system must be validated, often through extensive simulations. For a large
class of nonlinear tracking problems, quantifier elimination can be used to decide if there exists a solution to a
given tracking problem subject to the constraints of interest.

Consider the continuous-time polynomial control system

where x ∈ n, u ∈ m and each component of f is a polynomial in all its variables. Furthermore, the input value
u(t) is required to belong to some semialgebraic set U:

called the admissible control set. Let � be a rationally parametrized curve in the state space, i.e.,

where g : is a rational function and the orientation of � is defined by increasing values of s.
For the state of the system (27) to follow the curve �, there has to be an admissible control u such that

the vector field f (xp, u) is tangent to � at each xp on �. Since the curve � is parametrized in terms of s, this
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tangency requirement can be formulated as

where λ > 0 ensures that the state follows � in only one direction. The tracking problem is thus equivalent to
deciding if the following formula is true or false:

The above problem becomes a quantifier elimination problem if f or g include some free (design)
parameters.

Example: Consider the polynomial control system

and the curve � = {x ∈ 2|x1 = s ∧ x2 = −s3 + 1.5s2 ∧ 0 ≤ s ≤ 1}. Is it possible to steer the system
state along � using control signals constrained to −1 ≤ u ≤ 1? Using Mathematica, this can be resolved as
follows:

The tracking problem has a solution as long as 0 ≤ a ≤ 1.12769.
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Consider now a = 1, and compute the limits on u such that the above tracking problem has a solution:

For the tracking problem to have a solution it suffices that −0.98077 ≤ u ≤ 0.98077.

Multiobjective Feedback Design. Many objectives in linear system design are formulated in terms
of frequency-domain inequalities. Let the plant be represented by G(s, p) and the controller by F(s, q). Both G
and F are assumed to be scalar-valued rational functions of the Laplace variables s, real plant parameter p,
and real controller parameter q. It is now possible to write many robust design problems in a form suitable for
quantifier elimination.

Stability. The unit-negative-feedback closed-loop system consisting of plant and controller is asymptoti-
cally stable if and only if all zeros of the rational function 1 + G(s, p)F(s, q) have strictly negative real part.
This can be converted into polynomial inequalities in p and q using the Lineard–Chipart criterion.

Tracking Error. The tracking error at the output of the unit-negative-feedback loop of plant and controller
is governed by the so-called sensitivity transfer function

Acceptable levels of the tracking error can be specified by the inequality |S(iw)| < αT, 0 ≤ w ≤ w1, which can be
rewritten as a real algebraic inequality in the variables w, p, q, and αT. Through quantifier elimination it can
be verified that for the class of systems p ∈ P a single stabilizing controller q exists that meets the sensitivity
objective.

In essence any linear control design question formulated in frequency domain leads naturally to a quan-
tifier elimination or cylindrical algebraic decomposition problem. More importantly, symbolic manipulation
software is up to the task of systematically approaching these control design questions in practical and moder-
ately complex situations.

Related Problems and Other Control Applications. There is a vast array of problems in control
that can be posed as quantifier elimination problems or systems of multivariate polynomial inequalities,
whose solutions can be described by cylindrical algebraic decomposition. For example, quantifier elimination
has been used to investigate stability, stabilizability, and controllability of discrete-time polynomial systems
(35,36), stability and stabilizability of switched polynomial systems and unstable zero dynamics via switching
(30,37), frequency-domain design (38), and multiobjective robust control design (39). Quantifier elimination
has also been used for design of nonlinear control systems for nonlinear aircraft dynamics (40) and for robust
nonlinear feedback design (41).
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The generality of the quantifier elimination method comes at the cost of very high computational com-
plexity. Quantifier elimination software tools are not a panacea allowing one to approach every control problem
by brute force. The challenge in successfully applying quantifier elimination software tools lies in formulating
the problems in such a way that their inherent structure is maximally exploited. Most importantly, instead of
applying quantifier elimination to a complete problem, there are often simplifications that can be carried out
so that only a small problem (with far fewer variables) has to be handled by quantifier elimination. Control
designers should start focusing on providing the right heuristics and tools, built on their experience, in order to
make general-purpose quantifier elimination tools better attuned to control problems. In parallel, algorithm de-
signers now focus on developing specialized methods as components of a general quantifier elimination package
in order to exploit structure and to handle complexity. For instance, in Mathematica (25) there are a modified
simplex linear optimization algorithm for linear systems of equations and inequalities with inexact or rational
coefficients, linear quantifier elimination for equations and inequalities with exact coefficients according to 27,
preprocessing by linear equation solvers, Gröbner bases, special care and simplification for variables appearing
at most linearly in the systems, a simplified cylindrical algebraic decomposition algorithm for generic solutions
(24), and quantifier elimination by partial cylindrical algebraic decomposition (23) for the general case.

Conclusion. The possibilities offered through symbolic (and numeric) software in order to address
control problems are as varied and exciting as the control problems themselves. This article just presents the
tip of an iceberg. Dealing with complexity in control design is the main issue. For control algorithm developers
there is now more than ever a compelling need to focus on reliable software algorithms that allow nonspecialists
to approach a control problem with confidence. Software tools that provide information to the user about the
likelihood of success and the difficulties in a particular solution are called for to make this a reality.
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