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its constitutive relation expresses the link between them. The
extension to components with more than two terminals does
not raise any question of principle.

Even if the definitions of voltage and current for one-ports
are deemed to be known by the reader of this article, it is
useful to recall them briefly so as to be clear as to the limits
within which they can be introduced. The limits are in fact
those of the validity of the circuit model. When one speaks
of electric currents in the theory of circuits, one is, in effect,
committing a venial linguistic sin. One should more rightly
use the term intensity of electric current. To be clear, let us
suppose that within a region of space there are carriers of
electric charges with assigned number of charge particles per
unit volume N (numerical density) and velocities for each type
of particle. For simplicity’s sake, let us assume that each car-
rier has the same charge q, the numerical density N is uni-
form, and all the charges have the same average velocity u.
Now let us consider a plane surface S0 and ask ourselves what
amount of charge �Q flows through it in a given direction
during the time interval �t. One may easily recognize thatLINEAR NETWORK ELEMENTS
�Q is equal to the amount of charge in the volume enclosed
by the oblique cylinder with base S0 and height u�tcos� (seeWithin the limits of circuit model approximation the op-

erating conditions for each component of an electrical network Fig. 1), that is,
are identified univocally by the currents and the voltages at
their terminals. The voltages and currents of each component Q = (qNu)tS0 cos α (1)
are linked by relations that depend only on their physical con-

where � is the angle that the direction of motion of thestitution. Such relations are not, however, capable of de-
charges forms with the normal n to the surface S0, orientedtermining the actual operating conditions of the individual
in one of the two possible directions, and u is the module ofcomponents—that is, the values the voltages and currents as-
the velocity u. The amount of charge passing through the sur-sume when a component is put in a given circuit. This inde-
face per unit time, which is known as the electric current in-termination disappears if one takes into account the fact that,
tensity, is thus equal toagain within the circuit model approximation, each compo-

nent of the electrical network interacts with the other compo-
i = Q/t = (qNu)S0 cos α (2)nents through the currents and the voltages at their termi-

nals. More precisely, one may say that the operating
In the SI system the unit of the electric charge is the coulombconditions of each component, and thus of the whole circuit,
(C) and that of electric current intensity is the ampere (A): 1are the result of two distinct requirements: that the compo-
C � 1 A � 1 s.nent should behave in a manner compatible with the nature

Introducing the current density vector field J � qNu,of the other components of the network, as they are con-
which describes the motion of the charges and the vectornected, and that its behavior, in turn, should be compatible
S0 � S0n̂, where n̂ is the unit vector of the normal n, we maywith its specific nature.
write i � J � S0 (with the dot we indicate the scalar product).While the interaction of the single component with the rest
Thus the intensity of the electric current appears as the fluxof the circuit is regulated by Kirchhoff ’s laws and is dealt
of the current density vector field through a given surface inwith in TIME-DOMAIN CIRCUIT ANALYSIS and NETWORK EQUA-
a given direction. This definition can be easily extended to the

TIONS, the specific nature of each single component is mani-
fested through particular relations imposed between the volt-
ages and the currents at their terminals. These are the
constitutive relations and are the subject of this article.

This distinction, which is fully justified at the conceptual
level and is also used in practice, cannot, of course, be inter-
preted in an absolute manner. One cannot speak of electrical
networks without referring to the nature of their components,
just as one cannot deal with circuit components without con-
sidering that they are inserted in a network. Thus a certain
overlapping of topics in this article and the others mentioned
is inevitable. What is substantially different in them is the
viewpoint from which these topics are considered.

As long as there is more than one, there can be any num-

u∆t
u∆t cos

α

α

un

S0

ber of terminals in a circuit component. For the sake of sim-
plicity, we will begin by speaking of components with only Figure 1. The particles flowing through S0 during the time �t are
two terminals, also called one-ports. The one-port operation all those contained in the oblique cylinder of height u�tcos� and base

S0.is characterized by a single current and a single voltage, and
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Analogous considerations can be developed for the voltage
between the two terminals of the component. In this case too,
it is necessary to choose a direction, from a to b, for example,
and a particular path along which to integrate the tangent
component of electric field E. By definition, the voltage v� is
the line integral of E along a path � (Fig. 2), going from termi-
nal a to terminal b lying outside the limiting surface of the
component,

vγ =
∫

γ

EEE · dlll (4)

In the SI system the unit of the electrical voltage is the volt
(V). Thus v� represents the work that would be done by the
electric field to carry a positive unit charge from a to b along
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γ
γv
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the path � considered. For such work to be unique the line
integral of the field E will obviously have to be independentFigure 2. A one-port may be schematized as a box enclosed by the

limiting surface �l interacting with the rest of the circuit only through of the path; that is, the field E must be conservative. This is
the two terminals a and b. rigorously ensured by Maxwell’s equations only in steady-

state (for details see again Ref. 1). In this case the line inte-
gral of the electric field does not depend on the path chosen

case where all the variables change in the time, the numerical but only on the ends, and it may be represented by the differ-
density is not uniform, the average velocity is not the same ence between the values that a new function, the electrical
for all the carriers, which themselves may not carry the same potential, assumes at a and b. Thus we should use different
amount of charge, and the surface S may be of any kind. In terminology for stationary and dynamic operations. It would
general we have the expression be better to speak of potential difference between the termi-

nals in the case of steady-states and would be better to speak
of voltage, stating along which path, for dynamic operations.iS(t) =

∫∫
S

JJJ · dSSS (3)
Once again, in a dynamic operation, the fact that the behavior
of the component may be characterized by a single voltage

and hence the electric current intensity iS(t) flowing through is merely an approximation, the more so when the electrical
a given surface S in an assigned direction—or more simply variables change slowly. From such considerations it is evi-
the electric current—is the flux, instant by instant, of the cur- dent that one can speak of one-ports only if the voltage across
rent density field J through the surface S according to the the terminals may be expressed as a difference of potential or
preselected direction. may be approximated through it. This problem, too, will be

In the light of these considerations, the fact that the opera- dealt with more fully later in this article. For the sake of lin-
tion of a circuit component with two terminals may be charac- guistic simplicity, we will use the terms voltage and current
terized by a single electric current requires a more precise without further specification, with the considerations that
explanation. We can consider a generic component with two have been outlined being implicitly assumed.
terminals as a box enclosed by a limiting surface �l. The com- There still remains the problem of choosing the reference
ponent can interact with the ‘‘outside’’ only through two per- directions for the currents and voltages: It is not possible to
fectly conducting regions of �l that we will suppose to be tiny assign unambiguously the constitutive relations of a one-port
and call terminals (see Fig. 2). The rest of the limiting surface without first identifying them.
consists of a perfectly insulating material. Therefore it is al- The voltage reference direction is usually indicated by the
ways possible to define at least two current intensities involv- signs � and � near the terminals: The � sign indicates the
ing the component itself: that flowing through the surface at starting point and the � sign the ending of the path for the
terminal a with the normal oriented on the inlet side of �l, line integral of the electric field. The reference direction for
for example, ia; and that flowing through the surface at termi- the current is usually indicated with an arrow placed on one
nal b with the normal oriented on the outlet side, ib. The com- of the two terminals. Referring to the generic one-port we
ponent we are analyzing can be considered a one-port only if have already spoken of, one may see that two alternative
ia � ib. choices exist, which are represented in Fig. 3. Suppose that a

This seemingly banal property is never, in fact, truly veri-
fied in a component, unless it is not operating under strictly
steady-state conditions—that is, when the electrical variables
are constant in time. In such conditions, in fact, ia � ib is
assured by Maxwell equations (for more details see Ref. 1),
which establish that in steady state the flux of the electric
current density field J through any closed surface must be
zero. In a dynamic operation, that is, when the electrical vari-
ables vary with the time, such a condition can only be approx-
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imate: The slower the current variation in the time, the closer Figure 3. Two possible conventions for the reference directions of
the approximation. This problem will be examined in greater the current and voltage of a one-port: (a) ‘‘normal’’ convention and (b)

‘‘source’’ convention, v	 � �v.detail later in the article.
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current reference direction is chosen. Then the voltage refer- v = Ri and i = Gv (5)
ence direction can be chosen with either the � sign or the �
sign at the terminal where the current arrow enters. In the where R and G are two constant parameters called, respec-
first case [Fig. 3(a)], one speaks of the normal convention and tively, resistance and conductance. They are linked by the re-
this is the one to which we shall implicitly refer, unless other- lation R � 1/G. The symbol of the linear resistor is illustrated
wise specified. in Fig. 4(a). In the SI system, electrical resistance is mea-

In technical language the same term is used to indicate sured in ohms (�; 1 � � 1 V/1 A) and conductance is mea-
both the physical object concretely characterized by a certain sured in siemens (S; 1 S � 1/1 �). There are, however, cases
constitutive law and the ideal component that we find in cir- where inversion is not possible—for example, if the constitu-
cuit layouts. Naturally, in the first case the constitutive law tive relation v � v̂(i) is nonlinear and v̂(i) is not strictly in-
is intended as an approximation sufficient to describe the be- creasing. In such cases the nature of the one-port imposes
havior of the component in a certain set of conditions. In the one of two descriptions and one then says that one-ports are
second case, it is an exact law that fully describes the behav- intrinsically current- or voltage-controlled.
ior of an ideal component extrapolated from the real one. There are nondynamic one-ports that impose the time be-
Even if this ambiguity of language does not cause any confu- havior of the voltage at their terminals independent of the
sion, since the limits within which the model is intended to current circulating therein, v � e(t). These are the indepen-
operate are always very clear, in general one prefers to call dent voltage sources. Likewise, current-independent sources
the ideal component the circuit element. impose the time behavior of current circulating therein inde-

This article focuses essentially on the ideal components of pendent of voltage, i � j(t). The symbol for voltage- and cur-
an electrical network. Nonetheless, we shall not fail to refer rent-independent sources are, respectively, shown in Figs.
to the ‘‘physical objects’’ to whose characteristic they approxi- 4(b) and 4(c).
mate, both when they are ‘‘elementary’’ components (e.g., as Dynamic one-ports, instead, are characterized by a more
for example resistors) and when they are the result of a more complex relation between voltage and current: The derivative
complex aggregation of other elementary components (e.g., of one of the two electric variables is present. Such one-ports,
operational amplifiers or controlled sources). when present, introduce ordinary differential equations in the

The relationship between real and ideal components may circuit equations, notably enlarging the behavioral complexity
be interpreted from two opposite viewpoints. One may think of the electric network (for more details see NETWORK EQUA-

of starting from a real component by identifying the approxi- TIONS).
mate constitutive law—perhaps experimentally—and then, Elementary dynamic one-ports are the capacitor, whose op-
by extrapolation, ‘‘building’’ the corresponding ideal compo- eration is described by the differential equation
nent. Alternatively, it is possible to imagine a determined
constitutive law—of which perhaps one feels the need for a
particular application—and attribute an ideal component to

i = C
dv
dt

(6)

it and then, if possible, build a real component suitably ap-
and the inductor, whose operation is described by the differ-proximate to it in behavior. From the ‘‘historical’’ viewpoint,
ential equationone may clearly say that both paths have been trodden: the

former for the components we have previously called ‘‘elemen-
tary’’ and the latter for more complex ones. We, too, for didac- v = L

di
dt

(7)
tic reason will adopt the possibility of introducing diverse
components from the two distinct viewpoints, beginning natu-

The parameters C and L are two constants that are, respec-rally with elementary components.
tively, known as capacity and inductance. In the SI system,A first and fundamental classification of one-ports divides
capacity is measured in farads (F) and inductance is mea-them into linear and nonlinear. Obviously a linear one-port is
sured in henries (H). The symbols for linear capacitors andone whose constitutive relation is of the linear type. In this
linear inductors are illustrated, respectively, in Figs. 5(a)article we will limit ourselves to linear elements only, while
and 5(b).nonlinear ones are dealt with in NONLINEAR NETWORK ELE-

A third classification divides one-ports into active and pas-
MENTS.

sive. One-ports unable to supply more electric energy thanA second classification of one-ports that it is convenient to
they have previously absorbed belong to the second category.introduce is that distinguishing ‘‘nondynamic’’ or resistive
Let us first consider nondynamic one-ports. From the defini-one-ports from dynamic one-ports. The former are those char-
tions of voltage and current previously given, it is obviousacterized by an ‘‘algebraic’’ link between the voltage and the

current. If, for example, the current is the independent vari-
able (the control variable), the constitutive relation of the one-
port will be of type v � v̂(i). If v̂(i) is single-valued, one speaks
of current controlled one-ports. However, one can also express
the constitutive relation as ı̂ � ı̂(v). If ı̂(v) is single-valued,
one speaks of voltage-controlled one-ports. In general, a one-
port is both voltage- and current-controlled if its constitutive
relation is invertible.

The linear resistors are nondynamic one-ports that are
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characterized by a linear algebraic constitutive relation be- Figure 4. Symbols for (a) linear resistor, (b) independent voltage
source, and (c) independent current source.tween the voltage and current. They can both be described by
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In conclusion a resistor is passive if we have vi � 0 for any
pair (v, i) (we are assuming the normal convention for the
reference directions of the current and the voltage). If such is
not the case, the resistor is active. The resistor is said to be
strictly passive if vi � 0 only for the case i � 0 and v � 0, and
so a linear resistor with R  0 is strictly passive. As we will
see later there are also one-ports that absorb zero-power for
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any pair of (v, i). Unlike voltage and current sources, a linear
Figure 5. Symbols for (a) linear time-invariant inductors and (b) lin- resistor with negative resistance always absorbs a negativeear time-invariant capacitors.

power, except for the case v � 0 and i � 0 where the absorbed
power is zero. To stress this property we could introduce the
concept of strictly active one-port. However, we have to notethat the product p � iv is, instant by instant, the electrical
that physical devices whose characteristic curve always liespower flowing in the one-port. In fact, v is the work needed to
in the second and fourth quadrant of the (v, i) plane do notcarry a positive charge from one terminal to the other inside
exist.the element, while i is the amount of electric charge trans-

For dynamic one-ports, too, p � iv represents the electricalported per unit time through the one-port. In particular, if
power absorbed. In this case, however, the definition of pas-the normal convention is assumed, p � iv represents the work
sivity—which remains the same as previously stated—hasper unit time done by the electric field on the charges: It is
more complex implications. The fact is that a dynamic one-equal to the electrical energy per unit time absorbed by the
port is generally able to store electrical energy for a certainone-port. Thus we call it electric power absorbed by the one-
interval of time and supply it later. Consider, for example, aport. If this power is always positive, obviously the one-port
capacitor of positive capacity C [its characteristic is repre-is only able to absorb electric energy and thus, as previously
sented by Eq. (6)] and integrate the power absorbed p on thedefined, is passive. If operating conditions exist wherein the
interval (t0,t). In this way we calculate the electric energy ab-power absorbed is negative, the nondynamic one-port is said
sorbed by the capacitor in the interval (t0,t), which is given byto be active. In the SI system, electrical power is measured in

watts (W) and the electrical energy is measured in joules (J),
1 J � 1 W � 1 s.

In the case of nondynamic one-ports the property of passiv-
ity has a simple verification on the characteristic curve. Since
the constitutive relation of a resistive one-port is described by

w(t0, t) =
∫ t

t0

p(τ ) dτ =
∫ t

t0

d
dτ

�
Cv2

2

�
dτ

= 1
2

Cv2(t) − 1
2

Cv2(t0)

(8)

an algebraic relation between voltage and current, it can be
Such energy is positive (and therefore effectively absorbed) ifrepresented on a cartesian plane (i,v). In particular, for linear
v2(t)  v2(t0), whereas it is negative (and thus corresponds toresistors the representative curve will be a straight line pass-
energy effectively supplied by the one-port) if v2(t) � v2(t0). Ifing through the origin, inclined with respect to the axis of the
at the initial instant v(t0) � 0, the energy w(t0,t) is certainlycurrents at an angle � so that R � tan� [Fig. 6(a)]. Thus in
positive. All these considerations lead to the following conclu-the plane (i,v) the characteristic curve always develops in the
sions: The capacitor is able to absorb or supply electrical en-first and third quadrants if the resistance is positive. In the
ergy; at each instant the level of energy stored is equal tofirst quadrant a positive voltage corresponds to a positive cur-
Cv2(t)/2; the energy that can be supplied at any given instantrent, while in the third quadrant a negative voltage corre-
is never greater than that stored previously if C  0. In othersponds to a negative current, so that the power absorbed is
words, the capacitor with C  0 is passive becausealways positive or at most equal to zero. If the one-port char-

acteristic curve has points in the second or fourth quadrants
(recall that the convention assumed is the normal one), op-

∫ t

−∞
p(τ ) dτ ≥ 0 (9)

erating conditions exist in which the power absorbed is nega-
tive and thus corresponds to positive supplied energy and the

for each instant of time t.one-port is said to be active. This happens, for example, for
Analogous considerations can be developed for the inductorvoltage- and current-independent sources [Fig. 6(b)].

with positive L. Then we have

w(t0, t) =
∫ t

t0

p(τ ) dτ =
∫ t

t0

d
dτ

�
Li2

2

�
dτ = 1

2
Li2(t) − 1

2
Li2(t0)

(10)

The amount of energy stored by an inductor at any instant is
proportional to the square of the current circulating therein
at that instant. Here too passivity is assured by the condition
L  0 and so Eq. (9) is valid.

An immediate consequence of what has been said is that
the constitutive laws of the dynamic one-ports are not suffi-

E0
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v v

i

(a) (b)

φ

cient in themselves to univocally predict their behavior start-
ing from an instant t0: It is necessary to know the level ofFigure 6. (a) Characteristic curve of a linear resistor; (b) characteris-

tic curve of an independent voltage source. energy stored at that instant. In other words, one needs to
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know an initial condition, which for the capacitor is the volt- force acting on the charges will then be qE � kv, given that
the friction is opposed to the action of the electric field. If aage value at t � t0 and for the inductor is the current value

at t � t0. steady state is achieved, the charge velocity remains constant
and the acceleration is therefore nil. Then we will haveIn conclusion, as regards classification we should recall

that a one-port is said to be time-invariant, whether resistive
or dynamic, if the parameters of its constitutive relation do 0 = qEEE − kvvv (12)
not vary in the time.

and so v � qE/k as prescribed by Ohm’s law. This model ofIn this article first we will describe the linear resistive one-
conduction in ohmic materials is known as Drude’s model,ports and then the main properties of linear resistive ele-
and what we have explained only qualitatively can be furtherments with more than two terminals that are of notable im-
considered at a quantitative level. We are principally inter-portance in the circuit theory and applications. Then we will
ested in underlining the fact that the verification of Ohm’sstudy in detail the capacitor and inductor. We shall conclude
law requires rather particular conditions. It is not surprisingby describing the behavior of mutually coupled circuits.
therefore that there are conducting materials that do not sat-
isfy this law, and that ohmic materials themselves are such

RESISTIVE ONE-PORTS only in determined conditions. For example, the resistivity of
a material does not remain constant when the material tem-

In this section we will introduce different resistive one-ports perature varies, as we will see later.
by briefly describing their concrete structure and discussing Let us now consider a cylindrical conductor of uniform
the properties implicit in their characteristic laws. Let us be- cross section S and length l [Fig. 7(a)], crossed by a steady-
gin with linear resistor one-ports operating in the steady- state current density field J that we will suppose to be uni-
state condition, which in a certain way can be considered typi- form, directed parallel to the cylinder axis. A uniform electric
cal. As we shall see many of the things we will say are also field will be associated to it. Integrating Eq. (11) between two
true when the resistors operate in nonstationary conditions. points a and b on the extreme surfaces of the cylinder along
We will then illustrate the ideal voltage source, the ideal cur- any path � connecting them within the cylinder, we obtain
rent source, the short circuit, the open circuit, the nullator,
and the norator.

vab =
∫

γ

EEE · dlll = η/J = ηl
i
S

= Ri (13)

The Linear Resistor
where vab is the voltage and i � JS is the intensity of theMaterials—usually metals—exist in which, for a suitable
electric current flowing across any section of the conductorrange of parameters, the current density field J is, at every
cylinder. The orientation of the normal to the generic section,instant and throughout the material, directly proportional to
indispensable in calculating the current, has been chosen inthe electrical field E according to the equation
agreement with the orientation of path �. Factor R � �l/S is
called the electric resistance of the conductor tract, and Eq. (13)JJJ = σEEE (11)
is Ohm’s law applied globally.

This result may easily be generalized to any conductorwhere � is the electric conducibility of the material, which is
form involving a charge flux constant in time, in conditionsmeasured in siemens/meter (S/m) in the SI system. Equation
where all the charge carriers start from one end and arrive at(11), which is called the local Ohm’s law, can also be rewritten
the other end of the conductor tract. Two perfectly conductingas E � �J, where � is the electrical resistivity of the material
electrodes—that is, � � 0—constrain the electric potential tothat in the SI system is measured in ohm � meter (� � m).
be uniform at the tract ends [Fig. 7(b)]; we will call them ter-The fact that some materials, called in fact ohmic materi-
minal a and terminal b. Even without knowing the actual dis-als, verify Ohm’s law has a very subtle significance that we
tribution of the current density J inside the body, we can cer-will try and examine, even if only from the qualitative point
tainly affirm that all the field lines must start from and meetof view. From its definition it is evident that current density

is directly proportional to the average velocity of the charge
carriers. On the other hand, the electric field is directly pro-
portional to the force exercised on the carriers themselves.
Therefore, Ohm’s law affirms that the velocity is directly pro-
portional to the force, in apparent contradiction with the laws
of dynamics that require that the force is directly proportional
to the acceleration. In effect, the contradiction is only appar-
ent since in Newton’s law the body is assumed to be com-
pletely free to move in the surrounding space under the action
of the force. Obviously the charge carriers in an ohmic con-
ductor are not completely free to move! The crystal lattice
which constitutes the material body in which the carriers are
forced to move offers some obstacle to the charge movement.

∆Sk

(a) (b)

JJ
γ

kγ

a

a

b

b

Ohm’s law, indeed, allows us to determine what type of obsta- Figure 7. (a) Cylindrical resistor with uniform cross section; (b) cy-
cle there is. Let us, in fact, suppose that the overall effect of lindrical resistor with a varying cross section in which an elementary
the motionless charges constituting the lattice is equivalent flux tube is represented. The terminals are perfect conducting elec-

trodes.to a ‘‘friction’’ directly proportional to the velocity. The overall
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metal, in Taylor series with initial point T0 and stopping it at
the second term. So one obtains

η(T ) ∼= η(T0)

[
1 + 1

η(T0)

dη

dT

∣∣∣∣
T0

(T − T0)

]
(16)

Coefficient �(T0) � [1/�(T0)] (d�/dT)�T0
is called the material

temperature coefficient at T � T0, or resistor temperature co-
efficient (RTC), because it is also found in the dependence on
the temperature of the resistance R,

R(T ) = R(T0)[1 + κ(T0)(T − T0)] (17)

The fact that R depends on the temperature has an important
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consequence that we wish to examine in greater detail. As we

Figure 8. Resistivity versus temperature for two conducting materi- know, a resistor with resistance R crossed by an electric cur-
als (in both axes, logarithmic scales have been used).

rent i for a time interval �t absorbs an electric energy equal
to Ri2�t. This energy is all transformed into heat, according
to Joule’s well-known law. As a consequence of this phenome-
non, the temperature of the resistor tends to increase and so
the resistance tends to vary. The result, therefore, is an indi-at the terminals a and b. Let us consider a flux tube of J
rect dependence of R on i that modifies the characteristic ofhaving an elementary cross section �Sk—that is, an elemen-
the one-port itself. In effect, however, the resistor soontary tube on whose side vector field J is tangent. Integrating
reaches a steady-state temperature that can easily be deter-Ohm’s law [Eq. (11)], as before, along the median of the ele-
mined by a simple energy balance. The temperature reachedmentary flux tube, one has
will be that at which the power dissipated in the resistor is
exactly equal to the quantity of heat per unit time transferred
by the resistor to the surrounding ambient, which depends on
the temperature difference between the resistor body and the

vab =
∫

γk

EEE · dlll =
∫

γk

SkJkη

Sk
dl = ik

∫
γk

η

Sk
dl (14)

environment. Once the temperature is stabilized, the value of
R stabilizes, even if at a different value from that initially

because the intensity of the current �ik along the elementary held. It follows that for every resistor, in addition to the value
flux tube is, by definition, constant. Taking �ik from Eq. (14) of its resistance and the precision with which it is guaranteed,
and summing on all elementary flux tubes of the conductor the maximum value of the current—or the power Ri2—for
tract—that is, on k—one obtains which the resistance value is guaranteed must also be given.

For these reasons, resistors are generally classified on the ba-
sis of the power they are capable of dissipating without the
resistance value exceeding the limits of precision guaranteed,
or the limit at which the resistor itself deteriorates irrevers-

i =
∑

k

ik = vab∑
k

∫
γk

η

Sk
dl

= vab

R
(15)

ibly. Naturally, to allow a resistor to dissipate greater power,
while maintaining its temperature within acceptable limits,which is the constitutive relation [Eq. (5)] of a linear resistor
the simplest way is to increase the exchange surface with the

with R � �k	�k (�/�Sk) dl.
surrounding ambient, so as to increase the quantity of heat

As we have already observed, the fact that a one-port has lost per unit time. On the other hand, larger surfaces involve
a type (5) constitutive relation requires the verification of greater volumes and so, generally, the size of a resistor is an
quite strict conditions and that the movement of the charges index to its capacity to dissipate power.
in the component itself is regulated by particular laws. There- Another factor that can affect the size of the resistor is
fore, it is not surprising that a real resistor behaves as such the operating voltage for which it is built. This is particularly
only in a determined range of parameters that characterize significant with resistors designed for high voltages. So far we
its physical conditions. have implicitly assumed that the resistor is embedded in an

A physical condition that regulates the behavior of a resis- insulating medium so that the motion of the electric charges
tor, for example, is the temperature. In fact, the resistivity of must develop only within the resistor itself. In effect, any in-
a material generally depends on the temperature. Figure 8 sulating medium behaves as such only if the force due to the
shows the typical resistivity performance as a function of the electric field acting on the charges present therein (we are
temperature for two materials, copper and graphite. As can thinking about the molecular and atomic structures) does not
be seen, the resistivity can increase or decrease with the exceed determined limits. With very high values of the elec-
change in temperature. Even with the same material, these tric field the insulator loses its characteristics, the passage of
two behaviors can be encountered at different temperature the charges is no longer impeded, and a ‘‘discharge’’ develops
ranges. inside it. The breakdown field above which the discharge de-

For changes in temperature that are not too wide, it is pos- velops depends significantly on the physicochemical condi-
sible to take into account such dependence by developing the tions in the insulating medium (composition, temperature,

etc.); for example, the breakdown electric field for the air isfunction �(T), where T indicates the temperature of the
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about 25 kV/cm in normal conditions. Consequently, the di-
mensions of the resistor must be such as to guarantee that,
for the voltages for which it is designed, the breakdown field
cannot be exceeded at any point in the insulator. As we have
said, this factor is particularly important for high-voltage re-
sistors.

In general, all these characteristics depend on the way in

v = 0 v = 0

i = 0 i = 0
i

(a) (b)

v

i

(c) (d)

+

–

+

–

v

which the resistor is built. From this viewpoint, resistors can
Figure 9. Symbols for (a) short circuits, (b) open circuits, (c) nulla-be broadly classified as wirewound, foil, thin film, thick film,
tors, and (d) norators.and bulk resistors. The specific characteristics for each of

these classes depend, of course, on the different technologies
used in their production and will not be dealt with further in The other case, R � �, corresponds to that in which the
this article. There are numerous handbooks that deal with electric conducibility of the conductor is equal to zero. In such
these matters in detail (see, for example, Ref. 2). an event, in contrast, for any voltage at the one-port termi-

Another useful classification is that which divides resistors nals, the current crossing the one-port is always zero, that is,
into two classes: fixed resistors and potentiometers. In the
former there are low-power resistors (typically from 0.05 W i = 0 for any v (19)
to 2 W) high-power resistors, high-ohmic resistors, and chip

Such a one-port can be realized by placing an ideal insulatorresistors. For some types of sufficiently low power resistors,
between the terminals. For this reason the one-port is calledand thus small size, it is usual to indicate the resistance and
open circuit and its symbol is represented in Fig. 9(b). Theits relative tolerance with a colored band code whose key is
electrical power absorbed by the short-circuit and open-circuitgiven in the manuals. However, the second class includes all
one-ports is always zero. For this reason we call them zero-variable resistors that, according to the way in which their
power one-ports.variability is obtained, can be divided into rotary control,

slide control and preset potentiometers. For further details
Ideal Voltage and Current Sourcesone should again consult Ref. 2.

On the other hand, the same words used to identify the Starting from the characteristic of a short circuit, let us imag-
different classes of resistors already give an idea of how they ine moving its characteristic curve parallel to itself, for exam-
are built. In each of them, then, one varies between three ple, in the direction of the positive voltages. Let E0 be the
available parameters—the resistivity � (and hence the mate- value at which the straight line parallel to the axis of the
rial), the length l, and the cross section S—to obtain the resis- currents so obtained intersects the axis of the voltages. The
tance values desired. one-port having such a characteristic could be described as

In conclusion, it is worth recalling that in this section we follows: For any value of the current flowing in it, the voltage
have described the operation of resistors when the voltage at the terminals is always equal to E0. Such a characteristic
and current are in steady state, that is, we have described the must develop in the first and second quadrants of the plane
so-called direct current (dc) operation. As we shall see, many (i,v) [Fig. 6(b)]. Because we have assumed the normal conven-
of the things we have said are also true when the resistor tion on the one-port, when the operating point lies in the sec-
does not operate in steady state. ond quadrant, the electric power absorbed by the one-port is

negative and therefore the one-port supplies electric energy.
Short-Circuit and Open-Circuit One-Ports For this reason the one-port so identified is called a source. It

is to be noted that, contrary to that which happens in theAs we have seen, resistor constitutive relation (5) is repre-
resistor with positive resistance, where the positive chargesented on the plane (i,v) by a straight line passing through
movement is always from the higher potential terminal to thethe origin inclined to the current axis at an angle � so that
lower (so the power absorbed is always positive), in this one-R � tan� [Fig. 6(a)]. Thus, as R varies, the straight line will
port when the operating point lies in the second or fourthbe more or less inclined on the i axis. Two limit cases immedi-
quadrant the positive charges move from the lower potentialately come to mind: one in which the angle � is zero and the
terminal to the higher, against the force exercised by the elec-other in which it is equal to �/2.
tric field. Thus, it is evident that such a one-port must be theIn the first case, R � 0 and the voltage of the one-port will
site of more complex phenomena, wherein forces of a naturealways be zero for any current flowing in it, that is,
other than that produced by the electric field come into play
(for example, such forces in a battery are of a chemical naturev = 0 for any i (18)
and of an electrodynamic nature in a dynamo).

More generally, an ideal voltage source can impose a volt-
Such a one-port is called short circuit. Its symbol is illustrated age variable in the time with a known waveform and indepen-
in Fig. 9(a); and, in theory, it can be realized with a perfect dent of the current that circulates within; that is,
conductor, namely, a conductor with infinite conducibility
(that is, with zero resistivity). We may imagine the connec- v = e(t) for any i (20)
tions between different one-ports in a circuit as being of this
nature. In reality, of course, a real conductor can at most ap- The symbol used to indicate an ideal voltage source is shown

in Fig. 4(b).proximate such behavior, and the shorter the conductor tract,
the closer the approximation will be. This also justifies its The characteristic of an ideal voltage source can only ap-

proximate that of a real source. In fact, it is implicit in thebeing called a ‘‘short-circuit’’ one-port.
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characteristic of an ideal voltage source that it can supply as LINEAR RESISTIVE ELEMENTS WITH
MORE THAN TWO TERMINALSgreat a power as one wants, to infinite limit when the current

is infinite. Naturally a real source cannot possess such a prop-
As we have already said, the components of an electrical cir-erty. If the current circulating in the source becomes too high,
cuit can have more than two terminals. An element with ter-the voltage will not remain equal to the value assumed when
minals is called an n-pole and is characterized by n currentsthe current is zero (open-circuit voltage), but will fall until it
and n(n � 1) voltages if the order in each pair of nodes istends to zero and change sign for a finite current value (short-
taken into account. In agreement with Kirchhoff ’s laws, onlycircuit current). The simplest way to represent a real voltage
(n � 1) currents and (n � 1) voltages are independent (seesource is to consider an ideal voltage source, with the voltage
NETWORK EQUATIONS). The operation of an n-pole can be condi-intensity equal to the open-circuit voltage of the real source,
tioned by the topology of the circuit into which it is inserted;in series with a resistor that takes into account the effects
the most significant example is that of a 2m-pole connected todue to the ‘‘internal resistance’’ of the real source. This real
m circuits, each of which can be considered as a one-port. Involtage source model tends to the ideal one when the internal
this case the current entering from a given terminal is equalresistance tends to zero.
to the current exiting from the other terminal. Let us callSimilarly, starting from an open-circuit one-port, one can
each pair of terminals having this property a port and call thededuce a new ideal one-port in which a current with an as-
element operating in this way m-port. There are also 2m-polessigned waveform circulates irrespective of the voltage be-
that operate intrinsically as m-ports because of their physicaltween the terminals,
constitution. As for the one-ports, we could classify n-poles
and m-ports into linear and nonlinear, into ‘‘nondynamic’’ ori = j(t) for any v (21)
resistive and dynamic, into active and passive, and into time-
invariant and time-variant.

Such a one-port, for which considerations analogous to those If an n-pole does not function as an n/2-port, either be-
relative to the ideal voltage source can be developed, is called cause of its internal physical structure or because n is odd, it
an ideal current source and its symbol is shown in Fig. 4(c). can still be described by an (n � 1)-port through its descrip-
Naturally it may be better not to use the normal convention tive variables after having chosen an arbitrary common ter-
for source one-ports, but rather the other [Fig. 2(b)], which minal (see NETWORK EQUATIONS). For example, let us consider
for this reason we call ‘‘source convention.’’ a 3-pole. To identify a set of independent voltages and cur-

rents one may choose an arbitrary reference terminal, for in-
stance the terminal labeled ‘‘3,’’ and consider the currents ofNullators and Norators
the other two terminals i1 and i2 and the voltages v1 and v2

Let us complete this overall view of resistive one-ports by in- between these two terminals and the reference terminal ‘‘3.’’
troducing another two ideal one-ports whose characteristics To current i1 and voltage v1 we can associate a port whose
are in fact ‘‘pathological.’’ Their use, which may not be clear terminals are those labeled ‘‘1’’ and ‘‘3,’’ and to current i2 and
at first sight, lies in the fact that they allow models of complex voltage v2 we can associate a port whose terminals are those
components to be built, as the following examples illustrate. labeled ‘‘2’’ and ‘‘3’’: the terminal labeled ‘‘3’’ is in common to

The first is the nullator which is an ideal one-port, whose the two ports. In this way it is possible to characterize the 3-
pole as a 2-port. However, the general theory of linear n-polessymbol is given in Fig. 9(c), defined by the constitutive equa-
and linear m-ports is dealt with in MULTIPOLE AND MULTIPORTtions
ANALYSIS, whereas NONLINEAR NETWORK ELEMENTS considers
nonlinear resistive elements with more than two terminalsi = 0, v = 0 (22)
that are of special interest in circuit applications. Here we
will limit ourselves to describing the basic linear resistive

This, unlike the short-circuit one-port, imposes a zero voltage two-ports that are of notable importance in the theory of cir-
with a zero current. With such a one-port, one can make two cuits and in the building of complex models, beginning with
nodes of a circuit have the same potential without changing linear controlled sources.
the distribution of the currents. The electric power absorbed
by a nullator is zero; in fact, in the plane (i, v) the characteris-

Linear Controlled Sourcestic of the nullator is reduced to a point, the origin of the axes.
This is another example of zero-power one-port. Linear controlled sources are two-ports in which one of the

The other one-port, whose symbol is shown in Fig. 9(d), is variables—voltage or current—at one of the two ports is di-
the norator. It is an ideal one-port that on the contrary im- rectly proportional to one of the variables of the other port.
poses no constraint on the voltage and the current: The volt- Considering all the possible combinations one has the ele-

ments which follows.age and the current can assume any value whatsoever. In
The voltage-controlled voltage source is a linear two-portother words, the characteristic of norators is the whole (v, i)

defined by the constitutive equations [the symbol is shown inplane and hence its pathology is complementary to that of
Fig. 10(a)]nullators. The norator, unlike an open circuit, allows any cur-

rent to flow, whatever the voltage. With a similar one-port it
is possible to connect different parts of a circuit without alter- i1 = 0, v2 = αv1 (23)
ing the voltage distribution. The electric power absorbed by a
norator is not usually zero and can even be negative. Thus where � is a constant called the voltage transfer ratio. Port 1

is equivalent to an open circuit and port 2 is equivalent to athe norator is an active element.
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It can easily be shown that, by connecting a current-con-
trolled voltage source in cascade to a voltage-controlled cur-
rent source, we obtain a current-controlled current source
with a transfer ratio given by � � rg. However, if one connects
a voltage-controlled current source to a current-controlled
voltage source, we obtain a voltage-controlled voltage source
with a transfer ratio given by � � rg.

Even if the controlled sources are to be imagined as ideal
components, so as to simplify the circuit representation of
more complex components, such as linear models of transis-
tors (see NONLINEAR NETWORKS ELEMENTS), it is also true that
by using the operational amplifier itself it is possible to real-
ize components whose constitutive relations approximate sat-
isfactorily to the various controlled sources. Thus these ele-
ments are often used in real circuits to obtain particular
effects. For example, it is possible to connect two two-ports by
means of a voltage-controlled source so that the operating of
the first is not affected by the presence of the second. This
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separation technique is an important tool in the designing of
Figure 10. Symbols for the linear controlled sources.

electronic circuits.
To complete the picture of linear and resistive two-ports,

let us introduce another three two-ports: the gyrator, the
voltage source that imposes a voltage linearly dependent on ideal transformer, and the operational amplifier. Thus we will
the voltage at port 1 and independent of the current i2. have all the elements needed to realize two-ports with any

The current-controlled voltage source is a two-port defined link between their electrical variables.
by the constitutive equation [whose symbol is shown in Fig.
10(b)]

The Gyrator
v1 = 0, v2 = ri1 (24)

The gyrator is a linear resistive two-port, whose operation is
described by the equations

where r is a constant called transresistance. Port 1 is equiva-
lent to a short circuit and port 2 is equivalent to a voltage

i1 = Gv2, i2 = −Gv1 (27)source that imposes a voltage linearly dependent on the cur-
rent circulating at port 1 and independent of the current i2.

where the constant G is called the gyration conductance. TheThe voltage-controlled current source is a two-port defined
symbol is shown in Fig. 11(a). The electric power absorbed byby the constitutive equations [whose symbol is given in Fig.
the gyrator is zero in any operating condition, so it is a glo-10(c)]
bally passive two-port that neither dissipates nor stores en-
ergy. Even if globally passive, the nonamplification of volt-i1 = 0, i2 = gv1 (25)
ages and currents is not verified for this two-port. For

where g is a constant called transconductance. Port 1 is equiv- example, if one considers a gyrator with port 1 connected to
alent to an open circuit and port 2 is equivalent to a current an ideal voltage source and port 2 connected to a short circuit,
source that imposes a current linearly dependent on the volt- the current in the voltage source is zero, while the current in
age at port 1 and independent of the voltage v2. the short circuit is different from zero. Consequently, even

Finally, the current-controlled current source is a linear if the gyrator is globally passive, it must be constituted by
two-port defined by the constitutive equations [whose symbol active elements.
is illustrated in Fig. 10(d)] The gyrator is an antireciprocal two-port, which is a partic-

ular case of nonreciprocity. This strong property is the basis
of the most important property of a gyrator, which can bev1 = 0, i2 = βi1 (26)

where � is a constant called the current transfer ratio. Port 1
is equivalent to a short circuit and port 2 is equivalent to a
current source that imposes a current linearly dependent on
the current circulating at port 1 and independent of the volt-
age v2.

One should note that the electric power absorbed by the
controlled sources is always equal to p � v2i2, because port 1
never absorbs power. This power can be negative, so the con-
trolled sources are active two-ports. Controlled sources are
also nonreciprocal two-ports, that is, the two ports considered,
one as an input and the other as an output, do not behave in
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the same manner. For fuller consideration of this question
refer to NETWORK THEOREMS. Figure 11. Symbols for (a) gyrators and (b) ideal transformers.
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Figure 14. (a) Symbols for the biased operational amplifier; (b)
Figure 12. (a) A gyrator terminated at the output with a capacitor; transfer characteristic curve.
(b) an ideal transformer terminated at the output with a resistor.

where the constant n is the transformation ratio. The symbol
illustrated by means of the circuit in Fig. 12(a). Port 2 is con- for the ideal transformer is illustrated in Fig. 11(b). The elec-
nected to a linear time-invariant capacitor C. In this case, one tric power absorbed by the ideal transformer is equal to zero
has whatever the operating condition. Therefore like the gyrator

it is a globally passive two-port that neither dissipates nor
stores energy. For this two-port too, the nonamplification ofv1 = − i2

G
= C

G
dv2

dt
= C

G2

di1

dt
(28)

the voltages and currents does not apply, even if it is globally
passive. Unlike controlled linear sources and gyrators, the

Therefore when a gyrator is connected to a time-invariant lin- ideal transformer is a reciprocal two-port.
ear capacitor of capacity C, the inlet port behaves as a linear One of the most important properties of the transformer
time-invariant inductor of inductance C/G2. Thus the gyrator can be illustrated by considering the circuit shown in Fig.
allows inductor one-ports to be realized starting from capaci- 12(b), where a transformer port is connected to a linear resis-
tors. It is also possible to realize a capacitor from an inductor tor with resistance R. In this case we have
by using a gyrator.

The following properties may also easily be demonstrated: v1 = nv2 = −nRi2 = n2Ri1 (30)
If a gyrator is connected to a linear resistor of resistance R,
the equivalent one-port behaves like a linear resistor of resis- Thus, when a transformer is connected to a linear resistor of
tance 1/(RG2); if the gyrator is connected to a voltage (cur- resistance R, the equivalent one-port behaves like a linear
rent)-controlled resistor—for example, a diode tunnel—the resistor of resistance n2R and therefore the transformer
equivalent one-port then behaves as if it were a current (volt- allows the resistance of the resistor to be ‘‘changed.’’ It is also
age)-controlled resistor. Because of these characteristics, it is easy to show the following properties: When a transformer
called a gyrator. is connected to a linear inductor with inductance L (a linear

There are on the market components that approximate to capacitor of capacity C), the equivalent one-port behaves like
the operation of a gyrator. A gyrator can also be made from an inductor of inductance n2L (a capacitor with capacity
two voltage-controlled current sources with transconductance C/n2).
G, as illustrated in Fig. 13(a). An ideal transformer can be realized by means of a cur-

rent-controlled current source and a voltage-controlled volt-
The Ideal Transformer age source as shown in Fig. 13(b). It, too, is the fundamental

element in representing a real transformer realized with twoThe ideal transformer is a linear resistive two-port whose op-
coupled circuits; and, in turn, a real transformer, under cer-eration is defined by the equations
tain operating conditions, approximates to the operation of an
ideal one.v1 = nv2, i2 = −ni1 (29)

The Ideal Operational Amplifier

The ideal operational amplifier is an extremely complex semi-
conductor component. In use at low frequencies it behaves
like a nonlinear resistive element with four terminals, whose
operation may be described by the approximated relations
[the symbol is shown in Fig. 14(a)]

i− = I−, i+ = I+

vo = f (vi) =



Esat, vi ≥ (Esat/A)

Avi, −(Esat/A) ≤ vi ≤ (Esat/A)

−Esat, vi ≤ −(Esat/A)

(31)
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where I� and I� are the so-called input polarization currents,
Esat is the maximum absolute value of the output voltage vu,Figure 13. Realization (a) of a gyrator and (b) of an ideal trans-

former by using linear controlled sources. and A is the so-called open-loop voltage gain. It should be
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the circuit into which the amplifier is inserted. Thus, the op-
erational amplifier is an active two-port.

If the operational amplifier in the circuit into which it is
inserted functions in the linear region—that is, the output
voltage satisfies the relation �Esat � vo � �Esat—then the
characteristic relations are

ii = 0, vi = 0 (33)

Consequently, the linear model of the ideal amplifier may be
thought of as a two-port consisting of a nullator and a nora-
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tor, as illustrated in Fig. 15(b): The input port of the linear
operational amplifier behaves as if it were a nullator—thatFigure 15. (a) Typical biasing scheme for the operational amplifier;

(b) equivalent circuit of an ideal operational amplifier in the linear is, both current and voltage are zero—while the output port
region. behaves as if it were a norator, since the current and voltage

can be of any value whatsoever. The linear model of the oper-
ational amplifier is a non reciprocal and active two-port.

noted that the transfer characteristic f (vi) of this approximate By using linear operational amplifiers, one can realize all
model is piecewise linear and has three segments: a linear possible kinds of controlled sources. Let us consider the two-
tract and two saturation tracts [see Fig. 14(b)]. port shown in Fig. 16 consisting of an ideal operational ampli-

The device known as an operational amplifier that we can fier and two linear resistors. One assumes that the outlet
buy in any electronics shop has at least five terminals [Fig. voltage of the operational amplifier is, in absolute value,
15(a)]. To function as an operational amplifier, as described lower than the saturation voltage. In this operating condition
by characteristic Eq. (31), it must be ‘‘biased’’ with two equal it is possible to use the linear model described by Eqs. (33).
constant voltage sources, as indicated in Fig. 15(a). The com- Applying Kirchhoff ’s laws and using the characteristic equa-
ponent, thus polarized, is shown by means of the symbol illus- tions of the elements, one obtains
trated in Fig. 14(a) and its operation is described by Eq. (31).
The polarization voltage is typically 15 V. Besides the five Rai1 + v2 = 0, Rbi2 + v1 = 0 (34)
terminals shown in Fig. 15(a), other terminals are added to
the device to allow it to be controlled. If the resistor of resistance Rb is a short circuit—that is,

Currents I� and I� do not normally exceed values of the Rb � 0—then from Eqs. (34) one obtains
order of 0.1 mA. For example, for �A741, I� and I� are of the
order of 0.1 mA, while for �A740, they are of the order of 0.1 v1 = 0, v2 = −Rai1 (35)
nA. Typically the open-loop voltage gain A is 105 and the satu-

Characteristic equations [Eq. (35)] are those for a current-ration voltage Esat is 2 V less than the polarization voltage of
controlled voltage source: r � �Ra is the transresistance ofthe operational amplifier.
the source (the sign for the transresistance may be changedMany operational amplifiers are produced with integrated
by inverting the terminals of a port).circuits using bipolar transistors as base elements (bipolar

If the resistor of conductance Ga � 1/Ra is an open cir-technology). For example, the �A741 contains about a dozen
cuit—that is, Ga � 0—then from Eqs. (34) one obtainsbipolar transistors. In very large scale integration (VLSI) cir-

cuits, operational amplifiers are made with a different tech-
nology, known as CMOS technology. For further information i1 = 0, i2 = −v1/Rb (36)
the reader is referred to OPERATIONAL AMPLIFIERS and Ref. 3.

Characteristic equations [Eq. (36)] are those for a voltage-Because of the typical values of I�, I�, and A, the precision
controlled current source and the transconductance is g �is only slightly diminished if one assumes I� � I� � 0 and
�1/Rb (as for the transresistance, the sign of the transconduc-A � �. This simplified assumption is the basis of the ideal
tance can be changed by inverting the terminals of a port).operational amplifier model defined by the characteristic

equations

i− = 0

i+ = 0

vo = Esat sgn(vi), vi �= 0 (saturation region)

vi = 0, −Esat < vo < +Esat (linear region)
(32)

Therefore, the ideal operational amplifier is an element that
functions intrinsically as a two-port. The current in the input
port ii � i� � i� is zero, and that at the output port is indepen-
dent of the input voltage vi: The output port behaves as if it
were a voltage source ‘‘controlled’’ by the input voltage. The
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electric power absorbed by the ideal operational amplifier is
given by p � iovo. It may be positive or negative, according to Figure 16. Basic circuit to realize controlled sources.
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DYNAMIC ONE-PORTS Even if we admit that the element is embedded in a noncon-
ductor medium, as in fact it is, and that it may interact with

Previously we have introduced the two fundamental dynamic the rest of the network only through its terminals, nothing
will assure that the current entering one of them will be equalone-ports: the capacitor and the inductor and we have done

so by hypothesising the existence of a mathematical model to that exiting from the other, instant by instant. In fact, we
havetype (6) for the capacitor and type (7) for the inductor. In ef-

fect, however, a deeper examination shows that dynamic one-
ports present different problems and their existence will now
be demonstrated.

∫∫
�

© JJJ · dSSS = −dQ�

dt
or

∫∫
�

© JJJ · dSSS = −
∫∫

�

© ε
∂EEE
∂t

· dSSS (38)

For the electric field in a dynamic regime we have

where � is any closed surface whatsoever, � is the dielectric
constant of the medium (which is assumed to be linear, iso-
tropic, and time-invariant), and Q�(t) is the electric charge

∮
�

EEE · dlll = − d
dt

∫∫
S�

BBB · dSSS = −d��

dt
(37)

that is within � at time t; the generic surface element dS is
for every closed line �, where B is the magnetic field and S� oriented to the outside. The first equation in Eq. (38) is the
is any open surface that has � as contour, oriented in well-known electric charge conservation law and the second
agreement with the right-hand rule. Equation (37) is Fara- is derived by using the Gauss law (for fuller information con-
day’s induction law. For fuller information consult Ref. 1. The sult Ref. 1). Therefore the flux of the current density field J
surface integral represents the flux of the magnetic field through any closed surface is not zero, but is equal to the
through the surface S�. This flux does not depend on the par- minus of the time derivative of the electric charge contained
ticular surface S� we are considering because the flux of the in it. As a consequence the current entering the terminal can
magnetic field through any closed surface is always equal to be different from that exiting from the other terminal at every
zero. It depends only on the magnetic field and on the contour instant, because there can be an increase or reduction of the
�. For these reasons the quantity �� is called the magnetic total charge stored in the component. In the dynamic opera-
flux linked with �. tion, in fact, it is no longer the vector field J but the vector

Therefore, as the electric field in a dynamic regime is not field (J � �
E/
t) that has to be conservative with respect to
conservative, the voltage between the two one-port terminals the flux.
must no longer be independent of the path � chosen to calcu- It would seem that in a dynamic operation the very basis
late it. One should remember that the voltage of a one-port is on which the theory of circuits is founded collapses, and in-
the line integral of the electric field along a determined path deed it does. Of course to limit ourselves to this simple obser-
that connects the two terminals. Because of the presence of vation is to be superficial. It is better to ask whether condi-
the time-varying magnetic field the voltage depends on the tions exist under which a single voltage and a single current
predetermined path �. In such conditions it is the idea of the can be associated to a component with an acceptable error. To
constitutive relation itself that loses significance, since it is answer this it is necessary to consider the problem more fully.
no longer possible to identify a single voltage to be associated Referring to Fig. 17(a) we can affirm that the path inte-
to the two terminals. Naturally, one can always define the grals of the electric field E between points a and b along two
voltage at the terminals by making a particular choice of the lines �1 and �2 differ by the flux of field 
B/
t through any
integration path. However, such a choice cannot be satisfac- surface that has the closed line �12 � �1 � �2 as its contour:
tory since it would give a much more limited meaning to
Kirchhoff ’s second law.

In the same way, in a dynamic regime, one cannot associ-
ate a single current to the two terminals of the component.

v1 − v2 =
∫

γ1

EEE · ttt dl −
∫

γ2

EEE · ttt dl = −
d��12

dt
(39)

Figure 17. (a) The voltages v1 and v2 differ
by the time derivative of the magnetic flux
linked with �1 � �2; (b) the currents ia and
ib differ by the time derivative of the total
electric charge contained in the limiting
surface �l.
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b b
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As long as the voltages v1 and v2 differ by a negligible amount, der of magnitude, so it is opportune, first, to render the vari-
ables concerned dimensionless. This is easily done by intro-there must be
ducing the new dimensionless variables:

|v| =
∣∣∣∣
∫

γ

EEE · ttt dl
∣∣∣∣ 	

∣∣∣∣ d
dt

∫∫
S

BBB · nnn dS
∣∣∣∣ (40)

eee = EEE
Ec

, bbb = BBB
Bc

, x = rrr
Lc

, τ = t
Tc

(46)

where � is any line going from a to b that does not pierce the
where Ec, Bc, Lc, and Tc are the respective reference variables,limit surface �l. The surface S is open and it has as its con-
for the moment all arbitrary, for the electric field, the mag-tour a closed line given by the union of � and any line �0 lying
netic field, position vector r, and the time t. With the introduc-on the limit surface of the element and joining a to b [Fig.
tion of these new variables, Eqs. (40) and (44) assume the17(a)]. In effect, it would be exaggerated to require that this
formscondition be verified for any line �, and it would not corre-

spond to real needs. In fact, our real aim is to define univo-
cally a voltage at the terminals of the one-port so as to be
able to write the Kirchhoff equations for the network into

∣∣∣∣
∫

γx

eee · dxdxdx
∣∣∣∣ 	 αβ

∣∣∣∣ d
dτ

∫∫
S�x

bbb · dSSSx

∣∣∣∣ (47)

which the one-port is inserted. The lines � that we require to
satisfy Eq. (40) are therefore lines that have the same length

∣∣∣∣
∮

�x

bbb · dxdxdx
∣∣∣∣ 	 β

α

∣∣∣∣ d
dτ

∫∫
S�x

eee · dSSSx

∣∣∣∣ (48)
as the longest characteristic length of the one-port itself. For
simplicity of language we will henceforth call these lines ‘‘ad-

where the dimensionless parameters � and � are defined asmissible lines’’ to distinguish them from ‘‘nonadmissible lines’’
of the type shown qualitatively in Fig. 17(a) and that form a
great number of turns. α = cBc

Ec
, β = Lc

cTc
(49)

As regards the currents, current ia entering at terminal a
can differ from that exiting at terminal b by an amount equal

and c � 1/��� is the propagation velocity of the light in the
to the flux of field �
E/
t through a closed surface, which, at

medium.
most, can be the same as the limit surface �l enclosing the

At this point it is convenient to transform the dimensional
entire component and thereby cutting the terminals at two

analysis in a proper scaling, not by choosing reference vari-
distinct points a and b [Fig. 17(b)]:

ables arbitrarily but by choosing them so that we have

ia − ib = d
dt

∫∫
�l

© (εEEE) · dSSS (41)
∣∣∣∣
∫

γx

eee · dxxx
∣∣∣∣ ≈

∣∣∣∣ d
dτ

∫∫
S�x

bbb · dSSSx

∣∣∣∣ (50)

It follows that for our needs it must be
∣∣∣∣
∮

�x

bbb · dxdxdx
∣∣∣∣ ≈

∣∣∣∣∣ d
dτ

∫∫
S�x

eee · dSSSx

∣∣∣∣∣ (51)

where the symbol ‘‘	’’ indicates ‘‘equal in order of magnitude.’’
|i| =

∣∣∣∣
∫∫

Sa

JJJ · dSSS
∣∣∣∣ 	

∣∣∣∣∣ d
dt

∫∫
�l

© (εEEE) · dSSS

∣∣∣∣∣ =
∣∣∣∣∣dQ�l

dt

∣∣∣∣∣ (42)

In this way, the conditions in Eqs. (47) and (48) are respec-
where i is the current flowing through terminal a and Sa is tively reduced to
any open surface cutting only this terminal.

To render condition (42) in a form analogous to condition αβ � 1 (52)
(40), let us consider the other fundamental Maxwell law, the
Maxwell–Ampere law (for fuller information consult Ref. 1)

β

α
� 1 (53)

Naturally this result is always possible if the reference vari-

∮
�

(BBB/µ) · dlll =
∫∫

S�

JJJ · dSSS + d
dt

∫∫
S�

(εEEE) · dSSS (43)
ables are chosen equal to the orders of magnitude of the rela-
tive variables in the regions of the space concerned. For exam-

where � is the magnetic permeability of the medium (which ple, to have the same order of magnitude for e and 
e/
! it is
is assumed to be linear, isotropic, and time-invariant) and S� sufficient to choose Tc equal to the characteristic time of the
is any open surface that has � as its contour. If we have dynamics of the system. Thus, for dynamics of sinusoidal type

with frequency f it is sufficient to set T � 1/f . From what has
been said previously, concerning ‘‘admissible lines,’’ it is clear
that for Lc we need to choose the characteristic length of the

∣∣∣∣
∮

�

(BBB/µ) · dlll
∣∣∣∣ 	

∣∣∣∣∣ d
dt

∫∫
S�

(εEEE) · dSSS

∣∣∣∣∣ (44)

element being examined.
for each closed line � which links the component, then At this point, parameters � and �, which the adimenstio-

nalization has very naturally underlined, assume a particular
significance. It is noted that time and space enter only into
parameter �, together with velocity c, which is a characteris-

iS�
=

∫∫
S�

JJJ · dSSS ∼=
∮

�

(BBB/µ) · dlll (45)

tic constant of the electromagnetic propagation phenomena.
By defining the characteristic wavelength of the electromag-and Eq. (42) is satisfied.

In this way we must investigate the conditions given by netic field, �c � cTc, we can say that � is the ratio between
the characteristic length of the element and the wavelength,(40) and (44). These relations require a comparison of the or-
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� � Lc/�c. Parameter � can tell us whether the effects of the
electric field or those of the magnetic field prevail. More pre-
cisely, introducing the energy densities associated to the ref-
erence fields Ec and Bc and to the reference dielectric con-
stant �c and magnetic permeability �c, we have

Wm = 1
2

B2
c

µc
, We = 1

2
εcE2

c (54)

and we can say that

α2 = Wm

We
(55)

If we could retain � independent of �, we could immediately ib

ia = i
a

b

Σl

+

–

vDielectric
Conducting

plates

conclude that for a sufficiently small �, Eqs. (52) and (53) are
Figure 18. Sketch of a capacitor: It consists of two conducting platesboth verified and that the error made by associating a single
separated by a dielectric.voltage and a single current to a two-terminal element is, in

fact, on the order of �. In reality, however, � depends on �;
and when the latter tends to zero, it varies in a way that

potential. In this case the electric potential is the solution ofrequires investigation. If we imagine of varying � by varying
the Laplace equation within the dielectric because in an insu-the characteristic time of the dynamics Tc, we will have � �
lating material it is not possible to have free electric charge0 for Tc � � and � � � for Tc � 0. In other words, � � 0
(see, for example, Ref. 1). The boundary conditions for such acorresponds to the steady-state.
problem are given by the electric potentials on the two con-It is evident that, for the same element, the reference
ducting plates of the capacitor and, thus, at each instant, byfields Ec and Bc must of necessity be different if the rapidity
the differences between the potentials themselves and by theof the dynamics under consideration is different. Thus we can
regularity conditions at infinity. Here we are assuming thatdistinguish between three fundamental cases: (1) when �
there is no direct interaction with any other elements thattends to zero � tends to zero like �; (2) when � tends to zero
might be present. In this hypothesis, as we know, the solution

� diverges like 1/�; and (3) when � tends to zero � tends to a
to the Laplace problem is, at each instant, unique (see againfinite value �0 � 0.
Ref. 1) and so is the same as that of the steady-state problem.
In other words the dynamics of the electric field can be seen,

The Capacitor (� Tends to Zero as � for � � 0). In these at each instant, as a succession of steady-state fields and the
conditions, Eq. (52) and hence (40) certainly hold for suffi- time enters into the equation only as a parameter. In this
ciently small �. This means that if we limit ourselves to con- situation the charges on the two conducting plates can only
sidering only admissible lines, the line integral of the electric be equal in absolute value and opposite in sign, at each in-
field is with good approximation (the error goes to zero as � stant, and so the total charge must be zero (since the system
for � � 0) independent of the integration path. In other is insulated, it is assumed that it is initially not charged).
words, the electric field is conservative with a good approxi- Thus, from Eq. (41) we have ia � ib. In conclusion, the condi-
mation. We note the fact that � tends to zero like � implies tion ia � ib � i must be considered to be verified with the
that in the steady-state limit (� � 0) the reference magnetic same approximation as that by which the electric field can be
field and so also the field B is zero, while the corresponding held to be conservative.
electric field is not zero. The annulment of B in the steady- Once we have defined the limits within which it is possible
state limit leads to the annulment of the current density J. to associate a single voltage and a single current to the com-
Thus, one concludes that the component under examination ponent being examined, we may ask ourselves which constitu-
must contain a material that blocks the passage of the electric tive relation the element itself must respect. According to the
current. In other words, a layer of insulating material must charge conservation law, the current is equal to the time de-
have been ‘‘interposed’’ between the two terminals a and b, as rivative of the total charge Q deposited on the electrode to-
illustrated in Fig. 18. Evidently this component corresponds ward which the reference arrow for the current direction
to the idea we have of a capacitor. A capacitor, in fact, con- points:
sists of a pair of conducting plates from which two wires, the
terminals, are brought out. The plates may be of any shape
whatsoever, and they are separated by some dielectric mate- i = dQ

dt
(56)

rial. Furthermore, we assume that the plates and the wires
are perfect conductors and that the dielectric is a perfect insu- Charge Q is, in turn, directly proportional to the electric field,
lator. which is itself directly proportional to the voltage and so

Apparently we can say nothing about condition (42) be-
cause � is proportional to � for small values. In effect, how- Q = Cv (57)
ever, in this case the total charge stored in the component is
zero, instant by instant, on the order of �. In fact, the electric where the constant C is the capacitance of the capacitor (posi-

tive if the normal convention is assumed). Substituting Eq.field, which we have already said can be considered conserva-
tive on the order of �, can be represented by a scalar electric (57) into Eq. (56) we get Eq. (6).
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As examples we recall that the capacitance of a parallel- with a line that �s that develops on the limit surface of the
plate capacitor is C � �S/d, where S is the surface area of element and joins the two terminals. The second, which we
the capacitor plates, d is the distance between them, and the will call �e, is the flux linked with the line obtained by closing
capacitance of a cylindrical capacitor is C � 2�l�/ln(r2/r1), �e again with line �s. Then we have
where l is the length and r1 and r2 are the radii of the internal
and external cylinders.

vγe = −
�d�e

dt
+ d�i

dt

�
(59)

The Inductor (� Diverges Like 1/� for � � 0)

The case of the inductor can be dealt with in similar way. In By varying �e, the voltage v�e
varies because �e varies,

this case, Eq. (53) and hence (42) are verified for a sufficiently whereas �i does not vary. If at this point we hypothesize that
small �, and so it is possible to identify a single current i for the coil ending in a and b within the component develops by
the element we are examining. It is to be noted that, as long forming a large number of turns, we have
as � diverges like 1/� for � � 0, it is necessary for the electric
field to be zero in the steady-state limit, while the magnetic

�i 	 �e (60)
field and hence the current density field are not zero. More-
over, as the electric field in the steady-state limit regime must

and thus v�e
will in practice be independent of the externalbe zero, the material has to be a perfect conductor, otherwise

line �e. In this way we have achieved our purpose of definingit would not be possible to have an electric current without
a single voltage for the element we are examining, the ap-an electric field. This means that in the component we are
proximation being closer as the number of turns is increased.examining there is a perfect conducting wire joining the two
This voltage coincides with the line integral of the electricterminals, as illustrated in Fig. 19. Thus, the element we are
field along �e, provided that such a line is wholly outside theexamining corresponds to our idea of an inductor.

However, Eq. (52) and hence (40) are not necessarily satis- limit surface of the component itself and that, naturally, it is
fied in these conditions. In effect, nothing more can be said ‘‘admissible’’ in the way we have previously specified.
unless one fixes how the conducting wire develops inside the We must now determine the constitutive equation of this
element. An inductor is made by winding many turns of con- one-port. The flux �i is directly proportional to the magnetic
ducting wire in the form of a coil and bringing the two ends field, which is, at each instant, directly proportional to the
out at some distance from the coil. Let us consider line �, current i flowing in the coil; that is,
obtained by closing line �e shown in Fig. 19, which is com-
pletely outside the element, with a line �i developing wholly �i = −Li (61)
within the conducting wire. The line integral of the electric
field along � coincides with the voltage along �e, since the

where the constant L is the self-induction coefficient of theelectric field in the conductor is zero. On the other hand, from
inductor (positive if the normal convention is assumed). AtEq. (37) we get
this point, by utilizing Eq. (60) from Eqs. (59) and (61) we
deduce Eq. (7).

An an example we recall that the self-induction of a long
vγe = − d

dt

∫∫
S�

BBB · nnn dS = −d��

dt
(58)

solenoid of length l, cross section S, and with N turns is given
by L � (�N2S)/l.where �� is the flux linked with �. But �� can be decomposed

into the sum of two terms, which corresponds to a suitable
choice for surface S�. The first contribution, which we will The Resistor in Dynamic Operation
call �i, is the flux linked with a line obtained by closing �i (� Tends to �0 � 0 for � � 0)

In this case, Eqs. (52) and (53) are satisfied for sufficiently
small �, and so it is possible to associate a single voltage and
a single current to the component being examined. It is to be
noted that as long as � tends to �0 � 0 for � � 0, both the
electric and the magnetic fields do not go to zero in the
steady-state limit (� � 0). This means that there is a ‘‘link’’
between a and b within the one-port that develops entirely
within a conductor material (J � 0) with a finite conducibility
(E � 0), as shown in Fig. 20. Two wires which we take to be
perfect conductors go from the terminals a and b to the ends
of a bar of ohmic material with infinite conducibility. Thus
this component is a resistor.

At this point one must deduce the constitutive relation of
the element under examination. Since the current i is directly
proportional to J, which in turn is directly proportional to E

a

b

i

Σl

eγ sγ

according to Ohm’s local law (11), which in turn is directly
proportional to the voltage v, one deduces Eq. (5), where R isFigure 19. Sketch of an inductor: It is made by winding many turns

of conducting wire. the resistance of the resistor.
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The value of R is not necessarily the same that one would
obtain in the steady-state limit. One can demonstrate that if
(see, for example, Ref. 1)

τd = µσD2 � Tc (62)

where D is the characteristic transverse length of the conduc-
tor material, then the field J has with good approximation
the same spatial distribution as in the steady state and so R
assumes the same value given by Eq. (15). Otherwise R de-

v v

i

(a)

C

L

i

(b)

+

–

+

–

Rd

Rp

Cp

pends on Tc or, likewise, on the characteristic frequency of the
dynamics. Parameter !d is called the characteristic diffusion Figure 21. (a) Equivalent circuit of a ‘‘real’’ inductor; (b) equivalent

circuit of a ‘‘real’’ capacitor.time. By introducing the penetration depth � � �Tc/(���),
Eq. (62) can be written as

δ 	 D (63) the capacitor (the conducting plates are the turns, and the
dielectric is the insulating varnish) and leads us to consider

If condition (63) is not verified, most of the current flows in an overall capacity of the entire element, equivalent to the
the vicinity of the surface of the bar in a layer of thickness �. effect of all the capacities between the individual turns. One
For example, the penetration depth for copper is equal to 2 concludes that an equivalent and more refined circuit for a
mm at f � 100 Hz. real inductor is that shown in Fig. 21(a), where, of course,

The three limit cases that we have analyzed have led us to both Rp and Cp are very small if the inductor is well-built.
consider three ideal one-ports: the capacitor, the inductor, A similar situation may be found in a wire-wound resistor.
and the resistor. Naturally, in practice, such components are Here too, the numerous turns needed to obtain the required
never ideal, so it follows that the behavior that we have de- resistance cause the one-port to behave like an inductor.
scribed can be present in the same component at the same When such an effect is not wanted, particular arrangements
time. If, for example, the inductor wire is not a perfect con- are adopted to reduce the flux linked with the many windings
ductor, as is the case in reality, Eq. (7) is modified. Because in the resistor. For example, one may wind not a single wire,
of the finite conducibility, the behavior of the resistor is added but one bent back on itself so that linked flux is practically
to that of the inductor and the constitutive equation becomes zero. Such resistors are called anti-inductive. In the same way

we have to consider that in the case of the capacitor the di-
electric cannot be perfect. In such cases a conduction currentv = Rpi + L

di
dt

(64)
density field is added to the current density field �
E/
t in the
dielectric. Consequently, a more realistic equivalent circuit ofwhere Rp is the resistance of the wire in the steady-state
a real capacitor will be that shown in Fig. 21(b), where Rdlimit. Equation (64) can also be thought of as the constitutive
(dispersion resistance) will normally have to be very high. Al-equation of a more complex one-port consisting of the series
though it may seem strange, for capacitors too it is sometimesof an ideal inductor with an ideal resistor.
necessary to consider an inductor in series with it. This is dueIn general, an inductor consists of a large number of turns
to the fact that in some types of construction, the plates areconcentrated in a limited volume, and so every turn will be in
made by rolling two layers of conducting material with theclose contact with other turns. Electrical contact between the
dielectric sandwiched between. The ‘‘turns’’ so formed makecoils is avoided by means of an insulating varnish covering
it necessary to introduce a parasite inductance in the equiva-the wire. The arrangement just described reminds us that of
lent circuit.

MUTUALLY COUPLED CIRCUITS

If a coil of the type described in Fig. 19—an inductor there-
fore—is placed in the immediate vicinity of another analo-
gous element, the flux linked with each of them will depend
on both the current that circulates in the first coil and that
which circulates in the second. We are, therefore in the pres-
ence of an intrinsic two-port that we will call mutually cou-
pled circuits. Mutually coupled circuits are widely used in
communication circuits, in measuring instruments, and in
power systems. Transformers used in power networks that
transmit and distribute electric energy are coupled circuits.
Electric motors and generators can also be modeled by time-
varying coupled circuits. We will limit ourselves to describing

a

b

i

Σl

+

–

v

Ohmic material

the more simple, but nonetheless significant, case in which
there are two coils and the reciprocal coupling does not varyFigure 20. Sketch of a resistor: Two wires of perfect conductor con-

nect the two terminals a and b to the ends of an ohmic material. in time.
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Let us consider two coils wound on a toroidal-shaped mag- If we define the average fluxes of self- and mutual induc-
tionnetic iron (typically ferrite or special steel thin plates), as

shown in Fig. 22(a). The coils are constituted, respectively, of
N1 and N2 turns of wire coated with insulating varnish. If
approximation (60) is valid for both the coils, one can write φ11m = L1i1

N1
, φ12m = M12i2

N1
,

φ21m = M21i1

N2
, φ22m = L2i2

N2

(67)

v1 = dφ1

dt
, v2 = dφ2

dt
(65)

we can affirm that
where �1 and �2 are, respectively, the magnetic field fluxes
linked with coils 1 and 2 produced by currents i1 and i2 circu- φ1d = φ11m − φ21m, φ2d = φ22m − φ12m (68)
lating in the two coils (the electrical conducibility of the two
wires is considered infinite). are the average dispersion fluxes at coils 1 and 2, respec-

To determine the relation between the two fluxes and the tively. In practice if the coupling is ‘‘perfect,’’ one can expect
two currents it is necessary to make some approximations. In �1d and �2d to be zero. In other words, one may expect a cur-
the limit � � 1 it is possible to ignore the effects due to the rent circulating in the first coil to produce, on average, the
displacement current. Let us assume also that the toroidal same linked flux per coil in both the first and the second coils.
loop is made of an ideal magnetic material, in which we can It can be easily demonstrated that this condition gives
ignore the effects due to nonlinear phenomena, such as satu-
ration and magnetic hysteresis. Finally, we can also assume L1L2 = M12M21 (69)
that the effects of the eddy currents induced in the toroidal
loop because of the time variation of the magnetic field are For the mutual fluxes of magnetic fields and currents, one can
negligible (a magnetic iron material is usually an electric con- demonstrate a property of reciprocity analogous to that valid
ductor). With these hypotheses, since the superimposition of for voltages and currents in resistive circuits. Consider the
the effects is valid and the only sources of the magnetic field case where i1 � 0 and i2 � 0: Current i1 in coil 1 may be
are the currents circulating in the two coils, we may affirm considered as the ‘‘cause,’’ and flux M21i1 linked with coil 2
that the relation between fluxes and the currents must be may be considered as the effect. In the same way, let us con-
algebraic and, moreover, linear: sider the case in which i1 � 0 and i2 � 0: Current i2 may be

considered as the cause, and the flux M12i2 linked with coil 1
may be considered the effect. It is possible to show (see, forφ1 = L1i1 + M12i2, φ2 = M21i1 + L2i2 (66)
example, Ref. 1), by using the equations for the steady-state
magnetic field, that the ratio between cause and effect in the

where L1, L2, M12, and M21 are four constants in time, indepen- two coupled circuits with i1 � 0 is equal to the ratio between
dent of currents i1 and i2. The term L1i1 is the flux linked with cause and effect in the two coupled circuits with i2 � 0 and so
the first coil when the current i2 in the second coil is zero,
and L2i2 is the flux linked with the second coil when current M12 = M21 = M (70)
i1 in the first coil is zero. Therefore the coefficients L1 and L2

are, respectively, the self-induction coefficients of coils 1 and
Combining Eqs. (65), (66) and (70), we obtain the constitutive2. The coefficients M12 and M21 are called the mutual induc-
relations of mutually coupled circuits:tion coefficients: M12 represents the flux of the magnetic field

linked with coil 1 produced by a unitary current circulating
in coil 2 when i1 � 0, while M21 represents the flux of the v1 = L1

di1

dt
+ M

di2

dt
, v2 = M

di1

dt
+ L2

di2

dt
(71)

magnetic field linked with coil 2 produced by a unitary cur-
rent circulating in coil 1 when i2 � 0.

(These equations are not valid if the self- and mutual induc-
tances are time-varying.) Two coupled circuits constitute a dy-
namic two-port: The values of the two voltages, v1 and v2, at
a generic instant do not depend only on the values of the two
currents at that instant, but also on the values that they as-
sume in the neighborhood of that instant.

The self-induction coefficients are positive if we assume
the normal convention on both the ports. Instead, the mutual
induction coefficient can be positive or negative, according to
the reference chosen for the direction of the currents. For ex-
ample, with the choice made in Fig. 22(a), the sign for M is
positive. Figure 22(b) reports the circuit symbol for two cou-
pled circuits. The two terminals are countersigned for the ref-
erence direction of the currents that make M positive. If the
references for the direction of the two currents are both in

v1

i1i1 0
i2 i2

v2L1

M

(a) (b)

+

–

v1 N1 N2

+

–

+

–

v2

+

–

µ
µ

µ µ>>   0

L2

agreement or both in disagreement with the countersigns,Figure 22. (a) Sketch of two coupled circuits; (b) circuital symbol for
two coupled circuits. then M must be considered positive.
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The Energy Properties of Coupled Circuits Thus it is impossible to obtain a coupling coefficient greater
than one. When k � 0, M � 0, and there is no interactionThe electric power absorbed by two coupled circuits is given
between the two inductors.by

Consider the other limit case—that is, k � �1. In this
case, as we have already seen, the coupling is perfect. It is
evident that a transformer, which in general is required top(t) = i1v1 + i2v2 = dWm

dt
(72)

furnish the most efficient energy transfer between the two
coils, must be designed and built as near as possible to thewhere
perfect coupling conditions. Let us observe that when the cou-
pling is perfect the energy stored is given by

Wm(i1, i2) = 1
2 L1i2

1 + Mi1i2 + 1
2 L2i2

2 (73)

On the other hand it can be demonstrated that Wm(i1, i2) = 1
2

L1

�
i1 + M

L1
i2

�2

≥ 0 (78)

and can therefore be annulled, even with i1 � 0, i2 � 0 if the
Wm(i1, i2) =

∫∫∫
(BBB2/2µ) dv ≥ 0 (74)

condition i1 � �(M/L1)i2 holds. As long as this happens, the
magnetic field produced by the two currents must be zero atwhere � is the permeability of the medium. Therefore,
every point in the space; that is, the field produced by currentWm(i1,i2) � L1i2

1/2 � Mi1i2 � L2i2
2/2 represents the energy stored

i1 must cancel the field due to current i2 at every point, whichin the component and it is a quadratic form, which is positive
defined. Energy W(t0,t) which the coupled circuits absorb in is a further justification for the expression ‘‘perfect coupling.’’
the time interval (t0,t) is given by Condition M2 � L1L2 is, naturally, a limit condition that

can be approached by using, for example, a torus of ferromag-
netic material with very high permeability (� � �0). WhenW (t0, t) = Wm[i1(t), i2(t)] − Wm[i1(t0), i2(t0)] (75)
this condition holds, the lines of the magnetic field are practi-
cally confined in the magnetic material. The torus behaves asAs in the case of the inductor, the energy absorbed in the time
if it was a flux tube for the magnetic field because the normalinterval (t0,t) depends only on the values that the stored en-
component of B at the limit surface of the toroidal core isergy Wm(i1,i2) assumes at the extremities of the interval and
practically zero and so the field in the surrounding mediumtherefore depends only on the initial and final values of the
is much weaker. (The analogy with the current field thattwo currents i1 and i2, and not on their history. For example,
flows in a conductor with electric conducibility much greaterif the values of currents at instant t are equal to the values

they assume at instant t0, then the energy absorbed by the than that of the surrounding space, in which it is embedded,
component in the interval considered is zero, irrespective of springs to mind.)
the waveform of the currents in the interval (t0,t). One notes If the two coils are made so as to be described as two long
that if M12 � M21 were not true, it would not be possible to solenoids of length l—and thus to be schematized as tracts of
express the power absorbed as the time derivative of a qua- length of two infinite solenoid—for the coefficients L1 and L2
dratic function of currents only and so the energy absorbed we have the following approximate expressions:
would also depend on the time history of the currents.

Coupled circuits store the electric energy that they absorb
in the form of magnetic field energy. The energy stored can be L1 = µ

N 2
1S
l

, L2 = µ
N 2

2S
l

(79)
recovered, even completely so, in the form of electric energy in
the circuit into which they are inserted. However, the electric

It is also assumed that the two cylindrical solenoids have theenergy that can be supplied cannot be greater than that pre-
same cross-section S. When the coupling is perfect the mutualviously absorbed due to the fact that the energy stored is posi-
induction coefficient M is given bytive-defined. Therefore coupled circuits are passive and con-

servative two-ports.

M = µ
N1N2S

l
(80)

Perfect Coupling

The mutual induction coefficient is often expressed by the
From characteristic Eqs. (71), in the case of perfect coupling,coupling coefficient k as a function of the self-induction coef-
we obtainficients with the relation

v1

v2
= L1

M
(81)k = M√

L1L2

(76)

which is, in fact, the relation between the voltages of an idealBecause the energy stored in the two coupled circuits is posi-
transformer with transformation ratiotive-defined and the two self-induction coefficients are both

positive, the coupling coefficient must verify the inequality

|k| ≤ 1 (77) n = L1

M
(82)
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ability, �r � (�/�0) � 1. In such condition, indeed, �L1 � 0
and k2 � 1. Moreover, within the limit �r � � we have L*1 �
� and so the magnetized current circulating in the inductor
of inductance L*1 must tend to zero and in consequence the
equivalent circuit in Fig. 23(b) is reduced to the single ideal
transformer.

v2

+

–

i1

v1
L1

n:1 i2

(b)

+

–

*v2

+

–

i1

iL

v1
L1

∆L1n:1 i2

(a)

+

–

i1
′

FINAL CONSIDERATIONS
Figure 23. (a) Equivalent circuit of a perfect coupling; (b) equivalent
circuit of a nonperfect coupling. In the introductory paragraphs to this article we stressed the

fact that the currents and voltages that concern a circuit in a
given operating condition are the result of two distinct re-
quirements: that each component in the network should be-From this it is easy to show that a perfect coupling is equiva-
have in a manner compatible with its own nature—the consti-lent to a two-port consisting of an ideal transformer and an
tutive relation—and that such behavior should be compatibleinductor as illustrated in Fig. 23(a). In fact we have
with the interaction imposed by the rest of the circuit. In this
article we have been concerned with the former aspect and
have shown that within the limit � � 0, not only for resistive

v1 = L1
diL

dt
= L1

d
dt

�
i1 + i2

n

�
= L1

di1

dt
+ M

di2

dt
(83)

elements, but also for dynamic ones, such constitutive rela-
tions are reduced to relations between the voltages and cur-From the relations in Eqs. (79), (80) and (82) we obtain that
rents at the terminals of the elements in question.for a transformer with perfect coupling the transformation ra-

Interaction with the remaining part of the network is sub-tio is approximately given by
ject to two very simple laws, Kirchhoff ’s law for currents and
Kirchhoff ’s law for voltages. These laws are discussed in de-
tail in NETWORK EQUATIONS and TIME DOMAIN CIRCUIT ANALYSIS.

n = N1

N2
(84)

In concluding this article we may show that, always in rela-
tion to the hypothesis � � 1, Kirchhoff ’s laws too are deduci-Equivalent Circuit of a Nonperfect Coupling
ble from the Maxwell equations for the electromagnetic field.

The condition of the perfect coupling, as we have seen, is only Kirchhoff ’s law for voltages, which states that in a mesh
an ideal limit condition to which one may approach. In real- the algebraic sum of the voltages is equal to zero, is in reality
ity, toroidal magnetic material does not provide a perfect flux a direct consequence of the fact that a one-port, or more gen-
tube and so the coupling coefficient, in absolute value, is less erally a couple of terminals of an n-pole, is inserted in every
than one, even if a little less. We can show, however, that branch of the mesh. The voltage between two terminals of any
even with a nonperfect coupling it is possible to have an circuit component is in fact, in the limit � � 1, independent
equivalent circuit that uses the ideal transformer. In fact, for of the path (obviously we refer only to ‘‘admissible’’ paths) and
any L1, L2, and M, with M2 	 L1L2, it is always possible to is therefore the same, whether if it is calculated along the
decompose L1 (or L2) into the form line �a or along �b � �c as in the example shown in Fig. 24).

In this light Kirchhoff ’s second law simply expresses
L1 = L∗

1 + �L1 (85)

where va + vb + vc =
∮

�

EEE · dlll = − d
dt

∫∫
S

�

BBB · dSSS ∼= 0 (88)

L∗
1L2 = M2 (86)

and

�L1 = L1 − M2

L2
> 0 (87)

These considerations justify the equivalent circuit of a non-
perfect coupling illustrated in Fig. 23(b). The inductance �L1

is related to the dispersed fluxes. It describes the contribution
of the flux linked with the first coil due to the lines of mag-
netic field that are not linked with the other coil; for k2 � 1,
�L1 � 0. L*1 is said to be the magnetization inductance, and
it takes account of the common flux at both the coils.

It is interesting to observe that a transformer designed and
produced to obtain the best performances possible tends to be
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an ‘‘ideal transformer.’’ In fact, for the coupling to be perfect
it is necessary for the two coils to be strictly wound on a nu- Figure 24. Sketch of an electrical circuit composed of two resistors,

a generator, an inductor, and a capacitor.cleus of ferromagnetic material with a high relative perme-
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where 
 � �a � �b � �c and va, vb, and vc are, respectively, the plifying possibilities: The solution of a circuit, even the sim-
plest (such as that shown in Fig. 24), in terms of the electro-voltages across the inductor, the resistor (�b), and the voltage

source with the reference directions in agreement with the magnetic field would be practically impossible.
orientation of �a, �b, and �c. In fact the time derivative of the
magnetic field flux linked with the mesh 
 can always be ig-
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where �1 is the node surface. Outside the one-ports, the elec-
tric field is quasi-conservative and thus can be expressed by LUCIANO DE MENNA

GIOVANNI MIANOa scalar potential. In these conditions the behavior of the field
University of Naples ‘‘Federico II’’is the same as that which there would be in rigorously static

conditions, so the charge accumulated on the node is negligi-
ble, given its smallness. In consequence we still have
dQ1/dt � 0, provided that the voltages vary very slowly in LINE CODING. See INFORMATION THEORY OF MODULATIONtime, which is certainly so in the limit � � 1.

CODES AND WAVEFORMS.Referring to Fig. 24, where a simple circuit is illustrated
LINE ECHO CANCELLATION. See ECHO CANCELLATIONby putting the spaces occupied by the single components in

FOR SPEECH SIGNALS.evidence, we note that in the circuit model the space can al-
LINKED LISTS. See LIST PROCESSING.ways be subdivided into parts, in each of which a ‘‘simplified’’

model of the electromagnetic field can be considered. In the
region �a, where there is an inductor, the model is that of the
quasi-stationary magnetic field: In Maxwell equations the
density of the displacement current (�E/�t) is ignored but
not �B/�t (� � � as 1/� for � � 0). In the region �d, where
there is a capacitor, the model is that of the quasi-stationary
electric field: In Maxwell’s equations, �B/�t is ignored but not
�E/�t (� � 0 as � for �� 0). Finally, in the regions �b, �c,
and �e where there are, respectively, a generator and two re-
sistors, both the terms �B/�t and (�E/�t) are ignored and the
model is that of the quasi-stationary current field (� � �0 �
0 for � � 0). In all these models the two fields E and B are
separated, and so, if the boundary conditions—that is, the
voltages or currents at the terminals of the one-ports—are
assigned, then the equations for each of them can be resolved
independently and univocally. It is this which makes it possi-
ble to express the constitutive equations as relations between
voltage and current. Then outside the components the electric
field must verify the condition �� E �dl � 0 for each admissi-
ble closed line � that does not pierce the limit surfaces, and
the current density field must verify the condition ���� J �
dS � 0 for every closed surface � that does not cut the limit
surfaces. These equations express, respectively, the Kirchhoff
law for the voltages and the Kirchhoff law for the currents.
As a consequence, the boundary conditions of single one-
ports—that is, the voltages and currents at their terminals—
are subject to the two Kirchhoff laws. Note that the Kirchhoff
laws are rigorously exact in steady state.

This way of interpreting circuit models allows us on the
one hand to recognize the limits—which today we are ap-
proaching nearer and nearer as studied in electromagnetic
compatibility—and on the other to observe its enormous sim-


