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SYSTEM IDENTIFICATION Figure 1. Results from test flights of the new Swedish aircraft JAS-

Gripen, developed by SAAB Military Aircraft AB, Sweden. From
The process of going from observed data to a mathemathical above (a) Pitch rate, (b) Elevator angle, (c) Canard angle, (d) Leading
model is fundamental in science and engineering. In the con- edge flap.
trol area, this process has been termed system identification,
and the objective is then to find dynamical models (difference
or differential equations) from observed input and output sig- ber is a quality property that in this context can be seen as a
nals. Its basic features are, however, common with general marker allowing us to trace the pulp.)
model building processes in statistics and other sciences.

System identification covers the problem of building mod- So, the bottom line of these examples is that we have col-
els of systems when insignificant prior information is avail- lected input–output data from a process or a plant, and we
able and when the system’s properties are known, up to a few need to extract information from these to find out (something
parameters (physical constants). Accordingly, one talks about about) the process’ dynamical properties.
black-box and gray-box models. Among black-box models,
there are familiar linear models such as ARX and ARMAX,

BACKGROUND AND LITERATUREand among nonlinear black-box models we have, for example,
artificial neural networks (ANN).

System identification has its roots in standard statistical
techniques, and many of the basic routines have direct inter-

THE PROBLEM pretations as well-known statistical methods such as least
squares and maximum likelihood. The control community

The area of system identification begins and ends with real took an active part in the development and application of
data. Data are required to build and to validate models. The these basic techniques to dynamic systems right after the
result of the modeling process can be no better than what birth of modern control theory in the early 1960s. Maximum
corresponds to the information contents in the data. likelihood estimation was applied to different equations

Look at two data sets: (ARMAX models) by Ref. 1, and thereafter, a wide range of
estimation techniques and model parameterizations flour-

Example 1 An Unstable Aircraft ished. By now, the area is well matured with established and
Figure 1 shows some results from test flights of the new well understood techniques. Industrial use and application of
Swedish aircraft, JAS-Gripen, developed by SAAB Military the techniques has become standard. See Ref. 2 for a common
Aircraft AB, Sweden. The problem is to use the information software package.
in these data to determine the dynamical properties of the The literature on system identification is extensive. For a
aircraft for fine-tuning regulators, for simulations, and so on. practical user oriented introduction, we may mention (3).
Of particular interest are the aerodynamical derivatives. Texts that go deeper into the theory and algorithms include

Refs. 4 and 5. A classical treatment is Ref. 6.
These books all deal with the ‘‘mainstream’’ approach toExample 2 Vessel Dynamics

Figure 2 shows data from a pulp factory. They are collected system identification, as described in this article. In addition,
there is substantial literature on other approaches, such asfrom one of the buffer vessels. The problem is to determine

the residence time in the vessel. The pulp spends about 48 h ‘‘set membership’’ (compute all those models that reproduce
the observed data within a certain given error bound), estima-total in the process, and knowing the residence time in the

different vessels is important in order to associate various tion of models from given frequency response measurement
(7), on-line model estimation (8), non-parametric frequencyportions of the pulp with the different chemical actions that

have taken place in the vessel at different times. (The �-num- domain methods (9), etc. To follow the development in the

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.
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The problem can be expressed as finding that model in the
candidate set, that best describes the data, according to the
criterion, and then evaluate and validate that model’s proper-
ties. To do this we need to penetrate a number of things:

1. First, we give a preview of the whole process, as applied
to the simplest set of candidate models.

2. Then, at some length, we display and discuss the most
common sets of candidate models used in system identi-
fication. In general terms, a model will be a predictor of
the next output y(t) from the process, given past obser-
vations Zt�1, and parameterized in terms of a finite-di-
mensional parameter vector �:

ŷ(t|θ ) = g(θ, Zt−1) (1)

3. We then discuss the criterion of fit for general model
sets. This will have the character

VN (θ ) =
∑

y(t) − ŷ(t|θ ) 2 (2)

We also discuss how to find the best model (minimize
the criterion) and how to assess its properties.

4. We shall describe special methods for linear black-box
models. This includes frequency analysis, spectral anal-
ysis and so called subspace methods for linear state-
space models.

5. We then turn to the practical issues of system identifi-
cation, to assure good quality of the data by proper ex-
periment design, how to decide upon a good model
structure, and how to deal with the data.

DISPLAYING THE BASIC IDEAS: ARX MODELS
AND THE LINEAR LEAST SQUARES METHOD

The Model
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We shall generally denote the system’s input and output at
Figure 2. From the pulp factory at Skutskär, Sweden. The pulp time t by u(t) and y(t), respectively. Perhaps the most basic
flows continuously through the plant via several buffer tanks. From

relationship between the input and output is the linear differ-above: (a) the �-number of the pulp flowing into a buffer vessel, (b)
ence equationthe �-number of the pulp coming out from the buffer vessel, (c) flow

out from the buffer vessel, and (d) level in the buffer vessel.
y(t) + a1y(t − 1) + . . . + any(t − n)

= b1u(t − 1) + . . . + bmu(t − m) (3)

field, the IFAC series of Symposia on System Identification
We have chosen to represent the system in discrete time, pri-[Budapest, Hungary (1991), Copenhagen, Denmark (1994),
marily since observed data are always collected by sampling.Fukuoka, Japan (1997)] is also a good source.
It is thus more straightforward to relate observed data to dis-
crete time models. Nothing prevents us, however, from work-
ing with continuous time models: we shall return to thatOUTLINE
later.

In Eq. (3), we assume the sampling interval to be one timeThe system identification procedure is characterized by four
unit. This is not essential but makes notation easiser.basic ingredients:

A pragmatic and useful way to see Eq. (3) is to view it as
a way of determining the next output value given previous

1. The observed data observations
2. A set of candidate models

3. A criterion of fit

4. Validation

y(t) = −a1y(t − 1) − . . . − any(t − n)

+ b1u(t − 1) + . . . + bmu(t − m) (4)



SYSTEM IDENTIFICATION 265

For more compact notation, we introduce the vectors Once the vectors �(t) are defined, the solution can easily be
found by modern numerical software, such as MATLAB, see
Ref. 2.θ = [a1, . . ., an, b1, . . ., bm]T (5)

ϕ(t) = [−y(t − 1) . . . − y(t − n)u(t − 1) . . . u(t − m)]T (6) Example 3 First-Order Difference Equation
Consider the simple model

With these, Eq. (4) can be rewritten as

y(t) + ay(t − 1) = bu(t − 1)
y(t) = ϕT(t)θ

This gives us the estimate according to Eqs. (5), (6) and (13)
To emphasize that the calculation of y(t) from past data [Eq.
(4)] indeed depends on the parameters in �, we shall rather
call this calculated value ŷ(t��) and write

ŷ(t|θ ) = ϕT(t)θ (7)

[
âN

b̂N

]
=

[∑
y2(t − 1) − ∑

y(t − 1)u(t − 1)

− ∑
y(t − 1)u(t − 1)

∑
u2(t − 1)

]−1

[
− ∑

y(t)y(t − 1)∑
y(t)u(t − 1)

]
The Least Squares Method

All sums are from t � 1 to t � N. A typical convention is toNow suppose for a given system that we do not know the val-
take values outside the measured range to be zero. In thisues of the parameters in �, but that we have recorded inputs
case, we would thus take y(0) � 0.and outputs over a time interval 1 � t � N:

The simple model in Eq. (3) and the well-known leastZN = {u(1),y(1), . . ., u(N),y(N)} (8)
squares method in Eq. (13) form the archetype of system iden-
tification. Not only that, they also give the most commonlyAn obvious approach is then to select � in Eqs. (3) through (7)
used parametric identification method and are much moreso as to fit the calculated values ŷ(t��) as well as possible to
versatile then perhaps perceived at first sight. In particular,the measured outputs by the least squares method:
one should realize that Eq. (3) can directly be extended to
several different inputs [this just calls for a redefinition ofmin

θ
VN (θ, ZN ) (9)

�(t) in Eq. (6)] and that the inputs and outputs do not have
to be the raw measurements. On the contrary, it is often most

where important to think over the physics of the application and
come up with suitable inputs and outputs for Eq. (3), formed
from the actual measurements.

Example 4 An Immersion Heater
Consider a process consisting of an immersion heater im-
mersed in a cooling liquid. We measure

V (θ, ZN ) = 1
N

N∑
t=1

(y(t) − ŷ(t|θ ))2

= 1
N

N∑
t=1

(y(t) − ϕT (t)θ )2

(10)

We shall denote the value of � that minimizes Eq. (9) by �̂N: • v(t): the voltage applied to the heater
• r(t): the temperature of the liquid
• y(t): the temperature of the heater coil surface

θ̂N = arg min
θ

VN (θ, ZN ) (11)

(arg min means the minimizing argument, i.e., that value of Suppose we need a model for how y(t) depends on r(t) and
� which minimizes VN.) v(t). Some simple considerations based on common sense and

Since VN is quadratic in �, we can find the minimum value high school physics (‘‘semiphysical modeling’’) reveal the fol-
easily by setting the derivative to zero: lowing:

• The change in temperature of the heater coil over one
sample is proportional to the electrical power in it (the

0 = d
dθ

VN (θ, ZN ) = − 2
N

N∑
t=1

ϕ(t)(y(t) − ϕT (t)θ )

inflow power) minus the heat loss to the liquid.
• The electrical power is proportional to v2(t).which gives
• The heat loss is proportional to y(t) � r(t).

This suggests the model

N∑
t=1

ϕ(t)y(t) =
N∑

t=1

ϕ(t)ϕT (t)θ (12)

y(t) = y(t − 1) + αv2(t − 1) − β(y(t − 1) − r(t − 1))or

which fits into the form

y(t) + θ1y(t − 1) = θ2v2(t − 1) + θ3r(t − 1))
θ̂N =

[
N∑

t=1

ϕ(t)ϕT (t)

]−1 N∑
t=1

ϕ(t)y(t) (13)
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This is a two input (v2 and r) and one output model and corre- that E�̃N � 0, since e has zero mean. The estimate is conse-
quently unbiased. Here, E denotes mathematical expectation.sponds to choosing

We can also form the expectation of �̃N�̃T
N, that is the covari-

ance matrix of the parameter error. Denote the matrix withinϕ(t) = [−y(t − 1) v2(t − 1) r(t − 1)]T

brackets by RN. Take expectation with respect to the white
in Eq. (7). noise e. Then, RN is a deterministic matrix, and we have

Some Statistical Remarks ∂2

∂θ2 ŷ(t|θ )

Model structures, such as Eq. (7) that are linear in �, are
known in statistics as linear regression, and the vector �(t) is since the double sum collapses to �RN.
called the regression vector (its components are the re- We have, thus, computed the covariance matrix of the esti-
gressors). ‘‘Regress’’ here alludes to the fact that we try to mate �̂N. It is determined entirely by the input properties and
calculate (or describe) y(t) by ‘‘going back’’ to �(t). Models such the noise level. Moreover, define
as Eq. (3), where the regression vector �(t) contains old values
of the variable to be explained y(t) are then partly auto-regres-
sions. For that reason, the model structure in Eq. (3) has the R = lim

N→∞
1
N

RN (19)

standard name ARX-model (auto-regression with extra
This will be the covariance matrix of the input, that is, theinputs).
i � j-element of R isThere is rich statistical literature on the properties of the

estimate �̂N under varying assumptions (10). So far, we have
Ruu(i − j) = Eu(t − i)u(t − j)just viewed Eqs. (9) and (10) as ‘‘curve-fitting.’’ Later, we shall

deal with a more comprehensive statistical discussion, which
If the matrix R is non-singular, we find that the covarianceincludes the ARX model as a special case. Some direct calcula-
matrix of the parameter estimate is approximately (and thetions will be done in the following subsection.
approximation improves as N � �)

Model Quality and Experiment Design

Let us consider the simplest special case, that of a finite im-
PN = λ

N
R−1 (20)

pulse response (FIR) model. That is obtained from Eq. (3) by
A number of things follow from this. All of them are typicaltaking n � 0:
of the general properties to be described later

y(t) = b1u(t − 1) + . . . bmu(t − m) (14)
• The covariance decays like 1/N, so the parameters ap-

proach the limiting value at the rate 1/�N.Suppose that the observed data really have been generated
by a similar mechanism • The covariance is proportional to the noise-to-signal ra-

tio. That is, it is proportional to the noise variance and
inversely proportional to the input power.y(t) = b0

1u(t − 1) + . . . b0
mu(t − m) + e(t) (15)

• The covariance does not depend on the input’s or noise’s
where e(t) is a white noise sequence with variance �, but oth- signal shapes, only on their variance/covariance proper-
erwise unknown. (That is, e(t) can be described as a sequence ties.
of independent random variables with zero mean values and

• Experiment design, that is, the selection of the input u,
variances �.) Analogous to Eq. (7), we can write this as aims at making the matrix R�1 ‘‘as small as possible.’’

Note that the same R can be obtained for many differenty(t) = ϕT (t)θ0 + e(t) (16)
signals u.

We can now replace y(t) in Eq. (13) by the above expression
MODEL STRUCTURES I: LINEAR MODELSand obtain

Output Error Models

Starting from Eq. (3), there is actually another, quite differ-
ent, way to approach the calculation of good values of ai and
bi from observed data in Eq. (8).

Equation (3) describes a linear, discrete-time system with

θ̂N =
[

N∑
t=1

ϕ(t)ϕT (t)

]−1 N∑
t=1

ϕ(t)y(t)

=
[

N∑
t=1

ϕ(t)ϕT (t)

]−1 [
N∑

t=1

ϕ(t)ϕT (t)θ0 +
N∑

t=1

ϕ(t)e(t)

]
transfer function

or
G(z) = b1zn−1 + b2zn−2 + . . . + bmzn−m

zn + a1zn−1 + . . . + an
(21)

(assuming n � m)
θ̃N = θ̃N − θ0 =

[
N∑

t=1

ϕ(t)ϕT (t)

]−1 N∑
t=1

ϕ(t)e(t) (17)

Here, z is the z-transform variable, and one may simply
think of the transfer function G as a shorthand notation forSuppose that the input u is independent of the noise e. Then,

� and e are independent in this expression, so it is easy to see the difference in Eq. (3).
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We shall here use the shift operator q as an alternative Noise Models and Prediction Filters
for the variable z in Eq. (21). The shift operator q has the

A linear, finite-dimensional dynamical system can be de-
properties

scribed by the equation

qu(t) = u(t + 1) (22)
y(t) = B(q)

A(q)
u(t) (26)

(just as multiplying a z-transform by z corresponds to a time
shift). See Eqs. (21)–(22). Based on Eq. (26) we can predict the next

Given only an input sequence output from previous measurements either as in Eq. (23)

{u(t), t = 1, . . ., N} ŷ(t|θ ) = B(q)

A(q)
u(t) (27)

we could then calculate the output for system in Eq. (21) by
or as in Eqs. (4) and (7):running u as input to this system

ŷ(t|θ ) = (1 − A(q))y(t) + B(q)u(t) (28)
ŷ(t|θ ) = G(q)u(t) (23)

Which one shall we choose? We can make the discussion more
Example 5 A First-Order System general by writing for Eq. (26)
Consider the system

y(t) = G(q, θ )u(t) (29)
y(t + 1) + ay(t) = bu(t)

to indicate that the transfer function depends on the (numer-
ator and denominator) parameters � [as in Eq. (5)]. We canThe output according to Eq. (23) is then obtained as
multiply both sides of Eq. (29) by an arbitrary stable filter
W(q, �) giving

ŷ(t|θ ) = b
q + a

u(t) = b
∞∑

k=1

(−a)k−1u(t − k)
W (q, θ )y(t) = W (q, θ )G(q, θ )u(t) (30)

Then, we can add y(t) to both sides of the equation and re-or
arrange to obtain

ŷ(t + 1|θ ) + aŷ(t|θ ) = bu(t) (24)
y(t) = (1 − W (q, θ ))y(t) + W (q, θ )G(q, θ )u(t) (31)

We assume that the filter W starts with a 1:
Notice the essential difference between Eqs. (23) and (7).

In Eq. (7), we calculated ŷ(t��) using both past measured in- W (q, θ ) = 1 + w1q−1 + w2q−1 + w2q−2 + . . .

puts and also past measured outputs y(t � k). In Eq. (23),
so that 1 � W(q, �) actually contains a delay. We thus obtainŷ(t��) is calculated from past inputs only. As soon as we use
the predictordata from a real system [that does not exactly obey Eq. (13)],

there will always be a difference between these two ways of
ŷ(t|θ ) = (1 − W (q, θ ))y(t) + W (q, θ )G(q, θ )u(t) (32)obtaining the computed output.

Now, we could of course still say that a reasonable esti-
Note that this formulation is now similar to that of Eq. (28).mate of � is obtained by minimizing the quadratic fit,

We see that the method used in Eq. (27) corresponds to the
choice W(q, �) � 1, while the procedure in Eq. (28) is obtained
for W(q, �) � A(q).

Now, does the predictor in Eq. (32) depend on the filter
θ̂N = arg min

θ

1
N

N∑
t=1

[y(t) − ŷ(t|θ )]2 (25)

W(q, �)? Well, if the input–output data are exactly described
by Eq. (29) and we know all relevant initial conditions, theeven when ŷ(t��) is computed according to Eq. (23). Such an
predictor in Eq. (32) produces identical predictions ŷ(t��), re-estimate is often called an output-error estimate since we
gardless of the choice of stable filters W(q, �).have formed the fit between a purely simulated output and

To bring out the relevant differences, we must accept thethe measured output. Note that ŷ(t��) according to Eq. (23) is
fact that there will always be disturbances and noise that af-not linear in �, so the function to be minimized in Eq. (25) is
fect the system, so instead of Eq. (29), we have a true systemnot quadratic in �. Hence, some numerical search schemes
that relates the inputs and outputs byhave to be applied in order to find �̂N in Eq. (25). Most often

in practice, a Gauss–Newton iterative minimization proce-
y(t) = G0(q)u(t) + v(t) (33)dure is used.

It follows from the discussion that the estimate obtained
for some disturbance sequence �v(t)�. So Eq. (32) becomesby Eq. (25) will in general differ from the one from Eq. (9).

What is the essential difference? To answer that question, we
will have to discuss various ways of perceiving and describing
the disturbances that act on the system.

ŷ(t|θ ) = {(1 − W (q, θ ))G0(q) + W (q, θ )G(q, θ )}u(t)

+ (1 − W (q, θ ))v(t)
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Now, assume that there exists a value �0, such that That is, we assume the system (plant) dynamics and the noise
model to have common poles and no numerator dynamics forG(q, �0) � G0(q). Then the error of the above prediction be-

comes the noise. Its main feature is that the predictor ŷ(t��) will be
linear in the parameters � according to Eq. (11) or Eq. (7).

We can make Eq. (40) more general by allowing also nu-ε(t, θ ) = y(t) − ŷ(t|θ0) = W (q, θ )v(t) (34)

merator dynamics. We then obtain the parameterization
To make this error as small as possible, we must thus match
the choice of the filter W(q, �0) to the properties of the noise
v(t). Suppose v(t) can be described as filtered white noise G(q, θ ) = B(q)

A(q)
, H(q, θ ) = C(q)

A(q)
(41)

v(t) = H0(q)e(t) (35)
The effect of the numerator C is that the current predicted
value of y will depend upon previous predicted values, notwhere e(t) is a sequence of independent random variables.
just measured values. This is known as an ARMAX model,Here, we assume H0(q) to be normalized, so that H0(q) � 1 	
since the C(q)-term makes the noise model a moving averageh1q�1 	 . . . . Then, it is easy to see from Eq. (34) that no fil-
of a white noise source. Also, Eq. (41) assumes that the dy-ter W(q �0) can do better than 1/H0(q), since this makes the
namics and the noise model have common poles, and is, there-prediction error 
(t, �0) equal to the white noise source e(t).
fore, particularly suited for the case where the disturbancesAll this leads to the following summarizing conclusion
enter together with the input, ‘‘early in the process,’’ so to(which is the only thing one needs to understand from this
speak.section).

The output error (OE) model we considered in Eq. (23) cor-
1. In order to distinguish between different predictors, one responds to the case

has to introduce descriptions of the disturbances that
act on the process.

2. If the input–output description is assumed to be
G(q, θ ) = B(q)

F(q)
, H(q, θ ) = 1 (42)

y(t) = G(q)u(t) + H(q)e(t) (36)
[We use F in the denominator to distinguish the case from
Eq. (40).] Its unique feature is that the prediction is based onwhere �e(t)� is a white noise source, then the natural
past inputs only. It also concentrates on the model dynamicspredictor of y(t) given previous observations of inputs
and does not bother about describing the noise.and outputs will be

We can also generalize this model by allowing a general
noise modelŷ(t|θ ) = [1 − H−1(q)]y(t) + H−1(q)G(q)u(t) (37)

This predictor gives the smallest possible error if
�e(t)� indeed is white noise.

G(q, θ ) = B(q)

F(q)
, H(q, θ ) = C(q)

D(q)
(43)

3. Since the dynamics G(q) and the noise model H(q) are
typically unknown, we will have to work with a parame- This particular model parameterization is known as the Box-
terized description Jenkins (BJ) model, since it as suggested in the well-known

book by Box and Jenkins (6).
y(t) = G(q, θ )u(t) + H(q, θ )e(t) (38) It differs from the ARMAX-model in Eq. (42) in that it as-

signs different dynamics (poles) to the noise characteristics
The corresponding predictor is then obtained from Eq. from the input–output properties. It is thus better suited for
(37): cases where the noise enters ‘‘late in the process,’’ such as

measurement noise. See Fig. 3.ŷ(t|θ ) = [I − H−1(q, θ )]y(t) + H−1(q, θ )G(q, θ )u(t) (39)
One might wonder why we need all these different model

parameterizations. As has been mentioned in the text, eachWe may now return to the question we posed earlier. What
has its advantages which can be summarized as followsis the practical difference between minimizing Eqs. (10) and

(25)? Comparing Eq. (23) with Eq. (29), we see that this pre-
ARX. Gives a linear regression, very simple to estimate �dictor corresponds to the assumption that H � 1, i.e., that

white measurement noise is added to the output. This also ARMAX. Gives reasonable flexibility to the noise descrip-
means that minimizing the corresponding prediction error, tion, assumes that noise enters like the inputs
Eq. (25), will give a clearly better estimate, if this assumption OE. Concentrates on the input–output dynamics
is more or less correct.

BJ. Very flexible, assumes no common characteristics be-
tween noise and input–output behavior.Linear Black-Box Model Parameterization

The model parameterization in Eq. (38) contains a large num-
Physically Parameterized Linear Modelsber of much-used special cases. We have already seen that

the ARX model in Eq. (3) corresponds to So far, we have treated the parameters � only as vehicles to
give reasonable flexibility to the transfer functions in the gen-
eral linear model in Eq. (38). This model can also be arrived
at from other considerations.

G(q, θ ) = B(q)

A(q)
, H(q, θ ) = 1

A(q)
(40)
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If we select the state variables

x(t) =
�

y(t)
ẏ(t)

�

we obtain the state space form

ẋ =
�

0 1
0 −a

�
x +

�
0
b

�
u

y = (1 0) x + v
(45)

where v denotes disturbances and noise. In this case, we thus
have

θ =
�

a
b

�

A(θ ) =
�

0 1
0 −a

�
B(θ ) =

�
0
b

�

C = (1 0)

(46)

The parameterization reflects our insight that the system con-
tains an integration, but is in this case not directly derived
from detailed physical modeling. Basic physical laws would,
in this case, have given us how � depends on physical con-
stants, such as resistance of the wiring, amount of inertia,
friction coefficients, and magnetic field constants.

Now, how do we fit a continuous-time model in Eq. (44a)
to sampled observed data? If the input u(t) has been piecewise
constant over the sampling interval
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Figure 3. Linear black-box model structures. u(t) = u(kT ) kT ≤ t < (k + 1)T

then the states, inputs, and outputs at the sampling instants
will be represented by the discrete time model

Consider a continuous time state space model

x((k + 1)T ) = A(θ )x(kT ) + B(θ )u(kT )

y(kT ) = C(θ )x(kT ) + v(kT )
(47)ẋ(t) = A(θ )x(t) + B(θ )u(t) (44a)

y(t) = C(θ )x(t) + v(t) (44b)
where

Here, x(t) is the state vector and typically consists of physical
variables (such as positions and velocities, etc). The state
space matrices A, B, and C are parameterized by the parame-

A(θ ) = eA(θ )T , B(θ ) =
∫ T

0
eA(θ )τ B(θ ) dτ (48)

ter vector �, reflecting the physical insight we have into the
If the input is not piecewise constant, other sampling rulesprocess. The parameters could be physical constants (resis-
than Eqs. (47) and (48) will apply. This follows from solvingtance, heat transfer coefficients, aerodynamical derivatives,
Eq. (44) over one sampling period. We could also furtheretc.) whose values are not known. They could also reflect
model the added noise term v(kT) and represent the systemother types of insights into the system’s properties.
in the innovations form

Example 6 An Electric Motor
Consider an electric motor with the input u being the applied

x((k + 1)T ) = A(θ )x(kT ) + B(θ )u(kT ) + K(θ )e(kT )

y(kT ) = C(θ )x(kT ) + e(kT )
(49)

voltage and the output y being the angular position of the
motor shaft.

where �e(kT)� is white noise. The step from Eqs. (47) to (49)A first but reasonable approximation of the motor’s dynam-
is really a standard Kalman filter step: x will be the one-stepics is as a first-order system from voltage to angular velocity,
ahead predicted Kalman states. A pragmatic way to thinkfollowed by an integrator:
about it is as follows: In Eq. (47), the term v(kT) may not be
white noise. If it is colored, we may separate out that part of
v(kT) that cannot be predicted from past values. Denote this
part by e(kT): it will be the innovation. The other part of

G(s) = b
s(s + a)
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v(kT), the one that can be predicted, can then be described as where
a combination of earlier innovations, e(�T), � � k. Its effect
on y(kT) can then be described via the states by changing ϕ(t) = ϕ(Zt−1) (55)
them from x to x, where x contains additional states associ-
ated with getting v(kT) from e(�T), k � �. Let the dimension of � be d. As before, we shall call this vec-

Now, Eq. (49) can be written in input–output form as (let tor the regression vector, and its components will be referred
T � 1) to as the regressors. We also allow the more general case that

the formation of the regressors is itself parameterized:
y(t) = G(q, θ )u(t) + H(q, θ )e(t) (50)

ϕ(t) = ϕ(Zt−1, η) (56)
with

which we for short write �(t, �). For simplicity, the extra ar-
gument � will, however, be used explicitly only when essen-
tial for the discussion.

G(q, θ ) = C(θ )(qI − A(θ ))−1B(θ )

H(q, θ ) = I + C(θ )(qI − A(θ ))−1K(θ )
(51)

The choice of the nonlinear mapping in Eq. (53) has thus
We are, thus, back at the basic linear model in Eq. (38). The been reduced to two partial problems for dynamical systems:
parameterization of G and H in terms of � is, however, more
complicated than the ones we discussed earlier. 1. how to choose the nonlinear mapping g(�) from the re-

The general estimation techniques, model properties [in- gressor space to the output space (i.e., from Rd to Rp)
cluding the characterization in Eq. (85)], algorithms, etc. 2. how to choose the regressors �(t) from past inputs and
apply exactly as described in the section on general parame- outputs
ter estimation techniques.

From these examples, it is also quite clear that non-linear The second problem is the same for all dynamical systems,
models with unknown parameters can be approached in the and it turns out that the most useful choices of regression
same way. We would then typically arrive at a structure vectors are to let them contain past inputs and outputs, and

possibly also past predicted/simulated outputs. The regres-
sion vector will thus be of the character in Eq. (6). We now

ẋ(t) = f (x(t), u(t), θ )

y(t) = h(x(t),u(t), θ ) + v(t)
(52)

turn to the first problem.

In this model, all noise effects are collected as additive output
Nonlinear Mappings: Possibilitiesdisturbances v(t) which is a restriction, but also a very helpful

simplification. If we define ŷ(t��) as the simulated output re- Now, let us turn to the nonlinear mapping
sponse to Eq. (52), for a given input, ignoring the noise v(t),
everything to be said about parameter estimation, model g(ϕ, θ ) (57)
properties, and so on is still applicable.

which for any given � maps from Rd to Rp. For most of the
discussion, we will use p � 1; that is, the output is scalar-MODEL STRUCTURES II: NONLINEAR BLACK-BOX MODELS
valued. At this point, it does not matter how the regression
vector � �(�1, . . ., �d)T was constructed. It is just a vectorIn this section, we shall describe the basic ideas behind model
that lives in Rd.structures that have the capability to cover any nonlinear

It is natural to think of the parameterized function familymapping from past data to the predicted value of y(t). Recall
as function expansions:that we defined a general model structure as a parameterized

mapping in Eq. (1):
g(ϕ, θ ) =

∑
αkgk(ϕ) (58)

ŷ(t|θ ) = g(θ, Zt−1) (53)

We refer to gk as basis functions, since the role they play in
We shall consequently allow quite general nonlinear map- Eq. (58) is similar to that of a functional space basis. In some
pings g. This section will deal with some general principles particular situations, they do constitute a functional basis.
for how to construct such mappings, and will cover artificial Typical examples are wavelet bases (see below).
neural networks as a special case. See Refs. 11 and 12 for We are going to show that expansion in Eq. (58), with dif-
recent and more comprehensive surveys. ferent basis functions, plays the role of a unified framework

for investigating most known nonlinear black-box model
Nonlinear Black-Box Structures structures.

Now, the key question is: How to choose the basis func-Now, the model structure family in Eq. (53) is really too gen-
tions gk? The following facts are essential to understand theeral, and it turns out to be useful to write g as a concatenation
connections between most known nonlinear black-box modelof two mappings: one that takes the increasing number of
structures:past observations Zt�1 and maps them into a finite dimen-

sional vector �(t) of fixed dimension and one that takes this
• All the gk are formed from one ‘‘mother basis function,’’vector to the space of the outputs:

that we generically denote by �(x).
ŷ(t|θ ) = g(θ, Zt−1) = g(ϕ(t), θ ) (54) • This function �(x) is a function of a scalar variable x.
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• Typically, gk are dilated (scaled) and translated versions used methods for constructing multivariable basis functions
from single-variable basis functions.of �. For the scalar case d � 1, we may write

1. Tensor Product. Given d single-variable functions of thegk(ϕ) = gk(ϕ, βk, γk) = κ(βk(ϕ − γk)) (59)
different components �j of a d-dimensional vector �,
h1(�1), . . ., hd(�d) (identical or not), the tensor productWe, thus, use �k to denote the dilation parameters and
construction of the corresponding function from Rd is�k to denote translation parameters.
then given by their product. In the present case, this
means that the basis functions are constructed from theA Scalar Example: Fourier Series Take �(x) � cos(x).
scalar function � asThen Eqs. (58) and (59) will be the Fourier series expansion,

with �k as the frequencies and �k as the phases.

Another Scalar Example: Piecewise Constant Func-
gk(ϕ) =

d∏
j=1

κ(β j
k
(ϕ j − γ j

k
)) (64)

tions Take � as the unit interval indicator function:
2. Radial Construction. For any single-variable function

�, the radial construction of multivariable basis func-
tion of � � Rd has the form

κ(x) =
{

1 for 0 ≤ x < 1

0 else
(60)

and take, for example, �k � k, �k � 1/
, and �k � f (k
). Then gk(ϕ) = gk f (ϕ, βk, γk) = κ( ϕ − γk βk
) (65)

Eqs. (58) and (59) give a piecewise constant approximation of
where � � ��k

denotes any chosen norm on the space of theany function f . Clearly, we would have obtained a quite simi-
regression vector �. The norm could typically be a qua-lar result by a smooth version of the indicator function, for
dratic normexample the Gaussian bell:

ϕ 2
βk

= ϕTβkϕ (66)
κ(x) = 1√

2π
e−x2/2 (61)

with �k as a possibly k-dependent positive definite ma-
trix of dilation (scale) parameters. In simple cases, �kA Variant of the Piecewise Constant Case Take � to be
may be just scaled versions of the identity matrix.the unit step function

3. Ridge Construction. Let � be any single-variable func-
tion. Then for all �k � Rd, �k � R, a ridge function is
given byκ(x) =

{
0 for x < 0

1 for x ≥ 0
(62)

gk(ϕ) = gk(ϕ, βk, γk) = κ(βT
k ϕ + γk), ϕ ∈ Rd (67)

We, then, just have a variant of Eq. (60), since the indicator
function can be obtained as the difference of two steps. A The ridge function is thus constant for all � in the sub-
smooth version of the step, like the sigmoid function space �� � Rd : �T

k� � constant�. As a consequence, even
if the mother basis function � has local support, the ba-
sis functions gk will have unbounded support in thisκ(x) = σ (x) = 1

1 + e−x
(63)

subspace. The resulting basis could be said to be semi-
global, but the term ridge function is more precise.

will, of course, give quite similar results.
Approximation Issues. For any of the described choices, the

Classification of Single-Variable Basis Functions. Two classes resulting model becomes
of single-variable basis functions can be distinguished de-
pending on their nature: g(ϕ, θ ) =

en∑
k=1

αkκ(βk(ϕ − γk)) (68)

• Local basis functions are functions having their gradient
with bounded support, or at least vanishing rapidly at with the different exact interpretations of the argument
infinity. Loosely speaking, their variations are concen- �k(� � �k) just discussed. The expansion is entirely deter-
trated to some interval. mined by

• Global basis functions are functions having a nonvan-
• the scalar valued function �(x) of a scalar variable xishing gradient for all arguments.
• the way the basis functions are expanded to depend on a

vector �Clearly, the Fourier series is an example of a global basis
function, while Eqs. (60), (61), (62) and (63) are all local func-

The parameterization in terms of � can be characterized bytions.
three types of parameters:

Construction of Multivariable Basis Functions. In multidimen-
• the coordinates �sional case (d � 1), gk are multivariable functions. In practice,
• the scale or dilation parameters �they are often constructed from the single-variable function �

in some simple manner. Let us recall the three most often • the location parameters �
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A key issue is how well the function expansion is capable of hyperplane structure is obtained (15).
approximating any possible ‘‘true system’’ g0(�). There is Nearest Neighbors or Interpolation. By selecting � as in Eq.
rather extensive literature on this subject. For an identifica- (60) and the location and scale vector �k, �k in structure
tion oriented survey, see, for example, Ref. 12. Eq. (65), such that exactly one observation falls into

The bottom line is easy: For almost any choice of �(x)—ex- each ‘‘cube,’’ the nearest neighbor model is obtained:
cept being a polynomial—the expansion in Eq. (68) can ap- just load the input-output record into a table, and for a
proximate any ‘‘reasonable’’ function g0(�) arbitrarily well for given �, pick the pair (ŷ, �̂) for �̂ closest to the given �;
sufficiently large n. ŷ is the desired output estimate. If one replaces Eq. (60)

It is not difficult to understand this. It is sufficient to check by a smoother function and allows some overlapping of
that the delta function—or the indicator function for arbi- the basis functions, we get interpolation-type tech-
trarily small areas—can be arbitrarily well approximated niques such as kernel estimators.
within the expansion. Then, clearly, all reasonable functions Fuzzy Models. Fuzzy models based on fuzzy set member-
can also be approximated. For local � with radial construc- ship belong to the model structures of class Eq. (58).
tion, this is immediate: By scaling and location, an arbitrarily The basis functions gk then are constructed from the
small indicator function can be placed anywhere. For the fuzzy set membership functions and the inference rules
ridge construction, one needs to show that a number of hyper- using the tensor approach Eq. (64). The exact relation-
planes defined by � and � can be placed and intersect so that ship is described in Ref. 11.
any small area in Rd is cut out.

The question of how efficient the expansion is, that is, how Estimating Nonlinear Black-Box Models
large n is required to achieve a certain degree of approxima-

The model structure is determined by the following choices:tion is more difficult and has no general answer. We may
point to the following aspects:

• the regression vector (typically built up from past inputs
• If the scale and location parameters � and � are allowed and outputs)

to depend on the function g0 to be approximated, then • the basic function �
the number of terms n required for a certain degree of

• the number of elements (nodes) in the expansion Eq.
approximation is much less than if �k, �k; k � 1, . . . is (58).
an a priori fixed sequence.

• For the local, radial approach, the number of terms re- Once these choices have been made, ŷ(t��) � g(�(t), �) is a well
quired to achieve a certain degree of approximation � of defined function of past data and the parameters �. The pa-
a p times differentiable function is proportional to rameters are made up of coordinates in expansion Eq. (58)

and from location and scale parameters in the different basis
functions.n ∼ 1

δ(d/p)
(69)

All the algorithms and analytical results of the next sec-
tion can thus be applied. For neural network applications,It thus increases exponentially with the number of re-
these are also the typical estimation algorithms used, oftengressors. This is often referred to as the curse of dimen-
complemented with regularization, which means that a termsionality.
is added to the criterion Eq. (74) that penalizes the norm of �.
This will reduce the variance of the model, in that ‘‘spurious’’Connection to ‘‘Named Structures.’’ Here we briefly review
parameters are not allowed to take on large, and mostly ran-some popular structures; other structures related to interpo-
dom, values (11).lation techniques are discussed in Refs. 11 and 12.

For wavelet applications, it is common to distinguish be-
tween those parameters that enter linearly in ŷ(t��) (i.e., theWavelets. The local approach corresponding to Eqs. (58,
coordinates in the function expansion) and those that enterand 65) has direct connections to wavelet networks and
non-linearly (i.e., the location and scale parameters). Often,wavelet transforms. The exact relationships are dis-
the latter are seeded to fixed values, and the coordinates arecussed in Ref. 11. Loosely, we note that via the dilation
estimated by the linear least squares method. Basis functionsparameters in �k, we can work with different scales si-
that give a small contribution to the fit (corresponding to non-multaneously to pick up both local and not-so-local vari-
useful values of the scale and location parameters) can thenations. With appropriate translations and dilations of a
be trimmed away (‘‘pruning’’ or ‘‘shrinking’’).single suitably chosen function � (the ‘‘mother wave-

let’’), we can make expansion Eq. (58) orthonormal. This
is discussed extensively in Ref. 12.

GENERAL PARAMETER ESTIMATION TECHNIQUES
Wavelet and Radial Basis Networks. The choice in Eq. (61)

without any orthogonalization is found in both wavelet In this section, we shall deal with issues that are independent
networks (13) and radial basis neural networks (14). of model structure. Principles and algorithms for fitting mod-

Neural Networks. The ridge choice in Eq. (67) with � given els to data, as well as the general properties of the estimated
by Eq. (63) gives a much-used neural network structure models, are all model-structure independent and equally well
through the one hidden layer feedforward sigmoidal net. applicable to, say, ARMAX models and neural network

models.Hinging Hyperplanes. If instead of using the sigmoid �
function we choose ‘‘V-shaped’’ functions (in the form of The section is organized as follows. The general principles

for parameter estimation are outlined. Then, we deal with thea higher-dimensional ‘‘open book’’), Brieman’s hinging
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asymptotic (in the number of observed data) properties of the choose
models, while algorithms are described in the last section.

L(q) = 1 and �(ε) = −log fe(ε) (76)

Fitting Models to Data
The MLE has several nice statistical features and, thus, gives

Earlier, we showed several ways to parameterize descriptions a strong ‘‘moral support’’ for using the outlined method. An-
of dynamical systems. This is actually the key problem in sys- other pleasing aspect is that the method is independent of the
tem identification. No matter how the problem is approached, particular model parameterization used (although this will af-
the bottom line is that such a model parameterization leads fect the actual minimization procedure). For example, the
to a predictor method of ‘‘back propagation’’ often used in connection with

neural network parameterizations amounts to computing �̂N
ŷ(t|θ ) = g(θ, Zt−1) (70) in Eq. (74) by a recursive gradient method. We shall deal with

these aspects later.
that depends on the unknown parameter vector and past
Zt�1 [see Eq. (8)]. This predictor can be linear in y and u. This, Model Quality
in turn, contains several special cases both in terms of black-

An essential question is, of course, what properties will thebox models and physically parameterized ones, as was dis-
estimate resulting from Eq. (74) have. These will naturallycussed earlier. The predictor could also be of general, nonlin-
depend on the properties of the data record ZN defined by Eq.ear nature, which was also discussed.
(8). It is, in general, a difficult problem to characterize theIn any case, we now need a method to determine a good
quality of �̂N exactly. One normally has to be content with thevalue of �, based on the information in an observed, sampled
asymptotic properties of �̂N as the number of data, N, tendsdata set in Eq. (8). It suggests itself that the basic least-
to infinity.squares like approach in Eqs. (9) through (11) still is a natu-

It is an important aspect of the general identificationral approach, even when the predictor ŷ(t��) is a more general
method in Eq. (74) that the asymptotic properties of the re-function of �.
sulting estimate can be expressed in general terms for arbi-A procedure with some more degrees of freedom is the fol-
trary model parameterizations.lowing one:

The first basic result is the following one:

1. From observed data and the predictor ŷ(t��), form the
θ̂N → θ∗ as N → ∞ (77)sequence of prediction errors,

whereε(t, θ ) = y(t) − ŷ(t|θ ), t = 1,2, . . ., N (71)

2. Possibly filter the prediction errors through a linear fil- θ∗ = arg min
θ

E�(εF (t, θ )) (78)

ter L(q),
That is, as more and more data become available, the esti-
mate converges to that value �* that would minimize the ex-εF (t, θ ) = L(q)ε(t, θ ) (72)
pected value of the ‘‘norm’’ of the filtered prediction errors.
This is in a sense the best possible approximation of the trueso as to enhance or depress interesting or unimportant
system that is available within the model structure. The ex-frequency bands in the signals.
pectation E in Eq. (78) is taken with respect to all random3. Choose a scalar valued, positive function � ( � ) so as to
disturbances that affect the data, and it also includes averag-measure the ‘‘size’’ or ‘‘norm’’ of the prediction error:
ing over the input properties. This means, in particular, that
�* will make ŷ(t��*) a good approximation of y(t) with respect�(εF (t, θ )) (73)
to those aspects of the system that are enhanced by the input
signal used.4. Minimize the sum of these norms:

The second basic result is the following one. If �
(t, �*)� is
approximately white noise, then the covariance matrix of �̂Nθ̂N = arg min

θ
VN (θ, ZN ) (74)

is approximately given by

where
E(θ̂N − θ∗ )(θ̂N − θ∗ )T ∼ λ

N
[Eψ(t)ψT (t)]−1 (79)

whereVN (θ, ZN ) = 1
N

N∑
t=1

�(εF (t, θ )) (75)

λ = Eε2(t, θ∗) (80)This procedure is natural and pragmatic; we can still think of
it as ‘‘curve-fitting’’ between y(t) and ŷ(t��). It also has several
statistical and information theoretic interpretations. Most im- ψ(t) = d

dθ
ŷ(t|θ )|θ=θ ∗ (81)

portantly, if the noise source in the system [like in Eq. (38)] is
supposed to be a sequence of independent random variables Think of � as the sensitivity derivative of the predictor with

respect to the parameters. Then Eq. (79) says that the covari-�e(t)� each having a probability density function f e(x), then Eq.
(74) becomes the maximum likelihood estimate (MLE) if we ance matrix for �̂N is proportional to the inverse of the covari-
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ance matrix of this sensitivity derivative. This is a quite natu- Measures of Model Fit
ral result.

Some quite general expressions for the expected model fit,
Note that for all these results, the expectation operator E

that are independent of the model structure, can also be de-
can, under most general conditions, be replaced by the limit

veloped.
of the sample mean; that is,

Let us measure the (average) fit between any model in Eq.
(70) and the true system as

V (θ ) = E y(t) − ŷ(t|θ ) 2 (87)
Eψ(t)ψT (t) ↔ lim

N→∞
1
N

N∑
t=1

ψ(t)ψT (t) (82)

Here, expectation E is over the data properties [i.e., expecta-The results in Eqs. (77) through (81) are general and hold for
tion over ‘‘Z�’’ with the notation Eq. (8)]. Recall that expecta-all model structures, both linear and nonlinear ones, subject
tion also can be interpreted as sample means as in Eq. (82).only to some regularity and smoothness conditions. They are

Before we continue, let us note the very important aspectalso fairly natural and will give the guidelines for all user
that the fit V will depend not only on the model and the truechoices involved in the process of identification. See Ref. 4 for
system but also on data properties, like input spectra, possiblemore details around this.
feedback, etc. We shall say that the fit depends on the experi-
mental conditions.

Characterization of the Limiting Model in a General Class of The estimated model parameter �̂N is a random variable
Linear Models.. Let us apply the general limit result in Eqs. because it is constructed from observed data that can be de-
(77)–(78) to the linear model structure in Eq. (38). If we scribed as random variables. To evaluate the model fit, we
choose a quadratic criterion �(
) � 
2 (in the scalar output then take the expectation of V(�̂N) with respect to the estima-
case), then this result tells us, in the time domain, that the tion data. That gives our measure
limiting parameter estimate is the one that minimizes the
filtered prediction error variance (for the input used during FN = EV (θ̂N ) (88)
the experiment.) Suppose that the data actually have been
generated by In general, the measure FN depends on a number of things:

• The model structure usedy(t) = G0(q)u(t) + v(t) (83)

• The number of data points N
Let �u(�) be the input spectrum and �v(�) be the spectrum • The data properties for which the fit V is defined
for the additive disturbance v. Then, the filtered prediction

• The properties of the data used to estimate �̂Nerror can be written

The rather remarkable fact is that if the two last data proper-
ties coincide, then, asymptotically in N (4, Chap. 16),εF (t, θ ) = L(q)

H(q, θ )
[y(t) − G(q, θ )u(t)]

= L(q)

H(q, θ )
[(G0(q) − G(q, θ ))u(t) + v(t)]

(84)
FN ≈ V N (θ∗)

�
1 + dim θ

N

�
(89)

Here, �* is the value that minimizes the expected criterion inBy Parseval’s relation, the prediction error variance can also
Eq. (78). The notation dim � means the number of estimatedbe written as an integral over the spectrum of the prediction
parameters. The result also assumes that the criterion func-error. This spectrum, in turn, is directly obtained from Eq.
tion �(
) � �
�2, and that the model structure is successful in(84), so the limit estimate �* in Eq. (78) can also be defined
the sense that 
F(t) is approximately white noise.as

Despite the reservations about the formal validity of Eq.
(89), it carries a most important conceptual message: If a
model is evaluated on a data set with the same properties as
the estimation data, then the fit will not depend on the data
properties, and it will depend on the model structure only in
terms of the number of parameters used and of the best fit

θ∗ = arg minθ

[∫ π

−π

G0(eiω) − G(eiω, θ ) 2 �u(ω) L(eiω) 2

H(eiω, θ ) 2
dω

+
∫ π

−π

�v(ω) L(eiω) 2/ H(eiω, θ ) 2 dω

]
(85)

offered within the structure.
The expression can be rewritten as follows: Let ŷ0(t�t � 1)

If the noise model H(q, �) � H*(q) does not depend on � [as denote the ‘‘true’’ one step ahead prediction of y(t), and let
in the output error model Eq. (42)], the expression in Eq. (85)
thus shows that the resulting model G(ei�, �*) will give that W (θ ) = E ŷ0(t|t − 1) − ŷ(t|θ ) 2 (90)
frequency function in the model set that is closest to the true
one, in a quadratic frequency norm with weighting function and let

Q(ω) = �u(ω) L(eiω) 2/ H · (eiω) 2 (86) λ = E y(t) − ŷ0(t|t − 1) 2 (91)

Then � is the innovations variance, that is, that part of y(t)This shows clearly that the fit can be affected by the choice of
prefilter L, the input spectrum �u, and the noise model H*. that cannot be predicted from the past. Moreover, W(�*) is the
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bias error, that is, the discrepancy between the true predictor The gradient � is, in the general case, a matrix with dim �
rows and dim y columns. It is well known that gradientand the best one available in the model structure. Under the

same assumptions as above, Eq. (89) can be rewritten as search for the minimum is inefficient, especially close to the
minimum. Then, it is optimal to use the Newton search direc-
tionFN ≈ λ + W (θ∗ ) + λ

dim θ

N
(92)

R−1(θ )V ′
N (θ ) (97)

The three terms constituting the model error then have the
following interpretations: where

• � is the unavoidable error, stemming from the fact that
the output cannot be exactly predicted, even with perfect
system knowledge.

• W(�*) is the bias error. It depends on the model structure
and on the experimental conditions. It will typically de-

R(θ ) = V ′′
N (θ ) = d2VN (θ )

dθ2 = 1
N

N∑
t=1

ψ(t, θ )ψT (t, θ )

+ 1
N

N∑
t=1

(y(t) − ŷ(t|θ ))
∂2

∂θ2
ŷ(t|θ )

(98)

crease as dim � increases.
The true Newton direction will, thus, require that the second• The last term is the variance error. It is proportional to
derivativethe number of estimated parameters and inversely pro-

portional to the number of data points. It does not de-
pend on the particular model structure or the experimen- ∂2

∂θ2 ŷ(t|θ )
tal conditions.

be computed. Also, far from the minimum, R(�) need not beAlgorithmic Aspects
positive semidefinite. Therefore, alternative search directions

In this section, we shall discuss how to achieve the best fit are more common in practice:
between observed data and the model, that is, how to carry
out the minimization of Eq. (74). For simplicity, we here as- • Gradient Direction. Simply take
sume a quadratic criterion and set the prefilter L to unity:

Ri = I (99)

• Gauss–Newton Direction. Use
VN(θ ) = 1

2N

N∑
t=1

y(t) − ŷ(t θ ) 2 (93)

No analytic solution to this problem is possible unless the
model ŷ(t��) is linear in �, so the minimization has to be done

Ri = Hi = 1
N

N∑
t=1

ψ(t, θ̂ (i) )ψT (t, θ̂ (i) ) (100)

by some numerical search procedure. A classical treatment of
the problem of how to minimize the sum of squares is given • Levenberg–Marquard Direction. Use
in Ref. 16.

Most efficient search routines are based on iterative local Ri = Hi + δI (101)
search in a ‘‘down-hill’’ direction from the current point. We
then have an iterative scheme of the following kind: where Hi is defined by Eq. (100).

• Conjugate Gradient Direction. Construct the Newton di-
rection from a sequence of gradient estimates. Loosely,θ̂ (i+1) = θ̂ (i) − µiR

−1
i ĝi (94)

think of V �N as constructed by difference approximation
Here, �̂(i) is the parameter estimate after iteration number i. of d gradients. The direction in Eq. (97) is, however, con-
The search scheme is thus made up of the three entities: structed directly, without explicitly forming and in-

verting V �.
• �i step size

It is generally considered (16) that the Gauss–Newton search• ĝi an estimate of the gradient V�N(�̂(i))
direction is to be preferred. For ill-conditioned problems, the• Ri a matrix that modifies the search direction
Levenberg–Marquard modification is recommended.

Search Directions. The basis for the local search is the gra-
Local Minima. All properties of the estimate that we havedient

discussed really refer to the global minimum of the criterion.
A fundamental problem with minimization tasks like Eq. (9)
is that VN(�) may have several or many local (non-global) min-
ima, where local search algorithms may get caught. There is

V ′
N (θ ) = dVN (θ )

dθ
= − 1

N

N∑
t=1

(y(t) − ŷ(t|θ ))ψ(t, θ ) (95)

no easy solution to this problem. It is usually well worth the
where effort to find a good initial value � (0) where to start the itera-

tions. Other than that, only various global search strategies
are left, such as random search, random restarts, simulated
annealing, and the genetic algorithm.

ψ(t, θ ) = ∂

∂θ
ŷ(t|θ ) (96)
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SPECIAL ESTIMATION TECHNIQUES If the system is driven by the input [see Eq. (102)] for a cer-
tain u0 and �1 and we measure y0 and � from the output sig-FOR LINEAR BLACK-BOX MODELS
nal, it is possible to determine the complex number G(ei�1T)
using Eqs. (104)–(105). By repeating this procedure for aAn important feature of a linear, time invariant system is

that it is entirely characterized by its impulse response. So if number of different �, we can get a good estimate of the fre-
quency function G(ei�T). This method is called frequency analy-we know the system’s response to an impulse, we will also

know its response to any input. Equivalently, we could study sis. Sometimes, it is possible to see or measure u0, y0, and �
directly from graphs of the input and output signals. Most ofthe frequency response, which is the Fourier transform of the

impulse response. the time, however, there will be noise and irregularities that
make it difficult to determine � directly. A suitable procedureIn this section, we shall consider estimation methods for

linear systems that do not use particular model parameteriza- is then to correlate the output with cos �t and sin �t.
tions. First, we shall consider direct methods to determine
the impulse response and the frequency respone by simply Estimating the Frequency Response by Spectral Analysis
applying the definitions of these concepts.

Definitions. The cross spectrum between two (stationaryThen, spectral analysis for frequency function estimation
signals u(t) and y(t) is defined as the Fourier transform ofwill be discussed. Finally, a recent method to estimate gen-
their cross covariance function, provided this exists:eral linear systems (of given order, by unspecified structure)

will be described.

Transient and Frequency Analysis
�yu(ω) =

∞∑
τ=−∞

Ryu(τ )ei−ωτ (106)

Transient Analysis. The first step in modeling is to decide where Ryu(�) is defined by
which quantities and variables are important to describe
what happens in the system. A simple and common kind of Ryu(τ ) = Ey(t)u(t − τ ) (107)
experiment that shows how and in what time span various
variables affect each other is called step-response analysis or The (auto) spectrum �u(�) of a signal u is defined as �uu(�),
transient analysis. In such experiments, the inputs are varied that is, as its cross spectrum with itself.
(typically one at a time) as a step: u(t) � u0, t � t0; u(t) � u1, The spectrum describes the frequency contents of the sig-
t � t0. The other measurable variables in the system are re- nal. The connection to more explicit Fourier techniques is evi-
corded during this time. We, thus, study the step response dent by the following relationship
of the system. An alternative would be to study the impulse
response of the system by letting the input be a pulse of short
duration. From such measurements, information of the fol- �u(ω) = lim

N→∞
1
N

UN (ω) 2 (108)

lowing nature can be found:
where UN is the discrete time Fourier transform

1. The variables affected by the input in question. This
makes it easier to draw block diagrams for the system
and to decide which influences can be neglected. UN (ω) =

N∑
t=1

u(t)eiωt (109)

2. The time constants of the system. This also allows us to
decide which relationships in the model can be de-

The relationship in Eq. (108) is shown, for example, in Ref. 3.scribed as static (that is, they have significantly faster
Consider now the general linear model:time constants than the time scale we are working with.

3. The characteristic (oscillatory, poorly damped, mono- y(t) = G(q)u(t) + v(t) (110)
tone, and the like) of the step responses, as well as the
levels of static gains. Such information is useful when It is straightforward to show that the relationships between
studying the behavior of the final model in simulation. the spectra and cross spectra of y and u (provided u and v are
Good agreement with the measured step responses uncorrelated) is given by
should give a certain confidence in the model.

�yu(ω) = G(eiω)�u(ω) (111)
Frequency Analysis. If a linear system has the transfer

function G(q), and the input is �y(ω) = G(eiω) 2�u(ω) + �v(ω) (112)

u(t) = u0 cos ωkT, (k − 1)T ≤ t ≤ kT (102) It is easy to see how the transfer function G(ei�) and the noise
spectrum �v(�) can be estimated using these expressions, ifthen the output after possible transients have faded away will
only we have a method to estimate cross spectra.be

Estimation of Spectra. The spectrum is defined as the Fou-y(t) = y0 cos(ωt + ϕ), for t = T, 2T, 3T, . . . (103)
rier transform of the correlation function. A natural idea

where would then be to take the transform of the estimate

y0 = G(eiωT ) · u0 (104)

ϕ = arg G(eiωT ) (105)
R̂N

yu(τ ) = 1
N

N∑
t=1

y(t)u(t − τ ) (113)
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That will not work in most cases, though. The reason could about
be described as follows: The estimate R̂N

yu(�) is not reliable for
large � since it is based on only a few observations. These
‘‘bad’’ estimates are mixed with good ones in the Fourier

π

γ
√

2
radians/time unit (118)

transform, thus creating an overall bad estimate. It is better
This means that details in the true frequency function thatto introduce a weighting, so that correlation estimates for
are finer than this expression will be smeared out in the esti-large lags � carry a smaller weight:
mate. It is also possible to show that the estimate’s variances
satisfy

�̂N
yu(ω) =

γ∑
�=−γ

R̂N
yu(�) · wγ (�)e−i�ω (114)

Var ĜN (iω) ≈ 0.7 · γ

N
· �v(ω)

�u(ω)
(119)

This spectral estimation method is known as the Blackman–
Tukey approach. Here, w�(�) is a window function that de- and
creases with ���. This function controls the trade-off between
frequency resolution and variance of the estimate. A function
that gives significant weights to the correlation at large lags

Var �̂N
v (ω) ≈ 0.7 · γ

N
· �2

v (ω) (120)

will be able to provide finer frequency details (a longer time
[‘‘Variance’’ here refers to taking expectation over the noisespan is covered). At the same time, it will have to use ‘‘bad’’
sequence v(t).] Note that the relative variance in Eq. (119)estimates, so the statistical quality (the variance) is poorer.
typically increases dramatically as � tends to the Nyquist fre-We shall return to this trade-off in a moment. How should we
quency. The reason is that �G(i�)� typically decays rapidly,choose the shape of the window function w�(�)? There is no
while the noise-to-signal ratio �v(�)/�u(�) has a tendency tooptimal solution to this problem, but the most common win-
increase as � increases. In a Bode diagram, the estimates willdow used in spectral analysis is the Hamming window:
thus show considerable fluctuations at high frequencies.
Moreover, the constant frequency resolution in Eq. (118) will
look thinner and thinner at higher frequencies in a Bode dia-
gram due to the logarithmic frequency scale.

wγ (k) = 1
2

�
1 + cos

πk
γ

�
k < γ

wγ (k) = 0 k ≥ γ

(115)

See Ref. 3 for a more detailed discussion.
From the spectral estimates �u, �y, and �yu obtained in this

Choice of Window Sizeway, we can now use Eq. (111) to obtain a natural estimate
of the frequency function G(ei�): The choice of � is a pure trade-off between frequency resolu-

tion and variance (variability). For a spectrum with narrow
resonance peaks, it is thus necessary to choose a large value
of � and accept a higher variance. For a more flat spectrum,

ĜN (eiω) = �̂N
yu(ω)

�̂N
u (ω)

(116)

smaller values of � will do well. In practice, a number of dif-
ferent values of � are tried. Often, we start with a small valueFurthermore, the disturbance spectrum can be estimated
of � and increase it successively until an estimate is foundfrom Eq. (112) as
that balances the trade-off between frequency resolution (true
details) and variance (random fluctuations). A typical value
for spectra without narrow resonances is � � 20 � 30.�̂N

v (ω) = �̂N
y (ω) − �̂N

yu(ω) 2

�̂N
u (ω)

(117)

Subspace Estimation Techniques for State Space ModelsTo compute these estimates, the following steps are per-
formed: A linear system can always be represented in state space

form:
1. Collect data y(k), u(k), k � 1, . . ., N.
2. Subtract the corresponding sample means from the

data. This will avoid bad estimates at very low frequen-

x(t + 1) = Ax(t) + Bu(t) + w(t)

y(t) = Cx(t) + Du(t) + e(t)
(121)

cies.
We assume that we have no insight into the particular struc-3. Choose the width of the lag window w�(k).
ture, and we would just estimate any matrices A, B, C, and

4. Compute R̂N
y (k), R̂N

u (k), and R̂N
yu(k) for �k� � � according to D, that give a good description of the input-output behavior

Eq. (113). of the system. This is not without problems, among other
5. Form the spectral estimates �̂N

y (�), �̂N
u (�), and �̂N

yu(�) ac- things because there are an infinite number of such matrices
cording to Eq. (114) and analogous expressions. that describe the same system (the similarity transforms).

6. Form Eq. (116) and possibly also Eq. (117). The coordinate basis of the state-space realization, thus,
needs to be fixed.

Let us for a moment assume that not only are u and yQuality of the Estimates. The estimates ĜN and �̂N
w are

formed entirely from estimates of spectra and cross spectra. measured, but also the sequence of state vectors x. This
would, by the way, fix the state-space realization coordinateTheir properties will, therefore, be inherited from the proper-

ties of the spectral estimates. For the Hamming window with basis. Now, with known u, y, and x, the model in Eq. (121)
becomes a linear regression: the unknown parameters, all ofwidth �, it can be shown that the frequency resolution will be
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the matrix entries in all the matrices, mix with measured sig- quoted earlier are not directly applicable. Experience has
shown, however, that confidence intervals computed ac-nals in linear combinations. To see this clearly, let
cording to the general asymptotic theory are good approxima-
tions. One may also use the estimates obtained by a subspace
method as initial conditions for minimizing the prediction er-
ror criterion [see Eq. (74)].

DATA QUALITY

It is desirable to affect the conditions under which the data
are collected. The objective with such experiment design is to
make the collected data set ZN as informative as possible with

Y (t) =
�

x(t + 1)

y(t)

�

� =
�

A B
C D

�

�(t) =
�

x(t)
u(t)

�

E(t) =
�

w(t)
e(t)

�
respect to the models to be built using the data. A consider-
able amount of theory around this topic can be developed andThen, Eq. (121) can be rewritten as
we shall here just review some basic points.

The first and most important point is the following oneY (t) = ��(t) + E(t) (122)

1. The input signal u must be such that it exposes all theFrom this, all the matrix elements in � can be estimated by
relevant properties of the system.the simple least squares method, as described earlier. The co-

variance matrix for E(t) can also be estimated easily as the
It must, thus, not be too ‘‘simple.’’ For example, a pure sinus-sample sum of the model residuals. That will give the covari-
oidance matrices for w and e, as well as the cross covariance

matrix between w and e. These matrices will, among other u(t) = A cos ωt
things, allow us to compute the Kalman filter for Eq. (121).
Note that all of the above holds without changes for multi- will only give information about the system’s frequency re-
variable systems, that is, when the output and input signals sponse at frequency �. This can also be seen from Eq. (85).
are vectors. The rule is that

The only remaining problem is where to get the state vec-
tor sequence x. It has long been known, for example (17,18), • the input must contain at least as many different fre-

quencies as the order of the linear model to be built. Tothat all state vectors x(t) that can be reconstructed from in-
be on the safe side, a good choice is to let the input beput–output data in fact are linear combinations of the compo-
random (such as filtered white noise). It then containsnents of the n k-step ahead output predictors
all frequencies.

ŷ(t + k|t), k = {1,2, . . ., n} (123)
Another case where the input is too simple is when it is gen-

where n is the model order (the dimension of x). See also Ap- erated by feedback such as
pendix 4.A in Ref. 4. We could then form these predictors and

u(t) = −Ky(t) (125)select a basis among their components:

If we would like to build a first-order ARX model

y(t) + ay(t − 1) = bu(t − 1) + e(t)

we find that for any given �, all models such that

x(t) = L

�
ŷ(t + 1|t)

...
ŷ(t + n|t)

�
(124)

a + bK = αThe choice of L will determine the basis for the state-space
realization and is done in such a way that it is well condi- will give identical input–output data. We can, thus, not dis-
tioned. The predictor ŷ(t 	 k�t) is a linear function of u(s), tinguish between these models using an experiment with Eq.
y(s), 1 � s � t and can efficiently be determined by linear (125). That is, we can not distinguish between any combina-
projections directly on the input output data. (There is one tions of ‘‘a’’ and ‘‘b’’ if they satisfy the above condition for a
complication in that u(t 	 1), . . ., u(t) 	 k should not be given ‘‘�.’’ The rule is
predicted, even if they affect y(t) 	 k).)

What we have described now is the subspace projection ap- • If closed-loop experiments have to be performed, the
proach to estimating the matrices of the state-space model in feedback law must not be too simple. It is to be preferred
Eq. (121), including the basis for the representation and the that a set-point in the regulator is being changed in a
noise covariance matrices. There are a number of variants of random fashion.
this approach. See among several references, for example,
Refs. 19 and 20. The second main point in experimental design is

The approach gives very useful algorithms for model esti-
mation and is particularly well suited for multivariable sys- 2. Allocate the input power to those frequency bands
tems. The algorithms also allow numerically very reliable im- where a good model is particularly important.
plementations. At present, the asymptotic properties of the
methods are not fully investigated, and the general results This is also seen from the expression in Eq. (85).
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If we let the input be filtered white noise, this gives informa-
tion on how to choose the filter. In the time domain, it is often
useful to think like this:

• Use binary (two-level) inputs if linear models are to be
built; this gives maximal variance for amplitude-con-
strained inputs.

• Check that the changes between the levels are such that
the input occasionally stays on one level so long that a
step response from the system has time, more or less, to
settle. There is no need to let the input signal switch so
quickly back and forth that no response in the output is
clearly visible.

Note that the second point is really just a reformulation in the
time domain of the basic frequency domain advice: let the input
energy be concentrated in the important frequency bands.

A third basic piece of advice about experiment design con-
cerns the choice of sampling interval.

3. A typical good sampling frequency is 10 times the band-
width of the system.

Filter
data?

Choose model
structure

Construct
experiment,
collect data

Polish and 
present data

Fit model
to data

Model

Validate
model

Accept 
model?

Yes

No

Data
not OK

Model structure
not OK

Data

Data

That corresponds roughly to 5–7 samples along the rise time Figure 4. The identification loop.
of a step response.

The Bias-Variance Trade-offMODEL VALIDATION AND MODEL SELECTION

The heart of the model structure selection process is to handle
A Pragmatic Viewpoint the trade-off between bias and variance, as formalized by Eq.

(92). The ‘‘best’’ model structure is the one that minimizesThe system identification process has, as we have seen, these
FN, the fit between the model and the data for a fresh databasic ingredients
set—one that was not used for estimating the model. Most
procedures for choosing the model structures are also aiming• The set of models
at finding this best choice.• The data

• The selection criterion
Cross Validation. A very natural and pragmatic approach

is cross validation. This means that the available data set is
Once these have been decided upon, we have, at least implic- split into two parts, estimation data, ZN1

est that is used to esti-
itly, defined a model: The one in the set that best describes mate the models:
the data according to the criterion. It is thus, in a sense, the
best available model in the chosen set. But is it good enough?

θ̂N1
= arg minVN1

(θ, ZN1
est

) (126)
It is the objective of model validation to answer that question.
Often, the answer turns out to be ‘‘no,’’ and we then have to

and validation data, ZN2
val for which the criterion is evaluated:go back and review the choice of model set, or perhaps modify

the data set. See Fig. 4.
How do we check the quality of a model? The prime F̂N1

= VN2
(θ̂N1

, ZN2
val

) (127)

method is to investigate how well it is capable of reproducing
the behavior of a new set of data (the validation data) that Here, VN is the criterion in Eq. (75). Then, F̂N will be an unbi-

ased estimate of the measure FN, defined by Eq. (88), whichwas not used to fit the model. That is, we simulate the ob-
tained model with a new input and compare this simulated was discussed at length in the previous section. The proce-

dure would the be to try out a number of model structuresoutput. One may then use one’s eyes or numerical measure-
ments of fit to decide if the fit in question is good enough. and choose the one that minimizes F̂N1

.
Such cross validation techniques to find a good modelSuppose we have obtained several different models in differ-

ent model structures (say a fourth-order ARX model, a sec- structure have an immediate intuitive appeal. We simply
check if the candidate model is capable of ‘‘reproducing’’ dataond-order BJ model, a physically parameterized one, and so

on) and would like to know which one is best. The simplest it hasn’t yet seen. If that works well, we have some confidence
in the model, regardless of any probabilistic framework thatand most pragmatic approach to this problem is then to simu-

late each one of them on validation data, evaluate their per- might be imposed. Such techniques are also the most com-
monly used ones.formance, and pick the one that shows the most favorable fit

to measured data. (This could indeed be a subjective cri- A few comments could be added. In the first place, one
could use different splits of the original data into estimationterion!)
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and validation data. For example, in statistics, there is a com- mercial packages for identification available, such as Math-
work’s System Identification Toolbox (2), Matrixx’s Systemmon cross validation technique called ‘‘leave one out.’’ This

means that the validation data set consists of one data point Identification Module (23) and PIM (24). They all have in
common that they offer the following routines:‘‘at a time’’ but successively applied to the whole original set.

In the second place, the test of the model on the validation
data does not have to be in terms of the particular criterion • Handling of data, plotting, and so on: Filtering of data,
[see Eq. (127)]. In system identification, it is common practice removal of drift, choice of data segments, etc.
to simulate (or predict several steps ahead) the model using • Non-parametric identification methods: Estimation of co-
the validation data and then visually inspect the agreement variances, Fourier transforms, correlation- and spectral-
between measured and simulated (predicted) output. analysis, etc.

• Parametric estimation methods: Calculation of paramet-
Estimating the Variance Contribution—Penalizing the Model ric estimates in different model structures.

Complexity. It is clear that the criterion in Eq. (127) has to
• Presentation of models: Simulation of models, estimationbe evaluated on the validation data to be of any use; it would

and plotting of poles and zeros, computation of frequencybe strictly decreasing as a function of model flexibility if eval-
functions, and plotting Bode diagrams, etc.uated on the estimation data. In other words, the adverse ef-

• Model validation: Computation and analysis of residualsfect of the dimension of � shown in Eq. (92) would be missed.
(
(t, �̂N)). Comparison between different models’ proper-There are a number of criteria, often derived from entirely
ties, etc.different viewpoints, that try to capture the influence of this

variance error term. The two best known ones at Akaike’s
Information Theoretic Criterion, AIC, which as the form (for The existing program packages differ mainly in various user
Gaussian disturbances) interfaces and by different options regarding the choice of

model structure according to C above. For example, MAT-
LAB’s Identification Toolbox (2) covers all linear model struc-
tures discussed here, including arbitrarily parameterized lin-V̂N (θ, ZN ) =

�
1 + 2 dim θ

N

� 1
N

N∑
t=1

ε2(t, θ ) (128)

ear models in continuous time.
Regarding the user interface, there is now a clear trend toand Rissanen’s Minimum Description Length Criterion, MDL,

make it graphically oriented. This avoids syntax problemsin which dim � in the expression above is replaced by log N
and relies more on ‘‘click and move,’’ at the same time as te-dim � (21,22).
dious menu-labyrinths are avoided. More aspects of CADThe criterion ṼN is then to be minimized both with respect
tools for system identification are treated in Ref. 25.to � and to a family of model structures. The relation to the

expression in Eq. (89) for FN is obvious.
How to Get to a Good Model?

Residual Analysis It follows from our discussion that the most essential element
in the process of identification—once the data have been re-The second basic method for model validation is to examine
corded—is to try out various model structures, compute thethe residuals (the leftovers) from the identification process.
best model in the structures using Eq. (38), and then validateThese are the prediction errors
this model. Typically, this has to be repeated with quite a few
different structures before a satisfactory model can be found.ε(t) = ε(t, θ̂N ) = y(t) − ŷ(t|θ̂N )

While one should not underestimate the difficulties of this
process, the following simple procedure to get started andthat is, what the model could not explain. Ideally, these
gain insight into the models could be suggested:should be independent of information that was at hand at

time t � 1. For example, if 
(t) and u(t � �) turn out to be
1. Find out a good value for the delay between input andcorrelated, then there are things in y(t) that originate from

output, for example, by using correlation analysis.u(t � �) but have not been properly accounted for by ŷ(t��̂N).
The model has then not squeezed out all relevant information 2. Estimate a fourth order linear model with this delay
about the system from the data. using part of the data, and simulate this model with the

It is good practice to always check the residuals for such input and compare the model’s simulated output with
(and other) dependencies. This is known as residual analysis. the measured output over the whole data record. In
A basic reference for how to perform this is Ref. 10. MATLAB language, this is simple

BACK TO DATA: THE PRACTICAL SIDE OF IDENTIFICATION
z = [y u];
compare(z,arx(z(1:200,:),[4 4 1]));

Software for System Identification If the model/system is unstable or has integrators, use predic-
tion over a reasonable large time horizon instead of simu-In practice, system identification is characterized by some
lation.quite heavy numerical calculations to determine the best

Now, either of two things happen:model in each given class of models. This is mixed with sev-
eral user choices, trying different model structures, filtering
data, and so on. In practical applications, we will thus need • The comparison ‘‘looks good.’’ Then, we can be confident

that with some extra work—trying out different ordersgood software support. There are now many different com-
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and various noise models—we can fine-tune the model
and have an acceptable model quite soon.

• The comparison ‘‘does not look good.’’ Then we must do
further work. There are three basic reasons for the fail-
ure.
1. A good description needs higher order linear dynam-

ics. This is actually, in practice, the least likely rea-
son, except for systems with mechanical resonances.
One then obviously has to try higher order models or
focus on certain frequency bands by band pass filter-
ing.

2. There are more signals that significantly affect the
output. We must then look for what these signals
might be, check if they can be measured, and if so,
include them among the inputs. Signal sources that
cannot be traced or measured are called ‘‘distur-
bances,’’ and we simply have to live with the fact that
they will have an adverse effect on the comparisons.

0 20 40 60 120100 160 18080 140
3. Some important nonlinearities have been overlooked.

Figure 6. As Fig. 5 but using all three inputs.We must then resort to semiphysical modeling to find
out if some of the measured signals should be sub-
jected to nonlinear transformations. If no such trans-

inputs in Fig. 1. That is, the model is computed asformations suggest themselves, one might have to try
some nonlinear black-box model, like a neural net- arx([y u1 u2 u3], [4 4 4 4 1 1 1])
work.

on the same data set. The comparison is shown in Fig. 6. It
‘‘looks good.’’ By further fine-tuning, as well as using modelClearly, this advice does not cover all the art of identification,
structures from physical modeling, only slight improvementsbut it is a reasonable first approximation.
are obtained.

Example 7 Aircraft Dynamics
Example 8 Buffer Vessel DynamicsLet us try the recipe on the aircraft data in Fig. 1. Picking
Let us now consider the pulp process of Fig. 2. We use the �-the canard angle only as the input, estimating a fourth order
number before the vessel as input and the �-number after themodel based on the data points 90 to 180, gives Fig. 5. (We
vessel as output. The delay is preliminarily estimated to 12use 10-step ahead prediction in this example since the models
samples. Our recipe, where a fourth order linear model is esti-are unstable, as they should be; JAS has unstable dynamics
mated using the first 200 samples and then simulated overin this flight case.) It does not ‘‘look good.’’ Let us try alterna-
the whole record gives Fig. 7. It does not look good.tive 2: More inputs. We repeat the procedure using all three
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Figure 7. Dashed line: �-number after the vessel, actual measure-

Figure 5. Dashed line: actual pitch rate. Solid line: 10 step ahead ments. Solid line: simulated �-number using the input only and a
predicted pitch rate, based on the fourth order model from canard fourth order linear model with delay 12, estimated using the first 200
angle only. data points.
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P.I.M. 	 Software, Englewood Cliffs, NJ: Prentice-Hall, 1990.
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