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An electrical filter is a device, circuit, or system that trans-
forms a given input signal into a desired output signal.
The transformation or filtering may be carried out in the
frequency or the time domain, and by a variety of physi-
cal means (electrical, mechanical, acoustical, etc.) depend-
ing on the frequency range of the signals, on the available
technology, and on the application in question. The most
commonly used electrical filters have traditionally been
wave or frequency filters, although with the development of
highly sophisticated digital signal processors on a silicon
integrated chip, filtering in the time domain has become
equally feasible. Because this article deals with analog fil-
tering, we restrict ourselves to filtering issues in the fre-
quency domain.

FILTER CATEGORIES

Electrical filters can be categorized in a number of
ways: for example, functionally (high-pass, low-pass, band-
pass, etc.), technologically by component type or physical
medium [inductor–capacitor–resistor (LCR), mechanical,
active RC, active gm–C, monolithic crystal, quartz, etc.],
or by their operational features. Referring to Fig. 1, we
consider the last categorization here. The figure shows the
three main modes in which a filter can operate. Altogether
from input to output, we have an analog filter, that is, a fil-
ter that is continuous in amplitude and time. If we sample
the incoming signal in time [after bandlimiting the signal
with an antialiasing filter (AAF)] but leave the amplitude
continuous (nonquantized), we have a so-called sampled-
data, or discrete-time, filter. If now we also quantize the
amplitude by passing the signal through an analog-to-
digital converter (ADC), we have a digital filter. In either
case, sampled-data or digital, if we require an analog sig-
nal at the output,we must add a digital-to-analog converter
(DAC) and a reconstruction filter to the processing chain.
Although filters operating in continuous time and ampli-
tude, as well as those operating in discrete time but non-
quantized amplitude (i.e., sampled-data filters) are some-
times referred to as analog filters, in this article we shall
include only the former in this category. Sampled-data fil-
ters, and in particular switched-capacitor filters, are dealt
with separately under Switched capacitor circuits. For

other categorizations of filters, see also Classical filter
synthesis.

TRANSFER FUNCTION AND FREQUENCY RESPONSE

Classical filters are made up of inductors (L), capacitors (C),
and terminating resistors (R); thus they are often referred
to as LCR filters. Ideally, the inductors and capacitors are
considered to be lossless, the only lossy components be-
ing the terminating resistors. The synthesis of such filters
is dealt with under Classical Filter Synthesis. Interest-
ingly enough, most analog (and much digital) filtering can
be traced back to, and derived from, the foundations of clas-
sical LCR-based filter theory.

LCR filters belong to the family of linear, lumped-
parameter, finite (LLF) networks. Those not falling into
this category typically are nonlinear, distributed (e.g., indi-
vidual components such as resistors and capacitors cannot
be identified, but are distributed filmlike on a substrate),
nonfinite, or any combination of these. The order of an LLF
filter is related to the number of reactive, or lossless, com-
ponents in the network. For example, if a low-pass filter
comprises one inductor, one capacitor, and two resistors, it
is of second order.

The output signal of an nth-order LLF network can gen-
erally be found in terms of the input signal by solving a
linear nth-order differential equation of the form

where x(t) is the input signal, y(t) is the output signal, and
n ≥ m. Applying the Laplace transform to this equation,
we obtain the transfer function T(s) =Y(s)/X(s) as the ratio
of two polynomials N(s) and D(s), namely,

where s = σ + jω is the complex frequency and N(s) and D(s)
are polynomials in s with real coefficients ai and bj . Ex-
pressing N(s) and D(s) in their factored form, we obtain
the poles and zeros of the transfer function:

As the coefficients ai and bj in Eq. (2) are real, the poles pj

and zeros zi must be either real or complex conjugate. The
factor K is a scaling factor whose dimension is such as to
render the transfer function T(s), when it is a voltage or a
current ratio, dimensionless. Combining a complex conju-
gate zero pair with a complex conjugate pole pair, we obtain
the special case of a second-order transfer function:
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Figure 1. Diagram of a generalized filter, demonstrating analog, sampled-data, and digital signal
processing: (a) block diagram including input sampler and output reconstruction filter; (b) typical
waveforms at points A through D.

Figure 2. The pole–zero diagram of a general second-order trans-
fer function.

where

The poles and zeros can be displayed in the complex fre-
quency, or s, plane as shown in Fig. 2. Note that

and

To obtain the frequency response of a filter described by
Eq. (1), we assume a sinusoidal input signal and, because
the network is linear, obtain a sinusoidal response. The

response is obtained by letting s = jω in Eq. (3); thus,

Taking the natural logarithm of T(jω), we obtain

where α(ω) and φ(ω) are the gain and phase response, given
in nepers and degrees, respectively. To obtain the gain re-
sponse in decibels, we have

and to obtain the group delay,

Typically frequency-selective filters are classified ac-
cording to their frequency or phase response, and each re-
sponse has its characteristic pole–zero pattern in the com-
plex frequency, (s) plane. For reasons of stability, all poles
must be in the left half plane (LHP) excluding the jω axis.
Thus, for example, the maximally flat or Butterworth low-
pass filter will have poles distributed on a semicircle cen-
tered at the origin in the left half s plane, and the equiripple
or Chebyshev low-pass filter will have its LHP poles on an
ellipse with center at the origin. In fact, it can generally be
stated that the poles of any practical frequency-selective
filter must have complex conjugate LHP poles. The only
other practical alternative is for the poles to lie on the neg-
ative real axis, which is the domain of inductorless, passive
RC networks. It can readily be shown that such filters, al-
though perfectly stable and easily designable, are rarely
of any practical use because their in-band frequency se-
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lectivity is extremely poor. Thus, for example, where the
center-frequency-to-3 dB-bandwidth ratio of a practical
LCR second-order bandpass filter can be arbitrarily high
(limited only by the nonideal characteristics of the induc-
tors and capacitors), that same ratio of its passive RC coun-
terpart will be less than 0.5. [An easy way to show this is as
follows: Referring to Eq. (1), assume that the two negative-
real poles of a passive RC bandpass filter are at −σ1 and
−σ2 on the negative-real axis in the complex-frequency
s-plane. Then we have (s + σ1)(s + σ2) = s2 + (σ1 + σ2)s + σ1σ2

with σ1, σ2 real and strictly positive. By identifica-
tion with s2 + (ωp /qp )s + ω2

p we then have ωp =

and ωp /qp = σ1 + σ2, or 1/qp = + . Letting

x = we therefore have 1/qp = x + 1/x, which is a
parabolic-like function whose minimum is equal to 2 for
x = 1, or σ1 = σ2. Thus, (1/qp )min = 2, i.e., (qp )max = 0.5. How-
ever, because a passive RC network may have no multiple
poles (e.g., a double pole results in an infinite spread of
the RC component values), it follows that σ1 may not be
equal to σ2, i.e., σ1 �= σ2, and the RC pole qp , which we have
designated Q̂p, must be less than 0.5. Finally, because for
a second-order band-pass filter, qp is identically equal to
the ratio of the center frequency to the 3 dB bandwidth, it
follows that for an RC band-pass filter this ratio must be
less than 0.5]. It is this characteristic feature of passive RC
networks—namely that their poles must lie on the nega-
tive real axis in the s plane, thereby drastically reducing
their capability of frequency selection—that leads to the
basic problem of so-called inductorless filters.

The Problem of Inductorless Filters

We have indicated above that the transfer-function poles
of any practical frequency-selective filter (Butterworth,
Chebyshev, inverse Chebyshev, elliptic or Cauer, Bessel,
etc.) must be complex conjugate. In terms of the quantity
qp [the so-called pole Q, which is given by Eq. (7)], this
means that for any complex conjugate pole pair pi ,p∗

i , the
corresponding qpi must be greater than 0.5. Note that with
the LCR filters of classical filter theory, we have no trou-
ble realizing such complex conjugate pole pairs. However,
inductors are incompatible with integrated circuit technol-
ogy, and with small-size hand-held equipment, at least at
frequencies below several megahertz. This is because the
needed inductance and hence the physical size of inductors
increases with decreasing operational frequencies. Conse-
quently, the trend is to eliminate inductors from electronic
equipment wherever possible, leaving, in the case of LCR
filters, only RC circuits behind. As we have seen, however,
because the poles of RC circuits and filters are restricted
to the negative real axis, such inductorless RC filters, per
se, are useless for most practical filter design. In fact, de-
noting the pole Q of a second-order passive RC network by
Q̂p, it was shown above that Q̂p < 0.5. As we shall see in
what follows, with the inclusion of gain cells or amplifiers,
this critical limitation can be readily overcome.

CASCADED ACTIVE RC BIQUADS

Cascaded biquad filter design is one of the oldest, and has
proved to be one of the most useful, of active RC filter de-
sign methods. This is mainly due (1) to their simplicity of
design—viz., second-order (or third-order) filter sections,
or biquads, can be cascaded to provide any nth-order filter
function—and (2) to the excellent properties and low cost of
silicon integrated (CMOS and bipolar) voltage and current
amplifiers.

Foremost among the voltage amplifiers, the operational
amplifier, or opamp, is ideally a differential-input, single-
ended, or differential-output amplifier with infinite gain,
infinite bandwidth and input impedance, and zero out-
put impedance and offset voltage. In practice the gain
may be anywhere between 60 dB and 100 dB, the band-
width several tens to hundreds of megahertz, and the input
impedance several tens to hundreds of megohms. The offset
voltage may be several to tens of millivolts. These features
may be mutually exclusive; an opamp will be designed to
optimize one or more of them, and in addition numerous
others, such as dissipated power, noise, common-mode and
power-supply-rejection ratio, slew rate, and so on. As a net-
work element, the idealized opamp can be considered to be
a voltage-controlled voltage source with infinite gain and,
when used with negative feedback, a virtual ground at the
input.

More recently, current amplifiers are also being used
in the form of operational transconductance amplifiers
(OTAs), current feedback amplifiers, and current convey-
ors. To a large extent these current-based amplifiers are
duals of the voltage-based opamps. They have certain
technology-related advantages when built into CMOS or
BiCMOS technology, and are often advantageous with re-
spect to required power and high-frequency operation. In
what follows the conventional opamp is assumed as the
basic gain element; the change to current-based amplifiers
generally has very little consequence with respect to the
theoretical, and even to the practical, design aspects.

Recall from the above that the transfer function of an
nth-order filter network has the form given by Eq. (2),
where T(s) is a rational function in the complex frequency
variable s. The order of T(s) is determined by the order of
the denominator polynomial D(s). T(s) can be factored into
a product of second- or third-order functions Ti (s), accord-
ing to n being even or odd. Thus, for n even,

and for n odd,

where α is a negative real pole and the individual bi-
quadratic functions Ti (s) have the general form
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Figure 3. Typical pole–zero pair: (a) of an elliptic LCR biquad
filter, qp = ωp /2σp ; (b) passive RC biquad filter, pi1 pi2 = ω2

p ,
Q̂p = ωp /(pi1 + pi2), σ̂ p = (pi1 + pi2)/2.

For most practical applications the poles of each biquad
function Ti (s) will be complex conjugate, as shown in Fig.
3(a). The location of the zeros is less significant with regard
to their realization. Complex conjugate zeros are realizable
both with LCR and with passive RC networks. [Zeros on
the imaginary axis (as shown in Fig. 3) correspond to so-
called elliptic or inverse Chebyshev filters.] The closer the
poles are to the jω axis, the higher will be the selectivity of
the filter; the closer the zeros, the larger the filter attenu-
ation at those frequencies. Referring to Eqs. 6 and 7, the
proximity to the jω axis of the poles and zeros is indicated
by the quantities qp and qz , respectively; the closer they
are to the jω axis, the higher the q values will be. If, on the
other hand, the critical frequencies (i.e., poles and zeros)
are on the negative real axis, that is, far from the jω axis,
the corresponding q values will be less than 0.5; if they are
complex conjugate, the q values will be larger than 0.5 and,
in the limit (i.e., on the jω axis), equal to infinity. For the
pole Q (i.e., qp ) this latter case is forbidden, because poles
on, or to the right of, the jω axis correspond to an unstable
network.

As pointed out above, it can be shown that the poles of
a passive RC network must be single and on the negative
real axis [see Fig. 3(b)], whereas there is no such limitation
on the location of the zeros. In terms of qp this means that
for a second-order RC network, that is, for a pole pair on
the negative real axis,

where we use the circumflex on q, and on any other per-
tinent quantity describing the network, to indicate that
it is associated with a passive RC network. On the other
hand, we have seen that for any practical application, the
selectivity specifications of the filter will require complex
conjugate poles:

As indicated in this expression, this condition is readily
satisfied by conventional LCR networks. Thus, the basic
difference between a passive RC and a passive LCR net-
work is the location of the poles: a passive RC network

has negative real poles and consequently poor frequency
selectivity; an LCR network can, theoretically have poles
arbitrarily close to, but not on, the jω axis, and therefore
its frequency selectivity is, theoretically, almost unlimited.
Thus, in an active RC network, the purpose of a gain ele-
ment (whose gain we denote by β) is essentially to increase
the Q̂p of each pole pair to a value qp that is larger than
0.5. This can be done in a number of different ways.

Single-Amplifier Biquads (Sallen–Key Biquads)

The biquad (biquadratic filter cell) is a building block
whose transfer function is given by Eq. (14), with the possi-
ble inclusion of a negative real pole α as in Eq. (13).The neg-
ative real pole can be realized by a simple passive RC low-
pass combination attached to the active biquad. Strictly
speaking, the biquad is then of third order, but the active
feedback part of the filter remains second-order and pro-
vides the complex conjugate pole pair.

Since power is generally at a premium in electronic
equipment, it is desirable, wherever possible, to realize the
biquad with as few amplifiers or gain devices as possible.
For low-to-medium pole Q’s, single-amplifier biquads are
therefore not only feasible and, in most cases, adequate,
but also very desirable.

There are two basic categories of single-amplifier bi-
quads: those based on negative, and those based on pos-
itive feedback. The former can be grouped into three dis-
tinct classes, the latter into one. Because one of the earliest
publications on active biquads using single (vacuum-tube)
amplifiers was by R. P. Sallen and E. L. Key (1), single-
amplifier biquads are often referred to as “Sallen–Key bi-
quads” (even though modern single-amplifier biquads have
little in common with those early units). The basic princi-
ples underlying these biquads are outlined in what follows.

Negative-Feedback Biquads (Q Multiplication). We start
out with the biquadratic transfer function T̂ (s) of a passive
(no gain element) RC second-order network,

The poles of this function are, by definition, negative real,
i.e., Q̂p < 0.5. Multiplying Q̂p by a quantity µ such that

we obtain the same function as in Eq. (17), except that it
now has complex conjugate poles:

where

Note that β must be selected to satisfy Eq. (20). It therefore
depends on the value of Q̂p, and on the required value qp .
After some manipulation, and with the assumption that
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β > 1, Eq. (19) can be written as

where

Equation (21) corresponds to the transfer function of an
active RC biquad consisting of T̂ (s), t̂1(s), and the ampli-
fier β, connected in a negative-feedback loop as shown in
the block diagram of Fig. 4. A typical biquad with band-
pass characteristics, which is based on Q multiplication, is
shown in Fig. 5.

Positive-Feedback Biquads (Sigma Reduction). Instead of
expressing the transfer function of the initial second-order
RC network in terms of Q̂p as in Eq. (17), we can do so in
terms of the negative real quantity σ̂ p, thus:

where

The inequality Eq. (24) indicates that the two poles of t̂(s)
are negative real. They can be made complex conjugate by
decreasing the quantity 2σ̂ p by some amount κ:

where

Equation (25) now corresponds to Eq. (19), since

meaning that T(s) in Eq. (25) now has complex conjugate
poles. T(s) can now be rewritten as

where

Equation (28) corresponds to an RC network consisting of
T̂ (s) and t̂2(s) connected in a positive-feedback configura-
tion with gain κ. This is shown in the block diagram of
Fig. 6. A low-pass biquad based on sigma reduction, that
is, positive feedback, is given in Fig. 7.

A Classification of Single-Amplifier Biquads. It was shown
above that complex conjugate poles can be generated by Q
multiplication or sigma reduction applied to a second-order
passive RC filter network. The former method is based
on negative, the latter on positive feedback. Both can be

represented by the general feedback structure shown in
Fig. 8. Here the RC network in the forward path, t̂12(s),
determines the filter type (low-pass, high-pass, band-pass,
etc.). The RC network in the feedback path, t̂32(s), deter-
mines the necessary feedback polarity and the actual path
on the root locus with respect to β, along which the ini-
tially negative-real poles of t̂32(s) move, to become the com-
plex conjugate poles of T(s). It can be shown that there are
essentially three basic feedback functions t̂32(s) providing
complex conjugate poles with negative feedback, and one
basic feedback function t̂32(s) providing them with positive
feedback. The individual t̂32(s) functions are the transfer
functions of second-order passive RC networks providing
a low-pass, high-pass, and band-stop filter function in the
first three classes, respectively, and a band-pass function
in the fourth class. This is the basis for the classification of
single-amplifier biquads presented in Table 1.

Which of these biquads should be used to obtain a par-
ticular filter type depends on the application. More on this
and other practical design questions can be found in the
publications referred to in the reading list at the end of
this article.

Multiple-Amplifier Biquads (State-Variable Biquads)

The biquads in the multiple-amplifier category start out
from the nth-order transfer function given by Eq. (2), just
as the single-amplifier biquads did. However, rather than
individually shifting the pole Q’s of passive RC networks
into the complex-frequency plane with the help of nega-
tive or positive feedback, this method converts the trans-
fer function into a function of interconnected integrators,
which can be graphically represented by a so-called state-
variable signal-flow graph (hence the name “state-variable
biquads”). The method requires at least as many ampli-
fiers as the order of the transfer function (in the case of
a biquad it actually requires three opamps) and is there-
fore not economical of power. This disadvantage is com-
pensated for by a flexibility in terms of pole-frequency tun-
ing, in that the pole frequency and Q can be adjusted, or
tuned, independently of one another. The method is not
restricted to biquads and can be directly applied to an nth-
order transfer function (hence this method is often referred
to as the “direct-form” active filter design). Because of sta-
bility and sensitivity problems with higher than second-
order networks, the method is practically restricted to bi-
quad design. In what follows we shall therefore illustrate
the method for a general second-order filter function, or
biquad.

Consider the general biquadratic function T(s) [which
corresponds to that given by Eq. (14)]:

Note that in the general case the coefficient B1 can be pos-
itive or negative, corresponding to finite zeros in the left
or right half plane, respectively. (Networks with left- and
right-half-plane zeros are often referred to as minimum-
phase and non-minimum-phase networks, respectively.) By
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Figure 4. Block diagram, based on negative feedback, of an active RC biquad with complex conjugate poles.

Figure 5. A band-pass filter biquad based on nega-
tive feedback.

Figure 6. Block diagram, based on positive feedback, of an ac-
tive RC biquad with complex conjugate poles.

Figure 7. A low-pass filter biquad based on positive feedback.
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Figure 8. A general feedback configuration, which serves as
the basis for single-amplifier active RC biquads.

contrast,A1 must be positive and greater than zero,because
the poles must lie in the left-half plane excluding the jω
axis.

Dividing the numerator and denominator of T(s) by s2,
we obtain

This transfer function can now be represented by the state-
variable signal-flow graph shown in Fig. 9(a). Using the
opamp realization for an integrator, lossy integrator, and
summer, we obtain the active opamp version of a general
biquad as shown in Fig. 9(b). The transfer function for this
circuit is

where Kb = R4/R1, K1 = R2/R1, R7 = R8, and

With this general-purpose biquad, any arbitrary bi-
quadratic filter function can be obtained by selecting the
resistors and capacitors to match the desired coefficients,
as in Eq. 33(a) to (e). Note, however, that at least three,
and in the general case four, opamps are required for its
realization. This is the penalty to be paid for the fact that
the complex-conjugate pole and zero pairs can be tuned in-
dependently of each other. Considering that pole and zero
tuning is in itself time-consuming and costly (and, in the
case of integrated circuits, only achievable by switching in
or out units of capacitor or resistor arrays), it follows that
multiple-amplifier biquads are sometimes considered to be
impractical from the point of view of both cost and power
dissipation. On the other hand, in terms of integrated-
circuit (IC) design, in which opamps take up less chip area
than capacitors of any practical size, multiple-amplifier bi-
quads are becoming increasingly useful and practical. One
reason for this is that pole and zero tuning can be accom-
plished individually by a single resistor or capacitor (de-
signed especially in arrays of suitably small switchable
units) for a pole and zero pair, respectively. Furthermore
this biquad has other important advantages as far as IC
chip design is concerned. For one thing it uses opamps ex-
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Figure 9. State-variable biquad: (a) signal-flow graph, (b) circuit diagram of the corresponding
general-purpose biquad.

clusively in the ‘inverting mode’, in which the input termi-
nals are at ‘virtual ground’. This is a big advantage com-
pared to the single-amplifier biquads, in which opamps are
used with input terminals in ‘common mode’. The former,
compared to the latter, has advantages with respect to ‘dy-
namic range’, which becomes increasingly important as the
supply voltage is reduced. The trend in IC chip design is to
reduce the supply voltage as much as possible in order to
reduce power and chip size.

For another, the concept of modular cascades of biquads
in filter design provides a flexibility not found in induc-
torless ladder simulations. In the case of high-selectivity
(high-pole-Q) and high-precision applications, the LC fil-
ter simulation method discussed below, in which inductors
are either directly replaced by gyrator–capacitor combina-
tions (inductor simulation) or eliminated by the so-called
frequency-dependent negative resistor (FDNR) transfor-

mation, must also be considered. The reason for this is re-
lated to the extraordinary sensitivity properties of LCR
and simulated LCR ladder networks. These properties
must therefore be discussed first, namely in the following
section, before the actual inductor simulation can be dealt
with.

SENSITIVITY PROPERTIES OF LC LADDER FILTERS

LC ladder filters, terminated at both ends by identical
resistors (which are selected according to the desired
impedance level of the filter), can be shown to have an
extraordinarily low sensitivity to variations of individual
component values. Thus, for example, if properly designed
and resistively terminated at both ends, the tolerances of
the individual components of an LC ladder filter may be
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permitted to be orders of magnitude larger than the re-
quired tolerance of the resulting frequency response in the
passband. For example, it may be possible to guarantee a
0.1 dB ripple with components having no more than 1%
accuracy, if the order of the LCR ladder filter is sufficiently
high. This remarkable feature of doubly resistively termi-
nated LC ladder filters was first pointed out by H. J. Or-
chard in 1968, decades after LC filters had first come into
widespread use. Orchard’s theorem, as this low-sensitivity
property has come to be called, is the reason why filter de-
signers using other than LCR components (e.g., active RC,
switched-capacitor, digital) attempt to maintain this excel-
lent low-sensitivity property by simulating the behavior
and the properties of the equivalent LC ladder structure,
even though the actual components may be entirely dif-
ferent. Thus, the doubly terminated LC ladder structure
(real or simulated) plays a central role in filter theory and
design, no matter what the technology used for the actual
filter realization.

To understand the reason for the low-sensitivity prop-
erty of LCR ladder filters it is interesting to quote Orchard’s
own words, namely (2):

If one designs a flat-passband reactance ladder filter
to operate from a resistive source into a resistive load,
and arranges that, at the frequencies of minimum
loss over the passband, the source delivers its max-
imum available power into the load, one finds, to a
first order of approximation, that, at every frequency
in the passband and for every component, the sensi-
tivity of the loss to component tolerances is zero. This
is easily checked by noting that, when one has zero
loss in a reactance network, a component change, ei-
ther up or down, can only cause the loss to increase;
in the neighbourhood of the correct value, the curve
relating loss to any component value must therefore
be quadratic, and consequently, d(loss)/d(component)
must be zero.

It follows from Orchard’s theorem that in any doubly
terminated passive LC ladder network, the transmission
sensitivity in the passband with respect to variations of the
components, will decrease with decreasing passband ripple
and with increasing filter order. This is counter intuitive
and in contrast to most other filter structures (and, indeed,
to linear systems), which generally become more prone to
instability and to high component sensitivity as the filter
complexity and order increase. Moreover, Orchard’s theo-
rem explains why, in whatever technology (e.g., active RC,
digital, switched capacitor), the ladder structure simulat-
ing a doubly terminated LC ladder network is the preferred
structure when high performance is required. Here, perfor-
mance, pertains to high selectivity and order of the filter,
as well as to low tolerance with respect to the passband
filter characteristics, and to a low sensitivity to component
variations in the passband.

Note that Orchard’s theorem does not make any claims
about insensitivity to component variations in the stop
band. Indeed, it can be shown that other structures, such
as biquad cascades, may well display a lower sensitivity

to component variations in the stop band. However, since
the specifications in the passband generally have a higher
priority than those in the stop band, Orchard’s theorem
retains its importance. We should point out, however, that
since ladder networks are more difficult to manufacture, be
it as LC structures or in simulated form, economic consid-
erations nevertheless often dictate the use of biquad cas-
cades or variations thereof. In fact, it will depend on the
application and the overall requirements whether biquad
cascades or ladder structures (LC or simulated) constitute
the more appropriate realization. As so often in analog de-
sign, the choice of optimum filter circuits will depend on a
trade-off between performance characteristics (3). In this
case, the trade-off will be between tunability (in favor of
biquad cascades) and low sensitivity to component toler-
ances (in favor of indutorless LC ladder simulation).

ACTIVE INDUCTORLESS LADDER FILTERS

In the preceding section, the remarkable property of low
sensitivity to component variations in the passband of LC
ladder filters is discussed (Orchard’s theorem). It is this
property that has motivated the simulation of passive LC
ladder filters by active inductorless ladder filters, in those
cases in which real inductors may not be used. This is so
in most integrated circuit (IC) realizations, since induc-
tors, being three-dimensional devices, are basically incom-
patible with IC manufacture. In order to understand the
principal methods of simulating inductors, we must first
discuss some basic network elements that are required for
this purpose.

Basic Network Elements

The most important basic network elements necessary for
the description and analysis of active RC filters are the
following:

The Two-Port. The two-port, which represents one of the
most elementary concepts of network theory, is shown with
a load impedance ZL in Fig. 10. The two-port can be de-
scribed by the equations

and

Here, the two-port equations, which fully define the two-
port, are given in terms of the elements of the so-called
[ABCD] or transmission matrix. The corresponding matrix
equation is then

To obtain the input impedance ZIN in terms of the [ABCD]
parameters, a simple calculation involving Eqs. (34) to (36)
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Figure 10. A linear two-port with load ZL.

Figure 11. Idealized,physically nonrealizable network elements:
(a) nullator; (b) norator.

results in

This expression provides the basis for some of the ideal
network elements described further below.

The Nullator, Norator, and Nullor. The nullator and nora-
tor belong to a class of physically nonrealizable, idealized
network elements that have no conventional matrix repre-
sentation. Nevertheless, they are very useful in the analy-
sis and synthesis of idealized network elements. Naturally,
the idealized network must, at some point, give way to a
practical network with physically realizable components.
The description of the network with nullators and norators
then represents a sort of upper bound, whose idealized per-
formance, due to nonideal effects, can only be approached,
but never actually reached.

The nullator [Fig. 11(a)] is defined by the condition

and the norator [Fig. 11(b)] by

where k1 and k2 are often said to be “arbitrary.” Actually
they are not, strictly speaking, arbitrary, but take on val-
ues imposed on them by the nullators and the remaining
circuitry in which they are embedded. Thus, when a no-
rator is used in a circuit, the voltage V and the current I
take on the values needed to satisfy Kirchhoff ’s current
and voltage laws.

An idealized transistor can be represented by a
nullator–norator combination as in Fig. 12(a), an idealized
operational amplifier (opamp) as in Fig. 12(b). In any given
circuit, nullators and norators always occur in pairs, also
called nullors. The step from an abstract, idealized, and
physically nonrealizable nullor circuit to a nonideal, phys-
ically realizable circuit is taken by replacing each nullor
either by a transistor (transistorization) or by an opamp.
Transistorization (in contrast to opamp design) requires

Figure 12. Nullator–norator (nullor) equivalents of two com-
monly used active devices: (a) transistor, (b) operational amplifier
(opamp).

every nullor to have a common terminal,which corresponds
to the emitter of the transistor.

The Impedance Converter. The impedance converter is a
two-port whose [ABCD] matrix is given by

If A and D are frequency-dependent [i.e., A =A(s), D = D(s)],
then we have a general impedance converter (GIC). For the
case that A and D are constants, but of opposite polarity,
that is,

the impedance converter, loaded by ZL, has, according to
Eq. (38), the input impedance

We then speak of a negative-impedance converter (NIC),
because, for k1 > 0 and k2 > 0, and for a realizable (i.e., pos-
itive) ZL , the input impedance of the loaded two-port is
negative. Thus, for k1 = k2 = 1, we have ZIN = −ZL.

A nullor realization of an NIC is shown in Fig. 13.
Straightforward application of the defining expressions of
the nullator and norator [Eqs. (39) and (40), respectively]
gives the input impedance as

Note that in Eq. (42) the pair A = −k1, D = +k−1
2 corre-

sponds to an NIC with voltage reversal, called a VNIC;
the pair A = +k1, D = −k−1

2 corresponds to an NIC with cur-
rent reversal, called a CNIC. The nullor configuration in
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Figure 13. Nullator–norator (nullor) realization of a loaded
negative-impedance converter (NIC).

Fig. 13 corresponds to a CNIC; the nullor-dual circuit (i.e.,
nullator and norator exchanged) results in a VNIC. Note,
furthermore, that the configuration in Fig. 13 excludes a
one-transistor realization of an NIC because the nullor has
no common terminal. Using nullator–norator identities to
extend the circuit, a two-transistor realization can be ob-
tained. Such nullator–norator extensions are based on the
fact that a nullator and norator in series is equivalent to
an open circuit; in parallel such a pair is equivalent to a
short circuit.

The Impedance Inverter. An impedance inverter is de-
fined as a two-port whose [ABCD] matrix is given by

For the special case that

the input impedance to the loaded two-port becomes

This is the defining expression for the so-called gyrator,
whose symbolic representation is shown in Fig. 14. The
gyrator constants g1 = g2 have the dimensions of inverse
resistance, and a capacitively loaded gyrator (see Fig. 14)
has an inductive input impedance

where the equivalent inductance Leq is given by

The gyrator–capacitor combination represents the old-
est and most common method of simulating an inductance
without an actual electromagnetic inductive device being
used. The assumption that g1 = g2 = g very often holds in
practice, although if it does not, inductance simulation still
results.

To simulate a floating inductance we require two cas-
caded gyrators with a grounded capacitor in between them

(see Fig. 15). The equivalent inductance is again given by
Eq. (48). An LC band-stop filter and its gyrator–R–C sim-
ulation are shown in Fig. 16. From Eq. (49) each gyrator
constant gi is given by

An impedance inverter consisting of nullors and resis-
tors that has gyrator characteristics is shown in Fig. 17.
Typically a gyrator-type impedance inverter requires three
nullors for its realization. For the nullor gyrator of Fig. 17
we have

Thus, with the load ZL = (sCL)−1, we have with Eq. (49)

Note that the nullators in Fig. 17 are designated ni , the
norators Ni , where i = 1, 2, 3; they are all identical, however,
and defined by Eq. (39) and Eq. (40), respectively.

The Frequency-Dependent Negative Resistor. The
frequency-dependent negative resistor (FDNR) is ob-
tained by carrying out a so-called impedance-scaling
procedure on an LCR network, which is aimed at trans-
forming all the inductors of the LCR network into
resistors. Impedance scaling implies multiplying all the
impedances of a network by a dimensionless constant k,
or by a frequency-dependent dimensionless factor k(s).
Significantly, when carrying out an impedance-scaling
procedure on a network, the transfer function of the
network remains unchanged. Thus, letting

where ω0 is arbitrary but often selected equal to the filter
cutoff frequency, and scaling each impedance associated
with Li , Cj , and Rv by k(s), the resulting scaled impedances
are

Note that every inductor Li is transformed into a resistor
R

′
i = ω0Li , every resistor Rv into a capacitor C

′
v = (ω0Rv )−1,

and every capacitor Cj into a new element Dj = Cj /ω0. The
last is known as a frequency-dependent negative resistor
(FDNR). The reason for this name is that for s = jω (i.e., for a
sinusoidal signal) the impedance Z

′
j is equal to −(ω2Dj )−1,

and this negative, frequency-dependent quantity is real
and has the dimensions of resistance. The network symbol
for the FDNR is shown in Fig. 18(a). The FDNR transfor-
mation is most useful for low-pass-type filters comprising
numerous floating inductors and grounded capacitors, as
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Figure 14. Simulation of a grounded inductor: (a)
the gyrator–capacitor combination where I1 = −gV2,
I2 = gV1; (b) the equivalent inductor given in terms of
the capacitor C and the gyrator constant g.

Figure 15. Simulation of a floating inductor:
(a) the gyrator–capacitor combination; (b) the
equivalent inductor given in terms of the ca-
pacitor C and the gyrator constant g.

Figure 16. Inductor simulation of an LC band-stop filter: (a)
LC band-stop filter; (b) the gyrator–C equivalent filter, where
g1 = (CL1/L1)1/2, g2 = (CL2/L2)1/2, and g3 = (CL3/L3)1/2.

shown in the FDNR transformation of a fifth-order ellip-
tic low-pass LCR filter [Fig. 18(b)], into an equivalent in-
ductorless FDNR–RC filter [Fig. 18(c)]. Since in classical
filter synthesis every LCR network has a dual network,
one of which is a minimum-L and the other a minimum-C

network, the FDNR transformation is preferably applied
to the minimum-C version so that a maximum number of
inductors are transformed into resistors. The fact that the
resistive terminations become capacitive may be a problem
with the FDNR transformation; the problem can, however,



Filters, Analog 13

Figure 17. Nullator–norator realization of a gyrator
with load capacitor CL.The gyrator consists of two voltage-
controlled current sources (VCSS) connected in parallel
and in opposite directions. The upper VCS is positive, the
lower one is negative.

Figure 18. Inductor simulation based on the
frequency-dependent negative-resistor (FDNR)
transformation: (a) FDNR symbol; (b) fifth-order
elliptic LCR low-pass filter; (c) FDNR-transformed
equivalent circuit.

generally be circumvented in a number of ways. One is to
connect a large-valued resistor in parallel with the termi-
nating capacitors; another is based on so-called GIC em-
bedding, the principles of which are outlined below under
“Active RC Simulation of LCR Ladder Filters.”

The nullor realization of an FDNR can be obtained by
cascading two NICs of the kind shown in Fig. 13, resulting
in the nullor configuration shown in Fig. 19. It follows from
Eq. (44) that the input impedance of this configuration is
given by

Depending on which of the five impedances in this expres-
sion are resistive and which capacitive, either an FDNR or
a simulated inductor (equivalent to a gyrator–C combina-

tion) can be obtained. Thus, if any one of the three pairs,
(Z1, Z3), (Z1, ZL), and (Z3, ZL), is capacitive and the remain-
ing three impedances are resistive, an FDNR is obtained.
Similarly, if either Z2 or Z4 is capacitive and the other four
impedances resistive, a simulated inductor results.

Using two opamps to replace the two nullors in the con-
figuration of Fig. 19, a working circuit is obtained. Again,
there are various ways of combining the nullors (e.g., [n1,
N1] and [n2, N2], or [n1 N2] and [n2 N1]), and for each com-
bination, more than one method of connecting the opamps.
(Remember, in contrast to a transistor, a nullor being re-
placed by an opamp requires no common terminal.)

Figure 20 shows an opamp–RC realization of the fifth-
order FDNR–RC low-pass filter of Fig. 18(c). The compo-
nent selection in terms of resistors and capacitors, com-
bined with the opamp connection to obtain the FDNRs
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Figure 19. Two nullor-based negative-
impedance converters (NICs) in cascade,
with loading impedance ZL. This configura-
tion serves as a basis for gyrator and FDNR
design.

Figure 20. FDNR-based opamp–RC realization of
the low-pass filter in Fig. 18(c).

shown in Fig. 20, has proved itself well in practice. No-
tice that in this realisation of the LCR filter, the source
resistor R1 in Fig. 18(b) was selected to be zero, in order
to guarantee a dc path from source to load. Although this
violates Orchard’s theorem, which requires equal resistive
terminations at the source and load, the penalty involved,
in terms of increased component sensitivity, is often accept-
able and will generally still be better than it would be with
a cascaded-biquad design.

Active RC Simulation of LCR Ladder Filters

Under “Sensitivity Properties of LC Ladder Filters” the re-
markable property of low sensitivity to component varia-
tions in the passband of LC ladder filter structures was dis-
cussed (Orchard’s theorem). This property has motivated
the simulation of LC ladder filters in those cases in which
high filter performance is required but inductors may not
be used, as in integrated-circuit realizations, both analog
and digital. It has been shown above that the two most im-
portant active elements used to build active-RC simulated
LC ladder filter networks are (1) the gyrator for inductor
simulation and (2) the frequency-dependent negative re-
sistor (FDNR), as it occurs in conjunction with the FDNR

transformation of LCR filter networks. Which of these two
approaches is used depends on the LCR filter that is to
be rendered inductorless. Some illustrative examples will
demonstrate this in what follows.

Consider, for example, the fifth-order elliptic low-pass
filter shown in Fig. 21. This is the minimum-L version of
the minimum-C filter shown in Fig. 18(b). Simulating the
inductors by gyrator–C combinations, we obtain the active
RC simulated inductor circuit shown in Fig. 22. Note that
each floating inductor (i.e., L2 and L4) requires two gyra-
tors, and each gyrator requires at least two opamps for its
realization. This is because, in practice, gyrators are real-
ized by a nullor configuration as shown in Fig. 19, result-
ing in the two-opamp structures shown in Fig. 20. Thus
the gyrator–C replacement of L2 and L4 will require eight
opamps, which for a fifth-order filter is quite uneconomical,
with regard to both component cost and dissipated power.

Floating inductors are typical for a low-pass filter, be-
cause a true low-pass characteristic must also transmit
direct current (dc). The floating inductors could, of course,
be eliminated by an FDNR transformation. Carrying this
transformation out on the LCR filter of Fig. 21 would,
however, be counterproductive. L2 and L4 would indeed be
transformed into resistors, but each of the five capacitors
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Figure 21. The LC-dual, or minimum-L,
version of the fifth-order elliptic LCR low-
pass filter of Fig. 18(b).

would be transformed into an FDNR. A grounded FDNR
can be realized by two opamps; a floating FDNR requires
more. Thus, an FDNR transformation of the minimum-L
filter in Fig. 21 requires well over ten opamps, which is
even more extravagant in opamp count than the gyrator–C
version of Fig. 22.

However, the situation looks quite different for the
equivalent minimum-C version of a filter. This is the fil-
ter shown in Fig. 18(b) and, after impedance scaling by
ω0/s (where ω0 is selected as the filter cutoff frequency ωc),
corresponds to the FDNR-transformed filter in Fig. 18(c).
Here each impedance-scaled inductor Li becomes a resis-
tor R

′
i = ω0Li , each resistor Rj a capacitor C

′
j = (ω0Rj )−1,

and each capacitor Cv an FDNR Z
′
v = (s2Dv )−1, where

Dv = Cv /ω0. Note that there are now only two active ele-
ments in the filter: the two impedance-transformed capac-
itors, each of which becomes a grounded FDNR. With two
opamps required for each FDNR, the overall circuit now
comprises four opamps, in addition to numerous resistors
and capacitors, as shown in Fig. 23. Thus, compared to the
simulated inductor version of the filter using gyrators as
in Fig. 22, the number of opamps using the FDNR trans-
formation has now been halved.

We now compare the simulated LC ladder filter of Fig.
23 with an equivalent cascade of single-ended biquads to
realize the same fifth-order low-pass filter. Using typical bi-
quads capable of realizing finite zeros for an elliptic filter,
we obtain the circuit configuration shown in Fig. 24. Here
the opamp count has been halved again, but this reduc-
tion comes at a price. Because the sensitivity to component
variations is higher with the biquads than with the simu-
lated LCR ladder filter, the performance in the passband
of the biquad cascade, when subjected to ambient changes
involving temperature, humidity, or aging, will be signifi-
cantly worse for the biquads than for the simulated LCR
ladder filter. Furthermore, due to the higher sensitivity

Figure 25. Amplitude response of fifth-order elliptic low-pass fil-
ter obtained by measurement of the filter shown in Fig. 23 and
in Fig. 24 (nominally, no difference between the two filters can be
distinguished).

of the biquads, to obtain an accurate nominal frequency
response, either the filter will have to be fine-tuned, or
very accurate, low-tolerance, and therefore expensive RC
components must be used. By contrast, because of its low
sensitivity, the FDNR-simulated ladder network of Fig. 23
can be built with less expensive components of reasonable
tolerance, while achieving a highly accurate frequency re-
sponse, often with no fine tuning required. Nominally, how-
ever, with ideal components, the filter response of the two
filters (shown in Fig. 25) will be identical, and will satisfy
the intended specifications.
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Figure 23. FDNR-based opamp–RC realization of the fifth-order elliptic low-pass filter in Fig. 18(c), with component values selected for
amplitude response shown in Fig. 25.

The FDNR transformation generally provides the most
efficient (in terms of opamp count) inductorless active RC
circuit for low-pass specifications, because low-pass filters
contain floating coils in order to guarantee a dc path from
source to load. Simulated floating inductors require two
gyrators per inductor, and, as shown in the preceding ex-
ample, this may result in twice as many opamps being
required as for the corresponding FDNR realization. The
FDNR preference will not necessarily hold for any general
filter application,however; for general filters a combination
of gyrator–C, FDNR, and GIC embedding will more typi-
cally provide the most robust (with respect to component

tolerances) and economical inductorless filter. An example
to illustrate GIC embedding is shown next.

A general impedance converter, or GIC, was briefly in-
troduced above (under “Basic Network Elements”) as a two-
port with a transmission, or ABCD, matrix given by
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Loading a GIC with an impedance ZL at the output termi-
nals, the input impedance results from Eq. (38) as

where A(s)/D(s) is a dimensionless but frequency-
dependent quantity designated k(s).

GIC embedding is based on the fact that a two-port,
which is characterized by its ABCD matrix and embed-
ded between two GICs as shown in Fig. 26, has the overall
transmission matrix

For k1(s) = k(s) = k−1
2(s) this simplifies to

Since the dimensionless transfer parameters A and D
remain unaltered, and the impedance and admittance pa-
rameters are scaled by k(s) and [k(s)]−1, respectively, em-
bedding between two GICs is identical with impedance
scaling of the embedded network by k(s). If k(s) = ω0/s, then
the embedded network undergoes an FDNR impedance
transformation.Thus, for example,a resistive network, em-
bedded between two GICs with k1(s) = s/ω0 and k2(s) = ω0/s,
appears as an all-inductive network, as shown in Fig. 27.

In practice, GIC embedding and gyrator–C substitution
of inductors can be applied within the same network, de-
pending on the configuration. This is shown in Fig. 28,
where a relatively complex LCR band-pass filter is shown
in (a) and the equivalent inductorless ladder filter is shown
in (b). In the latter, GIC embedding and gyrator–C induc-
tor simulation alternate to provide the most efficient sim-
ulated active RC ladder filter. Note that the embedding is
introduced at the terminal end so as to leave the terminat-
ing resistor R (and also the first capacitor C1) intact. This
is the most elegant way of avoiding the R-to-C transforma-
tion of the terminal resistors that would otherwise occur
in a straightforward FDNR transformation.

OTHER METHODS OF INDUCTORLESS FILTER DESIGN

There are numerous other methods of designing induc-
torless active RC filters which are developed hand in
hand with new emerging IC technologies. Many of these
are closely related to CMOS IC technology and use the
transconductance gm of CMOS transistors together with
CMOS-realized capacitors to provide both the RC time con-
stants and the active gain in current-mode type circuits
used for the design of inductorless filters. The basic con-
cepts are very similar to those dealt with above, i.e. they are
current-mode versions of the opamp-based voltage-mode
circuits described earlier.

Another design technique that has been successfully
used for inductorless IC filter chips is that of deriving a
signal-flow graph (sfg) equivalent of the original LCR lad-
der filter satisfying the desired filter specifications. Thus,
instead of deriving the sfg from the transfer function as
in Fig. 9 above, it is derived from the LCR filter circuit.
As in Fig. 9, the sfg is then transformed and manipu-
lated until it consists of branches with only integrators,
adders, and inverters. These can readily be realized with
CMOS-compatible circuits. In voltage-mode circuits, the
integrators consist of opamp-based circuits with a capaci-
tor in the negative feedback path and a resistor connected
to the inverting input terminal. A significant advantage
of such inverters is that the input terminal is at virtual
ground, which, as was pointed out above, is advantageous
with regard to maximizing the dynamic range of the filter.
Current-mode versions of the sfg integrators also exist, and
their use is mainly dictated by the IC technology available.



18 Filters, Analog

Figure 26. Embedding a network N between two general impedance converters (GICs), with converter constants k1(s) and k2(s), respec-
tively.

Figure 27. (a) A resistive network embedded between two GICs; (b) the equivalent inductive network.

Figure 28. Inductorless simulation of an LC band-pass filter using GIC embedding and gyrator–C
substitution of inductors.
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