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(b) linear or nonlinear nondifferential equations which
model the relationships among the variables associated
to the physical phenomena taking place in the devices
and which are referred to as the device’s constitutive
laws;

(c) linear first-order differential equations which express
some currents as time derivatives of electric charges
and some voltages as time derivatives of magnetic
fluxes.

In particular, circuit topology determines equations (a), while
the structure of the constitutive laws (b) may considerably
vary, depending on the kind of the device. Typical examples
of independent branches constitutive laws are V � V for an
independent voltage source, I � I for an independent current
source, V � RI for a linear resistor, and I � IS exp (V/VT � 1)
for a nonlinear resistor representing a junction diode model.NETWORK ANALYSIS USING LINEARIZATION
Examples of controlled branches constitutive laws are Vj � � �
Vi for a linear VCVS, the voltage at branch j being controlledGenerally speaking, the term linearization indicates the sub-
by the voltage at branch i, or Ij � �(Vi) for a nonlinear VCCS.stitution of a nonlinear relationship by a linear one which,
In order to model the storage of energy in the electric andaccording to some criterion, is approximately equivalent to it.
the magnetic field, reactive branches, namely capacitors andHowever, the subject considered in this contribution should
inductors, have also to be considered. They are described bynot be confused with the concept of piecewise linearization
constitutive laws of type (b) like � � LI (which links magnetic(see PIECEWISE LINEAR TECHNIQUES). In fact, linearization is in-
flux and current in a linear inductor) or f (Q, V) � 0 (whichtended here to be equivalent to small-signal linearization,
links electric charge and voltage in a nonlinear capacitor) to-which is a useful procedure in the analysis of physical sys-
gether with, respectively, the auxiliary equations of type (c)tems and which is, in particular, widely employed for the
V � d�/dt and I � dQ/dt. Although not completely general,analysis and the design of lumped electronic circuits.
we will preliminarily assume that a circuit may include onlyAs is well known from Circuit Theory (1–3) (see also NET-
the above-mentioned elements and that the correspondingWORK EQUATIONS), a lumped circuit is a model of a physical
constitutive laws link only two variables. These assumptionscircuit composed by a suitable interconnection of electric and
will be relaxed in the section entitled ‘‘A More General Ap-electronic devices, which applies whenever the size of the
proach to Linearization.’’physical circuit is sufficiently smaller than the wavelength of

Because the constitutive laws of electronic devices are usu-the electromagnetic field associated with the electric phenom-
ally nonlinear, electronic circuits perform, in the most generalena. Nevertheless, the term circuit is also practically em-
case, nonlinear signal transformations. On the other hand,ployed to indicate a circuit schematic and any graphical rep-
since such circuits are often employed to achieve linear infor-resentation of a circuit mathematical model. However, notice
mation processing, like for instance in amplifiers or active fil-that these two ways of using the same term may be consid-
ters (4,5), a question naturally arises about the way of ob-ered equivalent whenever the circuit schematic is completed
taining such a goal.by sets of equations representing the models associated with

To answer this question, first remember that in any infor-the device symbols. In the following, the term circuit will be
mation processing device, the information support is the vari-used with both meanings.
ation of some physical quantity with respect to a referenceA circuit can thus be considered as composed of (ideal) cir-
value, which, although potentially variable in time, is oftencuit elements such as resistors, capacitors, inductors, inde-
assumed to be constant [with the exception of the so-calledpendent voltage and current sources, voltage-controlled volt-

age sources (VCVS), voltage-controlled current sources parametric circuits (6) or parametric amplifiers]. In the fol-
(VCCS), current-controlled voltage sources (CCVS), and cur- lowing, we shall therefore consider the latter case only, and
rent-controlled current sources (CCCS). In fact, the model of we shall define as quiescent values the constant reference val-
more complex elements such as bipolar junction or MOS tran- ues of the physical quantities used to carry information. In
sistors can be suitably expressed by using the former ele- this context, a signal is defined as the difference between the
ments. Therefore, the mathematical model of a circuit con- physical quantity and its quiescent value. An electronic cir-
sists of a set of time-dependent variables (voltages, currents, cuit intended for linear signal processing must therefore, first
electric charges, and magnetic fluxes) linked by a set of equa- of all, ensure that, in the absence of signals, all physical
tions composed of: quantities have an appropriate constant value. For this pur-

pose any nontrivial circuit comprises a set of devices which is
specifically devoted to establish suitable quiescent values and(a) Kirchhoff ’s equations, namely linear algebraic equa-
which is usually called a bias circuit. In particular, a biastions deriving either from Kirchhoff ’s current law
circuit includes one or more bias sources which are indepen-(KCL), stating that the sum of branch currents enter-
dent voltage or current sources constant with time.ing a circuit node is zero, or from Kirchhoff ’s voltage

A set of quiescent values which satisfy the circuit equa-law (KVL), stating the vanishing of the sum of branch
voltages along a closed node sequence; tions—when all capacitors have been replaced by open cir-
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cuits, all inductors have been replaced by short circuits, and In other terms, the problem is to determine whether a ‘‘best
choice’’ exists between all the possible linear functions (3) ap-all independent sources have been set to their quiescent

value—is called a quiescent operating point or dc operating proximating the device constitutive law (1) in a neighborhood
of X0. Consider a small displacement x of X with respect topoint (DCOP). A circuit may possess several DCOPs, some

stable and others unstable, but, in order to allow linear signal X0. Since f is differentiable, the dependent variable value cor-
responding to X � X0 � x can be expressed asprocessing, the existence of a stable and usually unique

DCOP must be ensured by a proper design. Moreover, as
shown in the following section, the use of sufficiently small
signals around a DCOP allows us to replace the circuit non- Y = f (X ) = f (X0) + d f

dX

∣∣∣∣
0

x + O(|x|2) (5)

linear equations by linear ones which are approximately
equivalent to them as far as the relationships among small where the subscript 0 in df /dX means that this quantity must
signals are concerned. These linear equations can be interpre- be evaluated at X � X0. By employing Eqs. (3) and (5), one
ted as referring to a small-signal equivalent circuit composed obtains that Eq. (4) is satisfied if and only if
by linear elements only, which may then be analyzed by using
the well-known powerful techniques applicable to linear cir-
cuits (3). In particular, linear differential equations theory p = d f

dX

∣∣∣∣
0

(6)
from Calculus or Laplace transform-based methods can be
used for transient analyses, while complex numbers represen-

On the basis of the above considerations, the linearizationtation of sinusoidal functions or Fourier transform can be
procedure of a nonlinear circuit may be summarized asused for alternating current (ac) analyses and lead to very
follows:useful concepts as driving-point immittances and transfer

functions (see LINEAR SYSTEMS).
Finally, it is important to stress that linearization is addi- 1. The DCOP of the circuit, and therefore of all its devices,

tionally involved in other important topics such as stability is suitably chosen during the design or computed during
analysis of a DCOP, sensitivity analysis, and determining the an analysis step.
DCOP(s) of a circuit. In fact, this amounts to solving a nonlin- 2. For each nonlinear device, the constitutive law (1) is
ear system of equations, which is often numerically accom- substituted by Eq. (3) satisfying Eq. (6). This corre-
plished by using circuit analysis programs like SPICE (7,8). sponds to changing each element into its small-signal
The numerical algorithm typically employed is iterative and equivalent device whose constitutive law can be recast
gradually converges toward the solution by repeatedly solving in terms of small signals only as
linear equations systems obtained by suitable linearizations
of the circuit equations. y = px (7)

The parameter p is called differential parameter and isA SIMPLE APPROACH TO LINEARIZATION
indicated by several different terms according to the
physical dimensions of the variables X and Y and to theConsider a circuit element characterized by the constitutive
nature of the circuit element to which it refers, aslaw
shown in Table 1.

Y = f (X ) (1)

It is important to stress that the whole linearization proce-
where f : � � � is a differentiable function. The two variables dure applies whenever the signal x � X � X0 (and hence y �
X and Y may stand, for instance, for the voltage across a volt- Y � Y0) is ‘‘small’’ in the sense that it can be considered as
age-controlled resistor and the current flowing in it, or for the infinitesimal without introducing unacceptable errors. In or-
electric charge of a charge-controlled capacitor and the volt- der to verify this condition, circuit topology, devices character-
age across it, or even for the input and output voltages of istics, and DCOP have to be considered, as well as the maxi-
an amplifier. mum tolerable distortion in the circuit. Typically, this

Let X0 be a reference value of the independent variable and amounts to subsequently performing a suitable (nonlinear)
consider the class of first-degree polynomials Y � l(X) such distortion analysis (9).
that Figure 1 shows a simple geometrical interpretation of the

linearization process. Given the diagram of the function Y �l(X0) = f (X0) = Y0 (2)
f (X) and the operating point P0 � (X0, Y0), then the diagram
of Y � l(X) with p chosen according to Eq. (6) is representednamely
by the straight line tangent to f in P0. If the coordinate axes
are shifted so that the new origin coincides with P0, then thel(X ) = f (X0) + p(X − X0) (3)
tangent equation in the new reference system is expressed by
Eq. (7).with p � �. Since from Eq. (2) it follows that f (X) � l(X) is at

It is worthwhile to note that the above considerations re-least first-order infinitesimal for X � X0, one could wonder if
main valid, under suitable assumptions, even when the cir-a suitable choice of p allows the above difference to be infini-
cuit element constitutive law is provided in implicit form astesimal of order greater than one with �X � X0�, namely

g(X ,Y ) = 0 (8)f (X ) − l(X ) = O(|X − X0|2) for X → X0 (4)
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Table 1. Different Terms Used to Indicate the Differential
Parameter p in Eq. (7), Depending on the Physical Dimension
of X and Y in the Circuit Element Constitutive Law Expressed
by Eq. (1)

Circuit element X, x Y, y p

Resistor Current Voltage Differential resistance
Resistor Voltage Current Differential conductance
Capacitor Voltage Charge Differential capacitance
Inductor Current Magnetic flux Differential inductance
VCVS Voltage Voltage Voltage gain
VCCS Voltage Current Transconductance
CCVS Current Voltage Transresistance
CCCS Current Current Current gain

with g : �2 � �. In fact, consider a DCOP P0 satisfying Eq. (8) in P0 is given by
and suppose that a neighborhood U of P0 exists such that g is
differentiable in U with nonvanishing partial derivative
�g/�Y�0 in P0. Then, by the implicit function theorem (10), a

rd = dV
dI

∣∣∣∣
0

= nVT

I0 + IS
neighborhood V of X0 and a differentiable function f : V � �

exist such that g(X, f (X)) � 0 and df /dX � �(�g/�X)/(�g/�Y). and the small signals v � V � V0, i � I � I0 are linked
In this way the previously considered procedure still holds in by the simple relationship
V with p � �(�g/�X)�0/(�g/�Y)�0.

v = rdi
Examples

Since the last equation represents Ohm’s law, as far as1. Consider a p–n junction diode whose dc voltage–
dc, small-signal relationships are concerned, the diodecurrent relationship in the forward bias region (I � 0)
can be substituted by its small-signal equivalent one-is expressed as (11)
port—that is, a linear resistor whose resistance is rd.

2. Figure 2(a) shows a two-port representing a bipolar
junction transistor (BJT), whose elementary model

V = nVT ln
(

1 + I
IS

)
when operating in the forward normal region can be for-

where IS is the reverse saturation current, VT is the mulated as (11)
thermal voltage, and n the emission coefficient. If one
indicates with P0 � (I0, V0 � nVT ln (1 � I0/IS)) the diode
operating point, the differential resistance of the diode IC = IS

[
exp

(
VBE

VT

)
− 1

]
, IB = IS

βF

[
exp

(
VBE

VT

)
− 1

]

where IC and IB are the transistor collector and base
currents, IS is the transport saturation current, VBE is
the base-emitter voltage, and �F is the large signal for-
ward current gain of the common emitter configuration.

The associated small-signal relationships are ex-
pressed by

iC = gmvBE, iB = vBE

rBE
(9)

where gm � �IC/�VBE�0 � (IC0 � IS)/VT is the BJT trans-
conductance and where rBE � �F/gm. By using a VCCS,
Eqs. (9) can be considered as referring to the small-sig-
nal equivalent two-port shown in Fig. 2(b).

3. As a last example, consider a reverse-biased p/n junc-
tion diode. If one neglects the reverse current, its model

Y0

  Y = Y0 + p(X – X0)

  Y = f (X)

X0

P0

y

x

X

Y

reduces to a nonlinear capacitor having a voltage–
Figure 1. Geometrical interpretation of the basic linearization proce- charge relationship given by
dure: in a small neighborhood of a DCOP P0, the curve Y � f (X) is
approximated by its tangent straight line Y � Y0 � p(X � X0) whose
slope is p � (df /dX)�0. The ‘‘small signals’’ x and y � px are measured
in the coordinate system with origin in P0.

Q = Q0

(
1 + VR

VJ

)1−m
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Figure 2. Basic BJT model, where
f (VBE) � IS[exp (VBE/VT) � 1]: (a) A linear-
ization procedure applied to (a) gives rise
to the linear constitutive laws of the small
signal equivalent two-port represented in
(b).

gm  VBE VCEVBE rBEVBE f(VBE) VCEf(VBE)

iCICIB iB

βF

(b)(a)

where VR is the reverse voltage across the junction, Q0 where E is the vector of circuit excitations, while Qc and �t

are the vectors of capacitors charges and inductors fluxes, re-is the charge at VR � 0, VJ is the built-in potential, and
m 
 1 is the junction grading coefficient (11). The small- spectively, which also satisfy the auxiliary differential equa-

tionssignal equivalent one-port is readily found to be a linear
capacitor whose capacitance is

dQc

dt
= Ic,

d���l

dt
= Vl (14)

Notice also that with the above notation, a DCOP is defined
as a set of time-independent variables (V0, I0, Qc0, �l0) such

Cj = dQ
dVR

∣∣∣∣
0

= Cj0(
1 + VR0

VJ

)m

that Eqs. (10)–(13) are satisfied with the dc values E0 replac-
where VR0 is the dc operating voltage and Cj0 � (1 � ing the original excitations E(t) and with Ic � 0 and Vl � 0.
m)Q0/VJ. The small-signal charge q � Q � Q0 and the The small-signal linearization procedure relies on assuming
small-signal voltage vR � VR � VR0 are related by q � the existence of the total differential of the functions Fc, Fl,
CjvR. Fr in Eqs. (11)–(13) and on substituting, for each vector X, its

differential dX by the small increment x, while the linear
equations (10) and (14) hold for x as for X. By applying thisThe material developed so far shows that circuit elements
procedure one getscharacterized by means of two-variable constitutive laws have

linear counterparts which are described in terms of the corre-
Ai = 0, Bv = 0 (15)sponding two-variable increments. Moreover, substituting in-

crements for variables also in Kirchhoff ’s and auxiliary differ-
ential equations yields a linear mathematical model whose

∂Fc

∂Qc

∣∣∣∣
0

qc + ∂Fc

∂Vc

∣∣∣∣
0

vc = 0 (16)

graphical representations are called small-signal equivalent
circuits of the original nonlinear circuit. ∂Fl

∂���l

∣∣∣∣
0
ϕϕϕl + ∂Fl

∂Il

∣∣∣∣
0

il = 0 (17)

A MORE GENERAL APPROACH TO LINEARIZATION
∂Fr

∂Vr

∣∣∣∣
0

vr + ∂Fr

∂Ir

∣∣∣∣
0

ir + ∂Fr

∂E

∣∣∣∣
0

e = 0 (18)

Consider a lumped circuit and express Kirchhoff ’s equations dqc

dt
= ic (19)

in vector form as (1,2)
dϕϕϕl

dt
= vl (20)AI = 0, BV = 0 (10)

where �Fc/�Qc�0, �Fc/�Vc�0, . . ., �Fr/�E�0 are the Jacoby matri-where A and B are matrices whose elements are 0, �1, and
ces of the functions Fc, . . ., Fr with respect to Qc, Vc, . . .,�1 and whose structure depends on the network topology, I
E at the DCOP.is the nb-dimensional vector of branch currents, and V is the

nb-dimensional vector of branch voltages. If the circuits pos-
Small-Signal Equivalent Circuitssess nc capacitor and nl inductors, let Vc (Vl) and Ic (Il) be the

nc(nl)-dimensional vectors of voltages and currents at capaci- A small-signal equivalent circuit can be defined as a graphical
tive (inductive) branches and let Vr and Ir be the voltage and representation of Eqs. (15)–(20) constructed by means of lin-
current vectors for the nr � nb � nc � nl resistive branches, ear ideal circuit components which, in addition to those con-
which include also dependent and independent sources. Then, sidered in the section entitled ‘‘A Simple Approach to Linear-
by suitably ordering the vector components, one has V � ization,’’ may include, for instance, dependent voltage and
[Vt

c�Vt
l�Vt

r]t and I � [It
c�It

l�It
r]t, where � t denotes transposition. current sources controlled by any number of variables. More-

The nb (generally nonlinear) constitutive laws of the circuit over, if the derivative with respect to time of Eqs. (16) and
elements may be expressed in the form (17) is considered and Eqs. (19) and (20) are used, dependent

branches controlled by time derivatives of voltages and cur-
Fc(Qc, Vc) = 0 (11) rents may also appear. By simple inspection of Eqs. (10)–(14)

and (15)–(20) it can be observed that, since Kirchhoff ’s equa-Fl(���l, Il) = 0 (12)
tions sets (10) and (15) have an identical structure, a small-
signal equivalent circuit having the same topology as the orig-Fr(Vr, Ir, E) = 0 (13)
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between the collector node and the emitter node. However,
simple algebraic transformations allow us to use vB�E and vCE

as controlling voltages so that the considered VCCS may be
equivalently replaced by adding a resistor of resistance rCE

and by considering a slightly different expression for the
transconductance (11). In this way one obtains a circuit char-
acterized by a different topology, but described by an equiva-
lent equations set.

Finally, it should also be noted that the knowledge of a
nonlinear model is not compulsory in order to obtain a small-

  vCE
vBE

vB'E

gmbvB'ErB'E

rBB'

rCE

rB'C

CB'E

CB'C

C

E

B'B

signal equivalent circuit. In fact, this one can also arise, espe-
Figure 3. Hybrid-� equivalent circuit of a BJT which is widely used cially when high-frequency behavior is of interest, from an
for small-signal analysis of bipolar and BiCMOS circuits. empirical or semiempirical procedure, namely by using a set

of experimental values possibly integrated by physical consid-
erations. For instance, let a three-terminal model of an elec-

inal nonlinear one may be obtained by substituting small-sig- tronic device like a BJT be represented as a two-port having
nal increments for the corresponding circuit variables and a one of the terminals shared by the ports. Its small-signal ac
linear component for each corresponding nonlinear one. In behavior around a fixed DCOP and at a fixed frequency can
practice, however, the topological correspondence between the be described by the results of a suitable set of measurements
nonlinear and the linearized circuit models is often not per- which allow the four complex parameters of the 2 � 2 admit-
fect. This is due, on one hand, to the common practice of rear- tance or scattering matrix to be identified (see MULTIPOLE AND
ranging the equations to simplify the associated equivalent MULTIPORT ANALYSIS). By repeating the measurements at dif-
circuit or, conversely, of performing transformations which ferent frequencies, an approximate characterization of the de-
modify the topology of the small-signal circuit to simplify the vice in a limited frequency range may be obtained. For an
associated equations and, on the other hand, to the presence ac analysis of the circuit, one could employ look-up tables or
of bias sources. In fact, a voltage bias source is, by its very functions obtained by interpolating the measured data, but
definition, an independent voltage source whose value is unaf- computational efficiency may often be improved if a linear
fected by the signals. Therefore, its small-signal equivalent two-port circuit having the same matrix and a relatively
one-port is an independent voltage source of zero voltage— small number of parameters, compared to the data set, can
that is, a short-circuit. Dually, the small-signal equivalent be devised. This corresponds to considering a small-signal
one-port of a current bias source is an open-circuit. So, the equivalent circuit of the device in the considered frequency
small signal equivalent sources corresponding to bias sources range.
do not explicitly appear in equivalent circuits. While a nonlinear model would still be necessary for dc

As simple but important examples, commonly used equiva- and for (nonlinear) transient analyses, this empirically identi-
lent circuits of a bipolar junction transistor operating in nor- fied linear equivalent circuit does not have to be strictly re-
mal region and of a MOS field-effect transistor are reported lated to it; so more so as the desired approximations for the
in Figs. 3 and 4, respectively (11,12). In addition to the com- different types of analyses may be somewhat different, and
ponents in Fig. 2(b), the well-known hybrid-� equivalent cir- the ease of linear analyses allows us to use equivalent circuits
cuit for a BJT shown in Fig. 3 accounts for the base resis- with many more parameters than desirable in a nonlinear
tance (rBB�), the junction capacitances (CB�E and CB�C), an model. Therefore, it may be more practical to consider both
internal resistive feedback (rB�C), and the Early effect (rCE). No- nonlinear and linear models as independently associated to
tice that in a BJT nonlinear model the Early effect is ac- the physical device or circuit, with not too tight a relationship
counted for by a dependence of the transport current on the each to the other.
base-collector voltage and the corresponding equivalent cir-
cuit should have a current source controlled by vB�C connected

An Example of Small-Signal ac Analysis

As is well known from basic Circuit Theory (3), a stable linear
circuit excited by a sinusoidal signal reaches, after a transient
phase, a steady state characterized by sinusoidal signals hav-
ing the same frequency, but in general different amplitudes
and nonzero phase shifts, with respect to the excitation.
These signals represent the circuit ac response, whose deriva-
tion is defined as ac analysis. In nonlinear circuits with ac
sources of a given frequency, the same effect arises in practice
when excitation amplitudes are small enough to obtain a neg-
ligibly nonlinear response of circuit elements in a neighbor-
hood of the bias point. In this case one has the so-called
small-signal ac response. Hence, performing a small-signal ac
analysis requires the solution in the frequency domain of the

vDSgdv

CDBCGB

CGD

CGS

CSB

G

S

B

D

GS

  vBS

gmvB'E gmbvB'E

small-signal equivalent circuit equations.
As an application example, consider the MOSFET commonFigure 4. Small-signal equivalent circuit of a MOSFET which is

widely employed for small-signal analysis of MOS circuits. source amplifier M1 with active load M2 shown in Fig. 5. The
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where Gs � 1/Rs and where VGS1, Vi and V0 indicate the Fou-
rier transform of the voltages vGS1(t), vi(t) and v0(t), respec-
tively. By solving Eqs. (21) and (22) for Vi( j�) and V0( j�), one
easily obtains

Av( jω) = V0( jω)

Vi( jω)
= Av0

1 − jω
CGD1

gm1

1 + jωβ − ω2α
, (23)

where Av0 � �gm1/GL is the dc voltage gain and

α = Rs

GL
[CL(CGD1 + Cg) + CgCGD1]

β = Rs

GL
[GL(CGD1 + Cg) + Gs(CL + CGD1) + gm1CGD1]

The voltage gain (23) is then characterized by a real positive

Voo +   o(t)

Vio

v

v

VDD

i(t)

C′LM1

M2M3

Rs

Ib

+
–

zero at the angular frequency �z � gm1/CGD1 and by two real
Figure 5. A MOSFET common source amplifier with active load. The negative poles corresponding to angular frequencies �p1 and
transistor M3 and the current bias source Ib are employed to bias the �p2. By assuming, as verified in practice, that �p1 � �p2, Eq.
gate of transistor M2 to a suitable voltage. (23) can be recast in a more useful form as

circuit including the supply voltage generator VDD, the tran-
sistor M3, and the constant current source Ib is used to bias

Av( jω) ≈ Av0

1 − j
ω

ωz

1 + j
ω

ωp1
− ω2

ωp1ωp2

(24)

the gate of M2 to a suitable voltage, thus establishing, to-
gether with the bias source Vio, the circuit DCOP. Moreover, where �p1 � GL/�CL � CGD1 � RsGL[Cg � CGD1(1 � Av0)]� and
vi(t) represents a small-signal input source with internal re- �p2 � [GL(CGD1 � Cg) � Gs(CL � CGD1) � gm1CGD1]/[CL(CGD1 �
sistance Rs, and C�L is a load capacitance. Substituting the Cg) � CgCGD1]. Since the voltage gain (24) is a complex func-
equivalent circuit shown in Fig. 4 for M1 and M2 yields the tion, it is usually represented in terms of magnitude response
small-signal equivalent circuit reported in Fig. 6, where Cg � �Av( j�)� and phase response �( j�) � arg Av( j�), which are
CGS1 � CGB1, CL � C�L � CDB1 � CDB2 � CGD2, and GL � gd1 � commonly represented as Bode diagrams and from which sev-
gd2. In order to characterize the circuit behavior, a very mean- eral meaningful quantities, like the amplifier gain-bandwidth
ingful quantity to be computed is the amplifier voltage gain, product or phase margin, can be computed (4,5) (see also SIG-
namely the transfer function Av � V0/Vi, where V0 and Vi rep- NAL AMPLIFIERS).
resent the Laplace or Fourier transform of the small signals
v0(t) and vi(t). By applying the KCL to the nodes M and N of Linearization and Sensitivity
the circuit in Fig. 6, one gets

By recalling that the (relative, small-change) sensitivity of a
function H with respect to a parameter � is defined as (1)

(VGS1 − Vi)GS + jωCgVGS1 + jωCGD1(VGS1 − V0) = 0 (21)

jωCGD1(V0 − VGS1) + gm1VGS1 + V0(GL + jωCL) = 0 (22) SH
γ = ∂H

∂γ

γ

H
= ∂H/H

∂γ /γ

and observing that its expression may be interpreted as the
ratio of the fractional change in H due to a unit fractional
change in � provided that all variations are sufficiently small,
it is not surprising that sensitivity can be related to the con-
cepts of linearization and small-signal equivalent circuit. This
quantity is of course a valuable information for any electronic
circuit designer. For instance, if the output voltage of a filter
is very sensitive to the resistance value of a resistor, a circuit
VLSI implementation would probably fail to meet one or more
constraints, due to the unavoidable spreading introduced by
the devices physical realization or to temperature changes

VoVGS1Vi

gm1  GS1 CL

Cg

Rs CGD1

GL

M N

+
–

V

and aging.
In the following, we restrict our considerations to the caseFigure 6. Small-signal equivalent circuit of the amplifier shown in

of a purely resistive circuit, which is formally simpler becauseFig. 5, obtained by substituting the equivalent circuit of Fig. 4 for
transistors M1 and M2. its model includes only nondifferential equations (for the
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Figure 7. Sensitivity calculations may be included in a general linearization procedure. Parameters changes in the circuit (a) are accounted
for in the small-signal equivalent circuit (b) by suitable independent sources.

more general case of nonlinear reactive circuits see Ref. 13). The corresponding linearized equations may be recast in the
formIn this case, the circuit is described by the system

AIr = 0, BVr = 0, Fr(Vr, Ir, E,���) = 0 (25)

where, with respect to Eq. (13), the dependence on the param-
eters vector � has been accounted for. By applying a lineariza-
tion procedure to Eqs. (25), one obtains

vi = vBE + RE0iE + IE0rE iC = βFiB

0 = RCiC + vCE + RE0iE + IE0rE iE = iC + iB

vCE = vCB + vBE iB = vBE
rBE

+ IC0
βF IS0

iS

vo = −RCiC

and may be interpreted by the small-signal equivalent circuit
of Fig. 7(b), where the changes of RE and of IS are accounted
for by a voltage source IE0rE and a current source (IC0/�FIS0)iS,
respectively. In this way, sensitivities such as

Air = 0, Bvr = 0,

∂Fr

∂Vr

∣∣∣∣
0

vr + ∂Fr

∂Ir

∣∣∣∣
0

ir + ∂Fr

∂E

∣∣∣∣
0

e + ∂Fr

∂���

∣∣∣∣
0
γγγ = 0

where � indicates the small changes parameters vector with
respect to the nominal parameter values �0. Note that only

SV0
IS

= IS0

V00

v0

iS

∣∣∣∣ vi=0
rE=0

= −RCIC0

V00

rBE

rBE + RE0(βF + 1)

vr and ir are unknown variables and therefore � may be dealt
with as e; that is, the effects of small parameter changes may can then be computed from the equivalent circuit by means
be accounted for by suitable independent sources. Once vr, ir of standard linear circuit analysis.
are expressed as functions of e and �, any desired sensitivity
is readily obtained.
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