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extends to two spaces A and B of dimension m spanned by
the orthonormal columns of two given matrices A and B:

A∗A = Im, B∗B = Im

The definition uses now the singular value decomposition of
the ‘‘inner product’’

SOFTWARE FOR CONTROL SYSTEM A∗B = U�V ∗

ANALYSIS AND DESIGN, SINGULAR
Indeed, if one takes Ã � AU and B̃ � BV, then the columnsVALUE DECOMPOSITION
of Ã and B̃ span the same spaces and still are orthonormal:

The singular value decomposition (SVD) goes back to the be-
Ã∗Ã = Im, B̃∗B̃ = Imginning of this century. In a paper of Beltrami (1) it was

shown for the first time that any n � n matrix A can be diago-
Moreover,nalized via orthogonal row and column transformations. For

the more general case of an n � n complex matrix A, the
result says that there exist unitary matrices U and V of di- Ã∗B̃ = � = diag{σ1, . . ., σm}
mension n � n and a real diagonal matrix � � diag��1, . . .,

and from this diagonal form one can define the canonical�n� such that
angles between the spaces A and B as cos �i � �i, i � 1,
. . ., m.A = U�V ∗

The second important property is that the singular value
decomposition yields a direct construction of ‘‘best’’ lower-where �1 � � � � � �n � 0. If A is real then U and V are also
rank approximation to a given matrix A. Let us indeed re-real. This implies indeed that U and V ‘‘diagonalize’’ A since
write the SVD in its dyadic form:

U∗AV = �

A =
n∑

i=1

σiuiv
∗
i

The decomposition is in nature close to an eigenvalue decom-
position, which was well known at the time. But this new

Then the matricesdecomposition is also very different since singular values are
always positive real, whereas eigenvalues are in general com-
plex. Also, the transformations are unitary in this decomposi-
tion, whereas in the eigenvalue decomposition they are just

Ar =
r∑

i=1

σiuiv
∗
i

nonsingular, and hence can be quite ‘‘badly conditioned’’ (see
are rank r matrices and the errorthe next section for a more detailed discussion). The use of

this new decomposition was not apparent from the very begin-
ning, but nowadays it has become an invaluable tool in sev-
eral application areas such as statistics, signal processing,

�Ar
.= A − Ar =

n∑
i=r+1

σiuiv
∗
i

and control theory.
has obviously norm �	Ar�2 � �r�1, which is the minimal normThe first important property that was observed is the per-
among all possible rank r approximations (see Ref. 2 and theturbation result for the singular values of a matrix A. If 	A
section entitled ‘‘Robustness in Systems and Control’’). Thisis a small perturbation of the matrix A, then its singular val-
leads to the important concept of the 
A rank of a matrix, de-ues �i are perturbed by an amount that can be bounded by
fined in terms of the machine accuracy 
 of the computerthe norm of the perturbation �	A�. The fact that the sensitiv-
used, and the norm �A�2 of the given matrix. For 
A � 
�A�2ity of singular values to perturbations is rather low makes
one defines the 
A rank of A as the smallest rank r of Arthem a good candidate for measuring certain variations in an
within 
A distance of A. It turns out that this is the most reli-observed phenomenon or in a model for it, and this is also its
able way to recognize rank deficiency of a given matrix andprincipal use in engineering applications. More formally, one
hence it is an important tool in engineering. In several appli-can show that several matrix norms can actually be expressed
cations the order of the system identified from observed mea-in terms of its singular values. The most important ones are
surements and the minimality of a constructed model indeedthe 2-norm and the Frobenius norm:
amount to rank determination problems (see the section enti-
tled ‘‘Applications in Systems and Control’’).

A final important feature of the SVD is that it puts the
‖A‖2

.= max
x �=0

‖Ax‖2

‖x‖2
= σ1(A), ‖A‖F

.=
�∑

i, j

|ai, j |2 =
r∑

i

σ 2
i

matrix A in a diagonal form under orthogonal (or unitary)
transformations of its columns and rows, and these transfor-

But the singular values are also used to measure angles. mations have good numerical properties. Interpreting y � Ax
The well-known formula for the angle � between two real vec- as a mapping from a space X to a space Y , we have thus
tors a and b of norm 1 transformed the coordinate systems in both spaces (by a well-

behaved transformation) such that the mapping becomes di-
agonal. It is obvious that this coordinate system will revealaTa = 1, bTb = 1, cos θ

.= |aTb|
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special properties of the original mapping since now it is ‘‘de- NUMERICAL BACKGROUND
coupled’’ in a set of scalar equations. We will see that in the
context of dynamical systems this coordinate system plays a The importance of the SVD is strongly tied to numerical as-

pects. For this reason, we first give a very brief discussion offundamental role in what are called ‘‘balanced’’ realizations
(see the section entitled ‘‘Balanced Realization’’). numerical stability and conditioning, which play a very im-

portant role in the study of numerical algorithms. For more
details we refer to standard textbooks such as Refs. 3 and 4.

THE SINGULAR VALUE DECOMPOSITION We also choose the example of the singular value decomposi-
tion to introduce the relevant concepts.

Before we give more details about its basic properties, we first Let A be an arbitrary m � n matrix. Then it is well known
recall the singular value decomposition in its most general that there always exist unitary matrices U and V such that
form.

U∗ · A =
[

R
0

]
, A · V = [

C
∣∣0]

(5)
Theorem 1. Let A be a m � n complex matrix of rank r. Then
there exist unitary matrices U and V of dimensions m � m

where R and C have, respectively, r linearly independentand n � n, respectively, such that
rows and columns. This implies, of course, that r is the rank
of the matrix A. We call such transformations a row and col-A = U�V ∗ (1)
umn compression of the matrix A, respectively, and R and C
are said to be of full row rank and full column rank, respec-

where tively. These decompositions can, for example, be computed
with the singular value decomposition Eqs. (1) and (2). It is
easy to verify that U*A and AV yield, respectively, a row and
a column compression of the matrix A. In this new coordinate

� =
[
�r 0
0 0

]
∈ Rm×n (2)

system, the kernel and image of the map U*AV are also sim-
ple to express. Indeed,

and �r � diag��1, . . ., �r� with �1 � � � � � �r � 0. If A is
real then U and V are also real.

Im U∗AV = Im

[
Ir

0

]
, Ker U∗AV = Im

[
0

In−r

]
The numbers �1, . . ., �r together with �r�1 � 0, . . .,

�min(m,n) � 0 are called the singular values of A. The columns
As a consequence we also have (2)�ui, i � 1, . . ., m� of U are called the left singular vectors of

A and the columns �vi, i � 1, . . ., n� of V are called the right
singular vectors of A. They also appear in the dyadic decompo-
sition of A:

Im A = Im U

[
Ir

0

]
= Im U1, Ker A = Im V

[
0

In−r

]
= Im V2

where U1 is the submatrix of the first r columns of U and V2

is the submatrix of the last n � r columns of V. The computa-
A =

r∑
i=1

σiuiv
∗
i (3)

tion of the preceding decomposition is, of course, subject to
rounding errors. Denoting computed quantities by an overbar,which is nothing but an alternative way of writing A �
we generally have, for some error matrix 	A,U�V*. Written in block form, this becomes

A .= A + �A = U �V ∗ (6)A = U1�rV ∗
1 (4)

Hence, the computed decomposition does not correspond ex-
where U1 and V1 are the submatrices of U and V, respectively, actly to the given matrix A but rather to a perturbed version
containing their first r columns. This decomposition can be A � 	A. When using the SVD algorithm available in the liter-
viewed as a more compact form of writing Eqs. (1) and (2). It ature (5,6), this perturbation 	A can be bounded by
is also called a rank factorization of A since the factors have
the rank r of A as at least one of their dimensions. ‖�A‖ ≤ cAεA = cAε‖A‖ (7)

The proof of the preceding theorem is based on the eigen-
decomposition of the Hermitian matrices AA* and A*A. From where 
 is the machine accuracy and cA is some known polyno-
the SVD one can indeed see that mial expression in m and n (3). Very often, this is a rough

upper bound and one prefers to replace cA by some statistical
estimate ĉA, usually close to 1. The error 	A induced by thisAA∗ = U��TU∗, A∗A = V�T�V ∗

algorithm—called the backward error because it is interpre-
ted as an error on the data—thus has roughly the same normwhere ��T and �T� are clearly diagonal. Hence the left singu-

lar vectors are the eigenvectors of AA*, the right singular vec- as the input error 	in generated when reading in the data A
in the computer. When such a bound exists for the perturba-tors are the eigenvectors of A*A, and the nonzero singular

values are the square roots of the nonzero eigenvalues of both tion 	A induced by a numerical algorithm, it is called back-
ward stable. We can make this definition more rigorous byAA* and A*A. Deriving Theorem 1 from these connections is

in fact quite simple, but we refer to Ref. 2 for the details. considering a function X � f (A) with data A and solution X.
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If the computed solution X � f (A) satisfies X � f (A � 	A) methods available to compute the SVD in a backward stable
manner, that is, such that the backward error 	A satisfiesand �	A� � 
�A�, then the algorithmic implementation f ( � ) of

the function f ( � ) is said to be backward stable. Eqs. (6) and (7). Moreover, it is known that the singular val-
ues of any matrix A are in fact well conditioned:Notice that backward stability does not warrant any

bounds on the errors in the results U, �, and V. This depends
indeed on how perturbations on the data (namely 	A) affect κ[ f�(A)] = 1 (10)
the resulting decomposition (or the differences 	U � U � U,
	� � � � �, and 	V � V � V). In other words, it depends on This is derived from the variational properties of singular val-
the sensitivity of the function f ( � ) with input A and solution ues (2,3) and leads to the following theorem.
X. This sensitivity is commonly measured by the condition of
f at A: Theorem 2. Let A be an arbitrary m � n complex matrix

and 	A an arbitrary perturbation of the same dimensions.
Then the corresponding SVD of A and A � 	A satisfy the
following strict bounds:

κ[ f (A)] .= lim
δ→0

sup
‖A−A‖=δ

‖X − X‖
δ

, X = f (A), X = f (A) (8)

Notice that we have not specified what norms are used in this ‖� − �‖2 ≤ ‖�A‖2, ‖� − �‖F ≤ ‖�A‖F
definition, but in principle one can use different norms in the
data and solution spaces (7). From this definition it is clear This result is also proven using variational inequalities
that the condition number [f (A)] is some sort of ‘‘derivative’’ and we refer again to Ref. 2 for a proof. Suppose now that the
of the function X � f (A) that we want to compute. When computed singular values � i are such that
[f (A)] is infinite, the problem of determining X � f (A) from
A is ill posed (as opposed to well posed). When [f (A)] is finite σ 1 ≥ · · · ≥ σ r > εA ≥ σ r+1 ≥ · · · ≥ σ min(m,n)
and relatively large (or relatively small, the problem is said
to be ill conditioned (or well conditioned). Further details can

Then it is reasonable to assume that
be found in Ref. 7.

It is important to note that backward stability is a prop-
σr+1 = · · · = σmin(m,n) = 0

erty of an algorithm, while conditioning is associated with a
problem and the specific data for that problem. The errors in

The level of accuracy of the computed singular values is in-the result depend on both the stability of the algorithm used
deed 
A (which is a very small quantity) and hence only �1 toand the conditioning of the problem solved. A good algorithm
�r are guaranteed to be nonzero. While in general there mayshould therefore be backward stable since the size of the er-
be little justification for setting the small 
A singular valuesrors in the result is then mainly due to the condition of the
equal to zero, it is indeed a sound choice in several applica-problem and not due to the algorithm. An unstable algorithm,
tions. A typical example is the determination of Im A andon the other hand, may yield a large error even when the
Ker A, which, for example, plays an important role in least-problem is well conditioned.
squares solutions of the equation Ax � b. Notice that ortho-We point out that if f (A) has a Taylor expansion around
normal bases for Im A and Ker A are given by the columnsA, then we can write
of U1 and V2 defined earlier. The condition of Im A and of Ker
A is thus connected to the sensitivity of the transformationsf (A) = f (A) + ∇x f (A)(X − X ) + O(‖X − X‖2) (9)
U and V of the SVD. Consider, for example, the computation
of Im A (where we assume m � n). As the distance functionSetting X � f (A) and X � f (A) and taking norms, we then
between two spaces X and Y we use the gap �(X , Y ) �have
�PX � PY �2, where PS is the orthogonal projector on the space
S . If A has full column rank n, then‖X − X‖ ≤ ‖∇x f (A)‖‖A − A‖ + O(‖X − X‖2) ≈ κ[ f (A)]‖A − A‖

This is a very powerful inequality, which indicates that for- κ[Im A] = σ −1
n (11)

ward errors �X � X� are bounded in norm by the sensitivity
as illustrated by the following example (�1 � 1, �2 � a � 1):[f (A)] and the backward error �A � A�. Forward errors de-

pend thus on two factors: the sensitivity of the problem and
the backward error induced by the algorithm, and these two
factors multiply each other in the preceding bound.

Bounds of the type in Eq. (7) are obtained by an error anal-
ysis of the algorithm used; see, for example, Ref. 8. The condi-
tion of the problem is obtained by a sensitivity analysis; see,
for example, Refs. 4 and 8.

NUMERICAL ROBUSTNESS OF SINGULAR VALUES

A .=




1 0
0 a
0 0
0 0


 ; �A .=




0 0
0 0
0 δ

0 0


 ;

A .= A + �A =




1 0 0 0
0 c −s 0
0 s c 0
0 0 0 1







1 0
0 a
0 0
0 0




One of the most important features of the singular value de-
composition is that the singular values can be computed in with a � �a2 � �2, c � a/a, s � �/a. The second basis vector

of Im A is rotated in Im A over an angle �, where sin � � s,a numerically reliable manner. There are indeed numerical
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and one easily checks that �(Im A, Im A) � s. Therefore In the subsections that follow, we survey a number of prob-
lems from systems and control theory that rely heavily on
the singular value decomposition. We shall only discuss the
numerical aspects here; for the system theoretical back-lim

δ→0

γ (Im A, Im A)

δ
= 1

a
= σ −1

2

ground, we refer the reader to the systems and control liter-
ature.The fact that the singular values have a low sensitivity to

perturbations does of course not mean that every algorithm
will compute them to high accuracy. The link with the eigen- Impulse Response Realization
value problems AA* and A*A indicates that there can be no

Let H(z) be an p � m transfer function of a discrete-timefinite algorithm for computing singular values. An early itera-
causal system, and let its impulse response be given bytive procedure was actually based on these connected Her-

mitian eigenvalue problems, but they have been shown to be
unreliable because of the intermediate construction of
‘‘squared matrices’’ (3). It was shown in Refs. 5 and 6 that the

H(z) =
∞∑

i=0

Hiz
−i (14)

unitary transformations U and V of the decomposition can be
The realization problem is to find the transfer function H(z)constructed via an iterative procedures that works directly
in state-space description,on A to give the SVD. This algorithm first computes unitary

matrices U1 and V1 such that B � U1*AV1 is in bidiagonal
H(z) = D + C(zIn − A)−1B (15)form, that is, only the elements on its diagonal and first

superdiagonal are non-zero. Then it uses an iterative proce-
when the impulse response sequence �Hi� is given. In the sca-dure to compute unitary matrices U2 and V2 such that
lar case, this problem is related to the Padé approximationU2*BV2 is diagonal and non-negative. The SVD defined in
problem, for which fast methods exist (see Refs. 16 and 17 forEqs. (1) and (2) is then given by � � U*BV, where U � U1U2
a survey). In Ref. 16, it is shown that the Padé approach is inand V � V1V2. The computed U and V are unitary to approxi-
fact unstable, and it is better to consider a more general tech-mately the working precision, and the computed singular val-
nique based on matrix decompositions of the Hankel matrix:ues can be shown to be the exact �i’s for A � 	A, where

�	A�/�A� is a modest multiple of 
.
Other alternative methods to compute the singular values

of a matrix A were proposed later and are based on Jacobi-
like methods (9). They have been shown to have speed and
accuracy comparable to the Golub-Kahan algorithm (10,11).
As a consequence of the discussion in the preceding section,

HHHk,l =




H1 H2 · · · Hl

H2

... ...

...
... ... ...

...
Hk · · · · · · Hk+l−1




(16)

the singular values are thus computed with small absolute
error. More recent results suggest that in particular cases the

Here k and l are upper bounds for the minimal dimensionsingular values of matrices can sometimes be computed to
n of the state-space realization Eq. (15) of H(z). From thehigh relative accuracy as well (12–14). We finally remark that
expansion of H(z) in powers of z�1 one finds thatalthough the singular value decomposition is the most reli-

able method for determining the numerical rank of a given
matrix, it is considerably more expensive than, for example, H0 = D, Hi = CAi−1B, i = 1, . . ., k + l − 1

the QR factorization with column pivoting, which can usually
and therefore Hk,l can be factorized as follows:give equivalent information with less computation (15).

HHHk,l = CCClOOOk
APPLICATIONS IN SYSTEMS AND CONTROL

where
The problems considered in this article arise in the study of
dynamical systems that can be modeled as state-space mod-
els:

CCCl
.= [B AB · · · Al−1B], OOOk

.=




C
CA
. . .

CAk−1


 (17)

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
(12)

This implies that Hk,l has at most rank n and a simple argu-Here, x(t) is an n-vector of states, u(t) is an m-vector of con-
ment proves that Hk,l will have exactly rank n. Since de-trols or inputs, and y(t) is an p-vector of outputs. The stan-
termining the order of the system requires a rank determina-dard discrete-time analog of Eq. (12) takes the form
tion, it is natural to use here the SVD Eq. (4):

HHHk,l = U1�nV T
1

xk+1 = Axk + Buk

yk = Cxk + Duk
(13)

For the construction of the triple �A, B, C�, letTypically the matrices A, B, C, and D are real. In case
the results for real matrices are different we will explicitly
state it. L = U1�

1/2
n , R = �1/2

n V T
1 , HHHk,l = L · R (18)
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and partition these ‘‘left’’ and ‘‘right’’ factors as follows: So the problem is solved as soon as the states xi are deter-
mined. But those depend on the choice of coordinates chosen
for the state-space model. Replace indeed xi by x̂i � Txi; then
Eq. (22) becomes the related equationL =

[
C1

L2

]
=

[
L1

C2

]
, R = [B1 R2] = [R1 B2] (19)

where C1 and C2 have p rows and B1 and B2 have m columns.
From the two ways [Eqs. (17) to (19)] of writing the factoriza-

[
x̂2 x̂3 · · · x̂l

y1 y2 · · · yl−1

]
=

[
Â B̂

Ĉ D

][
x̂1 x̂2 · · · x̂l−1

u1 u2 · · · ul−1

]
(24)

tion of Hk,l, one derives then that
or

C = C1, B = B1

and that A can be solved from the overdetermined systems

L1A = L2, AR1 = R2

[
Tx2 Tx3 · · · Txl

y1 y2 · · · yl−1

]

=
[

TAT−1 TB
CT−1 D

][
Tx1 Tx2 · · · Txl−1

u1 u2 · · · ul−1

]
(25)

The particular choice of factors L and R makes the realization
So each sequence of statesunique and we shall see that it is also linked to so-called bal-

anced realizations later on (18). This realization algorithm X1,l = [x1 x2 · · · xl ] (26)
based on the singular value decomposition of Hk,l was first
given in Refs. 19 and 20. can only be expected to be known up to an invertible row

transformation corresponding to the particular coordinate
Realization from Input/Output Data system of the reconstructed model �A, B, C, D�. This row

transformation T leaves the row space of X1,l unchanged. AlsoVery often one does not have access to the impulse response
the rank condition for Eq. (22) to be solvable implies that Eq.of the system but only to a sequence of inputs �ui� and corre-
(23) must be full rank n since this is a submatrix of the right-sponding outputs �yi�. In such cases a novel algorithm was
hand side matrix in Eq. (22). The row space of X1,l is thereforederived in Ref. 21 based on the following Hankel matrix:
n-dimensional. This row space can now be found with the aid
of the singular value decomposition based on the following
theorem, proved in Ref. 21.

Theorem 3. Define

Xk+1,l
.= [xk+1 xk+2 · · · xk+l] (27)

HHH1:k,l =




z1 z2 · · · zl

z2

... ...
...

... ... ...

...
zk · · · · · · zk+l−1




and the Hankel matrices H1:k,l and Hk�1:2k,l as before, then
where

Im [XXX T
k+1,l] = Im [HHHT

1:k,l] ∩ Im [HHHT
k+1:2k,l] (28)

provided the input/output (I/O) data are persistently excitingzi =
[

ui

yi

]
(20)

and k � n, l � (m � p)k.

We start by noting that the problem would be much sim- In practice, due to perturbations on the data, the row
pler if the sequence of states xk would be known as well. From spaces typically do not intersect. An approximate intersec-
Eq. (13), rewritten as tion, using the singular value decomposition or some rank re-

vealing QR decomposition, has thus to be constructed. A
possible implementation of this idea is the following decompo-
sition:

[
xk+1

yk

]
=

[
A B

C D

][
xk

uk

]
(21)

one derives immediately the concatenated form:
[

HHH1:k,l

HHHk+1:2k,l

]
=

[
I 0

0 Q

]
 A11 A12 01

A21 03 02

× × A33


V T (29)

where

[
x2 x3 · · · xl

y1 y2 · · · yl−1

]
=

[
A B
C D

][
x1 x2 · · · xl−1

u1 u2 · · · ul−1

]
(22)

[A11A12] has full column rank equal to the rank of H1:k,lUnder the assumption of persistence of excitation one shows
[which equals r � mk � n under the assumptionthat the right ‘‘data matrix’’ in Eq. (22) has full column rank
of persistence of excitation (21)]n � m and has thus a right inverse. Equivalently, Eq. (22)

A33 has full row rank, which must be smaller than r ifcan be solved in a least-squares sense for the evolution matrix
an intersection is to be detected

A21 has full column rank equal to the dimension of the
intersection, hence n

� denotes an arbitrary matrix
EEE =

[
A B
C D

]
(23)
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The order in which this decomposition is constructed is as shows that these matrices are positive semidefinite and that
they allow one to detect whether or not the realization is min-follows. First the transformation V T is constructed to com-

press the columns of H1:k,l, yielding the trailing zero matrix imal by computing the rank of these matrices (18). This sug-
gests the use of the SVD of both Gc and Go in order to find01. Then the rows of the trailing bottom matrix are com-

pressed with the transformation Q, yielding 02 and a full row minimal realizations of the system, provided a given system
�A, B, C, D� is not necessarily minimal (see also the nextrank A33. Then V T is updated to yield the full column rank

matrix A21 and the trailing zero matrix 03. Notice that all section).
But here we want to focus on another application of thethree steps involve a rank factorization that can be done with

the singular value decomposition (or any other rank revealing SVD in this context. If one applies a state-space transforma-
tion x � x̂ � Tx then the system triple transforms to �Â, B̂,factorization). The center matrix in this decomposition has a

form that trivially displays the intersection of row spaces of Ĉ, D� � �TAT�1, TB, CT�1, D� and the Gramians to Ĝc �

TGcTT and Ĝo � T�TGoT�1. One shows then that T can be cho-the top and bottom parts, namely,
sen such that both new Gramians are equal and diagonal:

TGcTT = Ĝc = � = Ĝo = T−T GoT−1 (32)Im




AT
11

AT
12

0


 ∩ Im




AT
21 ×
0 ×
0 AT

33


 = Im




In

0
0




which is exactly the balanced coordinate system. In order to
construct T one starts from the Cholesky factorization of GcBecause of the transformation V T in Eq. (29) one derives that and Go:

Gc = L1LT
1 , Go = LT

2 L2 (33)

where L1 and L2 are both lower triangular. One then com-
Im(HHHT

1:k,l ) ∩ Im(HHHT
k+1;2k,l) = V Im




In

0
0




putes the singular value decomposition of the upper triangu-
lar matrix LT

1LT
2:that is, the first n rows of V T are a representation of Xk�1,l.

From this we can now construct �A, B, C, D� as explained in
LT

2 LT
1 = U�V T (34)Eqs. (22) to (25).

using, for example, the efficient algorithm described in Ref.Balanced Realization
23. Then, defining T � �1/2UTL�1

1 and T�1 � L�1
2 V�1/2, one

In the preceding section we pointed out that the realization checks that
problem from an impulse response or from input/output data
is only defined up to a state-space transformation T, which in T−1T = L−1

1 (V�UT)L−1
2 = L−1

1 (L1L2)L−1
2 = I (35)

principle can be chosen arbitrarily. Is there a particular coor-
dinate system that should be chosen for some reason, and if and
so, how can we construct it?

We develop here the concept of balanced realization that is
based on the singular value decomposition and has several
appealing properties. For this we first need to define the con-

Ĝc = TGcTT = �1/2UT L−1
1 (L1LT

1 )L−T
1 U�1/2 = �

Ĝo = T−TGoT−1 = �1/2V TL−T
2 (LT

2 L2)L−1
2 V�1/2 = �

trollability Gramian Gc and observability Gramian Go of a sys-
In this new coordinate system one can associate the diagonaltem. For the continuous-time system equation (12) these are
element �i of � with the unit vectors ei (zero everywhere ex-defined as follows:
cept a 1 in position i): �i gives then the energy needed to con-
trol the state ei as well as the energy observed from this state.
Since both these are equal the state-space system is said to
be balanced (see Ref. 18 for more details).

Gc(T )
.=

∫ T

0
(eAtB)(eAtB)T dt, Go(T )

.=
∫ T

0
(CeAt )T(CeAt ) dt

(30)
It turns out that in addition to an ‘‘energy interpretation,’’

this coordinate system has useful properties. If a single-while for the discrete-time systems they are defined as fol-
input/single-output system is stable and if one uses the infi-lows:
nite-horizon Gramians, then the evolution matrix of the bal-
anced realization

Gc(K)
.=

K−1∑
k=0

(AiB)(AiB)T, Go(K)
.=

K−1∑
k=0

(CAi)T(CAi) (31)

An intuitive interpretation (18) is that the controllability
ÊEE .=

[
Â b̂

ĉ d

]
(36)

Gramian Gc measures the amount of energy needed to control
the states of the system using an input sequence of a certain is symmetric up to some sign changes, that is, there exists a

diagonal matrix S of �1 such that ÊS � SÊT. As a conse-duration, while the observability Gramian Go measures the
amount of energy one can observe from the state in an output quence of this, one shows that such systems have low sensi-

tivity to roundoff propagation (24). The sign symmetry is notsequence of a particular duration. Typically K and T are cho-
sen to be infinite if the system is stable, because then these preserved for multi-input/multi-output systems or when con-

sidering finite-horizon Gramians, but nevertheless the ro-Gramians can be computed efficiently using Lyapunov equa-
tions (22). For a given realization �A, B, C, D� one easily bustness properties are (25).
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While the singular values can be interpreted as a measure trices since they contain powers of the matrix A, which could
lead to a considerable buildup of rounding errors (see Ref. 30).for the energy that is being transferred from the input space

to the state space as well as from the state space to the output It is well known (see e.g., Ref. 29) that the infinite-horizon
Gramians, Gc(�) and Go(�), have the same rank as Cn andspace, they also play an important role in constructing ap-

proximate models that ‘‘preserve’’ this energy as well as possi- On, respectively. Since the latter can be computed as the solu-
tion of Lyapunov equations, this seems a possible alternative,ble. Since the singular values are ordered decreasingly one

can partition the balanced evolution matrix as follows: but it turns out to be a sensitive roundabout as well (31). A
third way is to find an appropriate coordinate system for the
pair �A, B� or �A, C� such that the rank of the matrices in Eq.
(41) becomes apparent. Since observability and controllability
are dual to each other we discuss this for controllability only.
The following theorem proposes such a coordinate change,

[
Â B̂

Ĉ D

]
.=




Â11 Â12 B̂1

Â21 Â22 B̂2

Ĉ1 Ĉ2 D


 (37)

which is orthogonal and based on a succession of singular
value decompositions (31).and the subsystem �Â11, B̂1, Ĉ1, D� will be a good approxima-

tion of the original system in the sense that it keeps the
Theorem 4. There always exists an orthogonal state-spacestates that were responsible for the largest part of the energy
transformation U such that [UTB�UTAU] � [B̂�Â] has the formtransfer (i.e., the largest singular values). A more formal ap-

proximation measure is the so-called H � norm, which can be
bounded as a function of the balanced singular values if the
balancing was based on infinite-horizon Gramians. This so-
called balanced truncation problem is also related to that of
optimal approximation in the Hankel norm (26,27) and has
led to a renewed interest in the partial realization problem
and related topics (28).

Finally, we point out here that the realization algorithm
described in the section entitled ‘‘Impulse Response Realiza-
tion’’ for discrete-time systems in fact constructs immediately
a balanced realization. Let the matrices Cl and Ok be defined

[B̂‖Â] =
[

Bc Ac ×
0 0 Ac

]

.=




X1 A1,1 A1,2 · · · A1,k A1,k+1

0 X2 A2,2

...
...

...
. . .

. . .
. . .

...
...

...
. . . Xk Ak,k Ak,k+1

0 · · · · · · 0 0 Ak+1,k+1




(42)

as in Eq. (17). Then

where Ai,i, i � 1, . . ., k, are ri � ri matrices, and Xi, i � 1,
. . ., k, are ri � ri�1 matrices of full row rank ri (with r0 �

m).

The matrices Xi are constructed recursively as the result
or row compressions, using, for example, the SVD (31). In this

CCClCCC
T
l =

l−1∑
i=0

(AiB)(AiB)T .= Gc(l),

OOOT
kOOOk =

k−1∑
i=0

(CAi)T(CAi)
.= Go(k)

(38)

new coordinate system, one easily sees that the controllability
and from the choice of factorization, Eq. (18), it follows that matrix Ĉn � UTCn has the form

CCCl = ∑1/2
n V T

1 , OOOk = U1
∑1/2

n (39)

Since U1 and V1 have orthonormal columns, one obtains

CCClCCC
T
l = ∑1/2

n V T
1 V1

∑1/2
n = ∑

n,

OOOT
kOOOk = ∑1/2

n UT
1 U1

∑1/2
n = ∑

n

(40)

Controllability and Observability

ĈCCn = [B̂ ÂB̂ . . . Ân−1B̂]

=




X1:1 × · · · × × · · · ×

0 X1:2

...
...

...
... 0

. . .
...

...
...

...
... X1:k × · · · ×

0 0 · · · 0 0 · · · 0




(43)

The concepts of controllability and observability play a funda-
where X1:i is the product X1 . . . Xi. Since these products havemental role in systems and control theory. A system in the
full row rank ri by construction, the factorization Cn � UĈnform of Eq. (12) is indeed a minimal representation of the
has a second factor that is row compressed, and the resultinput/output behavior of the system if and only if it is both
thus follows. The controllable subspace is defined as the spacecontrollable and observable. The same holds for a discrete-
spanned by the columns of Cn. It follows from Eq. (43) thattime system, Eq. (13), except that there one talks about reach-
this space has dimension nc � �k

i�1 ri and thatability rather then controllability. The conditions for control-
lability (reachability) and observability are equivalent to the
following rank conditions, respectively (29), ImĈCCn = Im

[
Inc

0

]

rank CCCn = n, rank OOOn = n (41)
Since Cn � UĈn this space is spanned in the original coordi-
nate system �A, B� by the first nc columns of U. The matrixIn principle one could use the SVD to check these rank

conditions, but it is not recommended to construct these ma- pair �Ac, Bc� is shown to be controllable, and the eigenvalues
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of Ac are called the uncontrollable modes of the pair �A, B�. geneous systems
The indices ri are the so-called controllability indices of the
pair �A, B� (31). ẋ = Ax, xk+1 = Axk (47)

A dual form of the staircase algorithm applied to �A, C�
yields a dual result: which are assumed to be stable against Cs, that is, the eigen-

values of the matrix A are in a region Cs of the complex plane,
which is the open left-half plane for a continuous-time system
and the open unit disk for a discrete-time system, respec-
tively.

[
V TAV

CV

]
=




Ao ×
0 Ao

0 Co


 (44)

The complex stability radius measures the robustness of
system stability for complex perturbations. This radius is de-

where the subsystem �Ao, Co� is observable. If no is the number fined as the norm of the smallest complex perturbation 	 such
of rows or columns of Ao then the first no columns of V span that the perturbed matrix A � B	C becomes unstable (where
Ker On, which is called the unobservable subspace of the pair B � �n�m, C � �p�n, and hence 	 � �m�p). For A � B	C to be
�A, C�. unstable, it must have at least one eigenvalue in the comple-

Combining the preceding decompositions, one constructs ment of Cs. It is important to note that although Cs is convex,
an orthogonal state-space transformation yielding a trans- the set of all Cs-stable matrices St � �M: �(M) � Cs�, where
formed system �Â, B̂, Ĉ, D� which has the form �(M) denotes the spectrum of M, is nonconvex, as well as its

complement Unst of Cs-unstable matrices. The stability ra-
dius r� therefore measures the distance of a stable matrix A
to the nonconvex set Unst.

By continuity of the spectrum of a matrix versus perturba-
tions on its entries, the stability radius is clearly equal to the

[
Â B̂

Ĉ D

]
=




A11 A12 A13 B1

0 A22 A23 B2

0 0 A33 0
0 C2 C3 D


 (45)

distance from a stable matrix A to an optimal matrix A �
B	C lying on �Unst. Indeed, when a matrix A � B	C passesand where the subsystem �A22, B2, C2, D� is minimal, that is,
the boundary �Unst, at least one of its eigenvalue must alsoboth observable and controllable (reachable). Moreover, the
cross �Cs. The boundary �Unst in the matrix space describestransfer functions of �Â, B̂, Ĉ, D� and �A22, B2, C2, D� are equal.
matrices with at least one eigenvalue in �Cs. Therefore, theThis form is closely related to the Kalman decomposition and
stability radius can be written asfor its construction we refer to Ref. 31.

In addition to the controllable and unobservable subspaces
of a system, there are other spaces that play a fundamental rC(A,B,C) = inf{‖�‖2 : 	(A + B�C) ∩ ∂Cs �= ∅}
role in the control of systems modeled as Eqs. (12) and (13).

Consider a parametrization of the boundary �Cs by a realTwo other fundamental objects in the so-called geometric sys-
variable �, such as �Cs � �j�, � � �� or �Cs � �ej�, � � [0,tem theory (32) are the supremal (A, B)-invariant and control-
2�]�. The stability radius can then be rewritten aslability subspaces contained in a given subspace. As shown in

Refs. 31 and 33 they can also be computed via a matrix recur-
rence based on a sequence of SVDs constructing an orthogo-
nal basis for the relevant spaces. The role of the SVD in these
‘‘staircase’’ algorithms is not only the reliable rank determina-
tion of the subsequent steps, but at the same time the singu-

r
C
(A,B,C) = inf

λ∈∂Cs
[inf{‖�‖2 : det(λI − A − B�C) = 0}]

= inf
λ∈∂Cs

[inf{‖�‖2 : det(I − �C(λI − A)−1B) = 0}]
(48)

lar values allow one to assess the sensitivity of the computed
bases (31). the second equality resulting from the stability of the initial

matrix A (�I � A is invertible for � � �Cs) and from the fact
Robustness in Systems and Control that det(I � XY) � 0 ⇔ det(I � YX) � 0. The following classi-

cal result allows us to simplify this expression considerablyIn the last decade, there has been a significant growth in the
and is based on the singular value decomposition M �theory and techniques of robust control. These developments
U�V*.mainly center around two concepts: H� (34) and the struc-

tured singular value (35). They both provide a framework for
Theorem 5. One has the inequalitysynthesizing robust controllers for linear systems, in the

sense that they achieve a desired system performance in the
presence of a significant amount of uncertainty in the system. inf

�∈Cn×n
{‖�‖2 : det(I − �M) = 0} ≥ σ −1

max[M]

In this section, we first focus on H� techniques. The H�

norm of a stable rational transfer matrix H(s) (continuous- If there are no constraints on 	, the bound is attained for
time) or H(z) (discrete-time) is defined as 	̂ � vmax�

�1
maxu*max.

Combining this with Eq. (48), it follows that‖H(s)‖∞
.= sup

ω∈R
σmax[H( jω)], ‖H(z)‖∞

.= sup
ω∈[0,2π ]

σmax[H(e jω )]

(46)

where �max[ � ] denotes the largest singular value of a (com-
plex) matrix. We explain how this quantity comes about by
starting from a basic robustness problem. Consider the homo-

rC(A,B,C) = inf
λ∈∂Cs

σ −1
max[C(λI − A)−1B]

=
�

sup
λ∈∂Cs

σmax[C(λI − A)−1B]
�−1
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which is the H� norm inverse of the rational transfer function Computing �D (M) is a difficult numerical problem. It is a non-
H(�) � C(�I � A)�1B. This is therefore reduced to a nonconvex convex optimization problem and its complexity can be non-
optimization problem on �Cs, parametrized by a real parame- polynomial for certain norms (see Ref. 41). One approach,
ter �. which is computationally rather demanding, is to formulate

Efficient iterative methods are available for computing this the problem as a nondifferentiable convex optimization prob-
norm (36,37), and are based on the relationship between the lem involving the maximum singular value of a matrix ob-
singular values of H( j�) and the imaginary eigenvalues of a tained from M. A more efficient scheme is given in Ref. 42
Hamiltonian matrix obtained from a state-space realization and uses several smooth optimization problems that do not
of H(�) (38). This result is then used to develop a quadrati- involve any eigenvalue or singular value computations. The
cally convergent algorithm for computing the H� norm of a computational complexity of the problem of computing
transfer function. �D (M) has prompted several researchers to look for bounds

that are easier to compute (43,44).
Structured Singular Values

In Theorem 5, it was stated that the lower bound can actually CONCLUDING REMARKS
be met when there are no constraints on the perturbation 	.
But 	 will be in general complex, since the matrix M is in In this paper we have given several uses of the singular value
general complex [even for transfer functions H(�) with real decomposition in analysis and design problems of systemscoefficient matrices A, B and C]. The problem becomes more

and control. We have considered computational issues andinvolved when one imposes 	 to be real. It was shown in Ref.
useful properties of this decomposition as well, such as diago-39 that
nalization, norms, and sensitivity. The list given here is far
from complete. Closeness problems (45,46) and canonical
forms (31,47) are just a few examples. We expect the number

r
R
(A,B,C) =

�
sup
λ∈∂Cs

µ
R
[H(λ)]

�−1
(49)

of applications to grow also in the future because of the seri-
where, for any M � �p�m, ous interdisciplinary effort that is under way between the

communities of the numerical linear algebra field on the one
hand and of the systems and control field on the other hand.µ

R
(M) = inf

γ ∈(0,1]
σ2

�[
Re M −γ Im M

γ −1 Im M Re M

]�
(50)
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