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STOCHASTIC SYSTEMS An open-loop control is formally a special case of a closed-loop
control. For a deterministic system the reverse also holds.

Many control systems in practice are subject to imperfectly The important point is that this is not true for stochastic
systems.known disturbances which may be taken as random. Such

disturbances have been ignored in the study of deterministic (2) The controller knows the state of the system at each
time t. We call this the case of complete observations.control problems. In many control systems some unknown pa-

rameters occur. The system behavior depends on the parame- (3) The controller has partial knowledge of the system
states. This is called the case of partial observations.ters and the fact that the value of the parameters is unknown

makes the system unknown. Some crucial information con- For a deterministic control model, the state of the system
at any time t can be deduced from the initial data and thecerning the system control is not available to the controller,

and this information should be learned during the system’s control used up to time t by solving the corresponding differ-
ential equation. Thus observing the current state of the sys-performance. The problem described is the problem of adap-

tive control. The adaptive control problem can be considered tem at each time t does not really give more information than
knowing the initial data. For stochastic control systems, therethe identification problem and the control problem. A solution

to an adaptive control problem will be understood as a solu- are many paths which the system states follow given the con-
trol and the initial data. In the stochastic case, the best sys-tion to the identification problem and to the control problem.

We focus on control and adaptive control of continuous-time tem performance depends on the information available to the
controller at each time t.linear stochastic systems. The theory of adaptive control of

continuous-time linear stochastic systems has been recently When we consider continuous-time stochastic control prob-
lems, the system states are described by the stochastic pro-developed as an important application of the stochastic con-

trol theory in engineering, biology, economics, finance, and cess that changes according to a stochastic differential equa-
tion. We need to be aware that to deal with more realisticmanufacturing systems. Continuous-time linear systems are

an important and commonly used class of systems (1,2). It is mathematical models of the situation we allow for some ran-
domness in some of the coefficients of an ordinary differentialassumed that the models evolve in continuous time rather

than discrete time because this assumption is natural for equation (7). Randomness arises when we consider real life
situations with some disturbances or noise. These distur-many models and it is important for studying discrete time

models when the sampling rates are large and for analyzing bances or noise are modeled by a stochastic process, often by
the so-called Brownian motion or Wiener process (8,9), whichnumerical round-off errors. Stochastic systems are described

by linear stochastic differential equations. we define later.
Stochastic control problems have been difficult to solve ex-The general approach to adaptive control described here

exhibits a splitting or separation of the problems of identifi- plicitly (10,11,12). One of the fundamental results of the sto-
chastic control problem, where the optimal control is obtainedcation of the unknown parameters and adaptive control. Max-

imum likelihood, least squares, or weighted least squares es- explicitly, is the linear quadratic Gaussian (LQG) problem
(5,6,13). It is called linear because the system is described bytimators are used to identify the unknown constant

parameters (3,4,5). These estimates are given recursively and a linear difference equation (in the discrete-time case) or by a
linear differential equation (in the continuous-time case). Itare strongly consistent, which means that the family of esti-

mates converges to the true value of the parameter with the is called quadratic because the cost criterion to be minimized
or maximized is quadratic. It is quadratic in a state and in aprobability one. It turns out that for some cases the weighted

least squares estimator is strongly consistent whereas the control. It is called Gaussian because the noise is modeled by
a Gaussian process.least squares estimator is not. The adaptive control con-

structed by the so-called certainty equivalence principle, that Another stochastic control problem that has been solved
explicitly is the portfolio selection and consumption modelis, the optimal stationary control, is computed by replacing

the unknown true parameter values by the current estimates known as Merton’s model (14) and described in Example 2
below.of these values. Because the optimal stationary controls are

continuous functions of the unknown parameters, the self- A linear quadratic Gaussian problem and a portfolio selec-
tion and consumption model were the two of a very few sto-tuning property is verified, which means that asymptotically

adaptive control using the estimate of the unknown parame- chastic control problems that have been solved explicitly. Re-
cently Duncan and Upmeir (15) provided a pretty wide classter is as good as optimal control if we know the system. It is

also shown that the family of average costs using the control of stochastic control problems that are solved explicitly. The
stochastic control problems are the control of Brownian mo-from the certainty equivalence principle converges to the opti-

mal average cost. This verifies the self-optimizing property. tion in noncompact symmetric spaces by a drift vector field.
In solving stochastic control problems the basic difficultyIn describing a stochastic control model, the kind of infor-

mation available to the controller at each instant plays an lies in solving the so-called Hamilton–Jacobi–Bellman (HJB)
equation (11). To solve this equation it is assumed that theimportant role. Several situations are possible:

(1) The controller has no information during the system’s solution, the value function, is smooth. Typically the solution
is not smooth enough to satisfy the HJB equation in a classi-operation. In this case a function of time is chosen as a con-

trol. These controls are often called ‘‘open loop’’ as distinct cal sense. The theory of viscosity solutions, first introduced by
M. G. Grandall and P. L. Lions, provides a convenient frame-from closed-loop or feedback controls, in which the actual

value of control input at time t is a function of the observation work in which to study HJB equations. See Ref. 16 on the
theory of viscosity solutions.at time t (6). The distinction between open-loop and feedback

control is fundamental. An open-loop control is deterministic Stochastic calculus provides powerful mathematical tools
for solving stochastic control problems and stochastic adap-whereas a feedback law determines a random control process.
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tive control problems. The mathematical tools of stochastic in an electric circuit. However, due to inaccuracies in our
measurements we do not really measure X(s) but a perturbedcalculus most commonly used are stochastic integral (17),

Itô’s differential rule, and martingales (7,8). These elements version of it: Y(s) � X(s) � noise.
The filtering problem is, what is the best estimate of X(t)of stochastic calculus together with the limit theorems of the

probability theory, the theory of stochastic processes satisfying Y(s) � X(s) � noise based on the observations Y(s)
where s � t?(18,19,20,21,22), and the theory of stochastic differential

equations are extremely useful in proving the results of sto- Initially the problem is to ‘‘filter’’ the noise away from the
observations optimally.chastic control and stochastic adaptive control of continuous

time. This is another motivation for considering stochastic In 1961 Kalman and Bucy (33) proved what is now known
as the Kalman-Bucy filter. Basically the filter gives a proce-control problems in continuous time rather than in discrete

time. There has been always a greater chance of stronger re- dure for estimating the state of a system which satisfies a
linear differential equation, based on a series of observationssults because those mathematical techniques are more so-

phisticated and because of that, more powerful. with a noise.
Stochastic adaptive control problems are applications of

stochastic control theory (23,24,25,26). Because we use the Example 2. Stochastic control problem. Portfolio Selection
and Consumption Model. Let X(t), t � 0 be the wealth of ancertainty equivalence control as an adaptive control, it means

that we need the optimal control given explicitly or an almost individual at time t who invests his wealth in two types of
assets: the safe asset has the return rate r and the risky assetoptimal control (27).

The stochastic adaptive control problems with discrete has the average return rate �. The wealth X(t) at time t
changes according to the stochastic differential equationtime have been under investigation for a long time. Many ref-

erences are in the books in Refs. 5, 6, 23, and 28, and in a few
others (17,24,29). Continuous-time stochastic adaptive control
problems have been investigated relatively recently. Many re-

dX (t) = r[1 − U1(t)]X (t)dt

+ U1(t)X (t)[α dt + τ dW (t)] − U2(t) dt
sults have been obtained under conditions difficult to verify.
The goal of further investigation was to provide results which where U1(t) is the fraction of the wealth invested in the risky
could be obtained under the same assumptions as stochastic asset at time t and U2(t) is the consumption rate at time t; r,
control problems, that is, controllability and observability �, � are constants with r � � and � � 0; and (W(t), t � 0) is a
which have been always considered the most natural condi- real-valued standard Wiener process.
tions for optimal control (30). The controls are naturally constrained as 0 � U1(t) � 1

The results presented here are obtained under these kinds and U2(t) � 0. The stochastic control problem is to maximize
of conditions for linear systems. Corresponding results for the expected discounted total utility
nonlinear systems do not yet exist. Stochastic adaptive con-
trol problems with continuous time are under intensive inves-
tigation.

I (U ) = Ey

∫ ∞

s
exp(−ρt)F[U2(t)] dt, y = W (s)

It is important to mention that the problems of stochastic
adaptive control previously described are problems of stochas- where F(u) � u� with 0 � � � 1 is the utility function and

� � 0 is the discount rate,tic adaptive control with complete observation of the state.
Let us describe the adaptive control scheme used here. The

control as feedback gains is obtained from solving an infinite- Example 3. Stochastic adaptive control problem. Portfolio
Selection and Consumption Model. Consider the situation de-time, quadratic cost control problem by replacing the correct

values of parameters in this solution by the estimates of pa- scribed in Example 2. For the adaptive control problem, it is
assumed that � is an unknown parameter such that � � [a1,rameters at time t to obtain the feedback gain at time t. The

estimates of the parameters are the least squares estimates a2] with r � a1. The adaptive control procedure in this adap-
tive setting is to define the control at a time t, that is, theor the weighted least squares estimates. The least squares

estimate based on the observations of the state until time t is portfolio selection and the consumption rate, using the opti-
mal infinite-time control, where the estimate of the unknownused as the correct value of the parameter to solve the infi-

nite-time control problem by solving the algebraic Riccati parameter at time t is used for the unknown parameter.
equation. This method gives a feedback gain at each time t
and therefore a control policy. Example 4. Stochastic adaptive control problem. Manufac-

turing Model (35). Consider a manufacturing system that pro-Problems of continuous-time stochastic adaptive control
with partial observations in a general setting remain still duces n distinct part types using m identical machines. Let

U(t) � �n denote the vector of productions rates, X(t) � �n theopen. Partial results have been provided by Bertrand (31).
For discrete time see Ref. 32 and references therein. vector of total inventories/backlogs, and Z(t) � �n the vector

demands. These processes are related by the following sto-Many problems with partial observations of a state can be
solved by the filtering theory (33). To recognize the differences chastic differential equation:
among filtering problems, control problems, and adaptive con-
trol problems, let us consider some simple examples. dX (t) = U (t) dt − dZ(t), X (0) = x0 ∈ Rn

The demand Z( � ) is given by the following stochastic differen-Example 1. Filtering problem (7,11,34). Suppose that we
tial equation:would like to improve our knowledge about the solution of a

differential equation so we observe X(s) at times s � t. Let us
imagine that the X(t) is the charge at time t at a fixed point dZ(t) = Z dt + √

εσ dW (t) Z(0) = z0
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where Z is a vector of unknown constants, 	 � 0 is a small Let us define now the unfair games in which we expect to
lose (supermartingale) and to win (submartingale)parameter, 
 is a given n � n matrix, and [W(t), t � 0] is a

standard �n-valued Wiener process defined on a complete
Definition 2 A stochastic process (T(t), t � 0) is a supermar-probability space (�, F , P).
tingale with respect to the increasing family of 
-algebrasThe manufacturing system under consideration consists of
(F t, t � 0) if it satisfies properties (1) and (2) of Definitionmachines subject to breakdown and repair. Let M � �0, 1,
1 and. . ., m� denote the set of machine total capacity states, and

(3) if s � t, thenlet the process [�(t), t � 0] where �(t) � M denotes the total
capacity process for the manufacturing system. Because only
a finite amount of production capacity is available at any E[X (t)|Fs] � X (s) a.s. (2)

given time t, an upper bound is imposed on the production
(X(t), t � 0) is a submartingale with respect to the increasingrate U(t). For example, in the one-dimensional case (n � 1),
family of 
-algebras (F t, t � 0) if it satisfies properties (1) andthe production constraint is 0 � U(t) � �(t).
(2) of Definition 1 andThe cost function J is defined by

(3)� if s � t, then

E[X (t)|Fs] � X (s) a.s. (3)J[U (·)] = E
∫ ∞

0
e−ρtG[X (t),U (t)] dt

where a.s. stands for almost surely.where G is the running cost of inventory/backlog and produc-
tion and � � 0 is the discount rate. The problem is to find an We are interested in the martingale theory because of its
admissible control U( � ) that minimizes J[U( � )]. strong connection with stochastic calculus and because of the

properties that the processes defined previously have. The
A noise that appeared in the above example is described first property that we illustrate is the Doob–Kolmogorov in-

by a Wiener process. A Wiener process plays a very important equality that tells how (and when) one can get information
and exceptional role in stochastic control theory. It is useful about a family of ordered, random variables based on the
for modeling disturbances which corrupt transmitted infor- knowledge of the last one:
mation and also for modeling controlled system disturbances.
A Wiener process also occurs in the Kalman–Bucy filter (33). Theorem 3. Let (Y(t), F t, t � [0, T]) be a submartingale (with
It became as a model of Brownian motion, very popular in right continuous sample paths). Then
physics since Einstein’s and Smoluchowski’s work, but it is
not well known that it appeared for the first time in the scien-
tific literature as a model of a price process in Bachelier’s
Ph.D. dissertation in 1900.

P

[
sup

t∈[0,T ]
Y (t) � x

]
�

1
x

E[Y +(T )] (4)

where x � 0 and Y�(T) � max(Y(T), 0).
PRELIMINARY RESULTS

One of the consequences of this result is the martingale
We shall assume that (�, F , P) is a probability space and convergence theorem which is commonly used in proving con-
that �F t, t � 0� is a nondecreasing, right-continuous family of vergence results for stochastic adaptive control problems.
sub-
-algebras of F . We assume that the filtration (F t) is
complete with respect to P, that is, each F t contains all the Theorem 4. Let (Y(t), F t, t � [0, T]) be a nonnegative sub-
P-null sets of F . martingale. If supt�0E[Y(t)] � � � �, then

Martingales as Important Tools in Proofs (8,9) lim
t→∞

Y (t) = Y∞ a.s. (5)

A stochastic process is a parametrized collection of random
and E[Y�] � �.variables. We consider collections (and so processes) for which

the parameter t takes values in positive real numbers. It is
The Wiener Process Used for Modeling the Noisecommon to call this kind of process a continuous-time stochas-

tic process. Let us start by introducing the concept of martin- Definition 5. The stochastic process (W(t), t � 0) is a
gale. The intuitive idea of martingale is related to the descrip- Brownian motion (or a Wiener process) if
tion of a fair game: we are in fact in a situation in which the (1) W(0) � 0;
fortune expected after a certain time is exactly equal to what (2) for t � 0, W(t � s) � W(t) is a random variable that is
we have. Then we define this fair game. normally distributed with mean zero and variance 
2s where


2 is a constant; and
Definition 1 A stochastic process (X(t), t � 0) is a martin- (3) the process has independent increments (i.e., if 0 � t1
gale with respect to the increasing family of 
-algebras (F t, � t2 � � � � tn, then W(t2) � W(t1), W(t3) � W(t2), . . .,
t � 0) if W(tn) � W(tn�1) are mutually independent random variables).

(1) X(t) is F t measurable;
(2) E��X(t)�� � � for every t � 0; If 
2 � 1, then the process is called standard Brownian
(3) if s � t, then motion.

The following result provides important information about
E[X (t)|Fs] = X (s) a.s. (1) the quadratic variation of the Wiener process:
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Theorem 6. Consider a family of partitions �Pn��
n�1 of [0, T] gration (in Itô’s sense) satisfactorily. We start by defining the

integral for simple processes:where Pn � �tn
i �0 � i � n, 0 � tn

0 � tn
1 � � � � � tn

n � T� with
Pn � Pn�1 for all n and such that �Pn��

n�1 is dense in [0, T] (i.e.,
limn�� [supi(tn

i�1 � tn
i )] � 0). Let W(t), t � 0] be a standard Definition 10 Let F t be the 
-algebra generated by [W(s),

s � t]. We call ��(t), t � [0, T]� a simple process, if there is aBrownian motion process. Then
partition 0 � t0 � t1 � � � � � tn � T such that

φ(t) = ϕ j t ∈ [t j , t j+1) (11)lim
n→∞

n−1∑
i=0

[W (tn
i+1) − W (tn

i )]2 = T a.s. (6)

and �j is measurable with respect to F tj
.and

Define the stochastic integral for simple processes when t
� [tj, tj�1) aslim

n→∞ E

{
n−1∑
i=0

[W (tn
i+1) − W (tn

i )]2 − T

}2

= 0 (7)

that is �n�1
i�0 (W(tn

i�1) � (W(tn
i ))2 converges to t both almost

surely and in L2.

∫ t

0
φ(s) dW (s) =

j−1∑
i=0

ϕi[W (ti+1) − W (t j )] + ϕ j[W (t) − W (t j )]

(12)

It follows from this result that almost every sample path Note that the integral is linear and continuous (almost
of a Brownian motion process has infinite arc length on every surely) in t. We want to preserve these properties and at the
nonempty closed interval. Moreover it follows that there is same time we want to extend the class of functions that we
not a closed interval in which Brownian motion is differenti- can integrate. To do this, we need the following result:
able (otherwise by the mean value theorem we would have
convergence to zero). Much more than this is true: Proposition 11. Let ��(t), t � [0, T]� be a process adapted

to F t, t � [0, T]� such that
Theorem 7. Almost all sample paths of the Wiener process
are nowhere differentiable.

∫ T

0
φ2(s) ds < ∞ a.s. (13)

Let us give another important result about the sample
path behavior of the Wiener process: Then there is a sequence of simple processes �n�(t), t � [0,

T]� such that for every 	 � 0
Theorem 8. The strong law of large numbers for Brownian
motion:

lim
n→∞ P

[∫ T

0
|nφ(t) − φ(t)|2 dt > ε

]
= 0 (14)

lim
t→∞

W (t)
t

= 0 a.s. (8)
Now if we define Yn as the integral of the simple process

n�, that is,
If (W(t), t � 0) is a Brownian motion process with continu-

ous sample paths and we let F t be the 
-algebras generated
by [W(s), s � 0], it follows from the independence of incre- Yn(t) =

∫ t

0

nφ(s) dW (s) (15)
ments property of Brownian motion that �W(t), F tt � [0, T]�
is a square integrable martingale with continuous sample then using Proposition 11, the family Yn converges to a pro-
paths. The converse of this statement is true: cess Y uniformly in probability. Note that the uniform conver-

gence and the continuity of sample paths for Yn imply the
Theorem 9. If �W(t), F t, t � [0, T]� is a square integrable continuity of the sample paths of the process Y. Now we can
martingale with continuous sample paths such that for t � s define the stochastic integral as follows:

E{[W (t) − W (s)]2 | Fs} = t − s (9) ∫ t

0
φ(s) dW (s) = Y (t) (16)

then �W(t), t � [0, T]� is a Brownian motion process.

The construction does not depend on the sequence of simple
Stochastic Integrals processes used, and the integral is unique up to indistinguish-

ability, that is, ifIn this section we define the stochastic integral ∫ t

0
φ(s) dW (s) = Y (t) (17)

∫ t

0
φ(s) dW (s) (10)

andThe unbounded variation property of Brownian motion sam-
ple paths described in the previous section does not allow us
to use the definition of the Riemann–Stieljes integral. Never-
theless by proceeding similarly we can define stochastic inte-

∫ t

0
φ(s)dW (s) = Z(t) (18)
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then P�Y(t) � Z(t) for all t � [0, T]� � 1. The following result We mentioned previously that we shall present the differ-
ential rule that we must use in stochastic calculus. This ruleis the strong law of large numbers for stochastic integrals

(22). was introduced by Itô.

Theorem 12. Let (W(t), t � 0) be a standard Wiener process, Theorem 14. (Itô’s Lemma). For i � 1, 2, . . ., k let ( fi(t), t
and let F t be the 
-algebra generated by (W(s), s � t). Let � [0, T]) and (gi(t), t � [0, T]) be two processes adapted to
( f(t), t � 0) be a random process adapted to (F t, t � 0) such (F t, t � [0 � t]) such that
that for 0 � T � � ∫ T

0
f 2(s) ds < ∞ a.s. (26)∫ T

0
f 2(t) dt < ∞ a.s. (19)

and

∫ T

0
g2(s) ds < ∞ a.s. (27)

and let F : �k�1 � � be twice continuously differentiable in the
first k variables and continuously differentiable in the last

∫ ∞

0
f 2(t)dt = ∞ a.s. (20)

variable. Let
Then

dXi(t) = gj (t)dt + fi(t) dW (t) (28)

and

Y (t) = F[X1(t), . . ., Xk(t), t] (29)

lim
T→∞

∫ T

0
f (t) dW (t)∫ T

0
f 2(t) dt

= 0 a.s. (21)

Then
An interesting feature of the stochastic integral is that it

does not satisfy the ordinary calculus rules of integration. A
standard example of this situation is the fact that dY (t) =

k∑
i=1

Fi dXi(t) +
[

1
2

k∑
i, j=1

Fij fi(t) f j(t) + Fk+1

]
dt (30)

where

∫ t

0
W (s) dW (s) = W2(t)

2
− t

2
(22)

This is a consequence of the fact that Brownian motion has
nonzero quadratic variation (Theorem 6). We see in the next
section the differential rule that is to be used in stochastic
calculus.

Fi = ∂F
∂Xi

[X1(t), . . ., Xk(t), t]

Fij = ∂2F
∂Xi∂Xj

[X1(t), . . ., Xk(t), t]

Stochastic Differential Equations (7) and
In the previous section we introduced the concept of stochas-
tic integration. Now we can use it to define stochastic differ- Fk+1 = ∂F

∂t
[X1(t), . . ., Xk(t), t]

ential equations. In fact we say that �X(t), t � [0, T]� is a
solution for the stochastic differential equation

i, j � 1, . . ., k.
dX (t) = a[t, X (t)] dt + σ [t,X (t)] dW (t), X (0) = X0 (23)

THE FILTERING PROBLEM (7)if for every t � [0, T] it satisfies the following equation

Example 1 previously given is a special case of the following
general filtering problem:X (t) = X0 +

∫ t

0
a[u, X (u)] du +

∫ t

0
σ [u,X (u)] dW (u) (24)

Suppose that the state X(t) � �n of a system at time t is
given by a stochastic differential Eq. (23).We have the following result about the existence and unique-

We assume that the observations H(t) � �m are performedness of the solution:
continuously and are of the form

Theorem 13. If a(t, x) and 
(t, x) are continuous in t and sat-
H(t) = c[t, X (t)] + γ [t,X (t)]Ẇ (t) (31)isfy the Lipschitz condition in x uniformly in t, that is, for

every t � [0, T]
where c : �n�1 � �m, � : �n�1 � �m�r are functions satisfying
Eq. (25) and Ẇ(t) denotes r-dimensional white noise. If we
introduce

|a(t, x) − a(t, y)| + |σ (t, x) − σ (t, y)| � K|x − y|, K ∈ R
(25)

then the solution to the stochastic differential Eq. (23) exists
and it is unique (up to indistinguishability).

Z(t) =
∫ t

0
H(s) ds (32)
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then where

S(t) = E{[X (t) − X̂ (t)]2}dZ = c[t, X (t)] dt + γ [t, X (t)] dW (t)

Z(0) = 0
(33)

satisfies the (deterministic) Riccati equation
where W(t) is an r-dimensional Wiener process.

Note that if H(s) is also known for 0 � s � t, then Z(s) is
also known for 0 � s � t and vice versa. So no information is
lost or gained by considering Z(t) as our observations instead

dS
dt

= 2F(t)S(t) − G2(t)
D2(t)

S2(t) + C2(t),

S(0) = E{(X0 − E[X0])2}
(40)

of H(t), but this allows us to obtain a well-defined mathemati-
cal model of the situation.

Example 5. Estimation of a parameter. Suppose we want toThe filtering problem is the following:
estimate the value of a (constant) parameter � based on ob-Given the observations Z(s) satisfying Eq. (33) for 0 � s �
servations Z(t) satisfying the modelt, what is the best estimate X̂(t) of the state X(t) of the system

Eq. (23) based on these observations? dZ(t) = αX (t)dt + σ (t) dW (t)
By saying that the estimate X̂(t) is based on the observa-

tions �Z(s) : s � t�, we mean that where X(t), 
(t) are known functions. In this case the stochas-
tic differential equation for � is of course

dα = 0

X̂ (t) is Ft-measurable,

where Ft is the σ -algebra generated by {Z(s), s � t} (34)

By saying that X̂(t) is the best such estimate, we mean that so the Riccati equation for S(t) � E�[� � �̂(t)]2� is

dS
t

= −
[

X (t)S(t)
σ (t)

]2
∫




|X (t) − X̂ (t)|2 dP = E[|X (t) − X̂ (t)|2]

= inf{E[|X (t) = Y |2] : Y ∈ Y } (35)

which gives
where

Y := {Y : 
 → R
n ; Y ∈ L2(P) and Y is Ft-measurable}, (36) S(t) =

[
S−1

0 +
∫ t

0
X (s)2σ (s)−2 ds

]−1

where L2(P) � L2(�, P) and (�, F , P) is a probability space.
One of the most important results is the following: and the Kalman–Bucy filter is given by

X̂ (t) = E[X (t)|Ft] dα̂(t) = X (t)S(t)
σ (t)2

[dZ(t) = X (t)α̂(t)]

This is the basis for the general Fujisaki–Kallianpur-
This can be written asKunita equation of filtering theory. See, for example, Ref. 34.

Here we concentrate on the linear case, which allows an
explicit solution in terms of a stochastic differential equation
for X̂(t) (the Kalman–Bucy filter):

In the linear filtering problem the system and observation

S−1
0 +

∫ t

0
X (s)2σ (t)−2 dα̂(t) + X (t)2σ (t)−2α̂ dt

= X (t)σ (t)−2 dZ(t)
equations have the following form:

We recognize the left-hand side as
(linear system) dX (t) = F(t)X (t)dt + C(t) dW (t);

F(t) ∈ Rn×n, C(t) ∈ Rn×p (37) d
{[

S−1
0 +

∫ t

0
X (s)2σ (t)−2 ds

]
α̂(t)

}

so

(linear observations) dX (t) = G(t)X (t)dt + D(t) dV (t);
G(t) ∈ Rm×n , D(t) ∈ Rm×r (38)

Theorem 15. The One-Dimensional Kalman–Bucy Filter.
The solution X̂(t) � E[X(t)�F t] of the one-dimensional linear
filtering problem

α̂ =
α̂0S−1

0 +
∫ t

0
X (s)σ (s)−2 dZ(s)

S−1
0

+
∫ t

0
X (s)2σ (t)−2 ds

This estimate coincides with the maximum likelihood esti-
mate in the classical estimation theory if S�1

0 � 0. See (22).

For more information about estimates of drift parameters

(linear system) dX (t) = F(t)X (t) dt + C(t) dW (t);
F(t),C(t) ∈ R

(linear observations) dZ(t) = G(t)X (t)dt + D(t) dV (t);
G(t), D(t) ∈ R

in diffusion, see the next section.
satisfies the stochastic differential equation

Theorem 16. The Multidimensional Kalman–Bucy Filter.
The solution

X̂ (t) = E[X (t)|Ft]

dX̂ (t) =
[
F(t) − G2(t)S(t)

D2(t)

]
X̂ (t) dt + G(t)S(t)

D2(t)
dZ(t)

X̂0 = E[X0]
(39)
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of the multidimensional linear filtering problem tion of the following stochastic differential equation:

dX (t) = a
[
t, X (t),U (t)] dt + σ

[
t, X (t),U (t)

]
dB(t)

X (0) = x
(45)

(linear system) dX (t) = F(t)X (t)dt + C(t) dW (t);
F(t) ∈ Rn×n, C(t) ∈ Rn×p

to minimize the objective function (also called the cost func-
tional)

(linear observations) dZ(t) = G(t)X (t)dt + D(t) dV (t);
G(t) ∈ Rm×n , D(t) ∈ Rm×r

satisfies the stochastic differential equation J(x,U ) = Ex

{∫ T

0
L

[
s, X (s),U (s)

]
ds + ψ

[
X (T )

]}
(46)

where the admissible choices of the controls are all of the

dX̂ (t) = [F − SGT (DDT )−1G]X̂ (t) dt + SGT (DDT )−1dZ(t) :

X̂ (0) = E[X0]
smooth functions of the observations of X(t). We define the
Hamilton–Jacobi–Bellman equation of dynamic program-where
ming as

S(t) := E
{
[X (t) − X̂ (t)][X (t) − X̂ (t)]T} ∈ Rn×n

∂W
∂s

+ min
{

A U
s W + L(s, X ,U )

} = 0 (47)
satisfies the matrix Riccati equation

where W(T, x) � Es,x�[X(T)] is the value function and (A t, t �
0) is the infinitesimal generator of the semigroup associated
with the stochastic differential Eq. (45). The following result

dS
dt

= FS + SFT − DGT
(DDT

)−1GS + CCT

S(0) = E
({X (0) − E[X (0)]}{X (0) − E[X (0)]}T)

is known as the verification theorem

The condition on D(t) � �m�r is now that D(t)D(t)T is invertible
Theorem 17. Let W(s, y) be a solution of Eq. (47) such thatfor all t and that [D(t)D(t)T]�1 is bounded on every bounded
W � C 2(Q) and it is continuous on the closure of Q, (we sayt-interval.
W is a smooth function). Then

(1) W(s, y) � J(s, y, U) for any admissible control U and
A similar solution can be found for the more general situa- any initial condition (s, y) � Q; and

tion (2) if U* is an admissible control such that

A U∗
s W + L(s, y,U∗ ) = min

v∈U

{
A U

s W + L(s, y, v)
}

(48)

for all (s, y) � Q, then

(system) dX (t) = [F0(t) + F1(t)X (t) + F2(t)Z(t)] dt
+C(t) dW (t)

(observations) dZ(t) = [G0(t) + G1(t)X (t) + G2(t)Z(t)] dt
+ D(t) dV (t)

W (s, y) = J(s, y,U∗ ) (49)
where X(t) � �n, Z(t) � �m and B(t) � [W(t), V(t)] is (n � m)-
dimensional Brownian motion with appropriate dimensions Remark. U* is an optimal control.
on the matrix coefficients. See (34), which also treats the non-
linear case. The Linear Stochastic Gaussian Problem (7,11)

For various applications of filtering theory see Ref. 33.
Suppose that the state X(t) of the system at time t is given by
the following linear stochastic differential equation:

STOCHASTIC CONTROL (7,10,11,36)

Let (X(t), t � 0) be the solution of the stochastic differential

dX (t) = [
H(t)X (t) + M(t)U (t)

]
dt + σ (t) dB(t)

t � s; X (s) = x
(50)

Eq. (23) with X(0) � x. Let f be a bounded, continuous func-
and the cost has the formtion, and let T be the operator defined by

(Tt f )(x) = Ex{ f [t, X (t)]} (41)

This operator satisfies the semigroup property

Tt (Ts f )(x) = (Tt+s f )(x) (42)

Ju(s, x) = Es,x{∫ t1

s

[
X (t)TC(t)X (t) + U (t)T D(t)U (t)

]
dt + X (t1)T RX (t1)

}

s � t1 (51)

If we differentiate this operator, where all the coefficients H(t) � �n�n, M(t) � �n�k, 
(t) �
�n�m, C(t) � �n�n, D(t) � �k�k, and R � �n�n, are t-continuous
and deterministic. We assume that C(t) and R are symmetric,lim

h↓0

Tt+h − Tt

h
= At (43)

nonnegative-definite and D(t) is symmetric, positive-definite,
for all t. We also assume that t1 is a deterministic time.

where A t is an operator that acts on f in the following way: [B(t), t � 0] is a standard Brownian motion.
Then the problem is to choose the control u � u[t, X(t)] so

that it minimizes Ju(s, x). We may interpret this as follows:At f (x) = a(t,x)
∂ f
∂x

(x) + 1
2

σ 2(t,x)
∂2 f
∂x2 (x) (44)

The aim is to find a control u which makes �X(t)� (� � denotes
the norm) small quickly and so that the energy used (�uT(A t, t � 0) is called the infinitesimal generator of the semi-

group (Tt, t � 0). Consider the problem of controlling the solu- Du) is small. The sizes of C(t) reflects the cost of large values
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of �X(t)�, whereas the size of D(t) reflects the cost (energy) of tion of the unknown parameters and adaptive control. Maxi-
mum likelihood (or equivalently least squares) estimates areapplying large values of �u(t)�.

In this case the HJB equation for W(s, x) becomes used to identify unknown constant parameters. These esti-
mates are given recursively and are strongly consistent. The
adaptive control is usually constructed by the so-called cer-
tainty equivalence principle, that is, the optimal stationary
controls are computed by replacing the unknown true param-
eter values by the current estimates of these values. Because
the optimal stationary controls are continuous functions of
the unknown parameters, the self-tuning property is verified.
The family of average costs using the control from the cer-

0 = inf
v

{
Fv(s, x) + (LvW )(s, x)

}
= ∂W

∂s
+ inf

v

{
xTC(t)x + vT D(t)v +

n∑
i=1

(H(t)x + M(t)v)i
∂W
∂xi

+1
2

n∑
i, j=1

(σσ T )ij
∂2W

∂xi∂xj

}
for s < t1 (52)

tainty equivalence principle converges to the optimal average
and cost. This verifies the self-optimizing property.

A model for the adaptive control of continuous-time linear
W (t1, x) = xT Rx (53) stochastic systems with complete observations of the state is

described by the following stochastic differential equation:We find a solution W of Eqs. (52)–(53) of the form

dX (t) = [
A(α)X (t) + BU(t)

]
dt + dW (t) (59)W (t, x) = xT S(t)x + a(t) (54)

where S(t) � St � �n�n is symmetric, nonnegative-definite, where X(t) � �n, U(t) � �m.
a(t) � � are both a(t), and S(t) are continuously differentiable
w.r.t. t (and deterministic).

The following
A(α) = A0 +

p∑
i=1

αiAi (60)

u∗(t, x) = −D(t)−1M(t)TS(t)x, t < t1 (55)
Ai � L (�n) i � 0, . . ., p, B � L (�m, �n), (W(t), t � ��) is a
standard �n-valued Wiener process and X0 � a � �n. It isis an optimal control, and the minimum cost is given by
assumed that

(5.A1) A � �p is compact and � � A .
(5.A2) (A(�), B) is reachable for each � � A .W (s, x) = xT S(s)x +

∫ t1

s
tr(σσ TS)t dt, s < t1 (56)

(5.A3) The family (Ai, i � 1, . . ., p) is linearly inde-
pendent.where S(t) satisfies the corresponding Riccati type equation

Let (F t, t � ��) be a filtration such that Xt is measurablefrom linear filtering theory. This formula shows that the ex-
with respect to F t for all t � �� and (W(t), F t, t � ��) is atra cost due to the noise in the system is given by
Brownian martingale. The ergodic, quadratic control problem
for Eq. (59) is to minimize the ergodic cost functional

a(s) =
∫ t1

s
tr(σσ TS)t dt

lim sup
t→∞

1
t

J(X0,U, α, t) (61)
The Separation Principle

The separation principle (5,18) states that if we only have where
partial knowledge of the state X(t) of the system, that is, if
we have only noisy observations

J(X0,U, α, t) =
∫ t

0

[〈QX (s), X (s)〉 + 〈PU (s),U (s)〉] ds (62)
dZ(t) = g(t)X (t)dt + γ (t)dB̃(t) (57)

and t � (0, �), X(0) � X0, Q � L (�n); P � L (�m) are self-at our disposal, then the optimal control u*(t, �) (required to
adjoint and P�1 exists; [X(t), t � ��] satisfies Eq. (59); andbe F t-adapted, where F t is the 
-algebra generated by
[U(t), t � ��] is adapted to (F t, t � ��). It is well known (33)�Z(r) : r � t�), is given by
that, if � is known, then there is an optimal linear feedback
control such thatu∗(t, ω) = −D(t)−1M(t)T S(t)X̂ (t)(ω) (58)

U∗(t) = KX (t) (63)where X̂(t) is the filtering estimate of X(t) based on the obser-
vations �Z(r) : r � t�, given by the Kalman–Bucy filter. Com-

where K � �P�1B*V and V is the unique, symmetric, nonneg-paring with Eq. (55), we see that the stochastic control prob-
ative-definite solution of the algebraic Riccati equationlem in this case splits into a linear filtering problem and a

deterministic control problem.
VA + A∗V − VB∗P−1BV + Q = 0 (64)

LEAST SQUARES AND CONTINUOUS-TIME
For an unknown � the admissible adaptive control policiesSTOCHASTIC ADAPTIVE CONTROL (2)
[U(t), t � ��] are linear feedback controls

The general approach to adaptive control described here ex-
hibits a splitting or separation of the problems of identifica- U (t) = K(t)X (t) = K̃

[
t, X (u), u � t − 

]
X (t) (65)
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where [K(t), t � 0] is an L (�n, �m)-valued process that is uni- where (X(t), t � 0) is the solution of Eq. (59) with the admissi-
ble adaptive control [U(t), t � 0] and � � �0 � K and V is theformly bounded and there is a fixed � � 0 such that (K(t), t �

0) is measurable with respect to 
(Xu, u � t � �) for each t � solution of the algebraic Riccati Eq. (64) with � � �0. Then
� and [K(t), t � [0, �)] is a deterministic function. For such
an adaptive control, it is elementary to verify that there is a
unique strong solution of Eq. (59). The delay � � 0 accounts

lim inf
T→∞

1
T

J(X0,U, α0, T ) � tr V a.s. (71)

for some time required to compute the adaptive control law
If U is an admissible adaptive control U(t) � K(t)X(t) suchfrom the observation of the solution of Eq. (59).
thatLet (U(t), t � 0) be an admissible adaptive control and let

[X(t), t � 0] be the associated solution of Eq. (59). Let A (t) �
[aij(t)] and Ã (t) � [ãij(t)] be L (�p)-valued processes such that lim

t→∞
K(t) = k0 a.s. (72)

where k0 � �P�1B*V, then

lim
T→∞

1
T

J(X0,U, α0, T ) = tr V a.s. (73)

aij(t) =
∫ t

0

〈
AiX (s), AjX (s)

〉
ds

ãij(t) = aij(t)
aii(t)

Corollary. Under the assumptions of the Proposition, if Eq.To verify the strong consistency of a family of least squares
(72) is satisfied, then Eq. (69), and (70) are satisfied.estimates, it is assumed that

The previous results can be combined for a complete solu-lim inf
t→∞

| det Ã (t)| > 0 a.s.
tion to the stochastic adaptive control problem Eqs. (59, 61).

The estimate of the unknown parameter vector at time t,
Theorem 20. Assume that (5.A1–5.A4) are satisfied. Let�̂(t), for t � 0 is the minimizer for the quadratic functional of
[�̂(t), t � 0] be the family of least squares estimates where�, L(t, �), given by
�̂(t) is the minimizer of Eq. (66). Let [K(t), t � 0] be an admis-
sible adaptive control law such that

K(t) = −P−1B∗V
[
α̂(t − )

]L(t, α) = −
∫ t

0

〈
[A(α) + BK(s)]X (s), dX (s)

〉
+ 1

2

∫ t

0

∣∣[A(α) + BK(s)]X (s)
∣∣2 ds

(66)

where V(�) is the solution of Eq. (64) for � � A . Then the
family of estimates (�̂(t), t � 0) is strongly consistent.where U(s) � K(s)X(s) is an admissible adaptive control. The

following result (31) gives the strong consistency of these lim
t→∞

K(t) = k0 a.s. (74)
least squares estimators.

where k0 � �P�1B*V(�0), andTheorem 18. Let (K(t), t � 0) be an admissible adaptive feed-
back control law. If (5.A1–5.A4) are satisfied and �0 � A �,
the interior of A , then the family of least squares estimates lim

T→∞
1
T

J(X0,U, α0, T ) = tr V a.s. (75)
[�̂(t), t � 0] where �̂(t) is the minimizer of Eq. (66), is strongly
consistent, that is,

WEIGHTED LEAST SQUARES AND CONTINUOUS-TIME
ADAPTIVE LQG CONTROL (30)Pα0

[
lim
t→∞

α̂(t) = α0

]
= 1 (67)

where �0 is the true parameter vector. Introduction

The linear, Gaussian control problem with an ergodic, qua-The family of estimates [�̂(t), t � 0] can be computed recur-
dratic cost functional is probably the most well-known ergodicsively because this process satisfies the following equation
control problem. Because the optimal control is easily com-
puted and the existence of an invariant measure follows di-
rectly from the stability of the optimal system, it is a basic

dα̂(t) = A −1(t)
〈
A (t)X (t), dX (t) − A[α̂(t)]X (t)dt − BU (t) dt〉

(68)
problem to solve for stochastic adaptive control. For discrete-

where ��(t)x, y� � (�Aix, y�) i � 1, . . ., p. time linear systems it has been studied extensively, especially
Now the performance of some admissible adaptive controls for ARMAX models (see Refs. 6, 28, 37–40 for many refer-

is described. ences). Although this adaptive control problem has been less
studied for continuous-time linear systems, it is nonethelessProposition 19. Assume that (5.A1–5.A4) are satisfied and
an important problem as a model for physical systems thatthat
naturally evolve in continuous time and as an approximation
for discrete-time sampled systems when the sampling rate is
high.lim

t→∞
1
t
〈VX (t),X (t)〉 = 0 a.s. (69)

The adaptive control problem is solved using only the natu-
ral assumptions of controllability and observability. The
weighted least squares scheme is used to obtain the conver-

lim sup
t→∞

1
t

∫ t

0
|X (t)|2 ds < ∞ a.s. (70)
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gence of the family of estimates (self convergence), and the A function f is slowly increasing if it is positive, increasing,
and f (x2) � 0[f (x)] as x � �.scheme is modified by a random regularization to obtain the

uniform controllability and observability of the family of esti- Applying the Itô formula to [XT(t)X(t), t � 0], it is elemen-
tary to verify (31) that for D � 0mates. A diminishing excitative white noise is used to obtain

strong consistency. The excitation is sufficient to include the
identification of unknown deterministic linear systems. lim

t→∞
r(t) = ∞ a.s.

This approach eliminates some other assumptions pre-
viously used that are unnecessary for the control problem for

If D � 0, then the diminishing excitation used subsequentlya known system and are often difficult to verify. Furthermore,
implies this result.this approach eliminates the need for random switchings or

The dependence of [�(t), t � 0] on [a(t), t � 0] and theresettings which often occur in previous work.
dependence of [a(t), t � 0] on f are suppressed for notational
convenience.

Weighted Least Squares Identification The following result describes some basic properties of the
WLS algorithm.Let [X(t), t � 0] be the process satisfying the stochastic differ-

ential equation

Proposition 21. Let [�(t), P(t) t � 0] satisfy Eqs. (80)–(81).
dX (t) = AX(t) dt + BU (t) dt + D dW (t) (76) The following properties are satisfied:

where X(0) � X0, X(t) � �n, U(t) � �m, [W(t), t � 0] is an �p-
valued standard Wiener process, and [U(t), t � 0] is a control (1) sup

t�0
|P−1/2(t)θ̃ (t)|2 < ∞ a.s. (85)

from a family specified subsequently. The random variables
are defined on a fixed, complete probability space (�, F , P),
and there is a filtration (F t, t � 0) defined on this space that

(2)
∫ ∞

0
a(t)|θ̃T(t)ϕ(t)|2 dt < ∞ a.s. (86)

is specified subsequently. It is assumed that A and B are un- (3) lim
t→∞ θ(t) = θ̄ a.s. (87)

known.
The following assumption is made:

where �̃(t) � �(t) � � and �̄ is a matrix-valued random(A1) (A, B) is controllable.
variable.To describe the identification problem in a standard form,

let
Define �̄(t, x) as

θT= [A B] (77)

θ (t,x) = θ(t) − P1/2(t)x
and

and
ϕ(t) =

[
X (t)
U (t)

]
(78)

θ
T

(t, x) = [A(t,x) B(t, x)]

so that Eq. (76) is rewritten as
A well-known test for controllability of (A, B) is the positivity
of F wheredX (t) = θTϕ(t) dt + D dW (t) (79)

A family of weighted least squares (WLS) estimates [�(t),
t � 0] is given by F(t, x) = det

[
n−1∑
i=0

Ai(t, x)B(t, x)BT(t, x)AiT(t, x)

]

dθ(t) = a(t)P(t)ϕ(t)[dXT(t) − ϕT(t)θ (t) dt] (80)
and similarly a test for observability of (A, C) is the positivity
of G wheredP(t) = −a(t)P(t)ϕ(t)ϕT(t)P(t)dt (81)

where �(0) is arbitrary, P(0) � 0 is arbitrary
G(t, x) = det

[
n−1∑
i=0

AiT(t, x)CTCAi(t, x)

]
a(t) = 1

f [r(t)]
(82)

The linear transformation C is known. For the adaptive con-
trol problem, C � Q1/2

1 where Q1 determines the quadraticr(t) = e +
∫ t

0
|ϕ(s)|2 ds (83)

form of the state in the cost functional.
A random search method ensures uniform controllability

and f � �.
and observability of a family of estimates. Let (�n, n � �) be
a sequence of independent, identically distributed M (n �
m,n)-valued random variables that is independent of [W(t),
t � 0] so that each random variable �n is uniformly distrib-
uted in the unit ball or the unit sphere for a norm of the
matrices. Define a sequence of M (n � m,n)-valued random

F =
{

f | f : R+ → R+, f is slowly increasing

and
∫ ∞

c

dx
x f (x)

< ∞ for some c � 0
}

(84)



STOCHASTIC SYSTEMS 553

variables by induction as follows: If �(t) is given by

�(t) = A(t) − B(t)Q−1
2 BT (t)R(t)

and

β0 = η0

βk =
{

ηk if f (k, ηk) � (1 + γ ) f (k, βk−1)

βk−1 otherwise
�(∞) = A(∞) − B(∞)Q−1

2 BT (∞)R(∞)

where � � (0, �2 � 1) is fixed and f (k, x) � F(k, x)G(k, x). By then
the compactness of the unit ball or the unit sphere and the
continuity of F(k, � ) and G(k, � ) for k � �, it follows that the lim

t→∞
�(t) = �(∞)

sequence (�k, k � �) terminates after some random integer so
there is a �� such that and �(t) and �(�) are stable a.s.

The lagged certainty equivalence control is
β∞ = lim

k→∞
βk a.s.

U (t) = −Q−1
2 BT (t)R(t)X (t) (91)

Define a family of estimates [�̂(t), t � 0] as It is called ‘‘lagged’’ because B(t) and R(t) depend on X(s) and
�j for s � t and j � t. This follows easily by induction recalling
the construction of (�̂(t), t � 0), that is,θ̂ (t) = θ̄k t ∈ (k,k + 1] (88)

[B(t), R(t)] = [B(0),R(0)]where k � � and

for t � [0, 1],
θ̄k = θ(k) − P1/2(k)βk (89)

[B(t), R(t)] = (Bk, Rk)

It is clear from Eqs. (81) and (87) that [�̂(t), t � 0] converges
for t � (k, k � 1], and �k � [Ak, Bk]� is given by Eq. (89).a.s. For notational simplicity the dependence on (�k, k � �)

To obtain strong consistency for the family of estimatesin Eq. (88) is suppressed so that
(�̂(t), t � 0), a diminishing excitation is added to the adaptive
control Eq. (91), that is,

θ̂T(t) = [A(t) B(t)]
dU (t) = Lk dX (t) + γk dV (t) (92)

Theorem 22. If (�̂(t), t � 0) is the family of estimates given
for t � (k, k � 1] and k � � where U(0) is arbitrary,by Eq. (88), (A, B) in Eq. (76) is controllable, and (A, Q1/2

1 ) is
observable, then for any admissible control [U(t), t � 0], Lk = −Q−1

2 B(k)R(k)
[�̂(t), t � 0] has the following properties a.s.:

(1) self-convergence, and
(2) uniform controllability and observability, and
(3) semiconsistency.

γ 2
k = log k√

k
Adaptive Control

for k � 1. The process [V(t), t � 0] is an �m-valued standard
Consider the following ergodic cost functional for the system Wiener process that is independent of [W(t), t � 0] and (�k, k
Eq. (76): � �). As noted before, it easily follows that there is a matrix-

valued random variable L such that

lim
k→∞

Lk = L a.s.J(U ) = lim sup
T→∞

1
T

∫ T

0
[X T (t)Q1X (t) + UT (t)Q2U (t)] dt (90)

The sub-
-algebra F t is the P-completion of 
[X0, W(s), �j,where [U(t), t � 0] is an admissible control, Q2 � 0,
V(s); s � t, j � t].and Q1 � 0.

The state X(t) is augmented with the control U(t) as fol-The following assumption is made:
lows:(A2) (A, Q1/2

1 ) is observable.
The stochastic algebraic Riccati equation

AT (t)R(t) + R(t)A(t) − R(t)B(t)Q−1
2 BT (t)R(t) + Q1 = 0

has a unique, random, symmetric, positive solution R(t) a.s.
where [A(t) B(t)] � �̂�(t). Because the solution of the algebraic
Riccati equation is a smooth function of the parameters of the
equation, there is a symmetric, positive L (�n)-valued random
variable R(�) such that

lim
t→∞

R(t) = R(∞) a.s.

ϕ(t) =
[

X (t)
U (t)

]

Fk =
[

A B
LkA LkB

]

Gk =
[

D 0
LkD γkI

]

ξ (t) =
[

W (t)
V (t)

]
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sition are satisfied if D � 0 so that the identification of deter- demic Press, 1970.
ministic systems is included in this result. 14. R. C. Merton, Continuous-Time Finance, Cambridge, MA: Black-

well, 1990.
Because the family of estimates [�̂(t), t � 0] is strongly con- 15. T. E. Duncan and H. Upmeier, Stochastic control problems and

sistent, the self-optimality of the diminishingly excited lagged spherical functions on symmetric spaces, Trans. Amer. Math. Soc.,
certainty equivalence control Eq. (92) can be verified. 347: 1083–1130, 1995.

16. W. H. Fleming and H. M. Soner, Controlled Markov Processes and
Theorem 24. Let (A1) and (A2) be satisfied for the stochastic Viscosity Solutions, New York: Springer Verlag, 1993.
system 17. H. P. McKean, Stochastic Integrals, New York: Academic Press,

1969.
18. R. J. Elliott, Stochastic Calculus and Applications, New York:dX (t) = AX(t) dt + BU (t) dt + D dW (t)

Springer Verlag, 1982.
with the cost functional Eq. (90) where A and B are unknown. 19. I. I. Gihman and A. V. Skorohod, Controlled Stochastic Processes,
If the admissible adaptive control New York: Springer Verlag, 1979.
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