
SENSITIVITY ANALYSIS

IMPORTANCE OF THE SENSITIVITY CONCEPT

In physics and engineering, we usually mean by sensitiv-
ity of a system a measure for determining the amount of
change an outcome undergoes if the relevant parameters
fixing the outcome are somewhat modified (1–5). In some
situations, for example in a measurement or in a decision-
making situation, such an outcome may be an individual
result. In others, an outcome may be one or several func-
tions of some further independent variable(s), especially a
time or frequency response. Obviously, such a general def-
inition of sensitivity is somewhat vague and, in order to
make it quantitatively useful, needs more precise specifi-
cation.

If we are dealing with only small modifications, appro-
priate sensitivity measures can usually be based on differ-
ential expressions, that is, on first-order derivatives of the
desired outcome with respect to the component parame-
ters. In other situations, the encountered changes may be
so large that a first-order approach may be insufficient.
One then must either consider also higher-order deriva-
tives or determine the resulting modified behavior by di-
rect precise computation. The latter approach can be sim-
plified drastically if the functions under consideration have
an appropriate simple structure, as is the case for system
functions of linear circuits and systems. However, the num-
ber of instances in which influences of order higher than
the first have to be taken into account is probably much
smaller than what is sometimes believed. Indeed, if the
expected parameter changes are such that higher-order ef-
fects must be taken into account, one is frequently dealing
with what may be termed poor engineering design.

Interest in sensitivity aspects may arise in quite dif-
ferent contexts. For analog circuits, the most immediate
concern results from the errors due to manufacturing in-
accuracies, temperature changes, and aging. The resulting
requirements become particularly severe for applications
for which stringent criteria have to be met. One such type of
application are filters since these may have to present dra-
matically different behavior in passbands and stopbands.
Another type are high-performance amplifiers. Some at-
tention to such circuits will therefore be given later. How-
ever, it may be mentioned now already that in order to al-
leviate the problem, it has been found, in both those cases,
to be very advantageous to have recourse to passivity and
its limiting form losslessness. It seems indeed that despite
the enormous importance of active devices there exists a
universal law of sound engineering practice: Any appara-
tus having to satisfy very stringent requirements should
preferably be built either in purely passive fashion or, es-
pecially if that choice is inherently excluded (amplifiers,
combustion engines, power stations), in such a way that
the most critical performance aspects are determined by
passive devices or subsystems.

This does not imply at all, however, that passivity and
losslessness are the only criteria one should aim for in
the case of critical applications. As an example, the stop-

band sensitivity of filters in bridge-type configuration in-
creases dramatically with increasing stopband require-
ments. Hence, even very slight manufacturing inaccura-
cies, temperature changes, and aging may inadmissibly
perturb the behavior of such filters, also in the case of pas-
sive (lossless) implementations.

The values of, for example, parasitic elements can also
be considered as relevant parameters in the sense used at
the beginning of this section. Hence, sensitivity analysis
encompasses the analysis of the influence that parasitic
elements have upon the behavior of a circuit.

In digital circuits, the arguments listed so far for em-
phasizing the importance of sensitivity lose their meaning.
Indeed, under the usually permitted assumption of fully re-
liable digital operation, manufacturing inaccuracies, tem-
perature changes, and aging have no effect. There is, how-
ever, a different aspect due to which sensitivity is of direct
relevance: the limited number of bits available in the regis-
ters for storing the parameters that fix the circuit behavior.
Hence, low sensitivity is also of interest for digital systems.
Nevertheless, bridge-type configurations are now admissi-
ble even for critical filtering purposes. There is no limit
to the achievable stopband attenuation provided the filter
coefficients have been determined with sufficient accuracy
and the relevant registers are long enough.

One of the reasons for the present dominance of digi-
tal circuits has itself also partly to do with sensitivity: The
ever smaller features of highly integrated circuits cannot
be controlled with such precision that accurate analog oper-
ation could be ensured. In digital circuits, however, the de-
tails of the analog operations, that is, the transitions from
one state to another, are irrelevant as long as these tran-
sitions occur sufficiently fast.

Sensitivity may also be of relevance in a more indi-
rect fashion. Indeed, various types of imperfections such
as noise and nonlinear distortion can frequently be inter-
preted as being caused by parameter fluctuations. If this
is the case, a reduction of sensitivity with respect to such
a parameter change will also imply a corresponding reduc-
tion of the disturbance caused by the imperfection. In this
sense, there exists a highly beneficial relationship between
sensitivity on the one hand and noise and nonlinear distor-
tion on the other. This holds true for analog as well as for
digital circuits (6–8).

At this point, one question immediately comes to mind:
While properties such as passivity and losslessness have
no natural meaning for digital circuits, is it nevertheless
possible to carry them over to the digital domain and thus
to profit also there from the sensitivity benefits potentially
available from such properties? The answer to this is affir-
mative, and corresponding structures are known as wave
digital filters (8). [These filters, due to their passivity, of-
fer, however, a much broader resistance against disturbing
imperfections, a property also referred to as robustness (9),
than what we are discussing in the present context.]

So far, we have taken it for granted that a low sensitivity
is desired,but the opposite situation also has some interest.
This is the case in particular in measuring and sensing
equipment, where one does indeed want to obtain large
deviations of the output for small changes of the device to
be measured or of the phenomenon to be detected. Hence,
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circuits such as bridges, which are to be avoided for critical
analog filtering, are precisely preferred arrangements, for
example, for measuring purposes.

Finally, sensitivity expressions are also of great inter-
est in numerical work (10). In particular, optimization
problems can usually be solved only by iterative proce-
dures involving individual linear steps, which in turn rely
in many cases on the use of sensitivity-type expressions.
These should again be reasonably large in order to acceler-
ate convergence. Related to optimization is the problem of
computer-based circuit adjustment. Corresponding strate-
gies also rely on knowledge of the relevant sensitivities.

The present text is not an attempt to give a comprehen-
sive summary of the subject but rather a brief exposition of
those sensitivity aspects that, according to the experience
of the author, have proved to be of particular importance
in the area of circuit design and operation (with prime em-
phasis on linear circuits). For other aspects and many fur-
ther details, the reader may wish to consult specialized
books such as Refs. (1–5), or relevant chapters in books
with wider scope (11–14).

SENSITIVITY DEFINITIONS

Let F be a real or complex quantity of interest. It is a func-
tion of a certain number of parameters, say γ1 to γn ; these
are frequently real, for example, if they represent compo-
nent values, but they can also be complex. In general, F also
depends on one or several further physical quantities, say
on time t or on the frequency ω or the complex frequency
s = σ + jω, but such dependencies will be made explicit only
if strictly required. Hence, we can write F = F(γ),γ = (γ1, . . . ,
γn )T. If one of the γν is changed by a small amount �γν, F
is changed in first approximation by

An appropriate measure for sensitivity, more precisely for
what is called absolute sensitivity of F with respect to γµ,
is therefore

Frequently, one is more interested in relative changes of F
with respect to relative changes of γν, that is, in the relative
sensitivity

sometimes also in one of the semirelative sensitivities

which all are closely related to the original expression.
The relative sensitivity [Eq. (2)] is frequently the preferred
quantity. However, it loses its meaning if F = 0 and/or γν = 0.
Corresponding remarks hold for the semirelative sensitiv-
ities.

One can also represent in a compact fashion the com-
plete sensitivity vectors. Thus

S(F ; γ) = DF, S(lnF ; γ) = 1
F
DF

S(lnF ; ln γ) = ∂ lnF
∂ ln γ

= 1
F

(γ1
∂F

∂γ1
, . . . , γn

∂F

∂γn
)T

(4)

where

If instead of a single F one is interested in a vector F = (F1,
. . . , Fm )T, one has, for example,

where ∂F/∂γ is the Jacobian matrix of F with respect to γ.
If F is a system function (impedance, admittance, trans-

mittance, reflectance, etc.) of a linear constant (i.e., time
independent) circuit and if γν refers to a one-port con-
stituent (resistance, inductance, capacitance, impedance,
admittance, etc.), F is a bilinear function of γν of the form
(see below)

where F11, F12, F21, and F22 are independent of γν. The same
holds true if γν is the multiplicative parameter character-
izing a controlled source. However, if γν is a mutual induc-
tance, a turns ratio of an ideal transformer, or the gyration
constant of a gyrator, we have

where F11, F12, F13, F21, F22, and F23 are independent of γν.
The case of Eq. (7) is the most frequent, and the simplicity
of such an expression can be of considerable help not only
if first-order sensitivities as given by Eqs. (1) to (6) are of
interest, but in particular if arbitrary large changes in γν
are to be taken into account.

The bilinearity of Eq. (7) is itself a consequence of the
linearity of the steady-state equations of the circuit. As
an example, assume that F =V0/E, where V0 is a response
voltage and E a source voltage; that γν = Z, where Z is some
impedance in the circuit; and that V and I are the voltage
across, and the current through, Z. We may replace Z by a
voltage source whose voltage V is controlled by the current
according to V = ZI. Applying superposition we may write
V0 =AE + BV, I = ace + DV, where A, B, C, and D are inde-
pendent of the voltages and currents. Eliminating V and
I, one obtains indeed Eq. (7), with F11 =A, F12 = BC −AD,
F21 = I, F22 = −D. In a similar way, Eq. (8) can be shown to
hold, observing that in the case of a mutual inductance, an
ideal transformer, or a gyrator, one has to make use of two
auxiliary controlled sources.

If F is in fact a transfer function to be evaluated at real
frequencies (thus for s = jω), one may be more interested in
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the loss α and the phase β defined by

Hence, we have, for example,

In the passband of a good filter, we have α ≈ 0; hence S(ln
α; γν) and S(ln α; ln γν) would there have no meaning.

Usually, one has |�γν/γν| ≤ ε where ε is independent of
ν. The change of �F is thus in first-order approximation
bounded according to

This shows that the sums in the expressions just presented
can be interpreted as worst-case sensitivities. Such con-
cepts can be extended to apply, for example, to the worst
case over a frequency range of interest.

Worst-case sensitivities are often too pessimistic for
practical applications. A better way of proceeding is then
offered by statistical considerations. For this, let γ0 be
the nominal value of γ = (γ1, . . . , γn)T, thus γν0 the nomi-
nal value of γν, and F0 = F (γ0), the relative changes being
(γν − γν0)/γν0 and (F − F0)/F0. If we can restrict ourselves
to first-order terms, we have

F − F0 =
n∑

ν=1

γν − γν0

γν0
· ∂F

∂ ln γν
|γ=γ0 (13)

Let then the γν be real random variables, with
°
γν = E{γν}

and
°
F = E{F } the expected values of γν and F. Ideally,

°
γν =

γν0 for ν = 1 to n, in which case also
°
F = F0, but this ideal

situation is frequently not achieved, especially if effects
due to temperature changes and/or aging have to be taken
into account. Since Eq. (13) is linear in F and γν we can also
write

F − °
F =

n∑

ν=1

γν − γ °
ν

γν0
.
∂F

∂ ln γν
|γ=γ0 (14)

Finally,we assume that the γν are uncorrelated and such
that the γν/γν0 all have the same variance σγ . Defining the
variances σF and σF/F0 , also in the case of complex F, by

σ2
F = E{|F − °

F |2} and σ2
F/F0

= E{|F − °
F |2/F 2

0 }
we obtain from (13) and (14),

σ2
F = σ2

γ

n∑

ν=1

| ∂F

∂ ln γν
|2γ=γ0

, σ2
F/F0

= σ2
γ

n∑

ν=1

| ∂ lnF
∂ ln γν

|2γ=γ0

Hence, the sums in these two expressions can be inter-
preted as statistical sensitivities, and it may again be ap-
propriate to determine the worst case over the frequency
range of interest.

Although worst-case and statistical sensitivities may be
useful design tools, they frequently do not offer a suffi-
ciently precise picture. In particular, in the case of filters,

Figure 1. (a) A two-port N driven at port 1 by a source of voltage
E and internal resistance R1 and terminated at port 2 by a load
resistance R2. (b) A one-port N driven by a source of voltage E and
internal resistance R1.

what is really prescribed is a so-called tolerance plot of, for
example, the loss α(ω) with respect to the value α(ω0) at
some reference frequency ω0 (see the section entitled “The
Passband Sensitivity Theorem”).

SENSITIVITY IN PASSIVE, ESPECIALLY LOSSLESS
CIRCUITS

Linear Constant Two-Ports at Steady State

In Fig. 1(a) is shown a two-port N under canonic operat-
ing conditions, that is, inserted between a resistive source
(source voltage E, source resistance R1) and a resistive load
R2. We assume N to be linear and constant (time indepen-
dent) and consider its steady state at complex frequency
s = σ + jω, the voltages E, V1, and V2 being assumed to be
complex rms values. For N operated from left to right, as
shown, the quantities of primary interest are the transmit-
tance S21, the reflectance S11, the characteristic function 
,
and the effective (transducer) loss α and phase β. In addi-
tion to α, the insertion loss αi is frequently used; it is related
in a simple way to α, to which it is equal for R1 = R2, but
is less convenient for our purpose. The first three of these
quantities are defined by

and are thus functions of s, while α and β are defined only
for σ = 0, that is, according to

the second equality in Eq. (19) holding (and
 thus being
fully meaningful) only if N is lossless. For any two-port N,
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Figure 2. Typical plots of the output power P2 and the effective
loss α versus ω for an optimally designed low-pass filter.

however, we have

P1 being the power transmitted to N via port 1, P2 the
power delivered to the load, Pd the power dissipated in N,
and Pmax the maximum power available from the resistive
source, thus with P1 ≤ Pmax (the term power denoting, in
the present context, everywhere active power at real fre-
quency, i.e., for σ = 0). If N is passive, we have Pd ≥ 0 and
thus

and furthermore

Classical filters are not only passive, but, ideally, even
lossless and thus satisfy Pd = 0. Hence, if at some ωwe have
S11(jω) = 0, we also have there |S21(jω)| = 1 and α(ω) = 0, and
vice versa. Typical plots of P2 and α versus ω are shown in
Fig. 2 for an optimally designed low-pass filter of fifth order
(critical regions being enlarged to make them more visible).

The Passband Sensitivity Theorem

We now consider the dependence of the quantities just de-
scribed not only on ω or s but also on the parameter vector
γ = (γ1, . . . , γn )T, that is, we write α(ω, γ) instead of α(ω), etc.
The components of the circuit of Fig. 1(a) are the elements
of N as well as the resistances R1 and R2. We assume N to
be passive, that is, for any γν referring to a resistance, an
inductance, or a capacitance we have γν >0. Strictly speak-
ing, no such restriction exists in the case of an ideal trans-
former or a gyrator, but in order to simplify our writing we

may assume any corresponding γν to be chosen equal to
± the element value so that we still have γν >0. Coupled
inductances may be assumed to be replaced by positive in-
ductances and ideal transformers. Altogether, we may thus
assume γ >0 (which definitely implies γ to be real). More
specifically, let γ0 = (γ10, . . . , γn0)T >0 be the vector of the
nominal values of the γν, that is the one for which ideal
plots such as those of Fig. 2 are achieved.

Let now ω
′
0 be any frequency for which α(ω′

0, γ0) = 0,
which in the lossless case is indeed achievable by proper
design. Referring to Fig. 2, we may thus choose ω′

0 = 0, ω′
2,

or ω′
3. Let us then change the parameter vector from γ0 to

any other value γ >0, in which case N definitely remains
passive, ensuring α(ω′

0, γ) ≥ 0, that is, α(ω′
0, γ) ≥ α(ω′

0,
γ0) = 0. Hence, the loss α(ω′

0, γ), evaluated at the fixed ω′
0

but considered as a function of γ, has a minimum at γ = γ0.
But since S21(jω′

0, γ0) �= 0 and �= ∞, α(ω′
0, γ) defined by

is differentiable with respect to all the γν at γ = γ0. Hence,

that is,

Therefore, at any frequency where α is zero the sensitivities
of α with respect to any γν vanish for γ = γ0. This allows
us to conclude that in practice all sensitivities are small
whenever α is small, thus throughout the passband of the
filter.

This is the content of the standard version of what we
are here calling the passband sensitivity theorem. This con-
tent is far reaching and astonishing.A ladder-type low-pass
filter capable of giving the performance of Fig. 2 comprises
seven reactive elements, to which must be added the ter-
minating resistances. Hence, n = 9, that is, the number of
sensitivity values that vanish is equal to 3 × 9 = 27, which
is far more than the available number of degrees of free-
dom. But these should in the first place be used to obtain
a good filtering property. The result of Eq. (21) expresses
that the latter property is the only thing we have to look
for, and the excellent passband sensitivity is then automat-
ically obtained, without any further expense.

In view of Eq. (20), the sensitivity of αi with respect
to any parameter other than R1 and R2 vanishes at the
same time as that of α. However, if properly interpreted,
the excellent sensitivity behavior of α with respect to R1

and R2 also carries over to αi. Indeed, the difference αi −α
is independent of ω, that is, the plot of αi(ω) can always be
obtained by simply parallel shifting that of α(ω), even after
R1 and/or R2 have been changed. However, what counts in
practice is almost always the actual distortion exhibited by
the plot, that is, the deviation of α(ω) with respect to the
loss α(ω0) at some reference frequency ω0, or equivalently,
the deviation of αi(ω) with respect to αi(ω0), and we have
α(ω) −α(ω0) =αi(ω) −αi(ω0). The same holds, obviously, for
any other loss α′ defined in such a way that α′(ω) −α(ω) is



Sensitivity Analysis 5

frequency independent, in particular, for α′(ω) = ln|E/V2|. In
other words, if α(ω) remains within a given tolerance plot,
the same will be true for any such α′(ω).

The passband sensitivity theorem has apparently been
discovered several times independently, although only af-
ter filters had been in use for several decades. The present
author, for example, discovered it in 1956 after the appli-
cation of Darlington’s so-called predistortion method to fil-
ters built with inductors of rather mediocre quality fac-
tors had led to disappointing sensitivity problems. As re-
quired by this method, α(ω, γ0) [and, equivalently, |S11(jω,
γ0)|] had indeed been raised to a passband level substan-
tially above zero so that the argument that had led to Eq.
(28) was completely destroyed. This mechanism had been
briefly explained in a tutorial paper published in Dutch in
1960 (15). A short independent exposition by Orchard ap-
peared in 1966 (16, 17), but experts at the Siemens Com-
munications Laboratories had also discovered the theo-
rem. It is being referred to in the literature as Orchard’s
theorem, the Fettweis–Orchard theorem (11, 13) or the
Orchard–Fettweis theorem (18).

The theorem holds for a large variety of filter types, in
particular if losslessness can be involved in an appropriate
fashion. It is thus immediately applicable to classical LC
and microwave filters, to crystal filters, and to mechanical
filters (19). The transmittance of a periodically switched
linear lossless filter is not only a function of s but also a
periodic function of t. The coefficients of the corresponding
Fourier expansion are the conversion functions, of which
usually only one is of primary interest. Although the cor-
responding effective loss cannot be made strictly equal to
zero, it can be made very small by proper design, so that
the theorem is essentially applicable (20). To filters of a
type for which the concepts of passivity and losslessness
have no inherent relevance it is applicable if they are de-
rived in an appropriate way from a reference (prototype)
filter of classical lossless type. This includes not only active
filters, for which a simple solution consists in realizing in-
ductors by means of capacitively terminated gyrators that
in turn are implemented by means of active devices, but
also switched-capacitor and switched-current filters as well
as digital filters (21–29). The most important solution for
the latter are the so-called wave digital filters (WDFs) (8).

For WDFs, one can make use of a generalized passband
sensitivity theorem that extends its significance even to pa-
rameter changes that are well beyond those for which a
first-order theory is sufficient and that would thus be in-
admissible in analog filtering (see the first section). In the
case of such larger parameter changes, the loss α at any of
the frequencies such as 0, ω′

2, and ω′
3 in Fig. 2 can indeed,

due to passivity, only move upwards. Hence, the resulting
distortion will be substantially less than the one that would
be observed if upward movements occurred at some of those
frequencies and downward movements at others. For this
reason it has been possible to design ladder WDFs that
have amazingly simple coefficients but still satisfy quite
severe requirements (8).

For the phase β, a strict theorem like the passband
sensitivity theorem does not hold. Nevertheless, for a
minimum-phase circuit (i.e., a circuit whose phase shift is
not larger than needed for achieving the given loss behav-

ior), which is the usual situation, β is strictly related to α
and we then have, due to the Bayard-Bode relation (6),

Hence, any procedure that reduces the sensitivities Dα(ω,
γ) tends to reduce at the same time the sensitivities Dβ(ω,
γ).

Stopband Sensitivity and Tuning

The most important filter sections by means of which clas-
sical filters can be composed are of ladder or lattice type.
If high selectivity is desired, an input signal arriving at
stopband frequencies must be attenuated by many orders
of magnitude. This cannot be achieved in a single ladder
section but is, at least in principle, feasible in a single lat-
tice section (or one of its equivalents). Let X1 and X2 be
the two lattice reactances. In the stopband we have X1 ≈
X2 and, as can be shown, α ≥ ln|2X0/�X|, the bound be-
ing almost tight, and X2

0 = X1X2, �X = X1 − X2. Hence, for
any increase of α by 20 dB the ratio |�X/X0| must be de-
creased by a factor of 10, at all relevant frequencies. This
imposes unrealistic accuracy requirements if large values
of α are needed, but even for moderate values the accuracy
requirements can only be met by using highly stable com-
ponents such as quartz crystals. Alternatively, the best way
to circumvent the problem is to use ladder instead of lattice
structures, that is, configurations that can be composed by
chain-connecting simple series and shunt branches.

Such branches produce transmission zeros (attenuation
poles) and thus poles of the function 
 [cf. Eqs. (15c) and
(17)] by parallel or series resonances, to which we refer
hereafter as pole resonances (main resonances). The loca-
tion of the transmission zeros can easily be determined by
measuring the filter output in an arrangement according
to Fig. 1(a), and it is thus possible to bring the location of
these zeros very close to their desired position by tuning.
This makes the denominator of 
 (assumed to be written
as a monic polynomial) to becoming very close to its ideal
expression. The numerator zeros usually are all located in
the passband and are the frequencies at which α(ω) is zero.
If these zeros also have to become more accurate, tuning of
some further resonances, referred to hereafter as auxiliary
resonances, is needed, as is in particular the case for nar-
row band-pass filters. Such further tuning, however, cannot
usually be based directly on the zeros of 
, but if the aux-
iliary resonances are properly selected, the zeros of 
 will
be moved at least close to their ideal locations. The mecha-
nism behind this can be easiest understood by examining
a simple related example.

Consider indeed two series resonant circuits with in-
ductances L1 and L2 and resonant frequencies ω1 and ω2,
the nominal values being L10, L20,ω10, andω20, respectively.
We write L1 = L10 +�L1 and L2 = L20 +�L2 and assume that
by tuning we have obtained ω1 =ω10 and ω2 =ω20. If these
two circuits are connected in parallel, a parallel resonant
frequency ω3 will be created, with nominal value ω30. Ne-
glecting higher-order terms and assuming ω10 to be close
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to ω20, one can show that

Hence, as a result of tuning the series resonances (which
involves two independent operations), the change in the
(dependent) parallel resonance is far smaller than what
might be expected from �L1 and �L2.

Due to a similar mechanism one can ensure, by prop-
erly adjusting a sufficient number of independent auxiliary
resonances, that all zeros of 
 become quite close to their
nominal values. After this, even in the case of narrow-band
filters, 
 differs from its nominal shape only by the very
small remaining inaccuracies of its zeros and the small
change of its constant factor. The influence of these errors
is further reduced by the validity of the passband sensitiv-
ity theorem. For selecting suitable auxiliary resonances,
taking into account the unavoidable presence of parasitic
elements (see also the following section), the original cir-
cuit should be reduced to circuits of simpler type (each one
of them possibly involving more than one branch of the
original circuit), but this should be done by applying ap-
propriate short circuits and not by creating interruptions,
since these might wrongly affect the location of the para-
sitic capacitances. In this selection process, one can advan-
tageously make use of approximate transformations of the
type explained in Ref. 30. On the other hand, in simpler
cases, especially for low-pass filters, it may be sufficient
to tune only the pole resonances and thus ignore auxil-
iary resonances. In all cases, resonant frequencies can be
maintained close to their nominal values throughout the
required temperature range, for example, by using com-
ponents with mutually compensating temperature coeffi-
cients or, if appropriate conditions are met, by implement-
ing critical parts by means of high-quality crystals.

For a ladder structure, the order in which transmission
zeros are best implemented is also related to sensitivity
and tuning, a mistuning of such a zero being more the crit-
ical the closer its nominal value is to a cutoff frequency.
On the other hand, taking into account the discussion
about Eq. (23), tuning is very helpful near the tuned fre-
quency but much less helpful further away from it. Hence,
since resonances in circuit parts close to an access port are
strongly damped by the terminating resistance and thus
less critical, the following rule emerges for ordering the
pole resonances inside the structure: If no tuning is used,
transmission zeros close to the cutoff frequency should be
implemented by branches close to the access ports of N [Fig.
1(a)], but the opposite holds if the pole resonances but not
the auxiliary resonances are tuned. If pole and auxiliary
resonances are tuned, the ordering of the branches imple-
menting the transmission zeros should be quite irrelevant
from the sensitivity point of view.

In some important digital filter structures there exists
for each transmission zero a one-to-one correspondence be-
tween its location and an associated multiplier. Numer-
ical tuning may then be applied in the following sense:
The transmission zeros are selected to occur at frequencies
for which the associated multiplier coefficients are as sim-
ple as possible without unduly deteriorating the available

stopband performance, these frequencies then being kept
fixed during the final optimization of the transfer function.

Sensitivity to Reactive and Resistive Parasitic Elements

Parasitic elements may be interpreted as small changes
of parameters, the nominal values of which are zero.
Care must therefore be exercised when trying to apply
the passband sensitivity theorem since this theorem had
been proved under the assumption that the changes �γν,
whether greater or less than 0, would not affect the valid-
ity of γ >0. At strictly real frequencies, however, the for-
mal losslessness (i.e., the losslessness at steady state) of a
reactive element is not affected by the sign of its compo-
nent value. Hence, the reasoning that had led to Eq. (21)
remains valid, that is, well-designed lossless filters inher-
ently have strongly reduced passband sensitivity to para-
sitic capacitances and inductances. This argument clearly
breaks down in the case of parasitic resistances, that is, if
parasitic resistances are introduced into N in Fig. 1(a), we
must expect noticeable changes that depend on first-order
derivatives.

Let us assume, therefore, as is quite justified in practice,
that on the one hand all inductors have the same qual-
ity factor QL = 1/δL and, on the other, all capacitors have
the same quality factor QC = 1/δC. If δL = δC = δ the influence
upon S21(jω) can be shown to be equivalent to replacing ω
by ω(1 − jδ). This raises α to α+�α and β to β +�β. In first
approximation, we then have

where τ is the so-called group delay and �β is negligible
in the passband of a well-designed filter. If δL �= δC, as is
more realistic, we can separate the effect into two parts,
at least in the case of narrow-band filters. One of these
parts depends on δL − δC and amounts to inserting at each
of the ports either a small series reactance or a small shunt
susceptance, which can be taken care of by retuning the
terminal branches. The remaining effect is then exactly as
described above, but with δ= (δL + δC)/2.

Assume next that we are having both dissipation due
to lossy components (nonvanishing δL and δC) and devia-
tions �γν in the parameters γν. Since we are examining
first-order effects, both influences can be considered to be
independent. In particular, the excellent sensitivity behav-
ior resulting from the passband sensitivity theorem will be
fully retained.

This result is in a sense a special case of a more gen-
eral principle. An effective loss α>0, implying P2<Pmax

[cf. Eqs. (16) and ((18) ], can indeed result from two differ-
ent mechanisms, either from reflection, that is, by P1<Pmax

and Pd = 0, or from dissipation, that is, by Pd >0 [Eq. (19)].
In the first case, the assumptions that had led to Eq. (21)
are violated. In the second case, it usually so happens that
a basic loss α0(ω) [such as, for example, the one given by
δτ(ω)] is unavoidable, and we thus have, in some neigh-
borhood of γ0, α(ω, γ) ≥ α0(ω), with α(ω, γ0) reaching the
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bound α0(ω) at some frequencies. We are then again led to
Eq. (21). The predistortion method (see the section enti-
tled “The Passband Sensitivity Theorem”) aims at equal-
izing the distortion that α(ω) suffers from the presence of
losses in ideally lossless components [see Eq. (24)]; it does
this by creating reflection, which explains the poor sensi-
tivity performance obtained by this method. A better way
of equalizing α(ω) is therefore to rely on introducing further
dissipation in appropriately chosen locations.

SENSITIVITY ASPECTS IN OTHER TYPES OF CIRCUITS
AND IN COMPUTATION

Sensitivity Reduction in Continuous-Time Active Circuits

A classical way of reducing sensitivity in amplifiers is to use
feedback. We consider only the simplest case, in which a for-
ward transfer function µ and a backward transfer function
β yield an overall transfer function

Clearly, the realization of µ requires the use of active de-
vices,but for β,which essentially determines the value of H,
only passive components are needed. Hence, although the
gain of pure active devices is quite inaccurate, the value of
H can be implemented with the far greater accuracy avail-
able from passive components. This is confirmed by means
of the sensitivity of H with respect to µ, that is, by

Expressions such as Eqs. (25) and (26) assume that there is
no interaction between the functions µ and β. In practice,
there is at least some interaction, and the expressions can
then be made more precise by the use of the concept of
return difference (6).

The problem of sensitivity is of prime importance also
in active filters. Many design approaches therefore attempt
to model an active filter after some suitable lossless filter
of classical type. Others, however, use the desired transfer
function H as point of departure and attempt to implement
it as directly as possible. We can write

a and b being real polynomials of degree m and n ≥ m, re-
spectively, with b monic. A direct implementation on the
basis of the coefficients Bν, ν= 0, . . . , n − 1, is very criti-
cal because in a good filter the zeros sν, thus the poles of
H(s), are clustered (although distinct) near the cutoff fre-
quency(ies). We thus have, as can be shown, for the sensi-
tivities of these zeros with respect to the coefficients

Hence, these sensitivities can, in practice, become very
high, especially for larger values of n. Consequently, for n ≥
3, H should be implemented by cascading first- and second-

order sections. This conclusion is a simple example of a
much wider observation, that is, that proper parametriza-
tion of functions such as polynomials and rational func-
tions is of decisive importance for keeping the relevant sen-
sitivities as low as possible.

It should be mentioned in this context that the critical
property expressed by Eq. (27) is also a major cause for
the numerical computation of classical lossless filters by
the insertion loss method to be ill-conditioned, and this de-
spite the excellent sensitivity behavior that filters designed
this way do offer. This is a reason why in many places this
superior design method had not been adopted in practice
until after electronic computers had become more easily
accessible.

Sensitivity Reduction in Analog Discrete-Time and in
Digital Filters

In the case of discrete-time circuits, one can express all rel-
evant functions as rational functions in z = esT or, equiva-
lently, in ψ = (z − 1)/(z + 1) = tanh(sT/2), s being the actual
complex frequency, as before, and the sampling rate be-
ing F = 1/T. The parameter ψ largely plays the role of a
(normalized) equivalent complex frequency. For σ = 0, we
have ψ = jϕ, ϕ = tan(ωT/2). All sensitivity aspects discussed
earlier in the section entitled “Sensitivity Reduction in
Continuous-Time Active Circuits” carry over to the present
situation, especially if we adopt ψ as the equivalent of the
former s. This applies in particular if filters are designed
by modeling them after classical lossless structures and
also if cascading is used as a solution to overcoming the
problem explained subsequently to Eq. (27).

A few specific aspects should be mentioned, however.
In switched-capacitor filters (11,14,20-24), the critical fre-
quencies (i.e., the zeros and poles of the relevant functions)
are determined by capacitance ratios rather than by abso-
lute capacitance values, thus strongly alleviating the prob-
lem of the acceptable tolerances for the capacitance values
themselves. A somewhat similar situation holds true for
switched-current filters (27), for which transistor aspect ra-
tios are the relevant quantities. In digital filters (26, 29),
for which actual physical circuits indeed play only an indi-
rect role, that is, that of a means to implement algorithms,
an added difficulty is the need for ensuring computability.
However, WDFs (8) offer a full solution to transposing ref-
erence filters of a classical type, such as ladder and lattice
filters, into the algorithmic domain.

Lattice WDFs (i.e., WDFs derived from reference filters
in classical lattice configuration) often offer very attractive
solutions. Although they exhibit a relatively high stopband
sensitivity, for which allowance can be made by correspond-
ingly increasing the coefficient word length, their passband
sensitivity is even better than that of ladder WDFs (i.e.,
WDFs derived from reference filters in classical ladder con-
figuration). The reason for this is due to the fact that the
best possible filter performances are obtained for charac-
teristic functions 
 [see Eq. (15)c] that are either even or
odd. If 
 is odd, the two-port N [Fig. 1(a)] is symmetric
and can then be implemented not only in ladder but also
in lattice configuration. If in a ladder configuration one of
the element values is changed, even slightly, N usually in-
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variably loses its symmetry. This unavoidably destroys the
oddness of
 and thus forces all or at least some of the zeros
of 
(s) to move away from the jω axis, which in turn forces
the corresponding minima of α(ω) to move from zero to a
value greater than 0. A lattice structure, however, is inher-
ently symmetric, that is, it is symmetric for any parameter
value, so that small changes of the parameters will usually
allow the minima of α(ω) to simply move along the ω axis.

Use of Sensitivities in Numerical Procedures

Optimization strategies constitute an important class of
numerical procedures used for circuits. The need for op-
timization arises not only during the design stage but also,
for example, during automated tuning and automated ad-
justment. A typical task then to be solved is to search for
that real parameter vector γ for which, for example, the
actual time response f(t, γ) or, in the case of linear circuits,
the actual frequency response F(jω, γ) is as close as pos-
sible to a desired response f0(t) or F0(jω), respectively. The
error to be minimized usually depends on |f(t, γ) − f0(t)| or
|F(jω, γ) − F0(jω)|, respectively, and the actual optimization
procedure may aim at finding the least-square or the mini-
max (minimum of the maximum deviation) error (possibly
after including some weighting function). Although a wide
class of other criteria may be of interest, the least-square
criterion has the advantage of analytic simplicity and the
minimax criterion that of being of particular engineering
relevance.

Except for a few special cases, optimization problems of
this sort cannot be solved by analytic procedures. Hence,
iterative numerical strategies are needed. Many of these
strategies involve the use of the sensitivities of the actual
response function with respect to the γν and thus the use
of either Df or DF [cf. Eq. (5)], and possibly generalizations
thereof (e.g., if f or F is actually to be replaced by a corre-
sponding vector). As an example, if we are interested in an
operation lasting from an initial time t0 to a final time t1

and if ε is the corresponding mean square error, requiring
γ to be real but allowing f and f0 to be complex functions,
the gradient Dε is given by

where the asterisk designates complex conjugation.
So far we have assumed that an ideal reference function

such as f0(t) is uniquely defined. This is not strictly the case
in practice, especially if the design should be based on a cri-
terion of minimax type. This is taken into account in design
centering, that is, in approaches that aim to keep the tol-
erances to be imposed on the components as small as pos-
sible in order to guarantee that the performance remains
within allowed limits. Alternatively, design centering aims
for yield optimization. Strategies for achieving such goals
can be quite involved and can again benefit from using sen-
sitivities.

Figure 3. (a) A three-port N terminated at port 3 by Z0 and
open-circuited at port 2, as needed for defining the basic transfer
function H21 =V2/I1 as well as the transfer function H31 = I3/I1. (b)
Same three-port N in an arrangement obtained from (a) by insert-
ing a voltage source V0 and a current source I2. This augmented ar-
rangement reduces to (a) for V0 = I2 = 0 but allows us to define the
transfer functions H23 = V2/V0|I1=I2=0 andH32 = I3/I2|I1=V0=0.

SOME GENERAL SENSITIVITY PROPERTIES

Sensitivity Calculations in the Frequency Domain

We first consider a linear constant circuit operating in
steady state. We are interested in the sensitivity of some
transfer function H21 with respect to some impedance pa-
rameter Z0. One finds that ∂H21/∂Z0 is equal to ±H31H23,
where H31 is some transfer function from the input to the
location of Z0, and H23 some other transfer function from
this location to the output. We show this by means of the ex-
ample illustrated in Fig. 3. In Fig. 3(a) the circuit is drawn
as a three-port N fed by a current source at port 1 and
terminated by the impedance Z0 at port 3, while the open-
circuited port 2 is provided in order to give access to the
desired output voltage V2.

The second and third impedance equations of the three-
port N can be written

Referring to Fig. 3(a), we thus obtain, since I2 = 0,

and, referring to Fig. 3(b)
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This shows that

which can also be obtained from Fig. 3(b) for I2 = 0 by as-
suming V0 to be the voltage caused by a small increase�Z0

of Z0, thus by writing

Equation (29) is immediately rendered even more prac-
tical if N is reciprocal, since then H23 = −H32. In order to
determine functions like H31 and H32 for all parameters
such as Z0 it then is indeed sufficient to analyze the circuit
once by exciting it at port 1 and once at port 2. This advan-
tage can be extended to nonreciprocal circuits by replacing
N for the second analysis by its interreciprocal (adjoint),
that is, by a three-port for which the reciprocal elements
are unchanged while the nonreciprocal elements are re-
placed by those of opposite type (a gyrator with gyration
constant R, e.g., being replaced by one with −R). Further-
more, the analysis of the interreciprocal circuit can essen-
tially be reduced to that of the original circuit if the matrix
M to be inverted in the process of analysis is first factored
in the form M = LU, L and U being lower and upper tri-
angular matrices, respectively; indeed, the corresponding
matrix for the interreciprocal is MT = UTLT so that its cor-
responding factorization is immediately deduced. Finally,
all this can in full generality be derived in a very systematic
way by making use of Tellegen’s theorem, more precisely,
by a generalized version of the difference form of that the-
orem (3). On the other hand, an interesting special case
occurs if the voltage of actual interest is V1 rather than V2

so that H21 is equal to the input impedance Z at port 1. We
may then replace subscript 2 by 1 and obtain from Eq. (40)
in the reciprocal case, using also Y = 1/Z, Y0 = 1/Z0,

a result also known as the Vratsanos-Cohn theorem.
Similar results also hold true for linear constant

discrete-time circuits, the role of Z0 in Fig. 3 being then
assumed by any multiplier coefficient (29).

Sensitivity Calculations in the Time Domain

The generalized version of the difference form of Tellegen’s
theorem and the adjoint concept are even more useful for
the time-domain sensitivity analysis (31), as will be ap-
parent from the brief, simplified outline given hereafter
(but nowhere restricted to linear circuits). Let thus v and
i be the vectors of all branch voltages and all branch cur-
rents, respectively, in the circuit under consideration, say,
the original circuit. The entries of the matrices DvT and
DiT form the totality of the sensitivities of all voltages and
currents with respect to all γν, which we may assume to
be real. All vectors Dνv and Dνi satisfy Kirchhoff ’s voltage
and current laws at the same time as v and i, respectively.

Consider then a second circuit, the adjoint circuit, with
the same topology as the original one, and let v′ and i′ be its
vectors of branch voltages and branch currents. These also

satisfy Kirchhoff ’s laws, say at any time instant t′, where
t′ may be different from t. According to Tellegen’s theorem,

Let us examine the individual contributions to Eq. (31).
Suppose first that some branch β is formed by a resistance
described by some (possibly nonlinear) equation that in-
volves at least one (and usually at most a few) of the γν and
that we may write as f(vβ, iβ, γ) = 0. The quantities vβ and
iβ usually depend on all γν (a fact sometimes overlooked in
the literature). By differentiating f(vβ(t, γ), iβ(t, γ), γ) with
respect to all the γν we can write

where

and where Dff concerns exclusively the partial deriva-
tives with respect to the γν that appear explicitly (via γ) in
f (νβ, iβ, γ). Consequently, provided v

′
β and i

′
β are related

in such a way that

the vector

which is indeed the contribution of branch β to the left-
hand side of Eq. (31), reduces to the simple vector (i′

β/fv )Df.
This vector (most of whose components are zero) is indepen-
dent of any of the aforementioned sensitivities. Clearly, Eq.
(32) defines a resistance in the adjoint circuit. In the linear
constant case we have f(vβ, iβ, γ) = vβ − Riβ and thus fv = 1,
fi = −R; hence, Eq. (32) then defines a resistance of exactly
the same type.

For an algebraically defined element involving two
branches, the situation is similar and, in the linear case,
again reduces to the known results. If an appropriate range
of algebraic two-port elements is available, the only other
elements needed for generating the remaining elements
of usual interest are, for example, linear capacitances. As-

sume thus that some branch β is described by iβ = C
²
vβ,

where C is a constant and the dot on top of the letter desig-
nates time derivation, d/dt. Consequently, provided v

′
β and

i
′
β are related by i

′
β = −C

²
v

′
β, that is

the contribution of Eq. (33) becomes equal to the vector

(where one of the components of DC is equal to 1 and all
others are equal to zero).

In order for Eq. (34) to make sense, let t0 again be the
initial time and t1 the final time of interest [cf. Eq. (28)]
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and define t′ = t1 − t. We then have

which is the same type of equation as for the capacitance
in the original circuit, but the adjoint circuit is assumed to
run in opposite time direction, its initial time t′ = 0 corre-
sponding to t = t1 and its final time t′ = t1 − t0 corresponding
to t = t0.

In Eq. (35) the second term is independent of the sen-
sitivities, as desired, but the contribution due to the first
term can be made to vanish if we actually have to carry
out a time integration between limits as in Eq. (28). In this
case, the derivative d/dt in Eq. (35) yields

However, the initial value vβ(t0) is imposed independently
of γ, that is, Dvβ(t0) = 0. On the other hand, we may impose
the initial conditions of the adjoint circuit to be zero, that
is, v

′
β(0) = 0. Hence Eq. (36) is then indeed equal to zero.

We still have to consider the access to the circuit. As-
sume thus that branch 1 consists of an independent voltage
source in the original circuit and of a simple short circuit in
the adjoint circuit. We then have Dv1 = 0 and v

′
1 = 0, so that

Eq. (33) vanishes for β = 1. Similarly, assume that branch
2 is simply open-circuited in the original circuit and that
it consists of some current source in the adjoint circuit, so
that Eq. (33) reduces to −i

′
2Dv2 for β = 2.

These results can, for example, be used in the follow-
ing way. Assume that the behavior of the original circuit
has been calculated for a first choice of γ. Values such as
fi and fv in Eq. (32), etc., are then known so that the equa-
tions governing the elements of the adjoint network are
also known, and the same is true for vectors such as Df
mentioned subsequently to Eq. (33). The initial conditions
of the adjoint circuit being zero, the only freedom left is the
choice of i

′
2(t′). To see how this can be fixed, consider the de-

termination of Dε in an optimization problem such as the
one that had led to Eq. (28). We assume that the present
ν2 is actually the function to be optimized; it is therefore
identical to the function designated f in Eq. (28), the de-
sired behavior of ν2 thus being f0. Hence, we can identify
−i

′
2(t′)Dv2 with the integrand in Eq. (28) by choosing

If we then integrate Eq. (31) from t0 to t1 and take the
real part, the contribution of Eq. (33) for β = 2 becomes
equal to Dε, while, according to what we have seen, all
other contributions are known. Hence, Dε can be deter-
mined from the resulting equation. Extensions to multiple
inputs and outputs, to time-varying original circuits, and
to inclusion of weighting functions are quite immediate.
Note that the above analysis does not exclude v and i to be
complex, although in the case of nonlinear circuits one is
usually only dealing with real quantities.

Sensitivity Invariants

The steady-state behavior of a linear circuit is entirely de-
termined by quantities that either have the dimension of

a resistance or are dimensionless. Let F again be any func-
tion of interest (impedance, admittance, transfer function,
loss, phase), let L, C, R, and n be the vectors of inductive,
capacitive, resistive, and dimensionless parameters fixing
the circuit behavior, and let a and b be arbitrary auxiliary
parameters. Since F is homogeneous in any set of indepen-
dent dimensions, we can write

where m = +1,−1, or 0. Differentiating Eq. (37) with respect
to a and b and then setting a = b = 1, we obtain

The left-hand sides in Eqs. (38) and (39) comprise simple
combinations of individual sensitivities, but the right-hand
sides depend only on m and on the behavior of F in terms of
ω. A given function F, however, can be realized by several
or even infinitely many distinct circuits (32, 33), and for
each one of these the individual sensitivities will usually
be different. Yet, the overall values of the left-hand sides
in Eqs. (38) and (39) are independent of the specific real-
ization; they are therefore known as sensitivity invariants.
Obviously, they can easily be applied in various specific sit-
uations. As an example, we have

and therefore, if F is a transmittance and thus ln
F = −α− jβ, we can derive

where τ is again the group delay [see Eq. (24)c].
Other interesting sensitivity expressions can be ob-

tained for a two-port N operated as in Fig. 1(a). Using
known expressions of S11 and S21 [see Eq. (15)] in terms
of, for example, the impedance matrix of N, one finds in
view of Eq. (16),

where Eq. (43) is obtained by defining S22 analogously to
S11. These results can, for example, usefully be combined
with Eqs. (38) and (39), especially if N does not comprise
any further resistive parameter. They also hold true for α
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and β defined by α+ jβ = −ln S12, S12 referring to the direc-
tion of transmission opposite to that in Fig. 1(a).

Unfortunately, Eqs. (38) and (39) do not involve sums of
magnitudes of sensitivities. Hence, they do not in general
offer upper bounds, as would be desirable, but only lower
bounds, for example

In some important special cases, however, some much
more useful conclusions can be drawn. Thus, let F be the
input impedance Z(jω) = jX(ω) of a lossless circuit. Let us
modify this circuit by adding to some inductance Lν a series
resistance R

′
ν. This amounts to replacing Lν by Lν(1 − jδν),

with δν = R
′
ν/ωLν, and thus, in a first approximation, to

adding to jX a resistive term δν∂X/∂ ln Lν. Since due to pas-
sivity this term must be nonnegative, we conclude, ω≥ 0,
assuming that for any inductance we have ∂X/∂Lν ≥ 0. Simi-
larly ∂X/∂Cν ≥ 0 for any capacitance Cν. Consequently, since
due to Eq. (40),

all terms on the left-hand side of this expression are non-
negative so that none of them can grow excessively.

A similar conclusion can be drawn if F is a transmit-
tance. The appearance of the quantity δν just given will in-
deed add to α+ jβ a first-order correction (−j∂α/∂ ln Lν + ∂β/∂
ln Lν)δν. If α= 0, passivity now requires ∂β/∂Lν ≥ 0, and sim-
ilarly ∂β/∂Cν ≥ 0, that is, the argument used for Eq. (44) is
also valid for Eq. (41)b. This holds true at least for fre-
quencies at which α(ω) vanishes and thus, in practice, in
the entire passband of good filters, confirming the obser-
vations we had made with respect to Eq. (22). In fact, it
holds true even more generally as will be seen in the next
section.

Sensitivity and Energy

Many sensitivity quantities are related to power and en-
ergy expressions (34–36). A few important examples for
this will be discussed hereafter. We first consider the
impedance Z(jω) = jX(ω) of a circuit N composed of induc-
tors, capacitors, ideal transformers, and gyrators. Assume
it to be fed by a source of voltage E and internal resistance
R1 [Fig. 1(b)], the internal branches of N to be numbered
ν= 2, . . . , n, and the branch voltages Vν and currents Iν to
be oriented as usual, while V1 = V , I1 = I. The generalized
version of Tellegen’s theorem allows us to write

the prime indicating, as also everywhere hereafter, a par-
tial derivative with respect to some parameter γν occurring
inside of N. If γν is an inductance or a capacitance charac-
terizing some specific branch ν, the summation � in Eq.

(62) reduces simply to j2ωWν/γν, where

Wν being thus the average energy stored in the correspond-
ing element. We have

Pmax being the maximum power available from the source,
ρ the reflectance,and βr the corresponding phase. One finds
M1 = j|I1|2 ∂X/∂γν, altogether thus

where the first equality can be verified by using the defini-
tion of ρ. The result of Eq. (46) confirms in particular that
∂X/∂γν ≥ 0 for ω≥ 0, while we obtain from Eq. (44)

the sum being extended over all branches that consist ei-
ther of an inductor or a capacitor and W being thus the
total average energy stored in N.

Next, we apply the same analysis to the two-port ar-
rangement of Fig. 1(a) in which N is composed of the same
types of elements as before. The first equation, Eq. (45), has
to be replaced by

the internal branches of N being thus numbered µ= 3, . . . ,
n. For the Mµ in the right-hand side of Eq. (64) everything
remains as before. Using Eq. (15), one finds for branches ν
consisting of an inductor or a capacitor

M1 +M2

2Pmax 1
= −S∗

11S
′
11 = j

ωWν1

γνPmax 1

where the second equality holds in view of Eq. (64) and
where we have added a subscript 1 to Pmax and Wν in order
to make clear that the source is applied at port 1. After
moving E into the terminating branch at port 2, an ex-
pression similar to Eq. (64) can be written, with Wν2 and
Pmax2 = |E|2/4R2 taking the role of Wν1 and Pmax1. Adding the
two expressions and taking the imaginary part, we obtain
altogether

γν(|S11|2β′
11 + |S22|2β′

22 + |S21|2β′
21 + |S12|2β′

12) = ω(
Wν1

Pmax 1
+ Wν2

Pmax 2
)

where we have made use of S∗
11S

′
11 = |S11|2 (ln S11)′ and

β11 = −Im ln S11, etc. But for a lossless two-port the scat-
tering parameters satisfy

and therefore also β
′
11 +β′

22 =β′
21 +β′

12. Hence, Eq. (69)
simplifies to

∂(β11 + β22)
∂ ln γν

= ∂(β21 + β12)
∂ ln γν

= ω(
Wν1

Pmax 1
+ Wν2

Pmax 2
)
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In particular, if N is reciprocal, thus if S21 = S12 and hence
β21 =β12 =β

This shows that ∂β/∂γν ≥ 0 and also, together with Eq. (41b),
that

where W01 and W02 are the total average energies stored
in N when E is located in the terminating branch of port 1
and 2, respectively.

If N is not only reciprocal (S12 = S21) but, more specif-
ically, symmetric (S22 = S11) or antimetric (S22 = −S11), in
which case β′

11 =β′, we can proceed directly from Eq. (48)
instead of going via Eq. (49). This yields

Consider still the real part of the second equality in Eq.
(48) [or, equivalently, take the derivative with respect to γν
of the third equation, Eq. (50)]. Using

we obtain

that is,

The last expression allows us to compute the sensitivities
of α in terms of those of S11, in fact for any γν referring
to an element inside of N. Since α= 0 implies S11 = 0, the
passband sensitivity theorem is immediately confirmed.

The sensitivities S
′
11 can be determined using relations

such as Eq. (29). To illustrate this, let us replace the re-
sistive source in Fig. 1(a) by an equivalent current source
with parallel resistance R1. We must, of course, be aware
that the meanings of N, V1, I1, V2, and I2, in Fig. 1(a) dif-
fer from those in Fig. 3(a). Furthermore, since the output
quantity of interest is now V1 (cf. Eq. 15b ) we may, when
addressing Fig. 3(a), assume the access provided by the ter-
minals 2,2′ to be in fact an access to 1,1′. Altogether we may
thus assume in Fig. 3(a) to have I1 = E/R1,V1 = V2, I3 = Iν,
and V3 = −Vν. In particular, the transfer functions H21 and
H31 defined in the section entitled “Sensitivity Calculations
in the Frequency Domain” are now given by H21 = R1V1/E
and H31 = R1Iν/E, while either Z0 = jωLν or Y0 = 1/Z0 = jωCν.
A similar relation holds true for H23, which is also needed
in Eq. (29) . On the other hand, if we restrict ourselves to
the reciprocal case we may immediately use Eq. (30) with
Z = H21. On the other hand, in view of Eq. (15)b, we have
S

′
11 = 2H

′
21/R1 = 2Z′/R1. Finally, one finds for branches con-

sisting of an inductor or a capacitor

the upper sign holding for γν = Lν and the lower one for
γν = Cν. The quantities Ŵν and P̂1 are, in general, complex,
but their magnitudes have the energy and power interpre-
tations encountered before.
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