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as time becomes large. This article deals with the latter no-
tion of stability. An asymptotically stable response is the ba-
sis of a steady-state behavior whereby other responses asymp-
totically approach the steady-state response. A steady-state
response can be as simple as a constant (time-invariant) re-
sponse, or it can be a periodic one. These, as well as other
more complicated steady-state responses, are described in the
first section.

In our study of dynamical systems, we model the system
by a finite number of coupled first-order ordinary differential
equations

ẋ1 = f1(t, x1, . . ., xn)

ẋ2 = f2(t, x1, . . ., xn)

...
...

ẋn = fn(t, x1, . . ., xn)

where ẋi denotes the derivative of xi with respect to the time
variable t. We call the variables x1, x2, . . ., xn the state vari-
ables. They represent the memory that the dynamical system
has of its past. They are usually chosen as physical variables
that represent the energy-storing elements. For example, in
an RLC electrical circuit, the state variables could be voltages
across capacitors and currents through inductors, while in a
spring-mass-damper mechanical system, the state variables
could be positions and velocities of moving masses. We usu-
ally use vector notation to write the above equations in a com-
pact form. Define

x =




x1

x2

...
xn


 , f (t, x) =




f1(t, x)

f2(t, x)

...
fn(t, x)




and rewrite the n first-order differential equations as an n-
dimensional first-order vector differential equation

ẋ = f (t, x)

which we call the state equation, and x is referred to as the
state. The response of the system due to initial state x0 at
initial time t0 is the solution of the differential equation ẋ �

STABILITY THEORY, NONLINEAR f (t, x) subject to the initial condition x(t0) � x0. This solution
is unique provided the function f is locally of Lipschitz charac-

Stability analysis plays a central role in systems engineering. ter in the domain of interest D; that is, every point in D has
There are two general notions of stability that arise in the a neighborhood D0 and a nonnegative constant L such that
study of dynamical systems: input-output stability and stabil- the Lipschitz condition
ity of a particular response or a set of responses. In the first
notion, the system is viewed as a map from the space of input ‖ f (t, x) − f (t, y)‖ ≤ L‖x − y‖
signals to the space of output signals. It is said to be stable if
an input that is well behaved in some sense (e.g., signals with is satisfied for all x and y in D0. 	x	 is a measure of the length

of the vector x in the n-dimensional state space (the space offinite amplitude or energy) will always produce an output
that is well behaved in the same sense. In the second notion, n-dimensional real vectors), and is defined by 	x	2 � �n

i x2
i . The

locus of the solution x(t) in the state space is usually referredthe input to the system is fixed so that the response of the
system over time is determined solely by the initial state of to as a trajectory. A special case of the state equation arises

when the function f does not depend explicitly on t; that is,the system at the initial time. Such a response is said to be
stable if other responses starting at nearby initial states stay ẋ � f (x), in which case the system is said to be autonomous;

otherwise it is said to be nonautonomous.nearby; otherwise it is unstable. It is said to be asymptotically
stable if all responses starting at nearby initial states not In the first section, we introduce the most common forms of

steady-state responses, namely, equilibrium points (constantonly stay nearby, but also approach this particular response
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solutions), limit cycles (periodic solutions), tori, and strange ent domains of attraction are separated by solutions that are
asymptotic to saddle-type invariant sets (that is, invariantattractors (chaos). The most effective stability analysis tools
sets that are generally unstable but that have some stable di-are available for the case of equilibrium points, which we
rections).treat in the second section. We make the notions of stability,

The most well-known type of attractor is an asymptoticallyinstability, and asymptotic stability, introduced earlier, pre-
stable equilibrium point of an autonomous system, ẋ � f (x).cise and present Lyapunov’s method and illustrate it by ex-
An equilibrium point for this system is a point x such thatamples. We treat the special case of linear systems and show
f (x) � 0, representing a constant, time-invariant, steady-statehow stability of an equilibrium point of a nonlinear system
response. Obviously the solution for the system initiated atcan be studied by linearizing the system about this point. We
such a point is simply x(t) � x, and x is invariant and mini-use the center-manifold theorem to treat the critical case
mal. The matter of its stability is considered in detail in thewhen linearization fails and end the section with an extension
following section.of Lyapunov’s method to nonautonomous systems. An impor-

The next simplest type of attractor is represented by a sta-tant issue in the analysis of dynamical systems is the effect of
ble closed trajectory in the state space, called a limit cycle, �.changes in the system’s parameters on its behavior. Smooth
A solution x(t) that lies on � is necessarily periodic, since bychanges in the system’s behavior are usually studied via sen-
starting from a point on �, the solution takes time T to tra-sitivity analysis tools, but when the change in the parameters
verse the trajectory and return to the starting point, afterresults in a change in the qualitative behavior of the system,
which the motion continually repeats. Thus, x(t � T) � x(t)like the disappearance of an equilibrium point or a limit cycle,
for all points on �, where T is the period of the limit cycle.it is studied via bifurcation theory, which we introduce in the
The frequency content of a limit cycle is composed of a funda-final section.
mental harmonic plus multiples of the fundamental. Limit cy-
cles can arise in autonomous or nonautonomous systems, ex-
amples of which follow. A simple autonomous system thatSTEADY-STATE BEHAVIOR possesses a limit cycle is the following:

The steady-state behavior of a system is described by the as- ṙ = r(1 − r 2), θ̇ = ω (1)
ymptotic nature of solutions as time becomes large. For non-

which is expressed in polar coordinate form. This two-dimen-linear systems, this will depend on the system as well as on
sional system has an invariant set �(r, �): r � 1, � � [0, 2�)�,the initial conditions provided. The possible types of steady-
a circle, which attracts all solutions except for the unstablestate behavior are more varied than one might think; they
equilibrium at r � 0, and on which solutions wind aroundinclude the well-known constant time behavior (asymptoti-
with constant speed leading to a period T � 2�/�. Further-cally stable equilibria) and periodic time behavior (asymptoti-
more, since all points on the circle are visited by every solu-cally stable limit cycles), as well as more complicated behav-
tion started on it, it satisfies all the conditions for an at-iors, such as multiperiodic behavior (asymptotically stable
tractor. Such a closed trajectory can, of course, exist intori) and chaos (strange attractors). We begin with some
higher-order systems as well. Another example of an asymp-definitions that are general enough to capture this range of
totically stable periodic attractor is offered by the simple lin-possibilities, and then provide some examples.
ear equationThe steady-state behavior of a system takes place on a sub-

set of the state space called an attractor. The key ingredients ẋ = −αx + β cos(ωt) (2)
for defining an attractor A are the following: (1) If a solution
is started in A , it never leaves A . That is, A is an invariant which has a known steady-state solution of the form xss(t) �
set, defined by saying that for each x(0) � x0 � A , x(t) � A A cos(�t �  ), which is obviously asymptotically stable for
! t. (2) Solutions started sufficiently close to A will approach � � 0 since the transient decays to zero. In order to view this
A as t � �. That is, A is locally attractive. (3) A feature of steady state as a limit cycle, one considers the extended state

space, constructed by supplementing the preceding equationan attractor A is that it contains a solution that comes arbi-
with the trivial equation �̇ � � and replacing �t by � in Eq.trarily close to every point in A at some time. This implies
(2). (This renders the system autonomous.) The extendedthat A is minimal in the sense that there are no subsets of
state space, (x, �), is a cylinder, shown in Fig. 1, on which theA that satisfy conditions (1) and (2).

The domain of attraction (or region, or basin, of attraction)
for an attractor A is defined to be the set of initial conditions
in the state space that are asymptotic to A as t � �. It can
(at least formally) be constructed by considering a neighbor-
hood UA of A that is used in proving its asymptotic stability,
and taking �t
0�x(t)� ! x(0) � UA . This simply starts solutions
in a neighborhood in which one knows they will approach A

in forward time and runs time backward. In this way all solu-
tions that will approach A are collected. Except in simple
problems it is impossible to determine the domain of at-
traction, although parts of it can often be estimated using Ly-
apunov methods, as described in the next section. It is impor-
tant to realize that a nonlinear system may possess multiple

x

γ

θ    ωτ=
attractors of various types. The domains of attraction for dif-
ferent attractors must, of course, be distinct. Typically, differ- Figure 1. Limit cycle in a cylindrical state space.
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steady-state solution is a closed trajectory � with period T � functions of x, defined for all x in a domain D � �n that con-
tains the origin x � 0. Suppose the origin is an equilibrium2�/�. While both of these examples have circular limit cycles

around which solutions move at constant speed, this, of point of ẋ � f (x); that is, f (0) �0. Our goal is to characterize
and study the stability of the origin. There is no loss of gener-course, is not generally the case.

A steady-state response that is composed of multiple, non- ality in taking the equilibrium point at the origin, for any
equilibrium point x � 0 can be shifted to the origin via thecommensurate frequencies corresponds to an asymptotically

stable torus in the state space. Roughly speaking, each angu- change of variables y � x � x.
The equilibrium point x � 0 of ẋ � f (x) is stable, if for eachlar coordinate on the torus has an associated frequency. (Note

that a limit cycle can be viewed as a one-dimensional torus.) 	 � 0, there is � � �(	) � 0 such that 	x(0)	 � � implies that
	x(t)	 � 	, for all t � 0. It is said to be asymptotically stable ifA simple example of an asymptotically stable torus is given

by a state model that is a simple generalization of that used it is stable and � can be chosen such that 	x(0)	 � � implies
that x(t) approaches the origin as t tends to infinity. Whenfor the first limit-cycle example,
the origin is asymptotically stable, the domain of attraction is
defined as the set of all points x such that the solution of ẋ �ṙ = r(1 − r2), θ̇1 = ω1, θ̇2 = ω2 (3)
f (x) that starts from x at time t � 0 approaches the origin as
t tends to �. When the domain of attraction is the wholeTori can exist in Euclidean spaces of dimension three and
space �n, we say that the origin is globally asymptoticallyhigher. It is easy to show that the r � 0 solution is unstable
stable.and the solution with r � 1, �1 � �1t � �10, �2 � �2t � �20 is

asymptotically stable. Here �1 and �2 represent the frequen-
Lyapunov’s Methodcies of the steady-state response. Note that if �1/�2 is rational,

then every solution on the torus is periodic and closed, repre- In 1892, Lyapunov introduced a method to determine the sta-
senting a one-parameter family of periodic responses. In con- bility of equilibrium points without solving the state equation.
trast, when �1/�2 is irrational, the torus will be covered by a Let V(x) be a continuously differentiable scalar function de-
single solution (a dense solution) for any initial condition. fined in D. A function V(x) is said to be positive definite if
Thus, the torus satisfies condition (3) for an attractor only in V(0) � 0 and V(x) � 0 for every x � 0. It is said to be positive
the incommensurable case. Also, note that in more general semidefinite if V(x) � 0 for all x. A function V(x) is said to be
examples, the various rotation speeds are not constant on the negative definite or negative semidefinite if �V(x) is positive
torus, and the tori can be highly distorted. The response of a definite or positive semidefinite, respectively. The derivative
torus is generally composed of a set of discrete frequencies of V along the trajectories of ẋ � f (x) is given by V̇(x) �
that include �1 and �2, as well as various linear combinations �n

i�1(�V/�xi)ẋi � (�V/�x)f (x), where �V/�x is a row vector whose
of them that result from nonlinear interactions. Also, one can ith component is �V/�xi.
encounter tori with more than two frequencies. Lyapunov’s stability theorem states that the origin is stable

A chaotic steady-state response corresponds to a compli- if there is a continuously differentiable positive definite function
cated set in the state space known as a strange attractor. V(x) so that V̇(x) is negative semidefinite, and it is asymptoti-
While chaos is observed in many simulations and experi- cally stable if V̇(x) is negative definite. A function V(x) satis-
ments, it is virtually impossible to prove the existence of a fying the conditions for stability is called a Lyapunov function.
strange attractor for a given system model. The essence of The surface V(x) � c, for some c � 0, is called a Lyapunov
these difficulties lies in the fact that there exist extremely surface or a level surface. Using Lyapunov surfaces, Fig. 2
complicated invariant sets in such systems, and it is not pos- makes the theorem intuitively clear. It shows Lyapunov
sible to prove that an asymptotically stable periodic solution surfaces for decreasing constants c3 � c2 � c1 � 0. The condi-
does not exist nearby. However, these subtle issues fall out- tion V̇ 
 0 implies that V(x(t)) decreases along the trajectory
side the main topic of this article. The response of a strange x(t). Therefore, when a trajectory crosses a Lyapunov surface
attractor has a broadband frequency content, which is rather V(x) � c, it moves inside the set �V(x) 
 c� and can never come
unexpected for a deterministic system. out again. When V̇ � 0, the trajectory moves from one Lyapu-

Note that the complexity of these attractors is related to nov surface to an inner Lyapunov surface with a smaller c.
their dimensionality. The simplest, an equilibrium, has di- As c decreases, the Lyapunov surface V(x) � c shrinks to the
mension 0, the limit cycle has dimension 1, and a torus with origin, showing that the trajectory approaches the origin as
N frequencies has dimension N. It is interesting to note that time progresses. If we only know that V̇ 
 0, we cannot be
a chaotic attractor, if it exists, will have a noninteger, or frac-
tal, dimension due to the rich structure of the invariant mani-
fold on which it exists. The difficulties associated with de-
termining the stability of various types of invariant sets is
similarly related to their dimensionality. For equilibria many
analysis techniques exist, as described in detail in the follow-
ing. Techniques also exist for limit cycles, tori, and chaos, but
can rarely be applied without computational tools.

STABILITY OF EQUILIBRIUM POINTS

V(x) = c1

c1< c2 < c3

c2

c3

We consider the autonomous system ẋ � f (x), where the com-
ponents of the n-dimensional vector f (x) are locally Lipschitz Figure 2. Level surfaces of a Lyapunov function.
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sure that the trajectory will approach the origin, but we can by
conclude that the origin is stable since the trajectory can be
contained inside any � neighborhood of the origin by requiring
the initial state x(0) to lie inside a Lyapunov surface con-

V̇ (x) = 2(ax1 + bx2)ẋ1 + 2(bx1 + dx2)ẋ2

= 2(ax1 + bx2)(−x1 + x2
1x2) + 2(bx1 + dx2)(x1 − x2)

tained in that neighborhood.
When V̇(x) is only negative semidefinite, we may still be

Choosing b � 0 yieldsable to conclude asymptotic stability of the origin if we can
show that no solution can stay identically in the set �V̇(x) �

V̇ (x) = −xTQx + 2ax3
1x20�, other than the trivial solution x(t) � 0. Under this condi-

tion, V(x(t)) must decrease toward 0, and consequently x(t) �
where0 as t � �. This extension of the basic theorem is usually

referred to as the invariance principle.
Lyapunov functions can be used to estimate the domain of

attraction of an asymptotically stable origin, that is, to find
Q = 2

[
a −0.5d

−0.5d d

]
sets contained in the domain of attraction. If there is a Lyapu-
nov function that satisfies the conditions of asymptotic stabil- The matrix Q is positive definite when ad � d2/4 � 0. Choose
ity over a domain D and if �V(x) � c� is bounded and contained a � d � 1. Near the origin, the quadratic term �xTQx domi-
in D, then every trajectory starting in �V(x) � c� remains in nates the fourth-order term 2x3

1x2. Thus, V̇(x) is negative defi-
�V(x) � c� and approaches the origin as t � �. Thus, �V(x) � nite and the origin is asymptotically stable. Notice that the
c� is an estimate of the domain of attraction. If the Lyapunov origin is not globally asymptotically stable since there are
function V(x) is radially unbounded that is, �x� � � implies other equilibrium points. We can use V(x) to estimate the do-
that V(x) � �, then any point x � �n can be included in the main of attraction of the origin. The function V(x) is positive
bounded set �V(x) � c�. Therefore, the origin is globally asymp- definite for all x. We need to determine a domain D about the
totically stable if there is a continuously differentiable, radially origin where V̇(x) is negative definite and a set �V(x) � c� �
unbounded function V(x) such that for all x � �n, V(x) is posi- D, which is bounded. We are interested in the largest set
tive definite and �V̇(x) is either negative definite or negative �V(x) � c� that we can determine, that is, the largest value for
semidefinite but no solution can stay identically in the set the constant c. Using the inequalities xTQx � �min(Q)�x�2 �
�V̇(x) � 0� other than the trivial solution x(t) � 0. �x�2 and 2x3

1x2 � x2
1�2x1x2� � �x�4, we see that V̇(x) � ��x�2 	

Lyapunov’s method is a very powerful tool for studying the �x�4. Hence V̇(x) is negative definite in the domain ��x� � 1�.
stability of equilibrium points. However, there are two draw- We would like to choose a positive constant c such that
backs to the method of which the reader should be aware. �V(x) � c� is a subset of this domain. Since xTPx �
First, there is no systematic method for finding a Lyapunov �min(P)�x�2 � �x�2, we can choose c � 1. Thus, the set �V(x) �
function for a given system. In some cases, there are natural 1� is an estimate of the domain of attraction.
Lyapunov function candidates like energy functions in electri-
cal or mechanical systems (see Example 2). In other cases, it Example 2. A simple pendulum moving in a vertical plane
is basically a matter of trial and error. Second, the conditions can be modeled by the second-order differential equation
of the method are only sufficient; they are not necessary. Fail-
ure of a Lyapunov function candidate to satisfy the conditions mlθ̈ = −mg sin θ − klθ̇
for stability or asymptotic stability does not mean that the
origin is not stable or asymptotically stable.

where l is the length of the rod, m is the mass of the bob, 
 is
the angle subtended by the rod and the vertical line through

Example 1. Consider the second-order system the pivot point, g is the acceleration due to gravity, and k is
a coefficient of friction. Taking x1 � 
 and x2 � 
̇ as the state
variables, we obtain the state equationẋ1 = −x1 + x2

1x2, ẋ2 = x1 − x2

ẋ1 = x2, ẋ2 = −a sin x1 − bx2The system has three equilibrium points at (0,0), (1,1), and
(�1,�1). We want to study the stability of the origin (0,0). We

where a � g/l � 0 and b � k/m � 0. The case b � 0 is antake the quadratic function
idealized frictionless pendulum. To find the equilibrium
points, we set ẋ1 � ẋ2 � 0 and solve for x1 and x2. The first

V (x) = ax2
1 + 2bx1x2 + dx2

2 = xTPx equation gives x2 � 0 and the second one gives sin x1 � 0.
Thus, the equilibrium points are located at (n�, 0), for n � 0,

where �1, �2, . . . . From the physical description of the pendulum
it is clear that the pendulum has only two equilibrium posi-
tions corresponding to the equilibrium points (0,0) and (�,0).
Other equilibrium points are repetitions of these two posi-P =

[
a b
b d

]
tions that correspond to the number of full swings the pendu-
lum would make before it rests at one of the two equilibrium

as a Lyapunov-function candidate. For V(x) to be positive positions. Let us use Lyapunov’s method to study the stability
definite, we must have a � 0, d � 0, and ad � b2 � 0. The of the equilibrium point at the origin. As a Lyapunov-function

candidate, we use the energy of the pendulum, which is de-derivative of V(x) along the trajectories of the system is given
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fined as the sum of its potential and kinetic energies, namely, Linear Systems

The linear time-invariant system ẋ � Ax has an equilibrium
point at the origin. The equilibrium point is isolated if andV (x) =

∫ x1

0
a sin y dy + 1

2 x2
2 = a(1 − cos x1) + 1

2 x2
2

only if det(A) � 0. Stability properties of the origin can be
characterized by the locations of the eigenvalues of the ma-

The reference of the potential energy is chosen such that trix A. Recall from linear system theory that the solution of
V(0) � 0. The function V(x) is positive definite over the do- ẋ � Ax for a given initial state x(0) is given by x(t) �
main �2� � x1 � 2�. The derivative of V(x) along the trajecto- exp(At)x(0) and that for any matrix A there is a nonsingular
ries of the system is given by matrix P (possibly complex) that transforms A into its Jordan

form; that is,V̇ (x) = aẋ1 sin x1 + x2ẋ2 = −bx2
2

P−1AP = J = block diag[J1, J2, . . ., Jr]When friction is neglected (b � 0), V̇(x) � 0 and we can con-
clude that the origin is stable. Moreover, V(x) is constant where Ji is the Jordan block associated with the eigenvalue
during the motion of the system. Since V(x) � c forms a closed

�i of A. Therefore,
contour around x � 0 for small c � 0, we see that the tra-
jectory will be confined to one such contour and will not
approach the origin. Hence the origin is not asymptotically
stable. On the other hand, in the case with friction (b � 0),

exp(At) = P exp(Jt)P−1 =
r∑

i=1

mi∑
k=1

tk−1 exp(λit)Rik (4)

V̇(x) � �bx2
2 � 0 is negative semidefinite and we can conclude

where mi is the order of the Jordan block associated with thethat the origin is stable. Notice that V̇(x) is only negative sem-
eigenvalue �i. If one of the eigenvalues of A is in the openidefinite and not negative definite because V̇(x) � 0 for x2 � 0
right-half complex plane, the corresponding exponential termirrespective of the value of x1. Therefore, we cannot conclude
exp(�it) in Eq. (4) will grow unbounded as t � �. Therefore,asymptotic stability using Lyapunov’s stability theorem. Here
to guarantee stability we must restrict the eigenvalues to becomes the role of the invariance principle. Consider the set
in the closed left-half complex plane. But those eigenvalues�V̇(x) � 0� � �x2 � 0�. Suppose that a solution of the state
on the imaginary axis (if any) could give rise to unboundedequation stays identically in this set. Then
terms if the order of the associated Jordan block is higher
than 1, due to the term tk�1 in Eq. (4). Therefore, we mustx2(t) ≡ 0 ⇒ ẋ2(t) ≡ 0 ⇒ sin x1(t) ≡ 0
restrict eigenvalues on the imaginary axis to have Jordan
blocks of order 1. For asymptotic stability of the origin,Hence, on the segment �� � x1 � � of the x2 � 0 line, the
exp(At) must approach 0 as t � �. From Eq. (4), this is thesystem can maintain the V̇(x) � 0 condition only at the origin
case if and only if Re(�i) � 0, � i.x � 0. Noting that the solution is confined to a set �V(x) � c�

When all eigenvalues of A satisfy Re(�i) � 0, A is called aand, for sufficiently small c, �V(x) � c� � ��� � x1 � ��, we
Hurwitz matrix. The origin of ẋ � Ax is asymptotically stableconclude that no solution can stay identically in the set
if and only if A is a Hurwitz matrix. The asymptotic stability�V(x) � c� � �x2 � 0� other than the trivial solution x(t) � 0.
of the origin can be also investigated using Lyapunov’sHence, the origin is asymptotically stable. We can also esti-
method. Consider a quadratic Lyapunov-function candidatemate the domain of attraction by the set �V(x) � c� where
V(x) � xTPx where P is a real symmetric positive-definite ma-c � min�x1���� V(x) � 2a is chosen such V(x) � c is a closed
trix. The derivative of V along the trajectories of ẋ � Ax iscontour contained in the strip ��� � x1 � ��.
given by

Example 3. Consider the system
V̇ (x) = xTPẋ + ẋTPx = xT(PA + ATP)x = −xTQx

ẋ1 = x2, ẋ2 = −g1(x1) − g2(x2)

where Q is a symmetric matrix defined by
where g1( 
 ) and g2( 
 ) are locally Lipschitz functions and sat-
isfy gi(0) � 0, ygi(y) � 0 � y � 0, i � 1, 2, and �y

0 g1(z) dz � PA + ATP = −Q (5)
�, as �y� � �. The system has an isolated equilibrium point
at the origin. The equation of this system can be viewed as a If Q is positive definite, we can conclude that the origin is
generalized pendulum equation with g2(x2) as the friction asymptotically stable; that is, A is a Hurwitz matrix. Suppose
term. Therefore, a Lyapunov-function candidate may be taken we start by choosing Q as a real symmetric positive definite
as the energylike function V(x) � �x1

0 g1(y) dy 	 ��x2
2, which is matrix, and then solve Eq. (5) for P. If Eq. (5) has a positive

positive definite in �2 and radially unbounded. The derivative definite solution, then again we can conclude that the origin
of V(x) along the trajectories of the system is given by is asymptotically stable. Equation (5) is called the Lyapunov

equation. It turns out that A is a Hurwitz matrix if and only
if for any given positive definite symmetric matrix Q there existsV̇ (x) = g1(x1)x2 + x2[−g1(x1) − g2(x2)] = −x2g2(x2) ≤ 0
a positive definite symmetric matrix P that satisfies the Lyapu-
nov equation (5). Moreover, if A is a Hurwitz matrix, then P isThus, V̇(x) is negative semidefinite. Note that V̇(x) � 0 im-

plies x2g2(x2) � 0, which implies x2 � 0. The only solution that the unique solution of Eq. (5).
Equation (5) is a linear algebraic equation that can becan stay identically in the set �x � �2�x2 � 0� is the trivial

solution x(t) � 0. Thus, by the invariance principle, the origin solved by rearranging it in the form Mx � y, where x and y
are defined by stacking the elements of P and Q in vectors.is globally asymptotically stable.
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Almost all commercial software programs for control systems The Center-Manifold Theorem
include commands for solving the Lyapunov equation.

When the Jacobian of an equilibrium point has one or more
eigenvalues with zero real parts and all other eigenvalues

Linearization with negative real parts, the stability of the equilibrium can-
not be ascertained from linearization. In these cases, the localConsider the nonlinear system ẋ � f (x) and suppose that f (x)
nonlinear nature of the system will dictate the stability of theis continuously differentiable for all x � D � �n. The Jacobian
equilibrium, and the center-manifold theorem allows one tomatrix �f /�x is an n � n matrix whose (i, j) element is
determine precisely the nature of the nonlinear terms that�f i/�xj. Let A be the Jacobian matrix evaluated at the origin
determine the stability. The main idea behind this techniquex � 0. By applying the mean-value theorem to each compo-
is that the critical behavior occurs in a low-dimensional in-nent of f , it can be shown that f (x) � Ax 	 g(x), where
variant manifold of the state space, one with dimension equal�g(x)�/�x� � 0 as �x� � 0. Suppose A is a Hurwitz matrix and
to the number of eigenvalues with zero real parts. The stabil-let P be the solution of the Lyapunov equation (5) for some
ity in the other dimensions is dominated by the exponentialpositive definite Q. Taking V(x) � xTPx, it can be shown that
behavior associated with the eigenvalues that have negativeV̇(x) is negative definite in the neighborhood of the origin.
real parts, but the nonlinear coupling between the marginalHence, the origin is asymptotically stable if all the eigenvalues
and asymptotically stable modes can play a critical role inof A have negative real parts. Using some advanced results of
determining stability. The center-manifold theorem makesLyapunov stability, it can be also shown that the origin is
these ideas precise.unstable if one (or more) of the eigenvalues of A has a positive

We begin with the following motivating example:real part. This provides us with a simple procedure for de-
termining stability of the origin of a nonlinear system by cal-
culating the eigenvalues of its linearization about the origin. ẏ = zy − y3, ż = −z + ay2 (6)
Note, however, that linearization fails when Re(�i) � 0 for all

Here, from the linearization point of view, the z dynamics arei, with Re(�i) � 0 for some i.
asymptotically stable and y is neutral. Based on this, one
might be tempted to make the assumption that z � 0, andExample 4. The pendulum equation has two equilibrium
therefore y is governed by ẏ � �y3, and thus the origin ispoints at (0,0) and (�,0). Let us investigate stability of each
asymptotically stable. However, as is shown in an examplepoint using linearization. The Jacobian matrix is given by
below, this is incorrect; the stability of the origin is dictated
by the sign of (a � 1). The problem with the naive assumption
made previously is that z approaches something small, but
nonzero, and the correction, which stems from the nonlinear
coupling terms and is captured by the center manifold, is cru-
cial for determining stability.

∂ f
∂x

=




∂ f1

∂x1

∂ f1

∂x2

∂ f2

∂x1

∂ f2

∂x2


 =

[
0 1

−a cos x1 −b

]

The development of the center manifold technique begins
with the autonomous system ẋ � f (x), which has an equilib-To determine stability of the origin we evaluate the Jacobian
rium at x � 0. The Jacobian A is defined as before and theat x � 0, to obtain
state equation is written as ẋ � Ax 	 g(x), where g(x) �
f (x) � Ax contains terms that are essentially nonlinear about
the origin. In order to split the dynamics into linearly asymp-
totically stable and neutral parts, the linear part of the equa-

A = ∂ f
∂x

∣∣∣∣
x=0

=
[

0 1
−a −b

]

tion is put into real Jordan form via a matrix P, as follows:
The eigenvalues of A are �1,2 � �b/2 � ���b2� 4a. For all
positive values of a and b, the eigenvalues satisfy Re(�i) � 0.
Hence, the equilibrium point at the origin is asymptotically J = P−1AP =

[
A1 0
0 A2

]
(7)

stable. In the absence of friction (b � 0), both eigenvalues are
on the imaginary axis. In this case we cannot determine the where all eigenvalues of A1 have zero real parts and all eigen-
stability of the origin through linearization. We have seen values of A2 have negative real parts. The coordinate transfor-
before that in this case the origin is a stable equilibrium mation
point, as determined by an energy Lyapunov function. To de-
termine the stability of the equilibrium point at (�,0), we eval-
uate the Jacobian at this point. This is equivalent to per-
forming a change of variables z1 � x1 � �, z2 � x2 to shift the

P

[
y
z

]
= x

equilibrium to the origin, and then evaluating the Jacobian
then puts the state equation into the split form�f /�z at z � 0.

ẏ = A1y + g1(y, z), ż = A2z + g2(y, z) (8)

The z component of the dynamics of this system is dominated
Ã = ∂ f

∂x

∣∣∣∣
x1=π, x2=0

=
[

0 1
a −b

]

by the relatively fast linear system ż � A2z, whereas the y
dynamics are slower than any exponential order. The key toThe eigenvalues of Ã are �1,2 � �b/2 � ���b2	 4a. For all a �

0 and b � 0, there is one eigenvalue in the open right-half the center-manifold technique is to capture the small, but cru-
cial, coupling effects correctly in the nonlinear terms.plane. Hence, the equilibrium point at (�,0) is unstable.
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A center manifold for this system is simply a smooth in- independent of the initial time t0. Such uniformity annotation
is not needed with autonomous systems since the solution ofvariant manifold of the form z � h(y) with h(0) � 0 and

(�h/�y)(0) � 0. Under some smoothness conditions on the non- an autonomous state equation starting at time t0 depends
only on the difference t � t0, which is not the case for nonau-linear terms in Eq. (8) (that are inherited from the original

equation), a local center manifold exists, although it is not in tonomous systems. If inequalities in Eq. (9) hold globally and
W1(x) is radially unbounded, then the origin is globally uni-general unique. The power of the center manifold is that it

can be used to reduce the dimensionality of the problem, as formly asymptotically stable.
follows. By restricting the system dynamics to the center
manifold one obtains ẏ � A1y 	 g1(y, h(y)), referred to as the Example 6. Consider the nonautonomous system
reduced system. The center manifold theorem states that if the
origin of the reduced system is asymptotically stable (unstable), ẋ1 = −x1 − g(t)x2, ẋ2 = x1 − x2

then the origin of the original system ẋ� f (x) is likewise asymp-
where g(t) is continuously differentiable and satisfies 0 �totically stable (unstable).
g(t) � k and ġ � g(t) for all t � 0. The system has an equilib-The construction of the center manifold can be carried
rium point at the origin. Consider a Lyapunov-function candi-out as follows. We take the time derivative of z � h(y) to ob-
date V(t, x) � x2

1 	 [1 	 g(t)]x2
2. The function V satisfies thetain ż � [�h(y)/�y]ẏ. Equation (8) is used to substitute in for

inequalitiesż and ẏ, and z is replaced everywhere by h(y). This leads to
A2h(y) 	 g2(y, h(y)) � [�h(y)/�y][A1y 	 g1(y, h(y))]. This equa-
tion for h(y), which must satisfy the conditions h(0) � 0 and x2

1 + x2
2 ≤ V (t,x) ≤ x2

1 + (1 + k)x2
2

�h/�y(0) � 0, is generally impossible to solve. However, since
The derivative of V along the trajectories of the system isonly local information is needed for stability considerations,
given byan approximation for h(y) can be obtained by assuming a se-

ries expansion for h(y), substituting it into the equation, and
matching coefficients, as demonstrated in the forthcoming Ex- V̇ = −2x2

1 + 2x1x2 − [2 + 2g(t) − ġ(t)]x2
2

ample 5. Once the expansion form for h(y) is determined and
Using the bound on ġ(t), we have 2 	 2g(t) � ġ(t) � 2 	the expanded version of the reduced equation is in hand, vari-
2g(t) � g(t) � 2. Thereforeous techniques can be employed for determining the stability

of the reduced system. In general, this task is made much
easier due to the lower dimensionality of the reduced system.

V̇ ≤ −2x2
1 + 2x1x2 − 2x2

2 = −xT

[
2 −1

−1 2

]
x = −xTQx

Example 5. Consider the system given in Eq. (6). Here A1 �
0, A2 � �1, g1(y,z) � yz � y3, and g2(y,z) � ay2. The center The matrix Q is positive definite. Hence the origin is uni-
manifold is assumed to be of the form h(y) � c1y2 	 c2y3 	 formly asymptotically stable. Since all inequalities are satis-

 
 
 . This is substituted into the equation for h(y) and ex- fied globally and x2

1 	 x2
2 is radially unbounded, the origin is

panded in powers of y, and the coefficients of y2, y3, etc., are globally uniformly asymptotically stable.
gathered and solved. This leads to the result that c1 � a and
c2 � 0. Therefore, h(y) � ay2 	 O(�y�4). [We use the notation

BIFURCATION THEORYf (y) � O(�y�p) when �f (y)� � k�y�p for sufficiently small �y�.] The
reduced system is given by taking the equation for ẏ and

The term bifurcation, strictly speaking, refers to the splittingsimply replacing z by the expansion for h(y), resulting in ẏ �
of a whole into two parts. While this is relevant to its mean-(a � 1)y3 	 O(�y�5). Thus, the conclusion is reached that for
ing in dynamical systems, it has taken on a much broadera � 1 � 0, x � 0 is an asymptotically stable equilibrium point
definition. The general bifurcation problem deals with quali-for system Eq. (6), while for a � 1 � 0 the origin is unstable.
tative changes in system behavior as parameters are variedFor a � 1 � 0 no conclusions regarding stability can be drawn
in a quasistatic manner. The simplest example is the casewithout considering higher-order expansions.
when a parameter is varied in such a manner that the real
part of an eigenvalue of the Jacobian at an equilibrium pointNonautonomous Systems
changes sign, corresponding to the change in stability of the

Suppose the origin x � 0 is an equilibrium point of the nonau- equilibrium. There are two generic ways in which such transi-
tonomous system ẋ � f (t, x); that is, f (t, 0) � 0 for all t � 0. tions can occur. The first is a real eigenvalue passing through
For nonautonomous systems we allow the Lyapunov-function zero; the second is a complex conjugate pair of eigenvalues
candidate V to depend on t. Let V(t, x) be a continuously dif- passing through the imaginary axis. While linearization and
ferentiable function defined for all t � 0 and all x � D. The the center-manifold theory allow one to determine the stabil-
derivative of V along the trajectories of ẋ � f (t, x) is given by ity of the equilibrium point, the larger question looms as to
V̇(t, x) � �V/�t 	 (�V/�x) f (t, x). If there are positive-definite what changes take place near the equilibrium through such a
functions W1(x), W2(x), and W3(x) such that transition. Questions such as these are the basic motivation

behind bifurcation theory.
Consider the system ẋ � f (x, �), where � represents a sys-W1(x) ≤ V (t, x) ≤ W2(x), V̇ (t, x) ≤ −W3(x) (9)

tem parameter. The technical definition of a bifurcation is as
follows: A bifurcation is said to occur at � � �0 if the state spacefor all t � 0 and all x � D, then the origin is uniformly asymp-

totically stable, where ‘‘uniformly’’ indicates that the �–� for � � �0 is not topologically equivalent to that for � � �0. It
is said that �0 is the bifurcation value of the parameter. Thedefinition of stability and the convergence of x(t) to zero are
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reason for emphasizing topological equivalence in the state
space is that one is interested in transitions that cause quali-
tative changes in the structure of the system response. For
example, a smooth increase in the amplitude of a limit cycle
is not a bifurcation, but the disappearance of a limit cycle is.

A very important feature of bifurcation theory is that it

a>1 a<1
yy

λ λ

allows for one to build a catalog of the generic qualitative
changes systems may undergo as parameters are varied. For Figure 3. Subcritical pitchfork bifurcation (left); supercritical pitch-

fork bifurcation (right).some simple, but widely encountered cases, this classification
is complete. However, there are many important issues that
remain unresolved. At the end of this section we will further

much more. It is seen that the approximate reduced equationaddress these classifications. The first convenient classifica-
has equilibria at y � 0 and ���/(1� a). It is not difficult totion of bifurcations is to separate them into local and global.
show that the nonzero equilibria have the following proper-Local bifurcations describe changes in a neighborhood of an
ties: for a � 1 they exist for � � 0 and are unstable whenequilibrium, whereas global bifurcations involve nonlocal
they exist, while for a � 1 they exist for � � 0 and are asymp-changes. (It is interesting to note that the study of local bifur-
totically stable when they exist. Thus, for a � 1 there existcations in which two parameters are varied requires knowl-
two unstable equilibria near the asymptotically stable originedge of global bifurcations.) We focus our attention on the
for � � 0, and they collapse onto the origin and disappear atanalysis of local bifurcations and demonstrate some global bi-
� � 0, leaving the origin unstable for � � 0. This subcriticalfurcations at the end of the discussion.
pitchfork bifurcation is shown in Fig. 3. The case for a � 1, aCenter-manifold theory is a powerful tool for analyzing
supercritical pitchfork bifurcation, is shown in the same fig-these local bifurcations. It, along with normal-form theory (de-
ure, from which the reader can infer the dynamic behavior asscribed briefly later), allows one to reduce local bifurcations
� is varied through zero.to their simplest possible forms, facilitating the classification

mentioned above. To fix the ideas, consider the original sys-
This example points out some important features of localtem ẋ � f (x, �) augmented by the trivial dynamics of the pa-

bifurcations. First, bifurcations that involve n eigenvaluesrameter �̇ � 0. Clearly the � dynamics are linearly neutral
with zero real parts require analysis of an nth-order dynami-and have a zero eigenvalue (the case of multiple parameters
cal system, obtained by reduction to the parametrized centergoes through in the same manner). The center-manifold the-
manifold. Second, one can easily extend the ideas to includeory described earlier is redeveloped by carrying along the
more than one parameter. The selection of the proper param-equation �̇ � 0. The result is that the slow dynamics now
eters to uncover all critical behavior near a bifurcation is acontain y and � and the center manifold is of the form z �
subtle matter that involves techniques beyond the scope ofh(y, �). The procedure is carried out as before, with the key
this article. Third, the analysis of this example is veryobservation that � is considered as a state variable, that is,
straightforward, as there is only one nonlinear term in theterms such as �y are taken to be nonlinear. [The equation for
approximate reduced equation. In more complicated problemsh(y, �) simplifies to that of the original case since �̇ � 0, with
several nonlinear terms may occur, rendering the stability or

� carried along in a straightforward manner.] This results in
bifurcation analysis much more difficult. In such cases onea reduced system describing the y dynamics that depends on
can use normal-form theory to simplify the problem. Thisthe parameter, along with �̇ � 0. The equations are valid for
technique, which shares many similarities with feedback lin-a range of � values near the bifurcation value, and therefore
earization, involves a systematic sequence of coordinatethis process allows for the unfolding of the behavior of the
changes that remove as many nonlinear terms as is possiblesystem about the bifurcation.
for the given system. This technique, when the bifurcation
parameters are included, allows one to systematically reduceExample 7. Consider the following parameterized version of
entire classes of problems into generic forms. This producesthe system given in Eq. (6):
the classification scheme described above. Here we offer the
results of this classification for the simplest bifurcations. As

λ̇ = 0, ẏ = λy + zy − y3, ż = −z + ay2 (10)
an eigenvalue of an equilibrium passes through zero, there
are three generic things that can occur. The most general isHere A1 � 0 (the 2 � 2 zero matrix), A2 � �1, g1(�, y, z) � (0,
the saddle-node bifurcation, in which a pair of equilibria

�y 	 yz � y3)T, and g2(�, y, z) � ay2. Note that � is treated as
merge and annihilate one another. If all other eigenvaluesa state variable. The center manifold is assumed to be of the
of the equilibrium of interest are stable, then the bifurcationform h(�, y) � b1y2 	 b2�y 	 b3�

2 	 
 
 
 . This is substituted
diagram as the parameter is varied is as shown in Fig. 4. Ifinto the equation for h(�, y) and expanded in powers of y and

� and the coefficients of y2, �y, �2, etc., are gathered and
solved. This leads to the result that b1 � a, b2 � 0, and b3 �
0. Therefore h(�, y) � ay2 	 
 
 
 , and the reduced system is
given by taking the equation for ẏ and simply replacing z by
the expansion for h(�, y), resulting in ẏ � �y 	 (a � 1)y3 	

 
 
 , which is valid in some neighborhood of (�, y) � (0,0).

Clearly, for � � 0 the stability of the origin of the original
system is dictated by the sign of �; this is known from linear- Figure 4. Saddle-node bifurcation (left); transcritical bifurcation

(right).ization. The center-manifold results confirm this, but offer
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the equilibrium persists through the instability, a transcriti-
cal bifurcation, shown in Fig. 4, generally occurs. When a spe-
cial symmetry in the problem exists, the pitchfork bifurcation
encountered in the preceding example can occur. These cover
the generic bifurcations involving a single eigenvalue going
through zero. When a complex conjugate pair of eigenvalues

Figure 6. Saddle connection global bifurcation.passes through the imaginary axis, something more interest-
ing happens. First, the center-manifold reduction for this
problem leads to a dynamical system consisting of two equa-
tions. When expressed in polar coordinates these are ṙ � rium. Perhaps the simplest interesting example of a global
�r 	 ar3 	 
 
 
 and 
̇ � � 	 br2 	 
 
 
 . The radial variable, bifurcation is the saddle connection shown in Fig. 6. Here, as
representing the amplitude of the oscillation, undergoes a a parameter is varied in the two-dimensional state space, a
pitchfork bifurcation (although r � 0 is meaningless) that is stable limit cycle moves toward and eventually merges with
super- (a � 0) or sub- (a � 0) critical as � is increased through a saddle point, forming a saddle loop. As the parameter is
zero. The angular variable simply describes rotation at a pushed beyond this point, the limit cycle disappears. Note
nominal frequency of � with a small amplitude-dependent that this occurs without any changes to the stability types of
shift arising from nonlinear effects. This is the Hopf bifurca- the saddle point or the limit cycle. Global bifurcations involv-
tion. The result of this bifurcation is shown in Fig. 5, and it ing saddle connections in systems of dimension three and
results in the birth of stable limit cycles as an asymptotically higher are the source of chaos in dynamical systems.
stable equilibrium goes unstable (for a � 0) or in the merging
of an asymptotically stable equilibrium with an unstable limit

FURTHER READINGcycle (for a � 0). This completes the list of bifurcations that
generically occur as a single parameter is varied and an equi-

For further reading on the Lyapunov stability and its applica-librium point changes stability.
tions, we refer the reader to Refs. 1 and 2. As for the steady-Center-manifold and normal-form methods also exist for
state behavior of dynamical systems, chaos, and bifurcations,analyzing the bifurcations that occur when limit cycles
we recommend Refs. 3–5.change stability. These problems can be handled by defining

and using a Poincaré map near the limit cycle and studying
the generic bifurcations of fixed points of maps. It is found BIBLIOGRAPHY
that limit cycles can undergo saddle-node, transcritical, and
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stability and merging with a two-dimensional torus around it Cliffs, NJ: Prentice Hall, 1993.
(in a super- or subcritical manner). However, this situation is 3. S. H. Strogatz, Nonlinear Dynamics and Chaos, Reading, MA: Ad-
complicated by the fact that resonances can occur between the dison-Wesley, 1994.
two frequencies of the torus, and this can lead to secondary 4. J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynami-
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Before leaving the topic of local bifurcations it should be HASSAN K. KHALIL
noted that if several parameters are being simultaneously STEVEN W. SHAW
varied, one can encounter situations in which several eigen- Michigan State University
values simultaneously have zero real parts. Similarly, one
may find that some critical terms in a given normal form
change sign as parameters are varied (for example, the pa-

STABILIZATION. See BILINEAR SYSTEMS.rameter a in the Hopf bifurcation). The bifurcation analysis
of such problems is extremely rich and often exceedingly com-
plicated, but some classifications along these lines have been
carried out for two and three parameter systems.

Global bifurcations result in qualitative changes in the
state space that cannot be described as local to any equilib-

Figure 5. Hopf bifurcation.


