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NETWORK THEOREMS

In this article, we consider electrical networks from the Kirch-
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hoff point of view. The descriptive equations are decomposed
into the constitutive relations for the network elements and Figure 2. The sets of solutions S 1 and S 2 the descriptive equations
the Kirchhoff equations for the connection element (see Fig. of two networks (solution manifolds) and its intersection embedded
1). In the following, these networks are called Kirchhoff net- into a solution space S .
works.

This decomposition was already used implicitly in the
nineteenth century by the founders of network theory. It was there is a continuum of solutions that locally behaves as a
Belevitch (1) who clarified this concept and used port currents Euclidean space, and there exists a smooth transition be-
and voltages of the connection element for describing Kirch- tween any two discrete points within the solution set. In the
hoff networks. An advantage of this decomposition is that the following, network theory is considered as a mathematical
connection element can be described by linear equations in theory consisting of definitions, theorems, and corollaries al-
linear as well as nonlinear networks. If dynamic network ele- though a consistent presentation of network theory is rather
ments that are characterized by differential and/or integral rare [see Slepian (7) and Reibiger (8)]. Roughly speaking, net-
equations are included, we obtain a mixture of differential work theorems may be classified as follows:
equations and algebraic or transcendent equations that de-
scribe the network. Equations of this type are called differen-

1. Theorems that consider properties of an individual net-tial–algebraic equations (DAE) [see, e.g., Chua, Desoer, and
workKuh (2); Hasler and Neirynck (3); Mathis (4); or Vlach and

2. Theorems that consider interrelations of at least twoSinghal (5) for further details]. We adopt the point of view of
networks.mathematical dynamical systems [see, e.g., Arrowsmith and

Place (6)] where DAEs, their set of solutions (the flow), and
We will concentrate mainly on theorems of the second class.the right-hand side (the vector field) are, under certain re-
Based on Kirchhoff ’s point of view, two networks can be dif-strictions, simply different representations of the same ab-
ferent with respect to the connection element (network topol-stract subject.
ogy), the kinds of network elements, and/or the associatedIt is sufficient to consider subsets of IRn as solution mani-
network parameters. Interestingly, many of the network theo-folds in the case of resistive networks, and subsets of suitable
rems and certain properties of networks can be discussed infunction spaces as solution manifolds in the case of more gen-
a unified manner using this classification. This was firsteral dynamic circuits. Manifold theory is not really needed at
pointed out by Ghenzi (9), but in a rather restricted mannerthis stage. However, we emphasize the term manifold in or-
(e.g., the duality theory presented in the following is based onder to recall that the solution sets of network equations are
Ghenzi’s ideas). In addition, the abstract network theory ofnot mere points-sets: In the vicinity of any solution point
Reibiger has been very useful.

In the next subsection, useful superposition theorems for
arbitrary linear networks are discussed. These theorems may
be applied when the solution manifolds differ only in the
value of parameters characterizing the independent voltage
and/or current sources. The following section is devoted to
networks that include different types of network elements but
have the same connection element. A well-known theorem
was first published by Weyl (10) and later by Tellegen (11)
and Ghenzi [see Mathis (4)] that analyses the energy or power
flow into the connection element. We discuss the relationship
of at least two networks and their solution manifolds that dif-
fer partly and/or entirely with respect to the types of the net-
work elements and their parameters, as well as the connec-
tion element where only certain network characteristics
(impedances or admittances) are fixed. In a more abstract set-
theoretical framework, this can be illustrated by Fig. 2, where
the intersection of the solution manifolds S 1 and S 2 of two
networks that are embedded in a solution space S is nonzero.

Although this presentation can be used to give an idea of
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what is behind theorems of this kind, a rather concrete formu-
lation needs to present a mapping between two networks. WeFigure 1. Decomposition of a Kirchhoff network into circuits ele-

ments and the connection element (wires and ideal transformers). will illustrate this point by formulating known network theo-
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rems like substitution theorems, interreciprocity, and duality
as special cases rather than separate theorems.

SUPERPOSITION THEOREMS

Although superposition theorems consider crucial properties
to be a single linear network, these theorems use at least two
networks to test it. It is well known that Helmholtz (12) de-
rived a superposition theorem in 1853. Helmholtz’s result was
extended by other researchers and was included by Maxwell

V1

R1

I

R2 VR 2

V2

in his monumental treatise (13). But it seems that Hausrath
Figure 3. Elementary circuit with two independent voltage sources.(14) was the first who derived these theorems under very gen-

eral assumptions and studied their conditions of validity as
well as their many applications. Hausrath formulated the
principle of superposition in the following manner: The idea of a superposition theorem can be illustrated by us-

ing the simple network in Fig. 3 which contains two indepen-
dent voltage sources.If a [linear time-invariant] network includes a number of arbi-

trarily distributed current and voltage sources, then each source
Example. For determination of the voltage VR2

in this net-results in currents and voltages associated to the network ele-
work, the best way is to replace both sources by one source,ments as if the other sources are eliminated and the current or the
V � V1 � V2, and to calculate VR2

by means of the well-knownvoltage of some network element can be calculated by summing up
the currents and voltages of each source, respectively. rule of voltage dividers. On the other hand, the idea of super-

position theorems suggests constructing two networks by set-
ting all values of the voltage source (with the exception of

He added a mathematical interpretation: the resulting cur- one) to zero. Using the rule of voltage dividers, the voltages
rent is a linear function of the potential distribution, or, in V(1)

R2
and V(2)

R2
are calculated and as a result of the superposition

reverse order, the resulting potential distribution is a linear theorem we have VR2
� V(1)

R2
� V(2)

R2
.

function of the currents.
Hausrath proved this statement by means of Maxwell’s The approach in the last example can be generalized very

equations, where inductors and currents can be included in easily. We associate a number of ‘‘test’’ networks (correspond-
the networks. He emphasized ‘‘the superposition equations in ing to the number of independent sources) with the original
the case of ac currents differ from the dc case in that their network by setting all sources except one to zero (i.e., current
coefficients will be complex.’’ A more general reasoning of su- sources I0 � 0 and voltage sources V0 � 0) and calculate the
perposition theorems can be given in the following manner: desired network variable. The value of this variable in the

If we assume that a network can be described by currents original network can be determined by a superposition
and voltages and the network equations have the following theorem.
form Although superposition theorems can be very useful in net-

work analysis, it should be kept in mind that they are gener-
ally not valid when considering power quantities (e.g., aver-L1xxx = L2 yyy (1)
age power) as description variables. Commonly, they will not
be true even in linear time-invariant resistive networks. Wewhere L1 and L2 are linear operators, x is a vector of voltages
demonstrate this statement by means of the next example,and currents of the network elements, and y is a vector in-
omitting the rather simple calculations.cluding independent current and voltage sources, in a linear

manner, then the principle of superposition can be proved
Example. In Fig. 3 a linear resistive network that includesvery easily. In the case of linear resistive networks, the opera-
two dc voltage sources V1 and V2 is shown. If the power of thetors are matrices and the result follows from linear algebra.
oneports is defined by P � V � I, the current I� and the volt-On the other hand, the superposition principle is also valid in
age V�R2 are calculated under the condition that V2 is zero. Thethe case of differential operators with time-dependent coeffi-
power of R2 is P� � V�R2 � I�. In the same manner P� is calcu-cients, that is, for linear time-variant networks. Assuming
lated under the condition that V1 is zero; we obtain P� �that the source vector y is determined by s currents and volt-
V �R2 � I�. But the superposition P� � P� does not correspondage sources, it can be decomposed into
to the correct power P if both sources are included. In this
case, we have

yyy = yyy1 + · · · + yyys (2)
P = (V ′

R2 + V ′′
R2) × (I′ + I′′ ) (4)

If x1, . . ., xs are the (unique) solutions of L1xi � L2yi (i � 1, = (V ′
R2 × I′ + V ′′

R2 × I′′) + (V ′
R2 × I′′ + V ′

R2 × I′′ ) (5)
. . ., s), the complete solution x is calculated by =: (P′ + P′′) + PIA (6)

xxx = xxx1 + · · · + xxxs (3) where PIA is the interaction term.
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In contrast to this, it can be shown that the superposition a thermodynamic interpretation exists only if both quantities
are associated to the same port (or two-terminal element). Inprinciple of (average) power quantities of reciprocal networks

with current and voltage sources can be valid if we add the the latter case, the integrals of these powerlike quantities
also have an energetic interpretation.powers of current sources and voltage sources separately.

Martens and Lê (15) proved the following theorem:
Let P be the power dissipated in a linear network in which

WEYL–TELLEGEN THEOREMthere are only resistors, current sources, and voltage sources.
Let PE(PJ) be the power dissipated when all the current (volt-

We consider two networks N and N˜ that have the same con-age) sources are open circuited (short circuited). Then P �
nection element and where the port quantities are denotedPE � PJ. by vk, ik and ṽk, ı̃k, respectively. These quantities satisfy theA first theorem of this kind was given by Guillemin (16),
following Kirchhoff equations where the port currents andpp. 127–128) and more general cases for networks including
voltages are described by the vectors i, v, ı̃, ṽ:capacitors and inductors can be found in the paper of Mar-

tens. A simple example is shown in Fig. 4. It can be shown
Aiii = 0, Bvvv = 0 and A ĩ̃ĩi = 0, B ṽ̃ṽv = 0 (9)that the superposition theorem in linear time-invariant net-

works is generally valid if the frequencies of the two sources
It is easy to prove that the following relations hold:are different [see, e.g., Desoer and Kuh, Chap. 7.1 (17)].

(i, ṽi, ṽi, ṽ) = 0, (ĩ, vĩ, vĩ, v) = 0 (10)

ENERGY AND POWER
The proofs are a direct consequence of the exactness of A

and B (see Mathis (4), appendix A, 1.17). Weyl (10) [see alsoDefinitions
Cauer’s monograph (18)] presented a proof of the following

Although other network variables are possible (see e.g., relations in 1923,
Mathis (4, chap. 6) we restrict this discussion to currents and
voltages. Furthermore, we consider only Kirchhoff networks (iii,vvv) = 0 (11)
that include the standard set of network elements (R, L, C,
independent and controlled sources as well as the Kirchhoff but there is no difference from a mathematical point of view
connection element). In this case, the descriptive equations to the above relations since both networks have the same con-
are formulated as nection element. Tellegen (11) reinvented Weyl’s result and

illustrated it with several examples and applications. A de-
tailed discussion of the history of these theorems (as well asAi = 0, Bv = 0 (7)
many further applications) can be found in Penfield, Spence,
Duinker (19). It should be mentioned that the theorem off(i,v, t) = 0, M(x)

dx
dt

= g(x) (8)
Weyl–Tellegen is very useful in sensitivity analysis (see also
the section ‘‘Interreciprocity’’ in this article).where x � (i, v). The pair of matrices (A, B) that describes

the Kirchhoff connection element is exact in the following
sense [Ghenzi (9), Mathis (4)]: EQUIVALENCE OF n-PORTS

Imagine two different multiports (black boxes) with the same
number n of externally accessible ports and assume they are

ABT = 0

Rk(A) + Rk(BT ) = b
equivalent in the sense that they cannot be distinguished
from each other by any measurements of electrical parame-where b is the number of ports of the connection element.
ters at the ports. Though they behave externally in an identi-In many applications, the solution manifold of these net-
cal manner, their internal circuitry may be completely differ-work equations with respect to the currents and voltages
ent; not even the numbers of internal nodes and meshes needneeds to be calculated. But sometimes the power quantities
be the same. This concept of external equivalence ofare of interest because a thermodynamic interpretation (e.g.,
multiports is the central theme in classical network synthesisby means of Joule’s theorem) is available. In general, prod-
since the early work of Foster and Cauer (18). As opposed toucts vk � ik of currents ik and voltages vk are instantaneous
the analysis viewpoint that still pervades circuit theory text-powerlike quantities with respect to physical dimension, but
books, equivalence theorems like those of the Norton–
Thévenin type may be attacked in a very clear and straight-
forward manner from the synthesis point of view, that is, one
starts with a mathematical description of the external behav-
ior and then asks for different internal realizations.

When terminating a multiport with any fixed-load network
and collecting the n currents and n voltages measured simul-
taneously at the n ports in n-vectors i and v, respectively, one
obtains an admissible pair (i, v). The set of all admissible (i,

V0

I0

1 Ω – j Ω

j Ω

1 Ω– j Ω

v)-pairs of an n-port N is called the driving point characteris-
tic or the graph G(N ) of N . Assume N to be linear and timeFigure 4. Nambiar’s example of a circuit where superposition of

power is valid (both generators have the same frequency and phase). invariant and all signals to be real valued (complex signals
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Figure 5. (a) (i, v)-characteristic or graph G(N ) of a lin-
ear resistive affine oneport N , and (b) its elementary
circuit model.
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may be used as well in the spot-frequency sense—otherwise, • The slope of G(N ) equals the internal resistance R of the
circuit realization. According to Eq. (13), R is determinedsee ‘‘Complex Variables’’ below). Equivalently, G(N ) is a fixed

linear manifold, that is, the linear affine subspace by two admissible pairs (ii, vi), i � 0, 1, as

R = v1 − v0

i1 − i0
(14)G(N ) =

�
i0

v0

�
+ span

�
I
V

�
⊂ IRn × IRn (12)

• If N is not a ‘‘dead’’ circuit (free of independent sources),
where span[ � ] denotes the space spanned by the columns of one may choose the admissible pairs (i0, v0) � (isc, 0) (ex-
a matrix. Except for pathological degenerations due to physi- ternal short circuit) and (i1, v1) � (0, voc) (external open
cally meaningless interconnections of nullors (cf. Ref. 20), I circuit) to determine in the well-known method
and V are square matrices such that the columns of the 2n �
n matrix R = −voc

isc
(15)

as the ratio of open-circuit voltage and short-circuit cur-

�
I
V

�
rent.

• When the N does not contain any independent sources,form a basis for the direction space
the equivalent circuit of N shrinks to a single resistor R
and G(N ) is a proper linear subspace [a line passing
through (0, 0)]. Hence, one may choose (i0, v0) � (0, 0)
and determine R � v1/i1 by the usual form of Ohm’s law.

span

�
I
V

�

• For R � 0, the graph G(N ) is a horizontal line and N
This latter term is suggested by a geometric interpretation of reduces to an independent voltage source with v0 � voc or
Eq. (12): G(N ) is generated by a parallel shift of the direction to a short circuit in the case v0 � 0.
space from the origin (0, 0) to any reference point (i0, v0) �

• For R � �, the graph G(N ) is a vertical line and N
G(N ). reduces to an independent current source with i0 � isc or

In case of a real oneport, the graph G(N ) is simply a to an open circuit in case i0 � 0.
straight line in IR � IR as shown in Fig. 5(a). Note that the
intercept points (isc, 0) and (0, voc) are measured as admissible Thévenin–Norton Theorem
pairs when the oneport is connected to an external short cir-

The Thévenin–Norton equivalent circuits as shown in Fig. 6cuit (v � 0) or open circuit (i � 0), respectively. Moreover,
are the earliest and most elementary equivalence results foradmissible pairs outside the section between these intercept

points may occur exclusively in the presence of external
sources.

When the slope R of the graph G(N ) in Fig. 5(a) is nonzero
and finite, we may write down the equation of a straight line
in point-slope form

(v − v0) = R(i − i0), (i0, v0) ∈ G(N ) (13)

where the reference point (i0, v0) may be any admissible pair.
Clearly, Eq. (13) is Ohm’s law for not necessarily passive N ,
and it has the obvious and most elementary circuit realization

v

i isc

voc

(a)

vR

R
i

(b)
shown in Fig. 5(b). From each of the three representations for
N [Eq. (13), Fig. 5(a), or (b)] the following facts are readily Figure 6. (a) Norton and (b) Thévenin equivalent circuits for a linear

resistive affine oneport.seen:
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Proof. The graph G(N ) being an affine line as shown in Fig.
5(a), the Thévenin and Norton equivalent sources trivially fol-
low from Fig. 5(b) when choosing as a reference point (i0, v0),
the admissible pairs (0, voc) and (isc, 0), respectively.

Note that this proof (besides the usual assumptions of non-
degeneracy) invokes exclusively the linearity property of the
oneport. No recourse is made to other theorems (such as the
substitution theorem) or to external circuitry. A conceptually
similar proof, based on an abstract network model and a rig-
orous exploitation of the consequences of linearity, has been
given in Ref. (22).

Depending on the applications at hand, one may determine
the parameters R, voc and isc of the Thévenin and Norton
equivalents by external black box measurements or by analy-
sis of a given internal circuit diagram. Since G(N ) is a
straight line, it is sufficient to measure two admissible pairs

(a)

v

i

i

 N1  N2

(b)

v  N2
voc

 N1

(ii, vi), i � 1, 2 as discussed above [see Eqs. (13)–(15)]. Clearly,Figure 7. (a) Decomposition of a network into a purely linear-re-
the easiest way is to measure voc and isc directly and to deter-sistive affine oneport N 1 and a more general (possibly nonlinear,
mine R from Eq. (15). However, when the oneport might betime-varying and dynamic) remainder N 2. (b) Replacing N 1 by a volt-
damaged by open- or short-circuit measurements, one mustage source and a oneport Ñ 1 without independent sources.
use Eq. (14) and calculate voc and isc from Eq. (13).

In case of a given circuit diagram for N , the equivalent
circuit parameters must be calculated by means of network

oneport networks. The main value of these equivalent circuits analysis. This is usually done by two independent analyses.
is that they may replace any generic linear resistive oneport. Define N˜ to be a copy of N with all (say s) independent
No matter how complicated its internal structure is, and inso- sources ‘‘off,’’ that is, setting i0i � v0i � 0, i � 1, � � � , s, and
far as its external behavior is of concern, it is equivalent to hence open-circuiting current sources and short-circuiting
the most simple circuits in Fig. 6. The main applications of voltage sources. Then, one analysis serves for computing R as
Thévenin–Norton equivalents are in modeling noisy circuits the input resistance of N˜ and another one for computing voc
(21) and in conventional circuit analysis (17). In the latter or isc (with all sources ‘‘on’’). Many instructive examples in-
case, one may split a complicated network into two parts, cluding networks with controlled sources may be found in cir-
N 1 and N 2, as shown in Fig. 7. When collecting all nonlinear, cuit theory text books (2).
time-varying, and dynamic components in N 2 such that N 1 When N is a quite complex circuit, one may proceed as
embraces exclusively linear-resistive parts of the network follows in order to avoid two complete circuit analyses: (1)
(and no components whose individual electrical quantities are Pull all s independent sources out of N as new ports and com-
of any interest for the solution), N 1 may be replaced by a pute a matrix representation for the resulting (1 � s)-port; (2)
single voltage source in series with a oneport N˜

1 that con- connect the independent sources to the s source ports and de-
tains no independent sources (see Fig. 7), and which, in turn, termine isc or voc by ordinary matrix calculus as well as R
may be replaced by a single resistor. In the theory of noisy (with all s sources ‘‘off ’’). A similar procedure has been pro-
networks, equivalent sources serve to replace a noisy resistor posed in Ref. 23 based on the concept of interreciprocity (see
or a complicated noisy oneport network by a noise (current or also ‘‘Interreciprocity’’).
voltage) source and a noiseless resistor.

Before discussing Thévenin–Norton equivalents in more Linear Resistive Multiports. There are natural generaliza-
detail, a warning seems appropriate. One should bear in tions of Thévenin–Norton equivalent circuits to nondegener-
mind that these equivalences are strictly limited to the data ate n-ports N that is, when G(N ) in Eq. (12) has dimension
at the accessible (external) ports; for example, the currents n. Clearly, Eqs. (12)–(13) and Fig. 5 hold mutatis mutandis,
through the internal resistors in the equivalent Thévenin and that is, all currents i and voltages v are n-vector valued. The
Norton circuits in Fig. 6 are not the same. Consequently, in- resistor in circuit in Fig. 5(b) symbolizes an n-port with n �
ternal power consumption of the ‘‘equivalent’’ sources is dif- n resistance matrix R, where each port is loaded separately
ferent! by a parallel-connected current and a series-connected voltage

source. The question of existence of R is not crucial, since one
may choose any other basisLinear Resistive Oneports. Define a linear oneport N to be

generic or nondegenerate when its graph G(N ) is a one-di-
mensional linear manifold (cf. Fig. 5(a); this condition ex-
cludes nullors) and it is neither an independent voltage, a

�
I
V

�

current source, nor a short or open circuit.
for the direction space

Theorem (Thévenin–Norton). Any generic, linear, time-in-
variant, resistive oneport N may be replaced by the equiva-
lent realizations shown in Fig. 6.

span

�
I
R

�
= span

�
I
V

�
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where 1 denotes the n � n unit-matrix. Clearly, since pendent sources in the familiar way from simultaneous open-
and short-circuit measurements according to i1 � v2 � 0. It is
instructive to verify that a chain-type circuit [Fig. 8(a) and
right part of Eq. (16)] would require a rather exotic measure-

�
1
R

�
=
�

I
V

�
I−1

ment setup in order to determine for instance v01 � v1�i2�v2�0.
existence of R � VI�1 requires detI � 0, that is, the n-port
has to be current controlled. Complex Variables. There is no limitation in using Laplace

As to the choice of a reference point (i0, v0) � IRn � IRn transform and in applying the Thévenin–Norton theorem on
along G(N ), there is no further restriction beyond detI � 0 a complex variables basis for circuits which contain capacitors
in choosing (0, v0). Equivalently, when the n-port is voltage and inductors. Because of initial values there may be addi-
controlled (detV � 0), one may reduce (i0, v0) to (i0, 0). This tional sources that have to be treated as independent ones.
way, the number of independent sources is reduced by n and As a consequence, the characteristics of the equivalent cur-
one ends up with the n-port analogs for the Thévenin and rent and voltage sources may depend on the initial values of
Norton equivalent circuits in Fig. 6 [see Fig. 8(a) for a twoport the internal inductors and capacitors. Moreover, when using
Thévenin circuit]. complex quantities, one implicitly works in sinusoidal steady

Unlike oneport equivalents, n-ports have more than the state when the complex variable s is replaced by j�. There-
standard solutions (0, v0) and (i0, 0) for choosing a reference fore, referring to a circuit decomposition as shown in Fig. 7,
point in order to turn n source currents or voltages to zero. In not only N 1 but also the external circuitry in N 2 must be
general, there are (2n

n ) different choices, each resulting in a linear and time invariant.
different equivalent circuit. Figure 8 shows two nonstandard
equivalent circuits from the six possible choices in the case

Darlington Theoremn � 2. These may be described by the equations
Darlington’s theorem certainly is the most penetrating fre-
quency domain result of classical network theory. It is not
usually presented outside specialized books on network syn-

�
v1 − v01

i2 − i02

�
= [H]

�
i1

v2

�
,

�
v1 − v01

i1 − i01

�
= [A]

�
v2

−i2

�
(16)

thesis [(1,18); see also (24 and 25)], since its derivation re-
quires spectral factorization and, therefore, quite a lot of ana-where H and A denote the hybrid and chain matrices of the
lytic function theory. However, in the present context, it istwoport.
essential to get an idea of what it is. In many cases, a spot-In order to determine the parameters of an affine n-port,
frequency version of the theorem may be sufficient.n � 1 admissible pairs (i, v) are necessary: one reference

The most elementary version of this theorem is for lumpedpoint (i0, v0) and n basis vectors for the direction space span
oneports that are passive and therefore have a positive real
rational input impedance Z(s) (i.e., the real part of Z(s) has
no zeros in the right-half plane and does not vanish identi-

�
I
V

�
cally on the real frequency axis s � j�).

This can be done by network analysis quite in the same way
as for oneports. Measurements, however, may be tricky. In Theorem (Darlington, 1939). Any positive real function
case of a hybrid equivalent circuit [Fig. 8(b) and left part of Z(s) may be realized as the input impedance of a lossless two-
Eq. (16)] one gets the reference data (0, i02, v01, 0) for the inde- port terminated in a positive resistor R.

Clearly, one may choose R � 1 by using an added ideal
transformer in the lossless twoport. Darlington’s theorem has
become generalized for multiports [see, e.g., Newcomb (26)
and Belevitch (1); for a correct form of the multiport-cascade
Darlington-realization of rational matrices, however, it is still
indicated to consult Ref. 27]. Extensions of the Darlington
theory to nonpassive devices have been demonstrated by Ball
and Helton (28). Furthermore, affine multiports N containing
independent sources may be treated as well, since Darlington
representation deals with the input impedance Z of N˜ (with
all independent sources ‘‘off ’’). For that reason only the direc-
tion space of the external behavior in terms of the ‘‘slope’’ or
‘‘angle operator’’ Z is affected. Hence, a large class of linear
lumped multiports has a Darlington-type representation like
that in Fig. 9(b). In order to figure out the precise limitations,
it is useful to think of the equivalence of the Thévenin and
Darlington representations shown in Fig. 9 as a special case

(a) (b)

v01

v1

i2

v2

 N

v01

v1

i2

v2

i01

i02

i1i1

 N

of a lossless cascade transformation F � � � between two Théve-
nin circuits (Ṽ0, Z̃) and (V0, Z) � F �(Ṽ0, Z̃)�, where, in case ofFigure 8. Equivalent circuits for a linear affine twoport deduced
the Darlington circuit, we have Z̃ � R � diag(Ri). Adheringfrom (a) a chain matrix and (b) a hybrid matrix representation. Ñ

contains no independent sources. to the familiar impedance coordinates and defining Re�Z� :�
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Beyond the celebrated low-sensitivity properties of lossless
cascade realization for selective filters, the main value of Dar-
lington-type models lies in the invariance properties of the
lossless 2n-port. Lossless transformations do not alter the
characteristics of stationary power or energy flow into the em-
bedded n-port and, consequently, leave its most fundamental
physical properties invariant. Whereas Thévenin–Norton cir-
cuits are based exclusively on the linear properties of a de-
vice, Darlington models additionally reflect the quadratic con-
straints imposed by conservation of power or energy. This fact
makes them natural canonical models par excellence for linear
physical systems as well as for spectral models in a thermody-
namic interpretation when only second-order properties are
of interest.

v01

v02 Z v02Lossless
four port

R1

R2

v01(a) (b)

Though computation of Darlington circuits may be cumber-
some (especially for continuous models), they offer much in-Figure 9. (a) Thévenin equivalent circuit for an affine passive two-
formation and place the fundamental characteristics directlyport with impedance matrix Z and (b) its Darlington equivalent two-
in evidence (e.g., passivity of N is obvious when all resistorsport with real positive resistors R1 and R2.
Ri � 0). Moreover, they provide for a clear partitioning of the
model into pure resistors and dynamical elements, thus lim-
iting frequency dependence and complex numbers to the loss-��(Z � Z*), where Z* denotes the Hermitian conjugate matrix,
less 2n-port. In fact, Darlington representation may be viewedit is not difficult to show that
as real diagonalization of a complex impedance matrix Z by
means of a linear fractional map F : Z � R.V0 = TṼ0, Re{Z(jω)} = T Re{Z̃(jω)}T∗ (17)

When emphasis is on analysis or modeling of power flow
in linear systems, it is conceptually more appealing to workClearly, T � T(j�) but at a fixed frequency it can be any
with scattering parameters instead of voltages, currents, andnonsingular constant matrix by proper choice of the lossless
impedances. The inherent normalization to external loadstransformation. It becomes clear that the question about what
was limited originally to resistors. In order to extend applica-can be done by means of lossless cascade transformations
bility of scattering analysis to complex as well as to multiportamounts to a study of the congruence classes of Re�Z(j�)� or,
loads, the theory of complex normalization of scattering matri-equivalently, Re�Z̃(j�)�. In case of Darlington equivalents with
ces has been developed (32–34). Rather late it became evidentall resistors Ri normalized to �1, Re�Z(j�)� � diag(Ri) be-
that this formalism amounts to replacing the complex loadcomes a signature matrix J � diag(�1); as a consequence,
multiports by their Darlington equivalents and to performingsuch circuits exist only if the factorization problem
normalization with respect to the decoupled real resistors Ri

(35).Re{Z(jω)} = T(jω)JT∗
(jω), J = diag(±1) (18)

has a solution. When fixing a particular frequency, the prob-
EQUIVALENT AND PARTIALLY EQUIVALENT NETWORKS

lem boils down to the congruence diagonalization of constant
indefinite Hermitian matrices; hence, standard linear algebra

Foundations
software packages may be used to determine spot-frequency
equivalent circuits as they are widely used in noise analysis According to Belevitch (1) electrical networks are character-

ized by network elements and their connection element,(29). In network synthesis and modeling of stationary stochas-
tic processes (30), one is interested in circuits that are contin- where branch currents and voltages are used to describe a

network mathematically.uously valid for all frequencies, that is, one looks for a ratio-
nal matrix T(s) that in addition to Eq. (17) fulfills certain The interaction with other networks and/or the observa-

tion of certain network variables requires the introduction ofanalyticity requirements. In case of a passive impedance
Z(s), all resistors Ri are positive; hence we have J � 1. Solu- oneports (pairs of terminals) in the networks. From a system-

atic point of view, it is suitable to replace the oneports bytions of Re�Z(j�)� � T(j�)T*(j�) may be found by classical
spectral or Wiener-Hopf factorization. norators. By definition, branch currents and voltages of these

‘‘singular’’ network elements [see Carlin (20)] are arbitrary,In case of an indefinite matrix J it should be intuitively
clear that Eq. (17) does not have a solution when the inertia and therefore each nonlinear and linear resistive characteris-

tic (including current and voltage sources as well as ‘‘openof Re�Z(j�)� varies with j�: One cannot imagine a lossless 2n-
port that transforms positive resistors into negative ones. In circuits’’ and ‘‘short circuits’’) can be represented. In this man-

ner, twoports can be represented as network elements withfact, it is known in mathematics that this condition is neces-
sary and sufficient to solve Hermitian factorization problems ‘‘private’’ network variables if a mathematical representation

of such a network is given by both the Kirchhoff equationsof this kind (28,31); as a result, continuous-frequency Darling-
ton equivalents exist only in case of constant inertia of the and the constitutive relations of all network elements (includ-

ing the norators). In this section, networks with a certain setHermitian matrix Re�Z(j�)�. In this case, Eq. (17) can be
solved by J-spectral factorization; for this reason, this ex- of b norators are called n-port networks.

There are several levels at which one can compare two net-tension of the classical theorem is also called a J-Darlington
theorem (28). works and their descriptions. The strongest condition seems
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to be that the network topology and structure of the Kirchhoff
matrices, respectively, as well as the constitutive relations of
the network elements be the same. Obviously these conditions
lead to the same manifold of solutions of the descriptive equa-
tions. If dynamic networks are considered, then such a condi-
tion may be valid only for a certain time point or, in the case

N1 N2

i

V

of linear time-invariant networks, only for a specified fre-
Figure 10. Decomposition of a resistive network into oneport net-quency.
works N 1 and N 2. The electrical behavior at the common port is com-Whereas this strong comparability is rather trivial and
pletely determined by i(t) and u(t).useless, it is easy to define weaker kinds. In 1929, based on

ideas of Cauer (36), Ghenzi (9) defined that two networks are
homological if parts of their network topologies and the solu-

Theorem. Let a resistive network N including time-varianttions of the associated branch variables have the same be-
sources be decomposed into two oneport subnetworks N 1 andhavior.
N 2 that are connected at their ports (see Fig. 10); this port isIn network theory, many results on homological networks
characterized by a current i and a voltage u. If N has aare known. The famous theorem of Helmholtz (12) published
unique solution i(t) (for all t), then N 2 may be substituted byin 1853 (often called as theorem of Thévenin) was the first
a voltage source u(t) without affecting the branch voltagesexample of this kind. This was generalized by Mayer (37) and
and the branch currents inside N 1, provided the substitutedNorton [see Brittain (38) for some historical remarks] to net-
circuit N S has a unique solution (for all t).works with controlled sources in 1926. Another remarkable

network theorem was derived by Kennelly (39), who proved
Remark. If a voltage source is used for replacing N 2, anthe Y–� equivalence. In both cases, the homology of two net-
analogous theorem holds.

works was considered with respect to the network part that
includes one and three norators, respectively. In the case of Example. Let N 1 in Fig. 10 be a network consisting of a non-
Helmholtz’s theorem, the quotient of the norator current and linear resistor (N 1) connected with an independent voltage
voltage has to be the same, whereas the Y–� equivalence is source in series with a linear resistor (N 2). If a unique inter-
based on the condition that the norator currents have to be section of the nonlinear characteristic N 1 and the ‘‘load’’ char-
equal. Cauer (36) was the first to define a general concept of acteristic N 2 is considered, the intersection can be deter-
equivalence where the fixed part of the network topology con- mined by means of a horizontal and a vertical characteristic
sists only of the norators that replace the oneports for interac- (voltage or current source) if these lines do not intersect the
tion with network surroundings. He pointed out that the the- nonlinear characteristic a second time. This case is illustrated
ory of equivalent networks is the central subject of network in Fig. 11.
synthesis, where the main goal is to design different networks
of equivalent behavior with respect to the ports. In the next Remark. If N 1 is a linear resistive network with sources, it
subsections we will present some prominent results of net- can be characterized at its port by means of another line.
work theory that can be understood in a unified manner using With the exception of singular cases the intersection can be
the framework of homological networks. For example, the du- determined with a current or voltage source, too.
ality of networks is studied in the literature apart from the
subjects discussed above. But as Ghenzi emphasized, duality Miller Theorem. In many monographs about circuit design,
of networks is only a special case in the homology of net- the so-called Miller theorem and its applications are dis-
works. cussed [e.g., Millman and Grabel (41)]. Probably the first de-

tailed presentation of Miller’s result is included in the Radia-
tion Laboratory Series [see Vol. 19 ‘‘Waveforms’’ written bySubstitution Theorem
Chance et al. (42)]. After some extensions of this theorem

There are many interesting applications of the homology of
networks in network theory. A very general theorem is the
so-called substitution theorem that allows us ‘‘to replace any
particular branch of a network by a suitable chosen indepen-
dent source without changing any branch current or any
branch voltage. In many instances, the substitute network is
easier to solve than the original one.’’ [See Desoer and Kuh
(17).] We can find several versions of this idea in the mono-
graph of Chua, Desoer, and Kuh (2) where nonlinear resistive
as well as dynamic networks are considered. A very general
substitution theorem was published by Haase and Reibiger
(40), but we restrict ourselves in this subsection to describing
special cases of this general theorem.

N1

N2

i

v
This statement can be demonstrated in a simple manner if Figure 11. Uniqueness of intersection for a decomposition according

we consider nonlinear resistive networks. For this case Chua, to Fig. 10 when N 1 is a nonlinear resistor and N 2 is a linear affine
Desoer, and Kuh (2) presented the following theorem together oneport (an independent voltage source in series with a linear re-

sistor).with a proof:
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were published, a more complete version was presented re-
cently by Rathore (43). Based on the connections of twoports
using parallel (P) or/and series (S) connections, Rathore
showed that the different versions of Miller’s theorem can be
derived in a unique manner. The four corresponding connec-
tions of twoports are denoted by PP, PS, SP, SS if P or S is
the type of connection of the input and output ports of both
twoports. In each case, one of the twoports includes a con-
trolled source that depends on the kind of connection,

 R1 R2

 R3

 R3

 R2 R1

whereas the other twoport is arbitrary. By means of an equiv-
Figure 13. A simple replacement of a delta-type resistor networkalent network of the latter twoport that includes controlled (without tilde) into a wye-type resistor network (with tilde).

voltage or current sources and the corresponding gain (PP or
SS) or transfer impedance or admittance (SP or PS), we ob-
tain the Miller equivalent network. Note that the first two-

where (i, j, k) is a permutation of (1, 2, 3), the R’s are the
port can be fully characterized by its voltage or current gain.

delta resistors and the R̃’s are the wye resistors. The delta–
If we have PP connection, the first twoport consists only of a

wye transformation is illustrated in Fig. 13. Furthermore,
single impedance Z and the gain of the second twoport is

Guillemin pointed out that with the wye–delta transforma-
� � U2/U1. This will be represented in the Miller equivalent

tion, a node of the network is eliminated (that is a node
network by means of input and output impedances with the

potential) and with a delta–wye transformation an elemen-
following values:

tary mesh is eliminated (that is a mesh current). Repeated
applications of this procedure lead to a simplified network.
Obviously, this statement is closely related to the Gauss algo-Z1 = Z

1
1 − µ

and Z2 = Z
µ

µ − 1
(19)

rithm for solving linear algebraic equations (LU factor-
ization).This example (see Fig. 12) is the one presented by Miller

It should be emphasized that not every linear resistiveto illustrate his theorem. Note that at least one of these im-
three-pole-network can be represented by a subnetwork withpedances can be negative if � � 1. Therefore, the Miller theo-
one of these topologies if it is assumed that all resistive valuesrem results in an equivalent network with a negative resistor
are positive. Therefore, this theorem is only applicable to suchand cannot be realized with real devices. On the other hand,
networks that include three-pole subnetworks with a wye orit is very suitable in circuit design, for example, to study the
a delta topology. It should be mentioned that a generalizationfrequency behavior of this network.
of the wye–delta transformation to networks with sources can
be found in a paper of Herzog (46) [see also Chang and ChuWye–Delta and Star–Mesh Transformation. A theorem that
(47)].considers two networks with equivalent three-pole-subnet-

In their famous paper from 1964, Brayton and Moser (48)works of special topologies is well known as the star–delta
presented a derivation of this theorem in a geometrical frame-transformation, since the network topology of one of the sub-
work using the so-called Legrendre transformation. Theynetworks looks like a star and the other subnetwork looks
proved that it has no analog for nonlinear networks althoughlike a delta. This type of equivalence was given for the first
some exceptions under certain restrictions are known (seetime by Kennelly (39) in 1899 and studied intensively with
also Chua (49). This result is related to a more recent resultrespect to the theory of electrical transmission lines by Her-
published by Boyd and Chua (50). These authors showed thatzog and Feldmann (44) in 1903. Later on it became a standard
even a simple cascade of two linear blocks (where a nonlinearsubject in elementary textbooks of network theory [e.g., Guil-
block is embedded the input–output behavior) is not pre-lemin (45), Desoer and Kuh (17)]. In Guillemin’s book (see p.
served by any commutation operation. That is to say that the131) we find a nice statement for the calculation of the delta
classes of equivalent nonlinear networks essentially consist ofconductances or resistances ‘‘the product of the adjacent two,
one network only.divided by the sum of all three.’’ For example, the wye resistors

The more generalized star-mesh transformations for n-of delta–wye transformation are calculated by
pole-subnetworks were published in 1924 with a star or mesh
topology [see Küpfmüller (51) and Rosen (52)] but in these
cases no bijective relationships between these two subnet-R̃i = RjRk

R1 + R2 + R3
(20)

works exist if there are more than three poles [further litera-
ture and remarks are included in Bedrosian (53)]. However,
it is pointed out in these papers that these results can be
applied in certain areas of network analysis.

RECIPROCITY

Reciprocity is an essential property of electrical networks, al-
though its physical idea has been applied previously to other

Linear
two-port

µ

Linear
two-port

µ

Z

Z1 Z2 

(a) (b)
physical systems. Rayleigh considered a reciprocity relation
in his famous monograph Theory of Sound (54). In all cases,Figure 12. The decomposition of the impedance Z by the Miller theo-

rem into Z1 and Z2. reciprocity is related to an interchange between cause and
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response of a system or network. In order to define as well as invariant n-ports, a similar relation can be derived from the
Weyl–Tellegen theoremtest this property of a single network, we associate a family

of networks to it. If the network contains n norators (that
cannot combine with nullators into a nullor) the networks are
called n-ports, where a port is characterized by the voltage

−
X

ports

(−ṽkik + vkĩk) =
X

internal branches

(ṽkik − vkĩk) (23)

and the current of the corresponding norator. One of these
networks can be constructed in the following manner (re- where the reciprocity of the n-port network results in the van-
stricted at first to the classical case of linear time-invariant ishing of the left side (external condition) or the right side
n-ports): (internal condition). In the case of linear reciprocal n-ports,

reciprocity can be characterized by means of certain invariant
properties of the n-port matrices. For example, the impedance• All norators, with exception of two, are replaced by short
and the admittance matrices have to be symmetric. For fur-circuits.
ther details, see Balabanian, Bickart, and Seshu (55). These• Network 1: Both of the remaining two norators I and II
invariant properties are formulated in a different manner ifare replaced by an independent voltage source where
different types of excitations (different n-port matrices) arev1

I � 0 and v1
II � 0.

considered. Fortunately, a geometric characterization is avail-
• Network 2: Both of the remaining two norators are re-

able to unify these different formulations. In the case of linearplaced by an independent voltage source where v2
II � 0

time-invariant n-ports, the external behavior is characterizedand v2
II � 0.

by a totally isotropic linear space. A more general character-
ization of n-ports, including the nonlinear n-ports based on

This n-port is ‘‘reciprocal with respect to these two ports’’ paper of Brayton and Moser (48), was generalized by Brayton
(norators) if the following conclusion is satisfied: v1

I � v2
II ⇒ (56) and Chua, Matsumoto, and Ichiraku (57); see also the

i1
II � i2

I where the currents are the corresponding port (nora- monograph of Mathis (4). The main idea behind this approach
tor) currents. This n-port is ‘‘reciprocal’’ if it is reciprocal with is that the reciprocity of an n-port is characterized by a 2-
respect to all pairs of ports (norators). Obviously we have an form (in the sense of Cartan)
operational definition that can be used to construct a mea-
surement process in order to test this property. The idea is
illustrated with a two-port network.

X

ports

dik ∧ dvk (24)

Unfortunately, it is not possible to use voltage sources for
the test of reciprocity in all cases of linear time-invariant n- that vanishes on the set of all admissible currents and volt-
ports. But a more general approach uses independent current ages. If this 2-form is represented in a suitable coordinate
sources and open circuits, or a mixture of current and voltage system, one of the classical characterizations of reciprocity
sources [for further details see Balabanian, Bickart, Seshu can be derived. In this sense, we speak of a geometrical for-
(55), Chap. 9]. mulation of the internal representation of reciprocity.

Although the basic definition of reciprocity uses a family of It is well known that linear reciprocal n-ports can be ana-
networks, it is more suitable to formulate criteria that are lyzed in a simplified manner using the symmetry of the n-
related to properties of a certain network. For this purpose, port matrices. In this case, only half of the nondiagonal coef-
the Weyl–Tellegen theorem can be used since it is formulated ficients have to be calculated. An elegant formulation of the
for two different networks with identical connection elements. dynamic state space equations of linear or nonlinear RLC net-
For simplicity, we will consider only the case of a pair of ports works can be derived if the network is reciprocal and com-
(norators). If currents and voltages of these ports are denoted plete (see, e.g., Weiss and Mathis (58) for recent results).
by index 1 and 2, respectively, we have by the properties of a Based on these conditions, Brayton and Moser (48) proved
Kirchhoff network that a scalar function P(vC, iL) exists (where (vC and iL are the

voltages of the capacitors and currents of the inductors, re-
spectively) that can be used to formulate the dynamic equa-
tions

(ṽ1i1 − v1 ĩ1) + (ṽ2i2 − v2ĩ2) +
bX

k=3

(ṽkik − vkĩk) = 0 (21)

where b is the number of branches of the network (includ-
ing the two ports or norators). Using the special properties

C(vC)
dvC

dt
= ∂P

∂vC
(25)

of the two associated networks and reciprocity with respect
to these ports, the following condition for the twoport net- L(iL)

diL

dt
= − ∂P

∂iL
(26)

work arises

For the proof of the existence of P, Brayton and Moser used
the 2-form as an integrability condition. These authors ap-
plied their mixed potential function P to derive stability condi-

bX

k=3

(ṽkik − vkĩk) (22)

tions for this class of nonlinear networks without solving the
dynamic equations. Furthermore, it should be mentioned thatwhere the sum encompasses all nonport branches of the net-

work. In contrast to the external definition, this relation is reciprocity is a sensitive assumption for a thermodynamic in-
terpretation of electrical networks and other physical systemsbased on internal quantities only. Therefore an internal char-

acterization of reciprocity is given. In the case of linear time- [see, e.g., Weiss and Mathis (58) and Stratonovich (59)].
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INTERRECIPROCITY sitivity has to be calculated. In contrast to the method of
first-order approximation, where each parameter has to be

Unfortunately, many interesting networks are not included considered separately, only one analysis of the adjoint net-
work is necessary. For further details, see Hasler and Neir-in the class of reciprocal networks. Therefore Bordewijk (60)

introduced a new property in 1956 that extends the reciproc- ynck [(3), pp. 236ff]. A more detailed comparison is contained
in Vallese (62). The relationship between the concepts of ad-ity in some sense. In order to define the reciprocity of a net-

work including norators (ports), a family of networks was joint networks and transposed networks was discussed by
Bordewijk (61).generated where the norators are replaced by different

excitations (independent sources) as well as open and short
circuits. It is assumed that the connection element and the

DUALITYother network elements are not changed.
Bordewijk assumed the external condition of reciprocity

A very interesting relationship between two different net-
works and their solution manifolds, respectively, is discussed
by means of the so-called duality theory of electrical net-

X

ports

(−ṽkik + vkĩk) = 0 (27)

works. Introduced by Russel (63), the first results were pub-
lished by Matthies and Strecker (64). Since these results werefor two n-port networks with the same connection element
based on considerations of the corresponding network graph,but possibly different network elements. Therefore, we say
this duality concept was restricted to networks with a planarthat two n-port networks with the same connection element
network graph. Cauer (36) reformulated these early results inare interreciprocal if this condition for all admissible port cur-
the framework of mathematical graph theory and presentedrents and voltages is satisfied.
conditions that an arbitrary graph is planar. More detailedUsing the internal condition of interreciprocity, it is easily
information can be found, for instance, in Weinberg (65). Anshown that the admittance and impedance matrices of linear
illustration of this approach to dual networks is shown in theand interreciprocal n-port networks N and N˜ that are re-
following example.lated by

Example. Obviously the RLC network in Fig. 14 has a pla-Ỹ = YT , Z̃ = ZT (28)
nar network graph. Therefore it is possible to map this net-
work on the surface of a ball where it decomposes the surfaceIt was already known to Bordewijk that, in general, there
of the ball into three areas. Now we associate a node to eachis more than one way of associating one network with another
of these three areas and connect each of these nodes by ain such a manner that the two networks are interreciprocal,
branch that crosses a branch of the original network. As aeven in the linear case (61). Therefore, he introduced the
result, the skeleton of another graph is constructed that cantransposition operation to linear n-port networks, where the
be interpreted as a network graph. This is called the dualseparate network elements are replaced by network elements
network graph. As the next problem, we have to determinethat are interreciprocal with regards to the aforesaid network
the kind of network element in each branch. A table of net-elements. A complete table of network elements and their
work elements and its corresponding dual elements can beunique interreciprocal network elements can be found in
found in Hasler and Neirynck [(3), p. 218]. In the most simple[Balabanian, Bickart, Seshu (55), p. 376].
cases, an Ohmian resistor has to be replaced by an admit-Bordewijk proved that two n-port networks that arise from
tance G̃ � R/R2

0, where R0 is the duality constant. Using theseone another by transposition are interreciprocal. Note that it
correspondences, the dual network can be constructed (seeis not generally true that two interreciprocal n-port networks
Fig. 15).arise one from the other by transposition. Obviously, transpo-

sition is a self-inverse operation. Therefore this approach is
In order to clarify this duality operation and to extend itclosely related to duality of networks (see the next section).

to more general networks (where planarity of the networkIt is easy to conclude that an n-port network composed of
reciprocal network elements is invariant for transposition.
Therefore, reciprocal n-port networks form an invariant set
in the set of all linear n-port networks. With respect to this
prominent property, a pair of n-port networks that are gener-
ated by transposition are said to be adjoint of each other.

The paper of Bordewijk contained many applications of in-
terreciprocity. In particular, he studied the analysis of ampli-
fiers with pairwise interreciprocal network models. Further-
more, he considered an extended noise theory of linear and
interreciprocal networks. Another prominent application of
adjoint networks is the sensitivity analysis of networks with
respect to network parameters. Although a straightforward
method is available to calculate small absolute or relative
variations of currents and voltages with respect to variations
of certain network parameters, the analysis results of the ad- Figure 14. Illustrating the construction of the dual graph of a simple

RLC network.joint network are of some advantage if more than one sen-
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tion the celebrated duality relation between the parallel and
series RLC circuits.

BARTLETT THEOREM AND OTHER SYMMETRIES

In many areas of physics, geometric symmetries of a system
can be used to simplify the analysis. In linear network theory,
symmetries of this kind were also applied in a successful

Figure 15. The corresponding dual RLC network (see Fig. 14). manner. Probably the first example was the application of
symmetries to polyphase networks; Fortescue (68) published
some results in 1918. In 1931, Bartlett (69) published his now

graph is not needed), Ghenzi’s axiomatic representation of well-known result on reflection symmetric networks. This was
network theory was applied by Mathis and Marten (66). very useful in filter theory and has been generalized to elec-
Ghenzi reformulated the description of the connection ele- tronic circuits. In order to illustrate Bartlett’s theorem, con-
ment by means of an exact pair of incidence matrices (A, B) sider a network with two independent voltage sources that
mentioned above. The dual network is then defined by inter- can be decomposed with respect to a mirror plane into two
changing these two matrices (BT, AT) and by replacing each parts containing the same network elements. This is shown
network element by its dual (where the above mentioned ta- in Fig. 17 using identical n-ports N . Obviously, each block
ble is used). In those cases where the connection element contains a voltage source that was extracted. Both parts of
with (A, B) can be represented by a planar graph, a planar the network are connected by a number of wires. If the net-
graph can be constructed for the dual connection element work is excited with symmetric voltages v1 � v2, the currents
with (BT, AT). In this manner, the classical duality theory is in the connections are zero and open circuits occur. Therefore,
reformulated. Unfortunately, this statement is invalid if (A, both parts can be analyzed independently. On the other hand,
B) represents a nonplanar graph. Using a theorem of Belev- if the voltages are antisymmetric v1 � �v2, the voltages be-
itch (1) Mathis and Marten (66) showed that for each pair of tween the connections are zero and there are short circuits at
real and exact matrices an ideal transformer b-port can be both ports. Again, these parts can be analyzed in a separate
constructed. Therefore, the dual network can also be repre- manner. By means of this approach, difference amplifiers can
sented by the usual network elements ideal transformers in be analyzed.
each case. The relationships of duality in the sets of resistive Unfortunately, the occurrence of three-dimensional geo-
networks can be illustrated by means of Fig. 16. Essentially, metric symmetries in a linear network is rather an exception.
duality is in a property of the connection element of a net- Furthermore, the results of Fortescue and Bartlett are proven
work. Therefore, the consideration of resistive networks with by the superposition theorem, and for this reason, a direct
ideal transformers (Rü networks) and without ideal trans- generalization to nonlinear networks is impossible. However,
formers is no substantial restriction. It is known that a dual some interesting symmetry results for nonlinear networks
planar network can be constructed for each planar resistive were published. The papers of Chua and Vandewalle (70) and
network. In the case of nonplanar networks, ideal transform- Vandewalle and Chua (71) contain many references and re-
ers are needed for the construction of the dual network. An sults where the framework of permutation groups is applied
example can be found in Ref. 66. It should be mentioned that to generalize many ad hoc techniques that are well known in
an alternative representation of this duality theory was de- circuit design for special circuits. They show that for a certain
scribed by Reibiger using so-called bondgraphs (67). choice of the reference nodes a symmetric network has a sym-

Since the solution manifolds of dual networks are closely metric solution, provided the network has a unique solution.
related by transformations of currents and voltages, the solu- Furthermore, the authors present a reduction technique for
tions of one network can be used to represent the solutions of nonlinear symmetric networks that generalizes Bartlett’s
the other. As a simple illustration of this approach, we men- method for linear networks and unifies various algebraic and

graphical reduction methods. Interesting applications of these
results are the analysis of networks with complementary

N N

.  
 . 

  
.

Ru networks

R networks

Planar Nonplanar

Figure 16. Decomposition of the set of linear resistor networks with Figure 17. A decomposition of an arbitrary network into symmetric
blocks.ideal transformers with respect to duality classes.
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17. C. A. Desoer and E. S. Kuh, Basic Circuit Theory, New York:symmetric network elements (e.g., npn and pnp bipolar tran-
McGraw-Hill, 1969.sistors). An example is the push-pull transistor amplifier.

18. W. Cauer, Synthesis of Linear Communication Networks, vols. 1,A fundamental symmetry of network equations as well as
2. New York: McGraw-Hill, 1958.other physical descriptive equations is the balance of physical

dimensions in addition to the numerical values of an equa- 19. P. Penfield, R. Spence, and S. Duinker, Tellegen’s Theorem and
Electrical Networks, Cambridge: MIT Press, 1970.tion. It is known that in the dimensional theory multiparame-

ter Lie groups can be helpful. An overview of dimensional the- 20. H. J. Carlin, Singular network elements. IEEE Trans. Circuit
Theory, 11: 67–72, 1964.ory with its applications is given by Mathis (72). The method

of normalized linear networks that is useful in filter design is 21. H. A. Haus and R. B. Adler, Circuit Theory of Linear Noisy Net-
a simple example of dimensional theory. In general, normal- works, New York: Wiley, 1959.
ized equations include a number of dimensionless constants 22. A. Reibiger, Geometrical proof of the Thévenin–Norton theorem,
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