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STABILITY THEORY, ASYMPTOTIC

STABILITY CRITERIA

Automatic control is an essential part of engineering and sci-
ence. It finds applications in many areas from space vehicles
and missiles to industrial processes and medicine. Automatic
control devices, laboratory equipment, design and analysis
tools, and complete automatic processes and systems are of-
fered by many companies, some of which are listed in Table
1. Basically, a control system consists of interconnected com-
ponents that achieve a desired response. In order to meet the
objectives effectively, the system must be understood fully
and properly modeled mathematically. When the system is
mathematically represented, it may be designed appropri-
ately and the performance may be examined and analyzed.
For the performance analysis, many methods are available.
For example, the classic control theory is the earliest and one
of the most established methods, mainly applied in simple
systems.

Although a nonlinear approach is available, in classic con-
trol theory, the foundations of analysis are mainly based on
linear system theory. The linear system approach assumes a
cause–effect relationship between the components of the sys-
tem and expresses this relationship as differential equations.
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where

r(t) � reference input
e(t) � error signal
c(t) � output signal

G � forward path gain or process transfer function
H � feedback gain

Eliminating the error e(t) and rearranging Eqs. (1) and (2)
gives the closed-loop gain

M = c(t)
r(t)

= G
1 + GH

or in the Laplace transform domain,

M(s) = C(s)
R(s)

= G(s)
1 + G(s)H(s)

(3)

The main effect of the feedback is that it reduces the error
between the reference input and the system output, thus forc-
ing the system output to follow or track the reference input.
It also affects the forward gain G by a factor of 1/(1 � GH).
This effect is one of the main subjects of study in classic con-
trol theory. For example, when GH � �1 the gain M will be
infinite; hence, C will increase without bound, thus leading to
unstable conditions.

In many cases, the control systems are much more complex
than a single-input–single-output arrangement. They may
have many inputs and outputs and controlled variables that
are interrelated as shown in Fig. 4. These systems necessitate
a multivariable control system approach for analysis and de-
sign. However, the feedback concept of the single-input–

Table 1. List of Manufacturers

Automated Applications Inc. FTI International, Inc.
680 Flinn Ave. Unit 36 Ha’shikma St. Ind. Zone
Moorpark, CA 93021 P.O.B. 87 Kfar Saba,
Tel: 800-893-4374 Israel
Fax: 805-529-8630 Tel: 052-959152-4

Fax: 052-959162
Automation Technologies International
17451 W. Dartmoor Drive Kuntz Automation
Grayslake, IL 60030-3014 Engineering
Tel: 708-367-3347 402 Goetz Street, Dept. 7
Fax: 708-367-1475 Santa Ana, CA 92707

Tel: 714-540-7370Capitol Technologies, Inc.
Fax: 714-540-62873613 Voorde Drive

South Bend, IN 46628 The Math Works, Inc.
Tel: 219-233-3311 24 Prime Park Way
Fax: 219-233-7082 Natic, MA 01760-1500

Tel: 508-647-7000CEI Automation
Fax: 508-647-700115250 E. 33rd Place

Aurora, CO 80011 Munck Automation
Tel: 303-375-0050 Technology
Fax: 303-375-1112 161-T Enterprise Drive

Newport News, VA 23603Control Engineering Company
Tel: 804-887-80808212 Harbor Springs Road
Fax: 804-887-5588Harbor Springs, MI 49740

Tel: 800-865-3591 Portech Pathfinder
OperationsDesign Technology Corporation

1610 Fry Avenue, Dept. T5 Suburban Park Drive
Canon City, CO 81212Billerica (Boston), MA 01821
Tel: 800-959-0688Tel: 508-663-7000
Fax: 719-269-1157Fax: 508-663-6841

Fata Automation Prime Automation, Inc.
37655 Interchange Drive 1321 Capital Drive
Farmington, MI 48335 Rockford, IL 61109-3067
Tel: 810-478-9090 Tel: 815-229-3800
Fax: 810-478-9557 Fax: 815-229-5491

single-output linear system will be the main concern of this
article.

A control system needs to be designed carefully with a suit-Once the system performance is stated as differential equa-
able configuration with clearly identified specifications totions in the time domain, Laplace transforms are commonly,
achieve the desired performance. In this process, the identifi-used for frequency analysis. Some examples of Laplace trans-
cation of key parameters, mathematical representation of theforms are given in Table 2.
system, and system analysis play important roles. After hav-A control system can be an open loop or closed loop. Figure
ing mathematically represented the system, it is possible to1 illustrates an open-loop system in which a controller con-
employ analytical tools to describe the characteristics of thetrols the process without using any feedback. In this case, the
feedback control system. Important characteristics, such asoutput is not compared with the input; therefore, deviations
the transient and steady state performance, frequency re-of the output from the desired value cannot be automatically
sponse, sensitivity, and robustness can be studied in detail.corrected. This method finds limited application since it does
When these characteristics are known, the desired responsenot lead to fully automatic systems.
can be obtained by adjusting the system parameters. There-In a closed-loop system, the actual output is compared with
fore, a good understanding and effective use of stability the-a desired reference input by a suitably arranged feedback

mechanism. Figure 2 illustrates a single-input–single-output ory in control systems is very important. If the system is not
feedback control system. In this system, a prescribed relation- stable, it will display an erratic and destructive response and
ship of one system variable to another is maintained by com- will get out of bounds and disintegrate.
paring the two and using the difference as a means of control. The transient response of a system is related to its stabil-
Using system modeling and mathematical representations, a ity. Typical responses times of second-order systems are illus-
closed loop control system with a single-input single-output trated in Fig. 5. In this system, the outputs are bounded by
may be represented as shown in Fig. 3. In this case, the rela- the decaying oscillations. Therefore, a stable system may be
tionship between the input and output of the single-input– defined as a system with bounded response. If the oscillations
single-output system can be expressed as increase with time, the system is said to be unstable. The

stability of a dynamic system can be described by its responsee(t) = r(t) − c(t)H (1)
to an input disturbance. The output response can be either

c(t) = e(t)G (2) decreasing, increasing, or neutral, giving an indication of sta-
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Table 2. Laplace Transform Table

Laplace
Time Domain Function Transform

1
s

u(t) (unit step)

1
s2t

n!
sn�1tn, for any positive integer n

1
s � a

e�at

1
(s � a)(s � b)

e�at � e�bt

b � a

�2
n

s2 � 2��ns � �2
n

�n

�1 � � 2
e���

n
t sin(�n�1 � � 2 t)

�n

s2 � �2
n

sin(�nt)

s
s2 � �2

n
cos(�nt)

�2
n

s(s2 � 2��ns � �2
n)1 �

1

�1 � � 2
e���

n
t sin(�n�1 � � 2 t ��) where �� tan�1 ��1 � � 2

��
�

�2
n

s(s2 � �2
n)

1 � cos(�nt)

1
s(1 � Ts)

1 � e�t/T

s2

(s2 � �2
n)2

1
2�n

[sin(�nt) � �nt cos(�nt)]

1
s2(1 � Ts)21 � 2T � (1 � 2T )e�t/T

bility as defined by stability criteria. There are three types output relationship as
of stability of control systems: the bounded-input–bounded-
output (BIBO) stability, asymptotic stability, and marginal
stability (stability in the sense of Lyapunov). M(s) = C(s)

R(s)
= K

∏L
i=1(s + zi)∏U

k=1(s + pk)
∏R

j=1(s2 + 2α js + a2
j s + α2

j + ω2
j )

(4)
BOUNDED-INPUT–BOUNDED-OUTPUT STABILITY

where the denominator of M(s) is the characteristic equation
A system is stable if a bounded input yields to a bounded of the system. The roots of the characteristic equation are the
output. When the closed-loop transfer function of a linear sys- poles of the closed-loop system. The time response of the out-
tem is expressed as a Laplace transform, the stability may be put is a function of the roots of this characteristic equation.
defined in terms of the locations of the poles of the system in
the complex plane or the s-plane. An s-plane is shown in Fig.
6 indicating the right half plane and left half plane. Take a
single-input–single-output system and express the input and

Reference
input or

desired response
Controller Process

Output

Desired

response
Controller Process

Output
Comparator

Measurement

Figure 2. A closed-loop control system. In a single-input–single-out-Figure 1. An open-loop control system. An open-loop control system
does not compare the output and the input; therefore, any deviations put system, the output of the system is compared with the input,

and any deviation between the two is corrected by suitably designedbetween the two cannot be corrected automatically. This system is
applicable only in simple cases in which the process characteristics controllers. However, the use of feedback can lead to instability.

Closed-loop control arrangements are used extensively in automaticare fully known and the outputs from the desired values are not all
very important. processes and devices.
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r(t) e(t) c(t)+

–
G

H

Figure 3. Block diagram of a closed-loop system. A closed-loop sys-
tem may be represented mathematically by a forward loop transfer
function G and a feedback loop transfer function H. The relation be-
tween the input and output can be expressed in terms of these two
terms in the form of a system transfer function, which is extremely
useful in system design and analysis.

For example, the time response of this system for an impulse
function may be written as

c(t) =
U∑

k=1

(Ake−Pkt
) +

R∑
j=1

�
Bje

−α j t sin(ω jt)

ω j

�
(5)
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Figure 5. Time response of a second-order system. The output of aLeft-Half-Plane Poles
second-order system for a unit step input contains a transient and
steady state response. The sinusoidals frequency and amplitude com-To clarify the important concept of locations of poles on the s-
ponents depend on the natural frequency and the damping ratio ofplane, as used in stability analysis, see Eq. (4). As we can see
the system. If the oscillation increases without bound, the system isin this equation, the poles of the closed-loop system may be
said to be unstable. The stability can be related to the locations ofreal or complex, and simple or repeated. It is often convenient
the poles on the s-plane.to plot the poles and zeros of the closed-loop transfer function

on the s-plane. The s-plane can be considered to be in three
parts, the right half plane (RHP), the left half plane (LHP),

2. The time response of a pole approaches a nonzero con-and the pure imaginary axis or j�-axis. If a pole lies inside
stant as t � � if and only if the pole is simple andthe open LHP, then the pole has a negative real part. If it lies
located at s � 0.inside the closed RHP, then it has a positive or zero repeated

real part.
As indicated earlier, in order to obtain a bounded response toConsider poles 1/(s � p)n on the s-plane. For a real p, a
a bounded input, the poles of the closed-loop system must beportion of the time domain response of the system will be pro-
in the left-hand portion of the s-plane. That is, pk � 0 andportional to
�j � 0 so that the exponential terms e�pkt and e��jt decay to
zero as the time goes to infinity. A necessary and sufficientc(t) ∝ 1/n! tn−1 e−pt (6)
condition is that a feedback system is stable if all the poles of
the system transfer function have negative real parts. If theIf p � 0, it lies on the RHP, and its response increases expo-
characteristic equation has simple roots on the imaginarynentially. If it is at the origin, p � 0 and simple, its response
axis ( j�) with all other roots on the left half plane, the steadyis a step function. When p � 0 and repeated with multiplicity
state output is sustained oscillations for a bounded input. Ifn � 2, then its response approaches infinity as t � �. If the
the input is sinusoidal with a frequency equal to the magni-poles are in the LHP or p � 0, then the response e�pt ap-

proaches zero as t � �.
Therefore,

1. The time response of a pole, simple or repeated, ap-
proaches zero as t � � if and only if the pole lies inside
the open-loop LHP or has a negative real part.

σ

ωj
Imaginary axis

Real axis

LHP
stable

RHP
unstable

s-plane

Figure 6. A complex plane. The response of control system depends
on the locations of poles and zeros of the characteristic equation on
the complex plane also known as the s-plane. The poles in the closed-

Inputs
(desired

responses)
Controllers Process Outputs

Measurement

loop transfer function on the right half plane lead to instability be-
cause the exponential term in the time domain representation in-Figure 4. A multivariable control system. Many control systems

have multiple inputs and multiple outputs. In these cases, using the creases as time increases. The poles in the LHP indicate stable condi-
tions, whereas poles on the imaginary axis may lead to stable ormultivariable control theory and matrix approach is applicable. In

the design and analysis, most of the theories developed for single- unstable conditions. In this case, repetition of roots on the imaginary
axis and the inputs must be taken into account.input–single-output systems can still be used.
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tude of the j�-axis pole, the output becomes unbounded. This
is called marginal stability because only certain bounded in-
puts cause the output to become unbounded. For an unstable
system, the characteristic equation has at least one root in
the right half of the s-plane, that is at least one of the expo-

H(s) =
n∑

i=1

F(s, pi, ri)

F(s, pi, ri) = K1

(s − pi)
ri

+ K2

(s − pi)
ri −1 + · · · + Kr

(s − pi)

(8)

nential terms e�pkt and/or e��jt will increase indefinitely as the
where there are n sets of poles, located at s � pi, each of mul-time increases. Repeated j�-axis roots will also result in an
tiple of ri.unbounded output for any input.

The impulse response may be written in terms of the sys-
tem poles by taking the inverse Laplace transform of H(s).

ASYMPTOTIC STABILITY The general expression is

In general, the output response of a linear time-invariant sys-
tem may be divided into two components. h(t) =

n∑
i=1

f (t, pi, ri )

f (t, p, r) = ept (k1tr−1 + k2tr−2 + · · · + 1)

(9)

1. The forced response is the part of the response that has
the same form as the input.

The behavior of h(t) is dictated by the behavior of f (t, p, r). As
2. The natural response is the part of the response that t � �, f (t, p, r) becomes dominated by the epttr�1 term, so the

follows a form, which is dictated by the poles of the behavior of h(t) as t becomes large may be investigated by the
characteristic equation. following limit:

In some cases, the investigation of stability by using only the
transfer function M(s) is not sufficient. Hence, the nature of
the input signal must be taken into account. For example, a
plant output c(t) is said to track or follow the reference input

L = lim
t→∞(tr−1|ept |)

= lim
t→∞

�
tr−1

e−α

� (10)

r(t) asymptotically if
where p � � � j�. The limit is in the infinity divided by infin-
ity indeterminate form. Applying L’Hopital’s rule r � 1 timeslim

t→∞
|c(t) − r(t)| → 0 (7)

results in
Suppose that the transfer function of the overall control sys-
tem is M(s); if M(s) is not stable the system cannot follow any
reference signals. If M(s) is stable, in order for the system to
be asymptotically stable, it is an additional requirement that
the system be capable of following all inputs. This is impor-

|L| = lim
t→∞

�
(r − 1)!
σ r−1e−σ t

�

= lim
t→∞

�
(r − 1)!
σ r−1

eσ t
� (11)

tant because, in some cases, the output may be excited by
There are several regions of interest.nonzero initial conditions such as noise or disturbance. As a

result, the stability conditions may be generalized as follows.
1. � � 0. The e�t term forces the limit to approach infinity.
2. � � 0. The e�t term forces the limit to approach zero.1. The system is stable if the natural response approaches
3. � � 0, r � 1. In this case, we have a zero divided byzero as t � �.

zero indeterminate form with three independent vari-2. The system is unstable if the natural response grows
ables. The solution is obtained by allowing the limit (�,without bound as t � �.
r � 1, t) � (0, 0, �) to be approached from an arbitrary3. The system is marginally stable or marginally unstable
trajectory.if the natural response neither grows nor decays as t �

�.
4. The system is stable if bounded inputs result in

bounded outputs.
5. The system is unstable if bounded inputs result in un-

bounded outputs.

L = lim
(σ , r−1, t)→(0, 0, ∞)

�
(r − 1)!
σ r−1

eσ t
�

= 1
1

ek

= C

(12)

where k depends of the trajectory of approach and C isHere, in order to explain asymptotic stability and to lay a firm
a bounded constant.background for the following theories, a rigorous mathemati-

cal approach may be introduced. To observe the natural re- 4. � � 0, r � 1. This time we have a limit with two inde-
sponse h(t) of a linear time-invariant system, a dirac delta pendent variables, (�, t) � (0, �).
function (impulse) �(t) may be applied to the input to give the
system internal energy upon which to act. The dirac delta
function has a rectangular shape with a height of 1/	 and a
width of 	. 	 is made vanishingly small so that the function
has infinite height and zero width and unit area. The ensuing
response is the natural response. Its Laplace transform is

L = lim
(σ , t)→(0, ∞)

�
(r − 1)!
σ r−1

eσ t
�

= lim
σ →0

�
(r − 1)!
σ r−1 ek

�

→ ∞

(13)

identical to the transfer function of the system, which can be
written in the general partial fraction form as where k depends on the trajectory of approach.
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We can now summarize the stability of a system depending functions are listed, we are left with what is known as
Routh’s array, which is the tabular technique presented next.of the location of the poles.

The Routh–Hurwitz criterion may be expressed as follows.
There are two necessary, but not sufficient, conditions for noPole Locations Stability
RHP poles.Poles on the left half plane The natural response ap-

(� � 0) only. proaches zero, so the sys-
1. All the polynomial coefficients ai must have the sameAny pole on the right half tem is stable.

sign. The coefficients are determined by cross-multipli-plane (� � 0), or pole of The natural response ap-
cation of roots pi. If two particular coefficients were ofmultiplicity greater than proaches infinity, so the
opposite sign, it would mean that one cross multiplica-one on the j�-axis (� � 0 system is unstable.
tion yielded a positive result whereas another yielded aand r � 1). The natural response ap-
negative result. This is possible only if there exist atAny pole on the j�-axis of proaches neither zero nor
least two pi of opposite sign, which means that one ofmultiplicity equal to one infinity. It is, however,
them must be on the right half plane.(� � 0 and r � 1). bounded. The system is

2. No ai can be zero. Cancellation of terms in the cross-called marginally stable or
multiplication implies one LHP pole and one RHP pole.marginally unstable.

Consider the case of a pole of multiplicity equal to one on the If either of these two criteria is violated, it is immediately
j�-axis, if the input were to be a sinusoid of a frequency equal clear that the system is unstable. Otherwise, further analysis
to the distance of this pole from the origin. This would have is required by the formation of the Routh’s array.
the same effect on the total response as if the input were zero Let’s express Eq. (14) in the following form:
and the system had a pole of multiplicity equal to two on the
j�-axis. The output would then approach infinity even though P(s) = ansn + an−1sn−1 + an−2sn−2 + · · · + a1s + a0 (15)
the inputs were bounded. Consequently, a bounded input
function that will produce an unbounded output exists. A sys- To form the Routh’s array, the highest order coefficient an,
tem classified as marginally stable under the asymptotic sta- followed by every second coefficient is listed in the first row,
bility definition is, therefore, classified as unstable under the labeled sn. The rest of the coefficients are listed in the second
bounded-input–bounded-output definition. row, labeled sn�1. More rows are added all the way down to s0

as illustrated.
ROUTH–HURWITZ CRITERION

To determine the stability of a system, we need to know
whether any poles are located in the RHP. It is always possi-
ble to calculate these pole locations by direct computational
methods, but it is not necessary. For determining system sta-
bility, it is enough just to know whether there are any poles
on the RHP or not. This can be investigated using the Routh–
Hurwitz criterion.

A generalized nth-order characteristic polynomial may be
represented as

P(s) =
n∑

i=0

ais
i

= k
n∏

i=0

(s + pi)

(14)

where ai are the polynomial coefficients, k is a constant and
s � �pi are the roots of the polynomial.

The Routh–Hurwitz criterion is based on the Mikhailov
criterion, which states that if a system is characterized by an
nth order polynomial P(s), then it is necessary and sufficient
for stability that the following condition be satisfied.

The contour traced in the P(s) domain by P( j�), 0 

� � �, must proceed counterclockwise around the origin and
lim���arg[P( j�)] must tend toward (n�/2). If the Mikhailov
criterion is applied algebraically to the generalized form of

sn

sn−1

sn−2

sn−3

...

...

s1

s0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

an

an−1

bn−1 = an−1an−2 − anan−3

an−1

cn−1 = bn−1an−3 − an−1bn−3

bn−1

...

...

xn−1

a0

an−2 an−4

an−3 an−5

bn−3 = an−1an−4 − anan−5

an−1
bn−5 = an−1an−6 − anan−7

an−1

cn−3 = bn−1an−5 − an−1bn−5

bn−1
cn−5 = bn−1an−7 − an−1bn−7

bn−1

...
...

...
...

xn−3

P(s) given previously, then the Routh–Hurwitz criterion re-
sults are based on the determinants of the coefficients. From To simplify manual calculation of the table, it is useful to note

that multiplication of any row by a positive constant will notthese determinants, it is possible to derive a set of polynomi-
als, known as subsidiary functions. If the coefficients of these affect the end result.
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The number of sign changes in the first column gives the ficients resulting from the derivative of the auxiliary poly-
nomial.number of poles located on the right half plane.

As an example, take the polynomial Consider the following polynomial:

P(s) = 3s3 + s2 + 4s + 2 (16) P(s) = (s2 + 4)(s + 1)(s + 3)

= s4 + 4s3 + 7s2 + 16s + 12
(19)

The Routh array is constructed as follows:
We proceed to build a Routh array as

s3

s2

s1

s0

∣∣∣∣∣∣∣∣∣

3 4

1 2

−2 0

2

s4

s3

s2

s1

∣∣∣∣∣∣∣∣∣

1 7 12

4 16 0

3 12

0 0
There are two changes of sign in the first column, which

The auxiliary polynomial is formed and differentiated.means that there are two poles located on the RHP. We have

P(s) = 3(s + 0.476)(s − 0.0712 + 1.18 j)(s − 0.0712 − 1.18 j)
(17)

A(s) = 3s2 + 12

� A′(s) = 6s
(20)

which confirms the fact that there are two poles on the right We may then replace the s1 row and proceed.
half plane.

Special Cases

In forming Routh’s array, there are three special cases that
need further consideration.

s4

s3

s2

s1

s0

∣∣∣∣∣∣∣∣∣∣∣∣

1 7 12

4 16 0

3 12

6 0

12
First Case. The first column of a row is zero, but the rest of

the row is not entirely zero. Because there are no changes in sign in the first column,
Take the following polynomial as an example. there are no roots on the RHP. The presence of this row of

zeros, however, indicates that the polynomial has an even
P(s) = s5 + s4 + 2s3 + 2s2 + 3s + 4 (18) polynomial as a factor. An even polynomial has only terms

with even powers of s. It has the property that all its roots
When the zero appears, replace it with a variable 	, to com- are symmetrical about both the real and the imaginary axis.
plete the table. Then take the limit as 	 � 0, both from above Consequently, an even polynomial must have either roots in
and below, to determine if there are any sign changes. both the left and right half planes or only on the j�-axis. In

this case, there are no right half plane roots, so they must be
located on the j�-axis. In addition, the auxiliary polynomial
A(s) is the same even polynomial that caused the row of zeros,
so we can tell that these roots are located at s � �2j.

Third Case. There is a repeated root on the j�-axis.
The Routh–Hurwitz criterion indicates the existence of

roots on the imaginary axis, but it does not indicate whether
they are of multiplicity greater than one, which is essential
knowledge if the distinction between marginal stability and
instability is required.

ε → 0+ ε → 0−

s5 1 2 3 + +
s4 1 2 4 + +
s3 ε −1 + −
s2 2 + 1

ε
4 + −

s1 −1 − 4ε2

2ε + 1
0 − −

s0 4 + + Take the following polynomial as an example:

The table shows that there are two changes of sign in the first
column, regardless of whether 	 approaches zero from above

P(s) = (s + 1)(s2 + 4)2

= s5 + s4 + 8s3 + 8s2 + 16s + 16
(21)

or below in this case. Consequently, there are two roots in the
right half plane.

The poles are located at s1 � 0.6672 � 1.1638j, s2 �
�0.5983 � 1.2632j and at s3 � �1.1377, confirming the
result.

Second Case. A whole row consists of zeros only.
When an entire row of zeros is encountered in row sm, an

auxiliary polynomial of order m � 1 is formed by using the
sm�1 row as the coefficient and by skipping every second power
of s. The row containing zeros is then replaced with the coef-

Auxillary Derivative Final table
polynomial entry

s5 1 8 16 1 8 16

s4 1 16 1 8 16

s3 0 8 s4 + 8s2 + 16 4s3 + 16s 4 16

s2 4 4 16

s1 0 16 4s2 + 16 8s 8

s0 16 16 16
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Even though none of the signs in the first column have
changed sign, there are two roots located at s � 2j� and two
at s � �2j�. A system having P(s) as a characteristic equation
must be considered unstable, even though the Routh–
Hurwitz algorithm did not predict it.

Routh developed this criterion in 1877. In 1893, Hurwitz,
apparently unaware of Routh’s work, developed a similar
technique based on determinants, from which the Routh–
Hurwitz criterion is derivable. In 1892, Lyapunov developed
a more general technique that is applicable to both linear and
nonlinear systems, called the direct method of Lyapunov.

NYQUIST CRITERION

R = ∞

Re

Im

s-plane
 = ∞ω

 = –∞ω

Given the characteristic equation of a system, the Routh–
Hurwitz criterion enables a system analyst to determine Figure 8. The Nyquist contour. If a contour is traced on the s-plane
whether or not the system is stable without actually solving covering the entire RHP in the clockwise direction and if the number

of zeros of G(s)H(s) are greater than number of poles then the corre-the roots of the characteristic equation. Unfortunately, the
sponding contour on the G(s)H(s) will encircle the origin at least oncemethod still requires the characteristic equation, which may
in the same direction. The poles of G(s)H(s) can usually be determinedbe somewhat cumbersome, to be derived. The Nyquist crite-
easily from the mathematical model. The number of zeros ofrion offers a graphical method of solution based on the open-
G(s)H(s) can be determined by the Nyquist plot.loop transfer function, thereby saving some algebraic manipu-

lation. In addition, Nyquist’s method is quite capable of han-
wheredling pure time delays, which Routh’s method and the root

locus method can handle only clumsily, at best.
N is the number of encirclements of the origin by �2,The Nyquist criterion is based on the following principal
Z is the number of zeros of L(s) encircled by �1, andargument. Suppose a contour �1 is traced arbitrarily in the s-
P is the number of poles of L(s) encircled by �1.plane as shown in Fig. 7(a). If each point s, comprising �1

were to be transformed by a polynomial function of s, L(s),
A positive N indicates that �2 and �1 both travel in the samethen a new contour �2 would result in the L(s)-plane, as illus-
direction (i.e., clockwise or counterclockwise), whereas nega-trated in Fig. 7(b). Provided that �1 does not pass through any
tive N indicates opposite directions. Some examples of con-poles or zeros of L(s), the contour �2 does not encircle the ori-
tours �2 and �1 and encirclements are given in the sectiongin. The principal argument relates the number of times that
dedicated for Nyquist. Interested readers should refer to thisthe new contour �2 encircles the origin to the number of poles
section.and zeros of L(s) encircled by �1. In other words, �2 encircles

the origin by the difference between the number of poles and
The Nyquist Contournumber of zeros in contour �1

Consider the transfer function of a closed-loop system
N = Z − P (22)

C(s)
R(s)

= G(s)
1 + G(s)H(s)

= G(s)
1 + L(s)

(23)

From this equation, the following points should be clear.

1. The poles of 1 � L(s) are the poles of L(s), the open-loop
transfer function. This makes identification of the poles
of 1 � L(s) possible simply by inspection in most cases.

2. Most importantly, the zeros of 1 � L(s) are the poles of
C(s)/R(s), the closed-loop transfer function.

σ

Γ1

Γ2

ωj jvs-plane G(s)-plane

u

(a) (b)

Figure 7. Contours in the s-plane and G(s)H(s)-plane. Every closed The problem of determining the closed-loop pole locations
contour on the s-plane traces a closed contour on the G(s)H(s)-plane. may then be reduced to determining the zeros of 1 � L(s). To
If there are any poles or zeros (but not equal in numbers) of do this, the Nyquist contour, which covers the entire right
G(s)H(s) in the contour in the s-plane, the contour in the G(s)H(s) will

half s-plane, as shown in Fig. 8, is used. It consists of a sec-encircle the origin at least once. If the number of poles of G(s)H(s)
tion along the j�-axis covering �� � � � � and a semicircleinside the contour in the s-plane is greater than zero, the contour in
described by �s� � �, ��/2 
 arg(s) 
 �/2. The diagram alsothe G(s)H(s)-plane goes in the opposite direction of the contour on the
shows how the contour skips around simple (not repeated)s-plane. If the zeros are greater than poles, the contours are in the

same direction. poles of L(s) located on the j�-axis to avoid discontinuities
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when the contour is mapped onto the L(s) plane. The direction 3. The skips around the j�-axis poles. Because the two
of the contour has been arbitrarily drawn as clockwise. contours skip around these poles in opposite directions,

If the Nyquist contour is mapped onto the 1 � L(s)-plane, if contour 1 were to contribute NC turns, then contour 2
we would find that the resulting contour would encircle the would contribute �NC turns.
origin N � Z � P times (in the clockwise sense). It should be
emphasized that Z is the variable under investigation be-

Combining all these sections,cause it concerns the poles of the closed-loop system. The re-
quirement for stability is that 1 � L(s) contain no zeros on
the right half plane, or Z � 0. That is to say, if the (clockwise) N1 = 2NA + NB + NC (24)
Nyquist contour were mapped onto the 1 � L(s)-plane, it is a
requirement for closed loop stability that the resulting con- N2 = 2NA + NB − NC (25)
tour encircle the origin counterclockwise exactly the same
number times as the number of poles of L(s) in the RHP.

From the principal argument, it is also known that N1 � Z �The contour shown in Fig. 8 skips to the right around j�-
P; therefore,axis poles. Consequently, these j�-axis poles are not consid-

ered to be right-half-plane poles. It is perfectly feasible for the
contour to skip to the left around these poles, in which case N2 = Z − P − P′ (26)
they should be included in the count of right-half-plane poles.
It is emphasized that the poles of L(s) are easily obtainable.

Eliminating N1, N2, and NC and realizing that NB � 0, we findA further refinement of the Nyquist criterion is that it is
thatunnecessary to plot the contour on the 1 � L(s)-plane and

observe the number of encirclements about the origin. The
plot on the L(s) plane is in fact identical to that of the 1 �
L(s)-plane, except that it is shifted left by one unit. It will
therefore suffice to plot the contour on the L(s)-plane and ob-
serve the number of encirclements about the Cartesian point

NA = 2Z − 2P − P′

4

or φ =
�

Z − P − P′

2

�
π

(27)

(�1, 0).

where  is the angle of rotation (in the clockwise sense) aboutSimplified Nyquist Plot
the point (�1, 0) when the line � � 0, � � 0 is mapped onto

Suppose that the function 1 � L(s) contains P poles on the the L(s)-plane, where s � � � j�.
RHP, P� poles on the j�-axis, and Z zeros on the right half For stability, we require that Z � 0, from which the modi-
plane and that two contours are to be mapped onto the L(s)- fied form of the Nyquist stability criterion may be expressed
plane. as

1. The Nyquist contour skips to the right around the P�
poles on the j�-axis. When mapped on the L(s)-plane, it φ = −

�
P + P′

2

�
π (28)

is found to encircle the Cartesian point (�1, 0) point
N1 times.

That is to say, if the open-loop transfer function’s frequency2. The Nyquist contour skips to the left around the P�
response is plotted on polar coordinates and is found to encir-poles on the j�-axis. When mapped on the L(s)-plane, it
cle the Cartesian point (�1, 0) in a counterclockwise directionis found to encircle the Cartesian point (�1, 0) point
by an angle of exactly �(P � P�/2) radians. In this case, whereN2 times.
P is the number of open-loop transfer function poles on the
right half plane and P’ is the number of open-loop transferEach contour may be considered to consist of three sections,
function poles on the imaginary axis, the closed-loop systemeach contributing a certain number of turns about the
is stable.Cartesian point (�1, 0).

For the illustration of Nyquist stability criterion, let’s take
an example of a system having a open-loop transfer function1. The section consisting of �� � � � �, excluding the
G(s)H(s) ofskips around j�-axis poles. Because of symmetry about

the real axis in both the contour and the location of
poles and zeros, this section may be divided into two
halves—the positive imaginary axis and the negative
imaginary axis, each contributing NA turns.

2. The section consisting of the infinite semicircle, contrib-
uting NB turns. If the order of the numerator of L(s) is

G(s)H(s) = L(s)

= 30
(s + 1)(s + 2)(s + 3)

= 30
s3 + 6s2 + 11s + 6

(29)

less than or equal to the denominator, then as s � �,
L(s) corresponds to a point on the real axis or an encir-

The Nyquist plot of L(s) of Eq. (29) can be obtained in a num-clement of the origin. The contribution to the number of
ber of ways (e.g., polar plots) by substituting s � j�. By calcu-turns about the Cartesian point (�1, 0) in either case

is, therefore, NB � 0. lating the real and imaginary components of L(j�), the Ny-
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NG/DG and H(s) � NH/DH. Equation (30) then reduces to

C(s)
R(s)

= kNGDH

DGDH + kNGNH
(31)

Equation (31) reveals that the zeros of the closed-loop system
are independent of k and correspond to the zeros of G(s) and
the poles of H(s). However, as k � 0, there is pole/zero cancel-
lation of the H(s) pole term DH, and as k � � there is pole/
zero cancellation of the G(s) zero term NG. The location of the
closed-loop poles, or the roots of the characteristic equation,
is the subject of the remaining discussion.

The root locus is a plot in the s-plane of the poles of the
closed-loop transfer function as the parameter k varies from
0 to �. From Eq. (1), it should be clear that these poles corre-
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spond to the zeros of the 1 � kG(s)H(s) denominator. The root
Figure 9. A typical Nyquist plot. This is the plot of a third-order locus is therefore a plot in the s-plane of Eq. (31)
system and hence it traces three quadrants. The curve cuts the real
axis on the negative side. If the gain is increased sufficiently, the kG(s)H(s) = −1 (32)
curve will encircle the �1 point hence indicating instability. This
means that at least one of the roots of the characteristic equation, Equation (32) may be expressed in its polar form as
poles of the closed loop system, will be on the right half of the s-plane.

quist plot of Eq. (29) may be plotted as shown in Fig. 9. It can
be seen that the contour does not encircle the point (�1, 0),
so the system is stable.

∏u
i=1 Ai∏v
i=1 Bi

= 1
k

(33a)

u∑
i=1

θi −
v∑

i=1

φi = π(1 + 2n) (33b)

Further examples of Nyquist plots are given in Fig. 10.
where Ai is the distance between a point on the root locus andFrom the Nyquist plots, it is possible to find phase and
the ith zero of the loop transfer function L(s); Bi is the dis-gain margins of the system. The gain margin is defined to be
tance between a point on the root locus and the ith pole; �i isthe amount of gain that can be allowed before the system be-
the angle about the ith zero from the positive real axis to acomes unstable, and the phase margin is the angle at unity
point on the root locus; i is the angle about the ith pole fromgain. It is also possible to find the phase crossover frequency
the positive real axis to a point on the root locus; u is the�c and the gain crossover frequency �g either from the graph
number of zeros in the loop transfer function; v is the numberor mathematically. From the graph the phase and gain mar-
of poles; k is the loop gain; and n is any integer. It should begins of the preceding example are 25� and 6 dB, respectively.
evident that Eq. (33b) determines whether a point is on theIt is also possible to design the system to obtain desired re-
root locus, and Eq. (33a) just determines the value of k corre-sponses by varying the margins.
sponding to that point.

It is always possible to solve Eq. (32) for an array of values
for k, but that would be too time consuming. Evans developedTHE ROOT LOCUS
a set of rules for sketching the root locus, reducing the prob-
lem to a few simple calculations.Often engineers want to see how changes in some parameters

Figure 12 shows the root locus of a typical system with ansuch as loop gain will affect the performance and the stability
open-loop transfer function given byof a system. The root locus is a widely practiced method in

this regard. It gives information about how the closed-loop
poles of the system vary as the parameter in question is
changed. This is particularly useful in determining the range
the parameter may cover while keeping the system stable. As
discussed previously, the relative stability of a system is

T(s) = k
s(s + 2)(s + 5)

= k
s3 + 7s2 + 10s

(34)

largely determined by the location of poles, which the root
Further examples of root locus are given in Fig. 10.locus approach clearly confirms.

The Root Locus Method of Evans
Formulation of Root Locus

A number of rules may be applied to sketch the root locus.
Figure 11 shows a block diagram of a system with a variable
loop gain. It has a closed-loop transfer function given by • The root locus starts with k � 0 at the poles of G(s)H(s)

and finishes with k � � at the zeros of G(s)H(s).

This can be seen from the magnitude condition

C(s)
R(s)

= kG(s)
1 + kG(s)H(s)

(30)

In order to investigate how G(s) and H(s) contribute poles and
zeros to the closed loop system, it is informative to let G(s) �

|G(s)H(s)| = 1
k

(35)
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Figure 10. Examples of Nyquist and root
locus plots. The stability of control sys-
tems can be determined by various meth-
ods as exemplified here. In obtaining these
examples, a popular software called MAT-
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LAB was used.

As k approaches zero, the magnitude of the loop transfer func- closed-loop transfer function because of pole/zero cancellation
tion becomes infinite, corresponding to a pole. For k becoming for k � 0 and k � �. This point should be kept in mind when
infinitely large, the loop transfer function becomes infinites- designing systems with the root locus; for very high and very
imally small, corresponding to a zero. low gains, there may be significant pole/zero cancellation.

Actually, inspection of Eq. (31) reveals that the poles of The zeros of G(s)H(s) include both the finite zeros found in
H(s) and zeros of G(s) never actually appear as poles of the the denominator terms and the infinite zeros at �s� � �

caused by a denominator of higher order than the numerator.
The result is that there are always the same number poles
and zeros and that the root locus will always have enough
zeros at which to terminate, be they finite or infinite.

• The root locus plot is symmetrical about the real axis. All

R(s)
G(s)

C(s)+

–
k

H(s)

physically realizable transfer functions have real coeffi-
Figure 11. Block diagram of a closed-loop system with variable k. In cients. Transfer functions with real coefficients always
many systems, one of the parameters of the system is varied to

produce complex poles and zeros in conjugate pairs,achieve the desired response. In this case, the variation of k in the
which means that if Eq. (32) locates a point s � � � j�forward path will relocate the roots of the characteristic equation on
as being on the root locus, then s � � � j� must also bethe s-plane. The suitable locations of the roots lead to appropriate

system design. on the root locus.
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shown in Fig. 13, plotted for G(s)H(s) � (s � 1)(s � 3)(s2

� 4s � 8) . All breakaway points s must satisfy the fol-
lowing conditions:

d
ds

G(s)H(s) = 0 (37a)

arg[G(s)H(s)] = π(1 + 2n) (37b)

For real values of s, Eq. (37a) implies Eq. (37b), but for
complex s, there is no such implication.

If there are n poles involved in a breakaway point,
then there are always n branches entering and n
branches leaving. The angle � between the entering and
leaving branches is given by
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Figure 12. The root locus of a system with a characteristic equa- ψ = π

n
(38)

tion � 1 � ks(s � 2)(s � 5). This is a typical example of root locus.
Roots start from poles of the characteristic equation when k � 0 and • Angle of departure from a complex root. The angle at
approaches zeros as k � �. In this example, all three zeros are at �. which a branch leaves a pole or arrives at a zero may be
At some value of k, the root loci crosses the imaginary axis to the determined by assuming a point s infinitesimally close toRHP, thus indicating unstable conditions. With the aid of root locus

the singularity. Because s is infinitesimally close to thea suitable value of k can be determined to locate the roots at the
pole or zero, the angular contributions to the angle Eq.desired points on the s-plane.
(33b) from all the other poles and zeros are known, and
the only unknown quantity is the contribution from the
pole or zero in question. This angle, the angle of depar-

• A point on the real axis is on the root locus if and only if ture, is easily found by Eq. (33b).
there is an odd number of poles and zeros on the right- • Imaginary axis intersection. This is a very important
hand side of it. The angular contribution to Eq. (33b) of point to know because it reveals the value of k that will
a pole or zero on the real axis to the left of a point on the result in a marginally stable closed loop system. Forming
real axis is always zero. In the case of a complex conju- a Routh table with the unknown k as a parameter and
gate pair of poles or zeros, if one member of the pair con- then solving for k to give a row of zeros in the table is
tributes an angle of � then the other will contribute 2� � one of the most common methods. For higher-order sys-
�. The total contribution from the pair is then 2� � 0 tems, the table may become too cumbersome. In such a
rad. Similarly, any pole or zero to the right of a point on situation, it may be more desirable to solve Eq. (32) as
the real axis will end up contributing � rad to the angu-
lar equation. Consequently, an odd number of poles or
zeros is required to satisfy Eq. (33). G( jω)H( jω) = −1

k
(39)

• Branches terminating at infinite zeros approach an
asymptotic line that is described by

ψn = π(2n + 1)

v − u
(36a)

σA =
∑v

i=1 pi − ∑u
i=1 zi

v − u
(36b)

where �n is the angle between the positive real axis and
the nth asymptote; (�A, 0) is the point at which the as-
ymptotes intersect the real axis; pi is the ith open-loop
transfer function pole location; zi is the ith open-loop
transfer function zero location; v is the number of open-
loop transfer function poles; and u is the number of zeros.

Applying these rules will provide a reasonable sketch of
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the root locus. There are several significant points on the

Figure 13. Breakaway points. The root locus plotted for G(s)H(s) �sketch that may be of interest to locate in terms of their pre-
(s � 1)(s � 3)(s2 � 4s � 8) shows typical breakaway points at whichcise location and the value of k required to achieve them.
multiple roots meet and then diverge. The breakaways generally oc-
cur on the real axis, but they may occur anywhere. In this example,

• Breakaway points. These are the points at which multi- a breakaway has happened on the real axis where as two others have
ple roots meet and then diverge. This most commonly oc- taken place on the s-plane, in which the corners of the two root loci

have met.curs on the real axis, but it may occur anywhere, as
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ing that there is a known solution x1, then the equation may
be reduced to a first-order linear equation by letting

x = x1 + 1
u

(44)

C(s)R(s) +

–

1
(s + 1)(s + k)

Σ

Taking the derivative with respect to t results in
Figure 14. A representation of a variable component other than the
root gain. In this case, one of the open-loop poles is the variable. This
can be handled by forming an equivalent loop transfer function to

dx
dt

= dx1

dt
− 1

u2

du
dt

(45)
construct the root locus.

Substituting Eqs. (44) and (45) into Eq. (41) gives

In this case, the root locus is solved for an imaginary axis
intercept, s � j�.

dx1

dt
− 1

u2

du
dt

+ P(t)
�

x1 + 1
u

�
= Q(t)

�
x2

1 + 2x1

u
+ 1

u2

�
+ R(t)

(46)
System Parameters Other Than Gain

But since it is known thatIn many situations the loop gain is not the parameter that is
variable. It may be that the position of the open loop poles is
the variable, as in Fig. 14. The way to handle this is to form

dx1

dt
+ P(t)x1 = Q(t)x2

1 + R(t) (47)
an equivalent loop transfer function for the purpose of con-
structing the root locus as Eq. (46) reduces to

C(s)
R(s)

= 1
(s + 1)(s + k) + 1

(40) du
dt

+ [2x1(t)Q(t) − P(t)]u = −Q(t) (48)

After some algebraic manipulation, Eq. (40) may be expressed which is a linear first-order differential equation and is sim-
in the form of ple to solve particularly if P(t), Q(t), and R(t) are constants,

as would the case if Eq. (41) were to describe a time-invari-
ant system.

The Matrix Riccati Differential Equation

Consider the dynamic system given by the state-space de-
scription as

C(s)
R(s)

=
1

s2 + s + 1

1 + k
s + 1

s2 + s + 1

= G(s)
1 + kG(s)H(s)

(41)

where G(s) � 1/(s2 � s � 1) and H(s) � s � 1. The root locus
ẋ(t) = Fx(t) + Gu(t)

y(t) = Hx(t)
(49)

may now be constructed in the normal manner.
It may also occur that there are two parameters that are

where x(t) is the state matrix (n by 1), u(t) is the control ma-variable. Then the root locus may be represented by a set of
trix (q by 1), and y(t) is the matrix (p by 1) of output variablescontours or a surface plots.
to be controlled and F, G, and H are matrices of appropriate
dimensions that characterize the system.

THE RICCATI EQUATION In the optimal control applications, the object of optimal
control is to find u(t) over an interval t � [t1, t2] such that

Many matrix equations naturally arise in linear control sys- some cost function is optimized. One of the popularly used
tem theory. One of the most applied equations is the Riccati cost function is the quadratic cost function that can be gener-
equation, which can be expressed as alized by

dx
dt

+ P(t)x = Q(t)x2 + R(t) (42) F(t1, t2, T ) =
∫ t2

t1

[y′(t)y(t) + u′(t)u(t)] dt + x′(t2)Tx(t2) (50)

The equation was first developed and applied by Count Ric-
where T is a constant, real, symmetric (T � T�) and nonnega-cati and Jacopo Francesco in the early eighteenth century.
tive definite (�T� � 0) matrix.In recent times, the Riccati equation finds wide application,

It can be proven that there exists a unique optimal controlparticularly in the area of optimal control and filtering. In
for finite t2 � t1 � 0, which has the form ofthese applications, the matrix Riccati equation depicts a sys-

tem of Riccati equations given by
u(t) = −G′P(t1, t2, T )x(t) (51)

Ẋ(t) + X(t)A(t) − D(t)X(t) − B(t)X(t) + C(t) = 0 (43)
where P(t1, t2, T) can be described by

Solution of the Riccati Equation
Ṗ(t) + P(t)F + F′P(t) − P(t)GG′P(t) + H′H = 0 (52)

A closed form solution to Eq. (42) cannot be guaranteed de-
pending of the functions P(t), Q(t), and R(t). However, assum- with the terminal condition that P(t2) � T.
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Correlation of Eq. (52) together with Eq. (43) reveals that which corresponds to Eq. (55). Applying Eq. (56), the final
solution to Eq. (57) is found to bethe optimum control problem does indeed reduce to the prob-

lem of solving the Riccati matrix equation with constant, real
A, B, and C matrices and D � A�. Furthermore, because any
matrix UU� is a symmetric, nonnegative definite matrix for
U with real elements, it follows that B and C in are symmet-

x(t) = (−0.3534 + 0.1464T )e1.414t + (0.3534 + 0.8536T )e1.414t

(0.8536 − 0.3536T )e1.414t + (0.1464 + 0.3536Te−1.414t

(62)
ric and nonnegative definite matrices, which are necessary

As expected, x(t2) � x(0) � T.conditions for solutions.

Riccati Algebraic Equation and Infinite HorizonSolution of the Riccati Matrix Differential Equation

In regulating control systems, it is not convenient to restrictThe following equation gives the form of the Riccati equation
control to a finite time period, t � [t1, t2]. Even though it isof interest applied in optimal control problems:
possible to let t1 approach negative infinity, it is customary to
let t2 approach infinity. Assuming that the system is time in-Ẋ(t) + X(t)A − A′X(t) − X(t)BX(t) + C = 0 (53)
variant [i.e., the matrices A, B and C in Eq. (53) are con-

with B and C matrices being symmetric and nonnegative stant], the two intervals yield the same result.
definite. Suppose that (A, B) are stabilizable. Then there must exist

The solution of Eq. (53) may be found by setting up the some stabilizing control that is not necessarily optimal. The
linear Hamiltonian matrix differential system as resulting cost function associated with this stabilizing control

will then dominate the optimal cost function, and it must be
finite. Consequently, the solution of the Riccati equation with
infinite horizon must be bounded.

[
U̇(t)
V̇(t)

]
=
[

A −B
−C −A′

][
U(t)
V(t)

]
(54)

The solution X(t), as t approaches infinity, will either ap-
where V(t2) � TU(t2), and T is as defined in Eq. (50). proach a constant value or become periodic, depending on the

Then if the solution of Eq. (54) may be found by using Eq. system and the value of T chosen. The value of X(t) for t � �
(53) in the case where it is constant may be found by substituting

Ẋ(t) � 0 into Eq. (53) to give the Riccati algebraic equation.

XA + A′X − XBX + C = 0 (63)

[
U(t)
V(t)

]
=
[
w11 w12
w21 w22

][
U(t2)

V(t2)

]
(55)

and w11 � w12T is invertible, then the solution of Eq. (53) is If A, B, and C are 1 by 1 matrices (i.e., there are just scalar
given by numbers), the solution of Eq. (63) is a trivial task. The gen-

eral solution is a little more complex, involving Jordan chains.
A Jordan chain of the matrix H is a set of vectors, x1, x2,X(t) = (w21 + w22T)(w11 + w12T)−1 (56)

. . ., xn such that
As an example, consider

Hx1 = λx1

Hxj = λxj + xj−1
(64)dx

dt
+ 2x − x2 + 1 = 0 (57)

where � is an eigenvalue of H and x1 is the associated eigen-which corresponds to A � [1], B � [1], and C � [1] in Eq. (53).
vector.The associated linear Hamiltonian matrix is then given by

Equation (63) has a solution for X if and only if there exists
a set of Jordan chains of

[
u̇
v̇

]
=
[

1 −1
−1 −1

] [
u
v

]
(58)

which has the solution H =
[

A −B
−C −A′

]

given by x1, x2, . . ., xn. If we let

[
u
v

]
= a

[
1

2.414

]
e−1.414t + b

[
1

−0.414

]
e1.414t (59)

For some arbitrary constants a and b, the solution becomes xi =
[
ui
vi

]

and
u(0) = a + b

v(0) = 2.414a − 0.414b
(60)

U = [u1 · · · un]Also, Eq. (59) may be expressed as

and

V = [v1 · · · vn]

then the solutions of Eq. (63) are given by X � VU�1.

[
u
v

]
=
[

0.8536e1.414t + 0.1464e−1.414t

−0.3534e1.414t + 0.3534e−1.414t

−0.3536e1.414t + 0.3536e−1.414t

0.1464e1.414t + 0.8536e1.414t

][
u(0)

v(0)

] (61)
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We can verify this by using it to derive the quadratic for- values, hence achieved an equilibrium state. If the system is
in the equilibrium state, that is, no states are varying in time,mula. Let
the equilibrium state may be described by

ax2 + bx + c = 0 (65)
Ẋe = f(xe) = 0 (72)

where A � �b/2, C � �c, and B � a, to form the Hamilto-
nian matrix, In order to seek solutions to Eq. (71), Lyapunov introduced a

continuously differentiable scalar function V(x) with the fol-
lowing properties.

1. Positive definite if V(0) � 0 for all t � t0 and V(x) � 0
H =

[− b
2 −a

c b
2

]
(66)

for all t � t0.
which has two eigenvalues given by 2. Positive semidefinite if V(x) � 0 for all x.

3. Negative definite or negative semidefinite if �V(x) posi-
tive definite or positive semidefinite.

These conditions ensure that V is positive if any state is dif-
ferent from zero but equals zero when the state is zero. These

λ = ±
��b

2

�2

− ac

= ±
√

b2 − 4ac
2

(67)

conditions ensure that V is a smooth function and the trajec-
tory does not expand indefinitely but rather is drawn to theThe eigenvector associated with the eigenvalue of � � 0 is
origin. This can be explained with the aid of Fig. 15. Lyapu-
nov stability states that an equilibrium state xe of a dynamic
system is stable if for every 	 � 0, there exists a � � 0, where
� depends only on 	, such that (x0 � xe) � � results (x(t; x0)

w =

 1

−b
2a

− λ

a


 (68)

� xe) � 	 for all t � t0.
This statement of stability in the sense of Lyapunov indi-The solution of Eq. (65) is then found as

cates that if an equilibrium state is stable, the trajectory will
remain within a given neighborhood of the equilibrium point
if the initial state is close to the equilibrium point. Likewise,
an equilibrium state xe of a dynamic system is unstable if
there exists an 	, such that a corresponding � value cannot

x = − b
2a

− λ

2a

= −b ± √
b2 − 4ac

2a

(69)

be found.
From the preceding explanations, asymptotic stability maywhich is the familiar quadratic equation.

be defined. An equilibrium state xe of a dynamic system isFor � � 0, there exists one Jordan chain,
asymptotically stable if

a. it is Lyapunov stable.
b. there is a number �a � 0 such that every motion start-

ing within �a in the neighborhood of xe converges to xe

as t � �.

x1 =

 1

− b
2a




x2 =

 0

−1
a




(70)

giving one solution, x � �b/2a.

LYAPUNOV STABILITY

Lyapunov studied the question of motion, basing his theories
on the nonlinear differential equations of motion. His equa-
tions for linear motion are equivalent to Routh’s criterion.
The Lyapunov’s theorem determines the stability in the small
region about an equilibrium point. The stability in the large
may be determined by the global stability techniques. In this
article, stability in the small will be introduced, and some ref-
erences will be made to global stability methods.

Lyapunov considers the stability of general systems de-

Unstable

Stable

xoε

σ

x = 0

Asymptotically
stable

scribed by ordinary differential equations expressed in the Figure 15. Lyapunov stability criteria. The equilibrium state xe is
state-variable form as stable if for every 	 � 0, there exists a � � 0, where � depends only

on 	, such that the trajectory remains within a given neighborhood of
the equilibrium point. Likewise, an equilibrium state xe of a dynamicẊ = f(x) (71)
system is unstable if there exists an 	, such that a corresponding �
value cannot be found.Suppose that in a system all states have settled to constant
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A simplified version of Lyapunov’s first theorem of stability, where
Eq. (71), may be explained. Suppose that � Ẋ � A�x is a valid
model about the equilibrium point xe and the roots of the Q = −(FTP + PF) (78)
characteristic equation may be expressed in matrix form as

For any positive Q, the solution of P of the Lyapunov equa-
sI − A = 0 (73) tion is positive if and only if all the characteristic roots of F

have negative real parts. That is, if a system matrix F is
All eigenvalues of A have negative real parts if for any sym- given, it is possible to select a positive Q, solve the Lyapunov
metric positive definite matrix N, the Lyapunov equation equation in n(n � 1)/2 unknowns, and test to see if P is posi-

tive by looking at the determinants of the n principal minors.
ATM + AM = −N (74) From this, the stability may be determined from the equa-

tions without either solving them or finding the characteris-
has a symmetric positive definite solution. tic roots.

For example, suppose that Eq. (71) can be expressed as The study of nonlinear systems is vast, here only the basic
principles of the methods have been discussed. Also, Lyapu-

Ẋ = Ax(t) (75) nov methods are applied in many diverse areas of control en-
gineering; therefore, it is impossible to cover them all here.

Its solution is x(t) � eAt x(0). If the eigenvalues of A are k1, Interested readers should refer to the reading list given at
k2, and k3, then every component of x(t) is a linear combina- the end of this article.
tion of ek1t, ek2t, and ek3t. These time functions will approach
zero as t � � if and only if ki has negative real parts. Thus
it can be concluded that any nonzero initial state will ap-

ROBUST STABILITYproach to zero only if A is stable. This can be generalized
as follows.

Consider a linear time-invariant feedback system with a
plant transfer function G(s) and a compensator with Gc(s) cas-1. If the characteristic values all have negative real parts,
caded as shown in Fig. 16. In many applications, the plantthe equilibrium point is asymptotically stable.
model will not accurately represent the actual physical sys-2. If at least one of the values has a positive real part, the
tem because of (1) unmodeled dynamics and time delays, (2)equilibrium point is unstable.
changes in equilibrium points, (3) nonlinear characteristics of

3. If one or more characteristic values have zero real the plant, (4) noise and other disturbance inputs, and (5) pa-
parts, with all other values having negative real parts, rameter drift. The aim of a robust system is to assure that
the system stability cannot be determined with the cur- performance is maintained in spite of model inaccuracies and
rent method. parameter changes.

The closed-loop transfer function of the system in Fig. 16
Testing the stability by considering the linear part is referred may be written as
to as Lyapunov’s first or indirect method. Using the Lyapunov
function directly on the nonlinear equations themselves is
called the second or direct method. The argument is as fol- M(s) = C(s)

R(s)
= G(s)Gc(s)

1 + G(s)Gc(s)
(79)

lows. Lyapunov showed that in the case of nonlinear systems
Eq. (71) may be extended as

The sensitivity of the system to changes in G(s) or Gc(s) can
be expressed by the sensitivity functionẊ = Fx + g(x) (76)

where g(x) contains all the higher powers of x. If g(x) goes to S = δM/M
δG/G

= 1
1 + G(s)Gc(s)

(80)
zero faster than x does, then the system is stable if all the
roots of F are strictly inside the left half plane and will be
unstable if at least one root is in the right-half plane. For the
system with roots in the left half plane and on the imaginary
axis, the stability depends on the terms in the function g.

For global stability analysis of linear constant systems,
quadratic functions are often used. Consider the function
V � xT Px, where P is a symmetric positive matrix. The V is
the sum of squares of xi. In general, if P is positive, we can

R(s) C(s)+

–
G(s)Gc(s)

H(s)
find a matrix T such that P � TTT and V � �zi, where z �
Tx. For the derivative of V the chain rule can be used as Figure 16. Block diagram of a closed-loop control system for robust

stability analysis. In the many mathematical representation of sys-
tems, a full account of all affected parameters may not be taken into
consideration because of unmodeled dynamics and time delays. Also,
during the operations, the equilibrium points may change, parame-
ters may drift, and noise and disturbances may become significant.
The aim of a robust system is to assure that performance is main-
tained in spite of model inaccuracies and parameter changes.

V = dxTPx/dt

= xTPx + xTPx

= xT(FTP + PF)x

= −xTQx

(77)
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EXPONENTIAL STABILITY

The study of exponential signals (eat) is important in linear
system analysis. They contain a variety of signals such as
constants, sinusoids, or exponentially decaying or increasing
sinusoids.

A system with an n-dimensional state model is said to be
an exponential system if its state-transition matrix �(t, �) can
be written in matrix exponential form

�(t, τ ) = e(t, τ ) (82)

where �(t, �) is an n � n matrix function of t and �.
A sufficient condition for the system to be uniformly expo-

G(s) H(s)-plane
Imaginary

Real

0
–1

nentially stable is that the eigenvalues of the of the n � n
Figure 17. An example of a closed-loop system resulting from pa- matrix (1/t) �(t, �) be bounded as functions of t and have real
rameter drifts in Nyquist plots. This diagram indicates that because parts � �v for all t � � and for some v � 0 and �.
of uncertainties in modeling and changes in parameters the gain and In many applications the stochastic components and ran-
phase margins may be altered. These alterations may lead to unsta- dom noises are included in the dynamical system models. The
ble conditions if these margins are close to critical values. stochastic aspects of the model are used to capture the uncer-

tainty about the environment in which the system is op-
erating. The analysis and control of such systems involve

As can be seen from Eq. (80), the sensitivity function has the evaluating the stability properties of the random dynamical
same characteristic equation [1 � G(s)Gc(s)] as the closed-loop systems. The stability of the system can be studied by sto-
transfer function M(s). For sensitivity to be small, it is neces- chastic stability approaches.
sary to have a high value for loop gain L(s) � G(s) Gc(s). The
high gain is obtained at high frequencies of L( j�). But as we
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For system stability, Nyquist’s stability condition must al- Australia
ways be satisfied. That is the �1 point must not be encircled
by the L( j�) under any circumstances. An example of uncer-
tainty in a typical Nyquist plot resulting from �G(s) is illus-
trated in Fig. 17. To guarantee stability, a safe gain and
phase margin must be ensured. Many methods are available
to deal with the robustness of the system including classical
methods linked to the use various compensators and PID con-
trollers. The H� technique is one method that finds extensive
application in robust control design and analysis.

In general, feedback reduces the effect of disturbances and
moderate modeling errors or parameter changes in the control
system. In the presence of disturbances and sensor noises,
systems are designed such that they keep the tracking errors
and outputs small for disturbance inputs. In order to achieve
this, the sensitivity to modeling errors and sensor noise must
be made small, thus making the system robust. In this case,
the plant output will follow any reference input asymptoti-
cally even if there are variations in the parameters of distur-
bance and noise. Briefly, it can be said that the system is
more robust if it can tolerate larger perturbations in its pa-
rameters.


