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measuring difficult one-shot waveforms or probing a mi-
croscopic die.

• Mathematically ideal elements are available. Creating
an ideal voltage or current source is trivial with a simu-
lator, but impossible in the laboratory. In addition, all
component values are exact and no parasitic elements
exist.CIRCUIT ANALYSIS COMPUTING

• It is easy to change the values of components or the con-
figuration of the circuit. Unsoldering leads or redesigning‘‘Conventional circuit simulation’’ usually means simulation
IC masks are unnecessary.of small to medium-sized analog circuits. The most widely

known and used circuit simulation program is SPICE (simu- Unfortunately, computer-aided simulation has its own set of
lation program with integrated circuit emphasis). This pro- problems.
gram was first written at the University of California at

• Real circuits are distributed systems, not the ‘‘lumpedBerkeley by Laurence Nagel in 1975. Research in the area of
element models’’ that are assumed by simulators. Realcircuit simulation is ongoing at many universities and indus-
circuits, therefore, have resistive, capacitive, and induc-trial sites. Commercial versions of SPICE or related programs
tive parasitic elements present besides the intended com-are available on a wide variety of computing platforms, from
ponents. In high-speed circuits these parasitic elementssmall personal computers to large mainframes. A list of some
are often the dominant performance-limiting elements incommercial simulator vendors can be found at the end of this
the circuit and must be painstakingly modeled.article. The main focus of this article is the simulators them-

• Suitable predefined numerical models have not yet beenselves and the numerical methods employed in them. A few
developed for certain types of devices or electrical phe-examples are also given to illustrate some uses of the simu-
nomena. The software user may be required, therefore,lators.
to create his or her own models out of other models that
are available in the simulator. (An example is the solid-

PURPOSE OF SIMULATION state thyristor, which may be created from an npn and
pnp bipolar transistor.)

Computer-aided simulation is a powerful aid during the de- • The numerical methods used may place constraints on
sign or analysis of electronic circuits and semiconductor de- the form of the model equations used.
vices. While the main emphasis here is on analog circuits, the • There are small errors associated with the solution of the
same simulation techniques may, of course, be applied to digi- equations. These errors, which are usually referred to as
tal circuits (which are, after all, composed of analog circuits). truncation errors, are the result of discretizing the un-
The main limitation will be the size of these circuits because derlying differential equations using a finite number of
the techniques presented here provide a very detailed analy- time steps.
sis of the circuit in question and, therefore, would be too
costly in terms of computer resources to analyze a large digi- CIRCUITS AND NET LISTS
tal system.

It is possible to simulate virtually any type of circuit using Before we can consider simulation of a circuit, we must first
a program like SPICE. The programs have built-in elements consider how to represent a circuit in a way that the computer

can understand. This is most easily done using a netlist. Fig-for resistors, capacitors, inductors, dependent and indepen-
ure 1 shows the circuit for a simple differential pair. The cir-dent voltage and current sources, diodes, metal oxide semi-

conductor field-effect transistors (MOSFETs), junction field-
effect transistors (JFETs), bipolar junction transistors (BJT),
transmission lines, transformers, and even transformers with
saturating cores in some versions. Found in commercial ver-
sions are libraries of standard components that have all nec-
essary parameters prefitted to typical specifications. These li-
braries include items such as discrete transistors, op amps,
phase-locked loops, voltage regulators, logic integrated cir-
cuits, and saturating transformer cores.

Computer-aided circuit simulation is now considered an es-
sential step in the design of integrated circuits, because with-
out simulation the number of ‘‘trial runs’’ necessary to pro-
duce a working integrated circuit (IC) would greatly increase
the cost of the IC. Simulation provides other advantages,
however:

• The ability to measure ‘‘inaccessible’’ voltages and cur-
rents. Because a mathematical model is used, all volt-
ages and currents are available.
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• No loading problems are associated with placing a volt-
meter or oscilloscope in the middle of the circuit, with Figure 1. Circuit for differential pair.
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tions are then solved using several different numerical tech-
niques. The equations are constructed using Kirchhoff ’s volt-
age and current laws. The first system of equations pertains
to the currents flowing into each node. One equation is writ-
ten for each node in the circuit (except for the ground node),
so the following equation is really a system of N equations for
the N nodes in the circuit. The subscript i denotes the node
index.

V1 4 0 2V
V2 5 0 2V
V3 1 0 5V
R1 2 0 1k
R2 3 1 1K
R3 6 1 1K
Q1 3 4 2 m2n2222
Q2 6 5 2 m2n2222
.model m2n2222 NPN IS=1e-12 BF=100 BR=5 TF=100pS

Figure 2. Netlist for differential pair. 0 = FFFi = GGGi(VVV ) + ∂QQQi(VVV )

∂t
+WWWi(t) (1)

Variable V is an N-dimensional vector that represents the
cuit nodes are formed wherever two or more branches meet. voltages at the nodes. Variable Q is another vector that repre-
This particular circuit has seven nodes, which are numbered sents the electrical charge (in coulombs) at each node. The
zero to six. The ground or datum node is traditionally num- term W represents any independent current sources that may
bered as zero. be attached to the nodes and has units of amps. The function

The netlist of a circuit provides description of the topogra- G(V) represents the currents that flow into the nodes as a
phy of a circuit. Most circuit simulation programs take the result of the voltages V.
netlist as the starting point for the simulation. The netlist is For example, for the circuit of Fig. 3, which has two nodes,
really just a list of the branches (or elements) that make up we need to write two equations. At node 1:
the circuit along with the nodes to which they are connected.
Normally the elements may be entered in any order and each
has a unique name, a list of nodes, and either a value or 0 = (V1 − V2)/R1 + d(C1V1)

dt
+ I1

model identifier. For the differential amplifier of Fig. 1, the
We can clearly identify G1(V) as (V1 � V2)/R; the term Q1(V)netlist is shown in Fig. 2. The format used here corresponds
is C1V1 and W(t) is simply I1. Likewise, at node 2 we can writeto that used by SPICE. The first three lines define the three

voltage sources. The letter V at the beginning tells SPICE
0 = (V2 − V1)/R1 + V2/R2 + gmV1that this is a voltage source element. The list of nodes (two in

this case) is next followed by the value in volts. In SPICE for In this equation only G2(V) appears. In this example G and
two terminal elements, the positive node is listed before the Q were simple linear terms; however, in general they will be
negative node. The syntax for the resistor is similar to that of nonlinear functions of the voltage vector V.
the voltage source; the starting letter R in the names of the These equations are quite easy to assemble in an auto-
resistors tells SPICE that these are resistors. SPICE also un- mated fashion. Observe that each element that is attached to
derstands that the abbreviation k after a value means 1000. a node makes a contribution to either G, Q, or W for that
For the two transistors Q1 and Q2 the starting letter Q indi- node. To assemble the equation, we can use the following pro-
cates to SPICE a bipolar transistor. Q1 and Q2 each have three cedure:
nodes, and in SPICE the convention for their ordering is col-
lector, base, emitter. So for Q1 the collector is connected to
node 3, the base to node 4, and the emitter to node 2. The
final entry m2n2222 is a reference to the model for the bipolar
transistor. (Note that both Q1 and Q2 reference the same
model.) The .model statement at the end of the listing de-
fines this model. The model type is npn and a list of parame-
ter=value entries follows. These entries define the numeri-
cal values of constants in the mathematical models that are
used for the bipolar transistor.

From the schematic of a small circuit it is a trivial process
to generate the netlist. Simply assign each node on the sche-
matic a unique name (or integer value) and then create a list
of the elements in the circuit similar to Fig. 2. Most commer-

• For each element I{
• For each terminal j of the element I{

• Determine the node k to which
j is attached.

• if (k � 0) {
• Compute the current Ij

at terminal j and sum
into G

Gk � Gk � Ij

• Compute the charge at
terminal j and sum
into Qk

}}}
cial circuit simulation packages come with ‘‘schematic cap-
ture’’ software, which allows the designer to draw the circuit
by placing and connecting the elements with the mouse. The
inverse process of creating a pleasing schematic from the net-
list is much more difficult (and is the essence of the place and
route problem).

FORMULATION OF THE CIRCUIT EQUATIONS
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In circuit simulators like SPICE, the circuits are represented
by a system of ordinary differential equations. These equa- Figure 3. Example circuit for nodal analysis.
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The equations for modified nodal analysis can be assembled
on an element-by-element basis just as with nodal analysis.
The only difference is that with modified nodal analysis, we
need to add new equations and variables for each voltage
source or inductor.

ACTIVE DEVICE MODELS
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Most circuits of interest contain active devices like transistors
Figure 4. Circuit for modified nodal analysis. or diodes that act as amplifiers. These devices are normally

described by a set of nonlinear equations and can become very
complex. For our discussion we shall consider a simple modelFortunately, it is easy to determine the node that each termi-
for the bipolar transistor, the Ebers-Moll model. This modelnal is attached to from the netlist. The procedure outlined is
is one of the first that was developed, and while it is too sim-nodal analysis of a circuit.
ple for practical application it is useful for discussion.

A schematic of the Ebers-Moll model is shown in Fig. 5.
MODIFIED NODAL ANALYSIS The model contains three nonlinear voltage-dependent cur-

rent sources, Ic, Ibf, and Ibr and two nonlinear capacitances,
Normal nodal analysis, which sums the currents flowing into Cbe and Cbc. The currents flowing in the three current sources
each node, cannot be used to represent ideal voltage sources are given by the following equations:
or inductors. This is so because the branch current in these
elements cannot be expressed as a function of the branch volt-
age. To resolve this problem, loop equations are written
around each inductor or voltage source. Figure 4 shows an
example of this procedure. In this figure, the unknowns to be
solved for are the voltage V1 at node 1, the voltage V2 at node

Ic = Is(exp(Vbe/Vt) − exp(Vce/Vt))

Ibf = Is

Bf
(exp(Vbe/Vt) − 1)

Ibr = Is

Br
(exp(Vbc/Vt) − 1)

2, the voltage V3 at node 3, and the current flowing through
voltage source V1, which we shall call I(Vx), and the current

The voltages Vbe and Vbc are the voltages between base andflowing in the inductor L1, which we shall call I(L1). The sys-
emitter and the base and collector, respectively. Is, Bf, and Brtem of equations is
are three user-defined parameters that govern the dc opera-
tion of the BJT. Vt is the thermal voltage, or kT/q, which has
the numerical value of approximately 0.26 V at room temper-
ature. Observe that in the normal forward active mode,
where Vbe � 0 and Vce � 0, Ibr and the second term in Ic vanish
and the current gain of the BJT, which is defined as Ic/Ib,
becomes numerically equal to Bf. Likewise, in the reverse
mode, where Vce � 0 and Vbe � 0, the reverse gain (Ie/Ib) is

0 = V1/R1 + I(Vx)

0 = V2/R2 − I(Vx) + I(L1)

0 = V3/R3 − I(L1)

0 = V1 − Vx + V2

0 = V2 + d(L1I(L1))

dt
− V3

equal to Br.
The Ebers–Moll model has a number of shortcomings. Ob-Modified nodal analysis effectively creates as new system

serve that once we enter the forward mode, the current gainof equations that augments the original system produced by
is a constant Bf, which does not depend on the collector cur-nodal analysis. The second system pertains to the currents I
rent or base collector voltage. Real transistors do not behaveand magnetic flux � flowing in any voltage sources or induc-
this way. In real transistors as Vce becomes more negative,tors that may be present. These equations result from the
the base collector depletion region consumes more of the base,application of the Kirchhoff voltage law equations around any
producing a narrower base with and higher current gain (thevoltage sources or inductors in the circuit.
early effect). As a result, a plot of Ic versus Vce shows positive

0 = Fi = Hi(I) + d���i(I)
dt

+ Ei(t)

E(t) represents any independent voltages sources. In our ex-
amples, E(t) corresponds to the independent source Vx and the
magnetic flux � corresponds to the term L1I(L1).

The use of modified nodal analysis does have the disadvan-
tage of requiring that an additional equation be included for
each inductor or voltage source but has the advantage that
ideal voltage sources can be used. The total number of equa-
tions to be solved is therefore the number of nodes plus the
number of voltage sources and inductors. Modified nodal anal-
ysis has an additional advantage since it provides a method
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of determining currents flowing in certain branches via the
insertion of zero voltage sources that function as amp meters. Figure 5. The Ebers–Moll model for the bipolar transistor.
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sured IV and capacitance–voltage (CV) data taken from real
transistors using a fitting or optimization procedure. The
Gummel–Poon model, on the other hand, has more than 40
parameters that must be adjusted to get a good fit to data in
all regions of operation.

Models for MOS devices are even more complicated than
the bipolar models. Modeling the MOSFET is more difficult
than the bipolar transistor because it is often necessary to
use a different equation for each of the four regions of opera-
tion (off, subthreshold, linear, saturation) and the drain cur-
rent and capacitance are functions of three voltages (Vds, Vbs,
and Vgs) rather than just two (Vbe and Vce), as in the case of
the BJT. If the equations are to be accurate and result in good
convergence, the IV characteristics and capacitances must be

300 mA
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Ic(Q3)

Ib = 2.0 mA

Ib = 1.5 mA
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continuous and it is best if their first derivatives are continu-
Figure 6. Collector curves for 2N2222 generated using the Gummel- ous as well. Furthermore, many MOS models contain the
Poon model. width (W) and length (L) of the MOSFET channel as parame-

ters, and for the best utility the model should remain accurate
for many values of W and L. This property is referred to as

slope in a real device (the collector has finite output resis- ‘‘scalability.’’
tance; see Fig. 6). In the Ebers–Moll model, however, the Many commercial simulators contain other type of models
slope of the Ic versus Vce curve is zero and therefore the collec- besides the traditional R, L, C, MOS, and BJT devices. Some
tor resistance is infinite. Real devices also suffer gain degra- simulators contain ‘‘behavioral’’ models that are useful for
dation at low emitter injection (due to recombination) and at systems design or integration tasks; examples of these are
high injection due to base pushout, resulting in gain reduction integrators, multipliers, summation, and LaPlace operator
at both low and high collector current. Notice how the collec- blocks. Simulators may also contain prefitted models for com-
tor curves become compressed as the base current increases mercially available operational amplifiers and logic chips.
in Fig. 6. The Gummel–Poon model was created to address Some simulators allow ‘‘mixed mode’’ simulation, which is a
these problems and produces more accurate BJT current– combination of logic simulation (which normally allows only
voltage (IV) characteristics. a few discrete voltage states) with conventional circuit simu-

The two capacitances in Fig. 5 contribute charge to the lation.
emitter, base, and collector, and this charge is given by the
following equations:

TYPES OF ANALYSIS

For analog circuits there are three commonly used methods
of analysis: dc, ac, and transient analysis. The dc analysis is
used to examine the steady-state operation of a circuit (that

Qbe = τf Is(exp(Vbe/Vt) − 1) + Cje

∫ Vbe

0
(1 − V/Vje)

−me dv

Qbc = τr Is(exp(Vbc/Vt) − 1) + Cjc

∫ Vbc

0
(1 − V/Vjc)

−mc dv
is, what the circuit voltages and currents would be if all in-
puts were held constant for an infinite time). The ac analysis

Qbe contributes positive charge to the base and negative
(or sinusoidal steady state) examines circuit performance in

charge to the emitter. Qbc contributes positive charge to the
the frequency domain using phasor analysis. Transient analy-

base and negative charge to the collector. The first term in
sis is analysis in the time domain and is the most computa-

each charge expression is due to charge injected into the base
tionally intensive of the three.

from the emitter for Qbe and from the collector into the base
for Qbc. Observe that the exponential terms in the charge
terms are identical to the term in Ic. This is so because the DC (STEADY-STATE) ANALYSIS
injected charge is proportional to the current flowing into the
transistor. The terms �f and �r are the forward and reverse The dc analysis calculates the state of a circuit with fixed

(non-time-varying) inputs after an infinite period of time.transit times and correspond to the amount of time it takes
the electrons (or holes) to cross the base. The second terms in Such analysis is useful to determine the operating point (Q-

point) of a circuit, power consumption, regulation and outputthe charge expression (the term with the integral) correspond
to the charge in the depletion region of the base-emitter junc- voltage of power supplies, transfer functions, noise margin

and fanout in logic gates, and many other types of analysis.tion for Qbe and in the base-collector junction for Qbc. Recall
that the depletion width in a pn junction is a function of the In addition, dc analysis is used to find the starting point for

ac and transient analysis. To perform the analysis, the simu-applied voltage. The terms Vje and Vjc are the ‘‘built-in’’ poten-
tials with units of volts for the base-emitter and base-collector lator assembles the circuit equations as usual but removes

the time-dependent terms from the equations (sets them tojunctions. The terms mc and me are the grading coefficients
for the two junctions and are related to how rapidly the mate- zero). This procedure is equivalent to replacing all the capaci-

tors with open circuits and replacing all the inductors withrial changes from n-type to p-type across the junction.
This ‘‘simple’’ model has eleven constants—Is, Bf, Br, Cje, short circuits.

Now we need a method to solve the system of equations.Cjc, Me, Mc, Vje, Vjc, Tf, and Tr—that must be specified by the
user. Typically these constants would be extracted from mea- Unfortunately, since the circuit elements will be nonlinear in
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most cases, a system of transcendental equations will nor- For the small circuit of Fig. 3, analyzed in steady state
(without the capacitor), the Jacobian entries aremally result and it is therefore impossible to solve the system

analytically. We therefore resort to a numerical procedure,
and the method that has met with the most success is New-
ton’s method or one of its derivatives.

J1,1 = 1/R1 J1,2 = −1/R1

J2,1 = −1/R1 + gm J2,2 = 1/R1 + 1/R2

Newton’s Method For a passive circuit (i.e., a circuit without gain), the Jacobian
will be symmetric and for any row the diagonal entry will beNewton’s method is actually quite simple. The problem is to
greater than the sum of all the other entries.solve the system of equations F(X) � 0 for X, where both F

Newton’s method converges quadratically provided thatand X are vectors of dimension N. F is the system of equa-
the initial guess X i is sufficiently close to the true solution.tions from modified nodal analysis and X is the vector of volt-
Quadratically it implies that if the distance between X i andages and current to be solved for. Newton’s method states
the true solution is d, then the distance between X i�1 and thethat given an initial guess for X i we can obtain a better guess
true solution will be d2. Of course, this assumes that d isX i�1 from the equation
small to start with. Still, programs like SPICE may require
50 or more iterations to achieve convergence because oftenXXX i+1 = XXX i − [JJJ(XXX i)]−1FFF(XXX i) (2)
the initial guess is poor and quadratic convergence is not ob-

Note that all terms on the right side of the equation are func- tained until the last few iterations. There are additional com-
tions only of the vector X i. The term J(X) is an N by N square plications, such as the fact that the model equations can be-
matrix of partial derivatives of F called the Jacobian. Each come invalid for certain voltages. For example, the BJT model
term in J is given by will ‘‘explode’’ if a junction is forward biased by more than 1

V since exp(1/Vt) � 5e16. Special limiting or damping meth-
ods must be used to keep the voltages and currents to within
reasonable limits. (See the section on Convergence Issues.)

JJJi, j = ∂Fi(X )

∂Xj

The Jacobian matrix for the circuit is assembled at the same
EXAMPLE SIMULATIONtime as the circuit equations. Normally analytic derivatives

are used; however, some simulators use numeric derivatives
Most circuit simulators allow the user to ramp one or morevia divided differences instead. This is referred to as the se-
voltage sources and plot the voltage at any node or the cur-cant method.
rent in certain branches. Returning to the differential pair ofThe �1 in Eq. (2) indicates that it is necessary to invert
Fig. 1, we can perform a dc analysis by simply adding a .dcthe Jacobian matrix before multiplying by the vector F. Of
statement (see Fig. 7). The format for the dc statement is:course, we do not need actually to invert J to solve the prob-

lem; we only need to solve the linear problem F � YJ for the
.dc Vname start stop stepvector Y and then calculate Xi�1 � Xi � Y. A direct method

such as lower-upper triangular (LU) decomposition is usually
where Vname is the source to be swept and the start, stop, andemployed to solve the linear system. More details on the
step parameters control the sweep. For the circuit to be validstructure of J and the inversion process are given later in the
for dc analysis:section on the Jacobian matrix structure. The equation as-

sembly procedure including the Jacobian matrix becomes
• A dc path to ground must exist from every node in the

circuit
• No loops of voltage sources may exist
• No cuts of current sources may exist
• Each node must be connected to at least 2 elements

A plot of the differential output voltage (between the two
collectors) and the voltage at the two emitters is shown in

V1 4 0 2V
V2 5 0 2V
V3 1 0 5V
R1 2 0 1k
R2 3 1 1K
R3 6 1 1K
Q1 3 4 2 m2n2222
Q2 6 5 2 m2n2222
.model m2n2222 NPN IS=1e-12 BF=100 BR=5 TF=100pS
.dc V1 1.0 4.0 0.01

Figure 7. Input file for dc sweep of V1.

• For each element n{
• For each terminal j of the element n{

• Determine the node k to which
j is attached.

• if (k � 0){
• Compute the current at j

and sum into Gk

• For each terminal I of
the element n{

• Compute the de-
rivative for the
element:

gj,l=
�Ij

�Vl

• Find the node m
which is attached
to terminal I

• Sum in the Jacob-
ian contribution:

Jk,m=Jk,m+gj,l

}}}}
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point. Therefore, before we can solve the ac problem, we must
calculate the dc bias point. Rearranging terms slightly, we
obtain

VVV ac = −(JJJ + jωCCC)−1WWWac

The solution at a given frequency can be obtained from a
single matrix inversion. The matrix, however, is complex but
normally the complex terms share a sparsity pattern similar
to the real terms. (See the section on the Jacobian structure.)
It is normally possible (in FORTRAN and C��) to create a
suitable linear solver by taking the linear solver that is used
to calculate the dc solution and substituting ‘‘complex’’ vari-
ables for ‘‘real’’ variables. Since there is no nonlinear itera-

6.0 V

1.0 V
2.0 V 4.0 V

Output

Emitters

0 V

V(6) V(2) tion, there are no convergence problems and ac analysis is
straightforward and foolproof. The same type of analysis canFigure 8. Output from dc analysis.
be applied to the equations for modified nodal analysis. The
additional unknowns will, of course, be currents flowing
through the voltage sources:

Fig. 8. Observe that the output voltage is zero when the
IIIac = −(JJJ + jωLLL)−1EEEacdifferential pair is ‘‘balanced’’ with 2.0 V on both inputs.

The output saturates at both high and low values for V1,
The only things that must be remembered with ac analysisillustrating the nonlinear nature of the analysis. This simu-

are the following:lation was run using the PSPICE package from MicroSim
corporation. The simulation runs in a few seconds on a type

1. The ac solution is sensitive to the Q-point, so if an am-486 PC.
plifier is biased near its saturated dc output level the
ac gain will be smaller than if the amplifier were biased

AC ANALYSIS near the center of its range.
2. This is a linear analysis, and therefore ‘‘clipping’’ and

The ac analysis is performed in the frequency domain under slew rate effects are not modeled. For example, if a 1 V
the assumption that all signals are represented as a dc com- ac signal is applied to the input of a small signal ampli-
ponent Vdc plus a small sinusoidal component Vac. fier with a gain of 100 and a power supply voltage of 5

V, ac analysis will predict an output voltage of 100 V.
V = Vdc + Vac exp( jωt) This is, of course, impossible since the output volt-

age cannot exceed the power supply voltage of 5 V.
Here j � ��1, � is the radial frequency (2�f ), and Vac is a Transient analysis should be used to include these
complex number. Expanding Eq. (1) about the dc bias point effects.
Vdc (also referred to as the Q-point), we obtain

AC ANALYSIS EXAMPLE

In the following example we will analyze the differential pair
using ac analysis to determine its frequency response. To per-
form this analysis in SPICE we need only specify which

FFF(VVV ) = FFF(VVV dc) +WWWdc +WWWac + ∂GGG(VVV dc)

∂∇∇∇dc
VVV ac

+ ∂

∂t

�
∂QQQ(VVV dc)

∂VVV dc

�
VVV ac + αVVV 2

ac

sources are the ac driving sources (by adding the magnitude
The series has an infinite number of terms; however, if Vac is of the ac signal at the end) and specify the frequency range
sufficiently small, all terms above first order can be neglected. on the .AC statement (Fig. 9). SPICE lets the user specify
The first two terms on the right-hand side are the dc solution
and when taken together yield zero. The third term Wac is the
vector of independent ac current sources that drive the cir-
cuit. The partial derivative in the fourth term is the dc Jacob-
ian element and the derivative of Q in parentheses is the ca-
pacitance at the node. When we substitute the exponential
into the preceding equation each term will have an exponen-
tial term that can be canceled. The result of all these simpli-
fications is the familiar result

0 = WWWac + JVJVJV ac + jωCVCVCV ac

This equation contains only linear terms that are equal to the

V1 4 0 2V AC 1
V2 5 0 2V
V3 1 0 5V
R1 2 0 1k
R2 3 1 1K
R3 6 1 1K
Q1 3 4 2 m2n2222
Q2 6 5 2 m2n2222
.model m2n2222 NPN IS=1e-12 BF=100 BR=5 TF=100pS
.AC DEC 10 1e3 1e9

Figure 9. Input file for ac analysis.partial derivatives of the original problem evaluated at the Q-
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the range as linear or ‘‘decade,’’ indicating that we desire a
logarithmic frequency scale. The first number is the number
of frequency points per decade, the second number is the
starting frequency, and the third is the ending frequency.

Figure 10 shows the results of the analysis. The gain be-
gins to roll off at about 30 MHz due to the parasitic capaci-
tances within the transistor models. The input impedance
(which is plotted in kilohms) begins to roll off at a much lower
frequency. The reduction in input impedance is due to the
increasing current that flows in the base-emitter capacitance
as the current increases. SPICE does not have a method of
calculating input impedance, so we have calculated it as Z �
Vin/I(Vin), where Vin � 1.0, using the postprocessing capability
of PSPICE. This analysis took about 2 s on a 486-type PC.

Noise Analysis

Output noise

Input noise

20 nV

0 V
1.0 kHz 1.0 MHz 1.0 GHz

V(INOISE) V(ONOISE)

Frequency

Noise is a problem in circuits that are designed for the ampli- Figure 11. Noise referenced to output and input.
fication of small signals, like the radio frequency (RF) and
intermediate frequency (IF) amplifiers of a receiver. Noise is

There are other types of noise that occur in diodes and tran-the result of random fluctuations in the currents that flow in
sistors (examples are flicker and popcorn noise). Noisethe circuit and is generated every circuit element. In circuit
sources, in general, are frequency dependent.simulation, noise analysis is an extension of ac analysis. Dur-

Noise signals will be amplified or attenuated as they passing noise analysis it is assumed that every circuit element
through different parts of the circuit. Normally, noise is refer-contributes some small noise component, either as a voltage
enced at an output point called the ‘‘summing node.’’ ThisVn in series with the element or as a current In across the
would normally be the output of the amplifier where we wouldelement. Since the noise sources are small in comparison with
actually measure the noise. The gain between the summingthe dc signal levels, ac small-signal analysis is an appropriate
node and the current flowing in an element j in the circuit isanalysis method.
defined as Aj( f ). Here f is the analysis frequency since thisDifferent models have been developed for the noise
gain will normally be frequency dependent.sources. In a resistor thermal noise is the most important

Noise signals are random and uncorrelated to each other,component. Thermal noise is due to the random motion of the
so their magnitudes must be root-mean-square summedelectrons:
rather than simply summed. Summing all noise sources in a
circuit yieldsI2

n = 4kT� f
R

where T is the temperature, k is Boltzmann’s constant, and In( f ) =
�∑

j

A2
j ( f )I2

j ( f )

�f is the bandwidth of the circuit. In a semiconductor diode
shot noise is important. Shot noise is related to the probabil-

It is also common to reference noise back to the amplifier in-ity that an electron will surmount the semiconductor barrier
put, and this is easily calculated by dividing the precedingenergy and be transported across the junction:
expression by the amplifier gain. Specifying noise analysis in
SPICE is simple. All the user needs to do is add a statementI2

n = 2qId� f
specifying the summing node and the input source. SPICE
then calculates the noise at each as a function of frequency

.noise V(6) V1

See Fig. 11 for example output. Many circuit simulators will
also list the noise contributions of each element as part of the
output. This is particularly helpful in locating the source of
noise problems.

TRANSIENT ANALYSIS

Transient analysis is the most powerful analysis capability
because the transient response of a circuit is so difficult to
calculate analytically. Transient analysis can be used for
many types of analysis, such as switching speed, distortion,
and checking the operation of circuits like logic gates, oscilla-

15

0
1.0 KHz 1.0 MHz 1.0 GHz

V(6) 0.001/I(V1)

Input
impedance

Gain

Frequency

tors, phase-locked loops, or switching power supplies. Tran-
sient analysis is also the most CPU (central processing unit)Figure 10. Gain and input impedance calculated by ac analysis.
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intensive and can require 100 or 1000 times the CPU time of
dc or ac analysis.

Numerical Integration Methods

In transient analysis time is discretized into intervals called
timesteps. Typically the timesteps are of unequal length, with
the smallest steps being taken during intervals where the cir- 2 C Vc′

h

h
2C

Ic

Vc Ic′
+

–

+

–

cuit voltages and current are changing most rapidly. The fol-
lowing procedure is used to discretize the time-dependent Figure 12. Electrical model for a capacitor. The two current sources
terms in Eq. 1. are independent sources. The prime indicates values from preceding

Time derivatives are replaced by difference operators, the time point.
simplest of which is the forward difference operator (also
known as the forward Euler method):

itor is shown in Fig. 12. Therefore, the solution of the tran-
sient problem is, in effect, a series of dc solutions, where the∂Q(tk)

∂t
= Q(tk+1) − Q(tk)

h values of some of the elements depend on voltages from the
previous time points.

where the timestep h is given by The procedure for transient analysis is as follows:

h = tk+1 − tk

This equation is easily solved for the charge Q(tk�1) at the next
time point:

QQQ(tk+1) = QQQ(tk) − h(GGGi(VVV (tk)) +WWWi(tk))

using only values from past time points. This means that it
would be possible to solve the system simply by plugging in
the updated values for V each time. This can be done without
any matrix assembly or inversion and appears to be very effi-
cient. (Note that for simple linear capacitors, V � Q/C at
each node, so it is easy to get V back from Q). However, this
approach is undesirable for circuit simulation for two reasons:
(1) The charge Q, which is a ‘‘state variable’’ of the system, is
not a convenient choice since some nodes may not have capac-
itors (or inductors) attached, in which case they will not have
Q values; (2) a more serious problem is that forward (or ex-
plicit) time discretization methods like this one are unstable
for ‘‘stiff ’’ systems, and most circuit problems result in stiff
systems. The term stiff system refers to a system that has
greatly varying time constants.

To overcome the stiffness problem, we must use implicit
time discretization methods, which in essence means that the
G and W terms in the preceding equations must be evaluated
at tk�1. Since G is nonlinear we will need to use Newton’s
method once again.

The most popular implicit method is the trapezoidal
method. The trapezoidal method has the advantage of only
requiring information from one past time point, and further-
more it has the smallest error of any method requiring one
past time point. The trapezoidal method states that if Ic is the
current in a capacitor, then

I(tk+1 )

c = ∂Q
∂t

= 2
Q(Vc(tk+1)) − Q(Vc(tk))

tk+1 − tk
− Ic(tk)

• Compute dc solution to provide initial condi-
tions

• Repeat until (t›tstop){
• Compute time step h based on LTE
• Repeat until converged{

• For each element n{
• For each terminal j of the ele-
ment n{

• Determine the node k to
which j is attached.

• if (k›0){

• Compute Ick+1
j =

2
h

(Qj(V(tk�1))-Qj(V(tk)))
• Sum into current vector:
Fm=Ij+Ick+1

j -Ick
j+Wj(tk+1)

• Compute the current at
terminal j and sum into
Gk

• For each terminal I of
the element n {
• Compute the derivative
for the element:

gj,l=
�Ij(V(tk))

�Vl

+
2
h

�Qj(V(tk))

�Vl

• Find the node m which
is attached to terminal
I

• Sum in the Jacobian
contribution:

Jk,m=Jk,m+gj,l

}}}
Solve X=JF
V=V-X

}
t=t+h
}

All modern circuit simulators feature automatic timestepTherefore, we need only substitute the preceding equation
into Eq. (1) to solve the transient problem. control. This feature selects small timesteps during intervals

where changes are occurring rapidly and large timesteps inObserve that we are solving for the voltages V(tk�1), and all
terms involving tk are constant and will not be included in the intervals where there is little change. The most commonly

used method of timestep selection is based on the local trun-Jacobian matrix. An equivalent electrical model for the capac-
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large (say, five times the error criteria) the simulator will re-
duce the timestep (usually by 1/2) and go back and recompute
the point. In addition, most simulators select time points so
that they coincide with the edges of pulse-type waveforms.

TRANSIENT ANALYSIS EXAMPLES

As a simple example, we return to the differential pair and
apply a sine wave differentially to the input (Fig. 13). The
amplitude (2 V peak to peak) is selected drive the amplifier
into saturation. In addition, the frequency (50 MHz) is set
high enough to see phase shift effects. The output signal is
therefore clipped due to the nonlinearities and shifted in
phase due to the capacitive elements in the transistor models.

3.0 V

–2.0 V
0 s 20 ns 40 ns 60 ns

V(6,3) V(6,3)
Time

The first cycle shows extra distortion since it takes time for
Figure 13. Transient response V(6,3) of differential amplifier to si-

the ‘‘zero-state’’ response to die out. This simulation runs innusoidal input at V(4,5).
about a second on a type-486 computer.

As a final example, a phase-locked loop (PLL) circuit,
which is used as a 4	 frequency multiplier, is simulated.Thiscation error (LTE) for each timestep. For the trapezoidal rule,
circult is shown in Fig. 14 and includes digital, analog, andthe LTE is given by
behavioral components. This particular circuit is designed
primarily to illustrate the capabilities of simulation. Phase-
locked loops are difficult circuits to simulate since they canε = h

12
d3x
dt3 (ξ )

have greatly varying frequency components. The input to the
circuit is a 1 MHz signal (at node 1) and the output is a 4and represents the maximum error introduced by the trape-
MHz signal at node 9. Phase-locked loops have three mainzoidal method at each timestep. The trapezoidal method is
components: a voltage controlled oscillatory (VCO), a phasea second-order method since the error is proportional to the
detector, and a loop filter. In this circuit the VCO is made uptimestep cubed. The LTE for a time point can only be com-
of a summer, an integrator, and a ideal sine element, whichputed after the solution at that point is known. LTE timestep
simply computes the sine of its input. Resistors R2 and R3control methods calculate the timestep for the next time point
form a voltage divider and set the voltage at node 8 to 2.5 V.from the LTE at the preceding time point by assuming that
The signal at node 9 of the VCO is thereforethe error 
 at each step to be as close to a certain small fixed

value (usually 0.1%) as possible.

h =
�

12ε

/
d3x
dt3

V (9) = sin
�

107 ×
∫ t

0
(V (5) + 2.5) × dt

�

= sin(107 × (V (5) + 2.5) × t)

and V(5) is the VCO control voltage. Note that PSPICE gener-(We are assuming that the required h does not change much
from timestep to timestep.) If, after computing the solution at ates the integrator from a capacitor, a voltage-controlled cur-

rent source (G) and a voltage-controlled voltage source (E).a new time point, we find that the LTE at that point is very
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Figure 14. Phase-locked loop circuit.
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to convert the analog input to a digital input and the digital
output to an appropriate analog signal.

Figure 16 shows the signal from output of Summer S1. The
PLL capture transient can be seen. Since the signals at V(1)
and V(7) are initially out of phase and at slightly different
frequencies, it takes some time for the PLL to lock onto the
input signal. The ‘‘noise’’ on V(4) is the high-frequency output
from the multiplier (V(1)�V(7)). The PLL simulation requires
about 5 min of CPU time on a type-486 computer.

CONVERGENCE ISSUES

Considering that a circuit can contain thousands of nodes re-
quiring the solution of thousands of simultaneous nonlinear
equations, it is amazing that Newton’s method can converge

45   s

U9A:QA
U9A:QC
U9A:QD

20$AtoD

4.0 V

–3.0 V
40   sµ µ µ50   s

 V(7) V(1)*5
Time

Sel>>

at all. Unfortunately, there are many cases when Newton’s
Figure 15. Outputs from the PLL simulation.

method needs help and we will address a few methods here.
Many convergence problems are caused by an initial guess

that lies far from the true solution. One way of improving the
initial guess is through projection. Projection does just as itsThe network of Q1, R4, R5, and R6 is an overdriven amplifier
name implies and uses two previous solutions to calculate anthat converts the sinusoidal signal at V(9) into a square wave
initial guess. In time-dependent simulations we can use thefor driving U9A. Integrated circuit U9A is a 4-bit binary
following linear projection:counter. Voltage source V(3) applies a pulse at the start of the

simulation to UA9’s Clear (CLR) input to zero the counters.
Since the output is taken at Qb, the signal at V(7) is at one
fourth the frequency of V(9). The ‘‘free running’’ frequency of

V i+1 = V i + (V i − V i−1)(ti+1 − ti )

ti − ti−1

the signal at V(7) is therefore 2.5
7/2� or 0.9947 MHz. The
Higher-order methods can also be used, but linear projectiondigital output at V(7) has Vh � 3.6 V and VI � 0.2 V. Summer
is the safest. A variant method uses the Jacobian matrix andS2 is therefore used to shift the dc value of V(7) back to zero
has the advantage that it can be used when only one pastvolts for application to the phase detector. The phase detector
solution is available, but it is more work to program and com-is a simple ideal multiplier (M1). The low-pass loop filter is
pute:made up of resistor R1 and capacitor C1.

The output from the PLL simulation is shown in Figs. 15
and 16. Figure 15 shows waveforms from the last 10 �s of the V i+1 = V i + J(V i )−1 ∂F

∂t
(ti+1 − ti )

50 �s simulation. The bottom figure shows the signal from
U9A (the binary counter and the input signal at node 1). It

Projection can also be used for calculating dc solutions bycan be seen that the two signals are locked in phase as they
combining it with the continuation method, discussed next.should be. The top figure shows the digital waveforms at in-

Computing the first dc solution to a fully powered is a dif-put and outputs of U9A. It can be seen that the binary
ficult task. It would be much easier if we could start fromcounter is operating correctly. The model for U9A is a digital
some known solution and gradually move to the true solution.block with ‘‘high,’’ ‘‘low,’’ and ‘‘undetermined’’ signal levels
Techniques that do this are referred to as continuation meth-rather than analog signal levels (The U9A model contains no
ods. A common method is source stepping, which in effecttransistors.) Using digital models is much faster than using
ramps up the power supplies and gradually turns the circuitthe analog equivalent (which in this case would require close
on. The method is as follows:to 100 transistors). The ability to mix analog and digital

blocks is known as ‘‘mixed-mode’’ simulation. Special conver-
Source Stepping Algorithmsion operators are applied at the inputs and outputs of U9A
1. Modify all independent voltage and current sources so

that their value is the original value multiplied by the
continuation constant ki. Here the superscript i is the
continuation iteration counter.

2. Start with k0 � 0 so that all independent voltage and
current sources set to zero. The solution to this problem
will be that all voltages and currents everywhere must
also be zero.

3. Set k1 � 0.1 or other small number and solve using the
solution from step k0 as the initial guess.

4. If the Newton sequence converges, set i � i � 1, in-
crease k, and solve again using the solution from ki�1 as

2.3 V

2.6 V

0 s

V(4)

Time
50   sµ

the initial guess. If the Newton sequence does not con-
verge, reduce k to a smaller value (usually (ki �Figure 16. PLL output from loop filter.
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ki�1)/2) and try again. The projection techniques de-
scribed previously can be applied simply by replacing t
with k.

5. Repeat step 4 until k � 1, at which point all the depen-
dent voltage and current sources will be at their cor-
rect values.

While it would appear that this method should be fool-
proof, it can be shown that source stepping will fail for certain
circuits. Consider a circuit consisting of a voltage source driv-

R2

2

1

1

2

0

3

0 0

R1

M3 M4 Vdd

M1 M2

ing an element with an IV characteristic similar to that of Figure 18. Two badly conditioned circuits.
Fig. 17. The locus of solutions is the intersection of the verti-
cal line in the figure with the curve. Convergence would typi-
cally fail at point A since the solution jumps abruptly to point

all nodal voltages are set to zero (as we would do for sourceB. The only way to proceed beyond point A is to convert the
stepping), all the MOS devices would be biased with Vgs � 0voltage source to a current source and continue on by step-
or Vgs � Vth (i.e., in the off state). In many MOS models, if theping in current. This would, in effect, change the vertical line
device is off, the drain current and the drain conductanceto a horizontal line, in which case there are no abrupt transi-
(�Id/�Vds) are zero. This causes node 1 to be isolated andtions.
causes bad conditioning, which can make it impossible to findThere is no method of solving nonlinear equations that is
a solution.always guaranteed to work. A particularly serious conver-

Observe that improving the initial guess will not help ingence problem is caused by bad conditioning of the Jacobian.
the case of convergence failure due to bad conditioning. A pos-A matrix is badly conditioned if its determinate is close to
sible solution might be to improve the accuracy of the linearzero. Since the inverse of a matrix is related to the inverse
solver by the use of pivoting or scaling schemes, but there isof its determinate, if the Jacobian is badly conditioned small
usually a CPU penalty involved. A common solution is to con-changes in F(V) result in very large changes in V, which can
nect a small conductance from every node of the circuit tomake convergence difficult. Bad conditioning results from
ground, thereby eliminating isolated nodes. However, if thenodes that are isolated or nearly isolated. Consider the circuit
conductance is made too large, it effectively alters the circuit,in Fig. 18, which contains two resistors. The Jacobian ma-
which can produce incorrect results (in SPICE this conduc-trix is
tance is referred to as Gmin). For the CMOS circuit, once the
circuit is biased at full power, at least one of the MOSFETs
will be in the conducting state and node 1 will no longer be

1/R1 −1/R1

−1/R1 (1/R1 + 1/R2)

isolated. This suggests that if we use the source-stepping al-
gorithm, we could use a large conductance during the earlyAs R2 approaches infinity, the two rows become identical and
phase when k is small and nodes may be isolated and gradu-(or, more precisely, linearly dependent) and the determinate
ally reduce Gmin as k approaches 1. Note, however, that somethat is 1/(R1R2) becomes zero. Another way of looking at the
CMOS circuits (for example, those containing a transmissionproblem is that with infinite R2, R2 disappears and nodes 1
gate) can have isolated nodes even with full power applied.and 2 can be assigned any voltage (as long as both are the

same) and a valid solution will result.
An example of a real circuit that exhibits bad conditioning

THE JACOBIAN MATRIX STRUCTURE AND LINEAR SOLUTIONis the CMOS logic gate shown in Fig. 18. Node 1 is attached
to the gates of the second invertor and the drains of the first.

The form of the Jacobian matrix of a circuit depends on howIn a dc simulation, the MOSFET gates that have only capaci-
the nodes are connected by the circuit elements. Each elementtance function as an open circuit. If the power supplies and
introduces a ‘‘dependency’’—that is, if an element connects
node i to node j then the current at node j depends on the
voltage at node i and vice versa. Therefore, an element Ji, j

will be nonzero only when there is an element connected be-
tween nodes i and j.

The exception to this rule are the diagonal entries that in-
dicate how the current at a node depends on its own voltage.
In most cases, the diagonal entries will be nonzero. A circuit
element with two terminals such as a resistor or capacitor
will make four nonzero contributions to the Jacobian matrix.
If the resistor is connected bewteen nodes i and j, it will con-
tribute a conductance of �G � �1/R to the Jacobian entries
Ji, j and Jj,i and will contribute G � 1/R to the diagonal entries
Ji,i and Jj, j. An element with three terminals, like a bipolar
transistor, will contribute to nine entries in the Jacobian

Current I

Voltage V

B

A

(three on the diagonal), and a MOSFET with four terminals
will contribute to 16 Jacobian entries.Figure 17. A case that will not converge.
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Most circuits do not have elements connecting every node And the back solve is
to every other node. Typically, as circuits grow larger the ra-
tio of connections at each node to the number of total nodes
becomes smaller. As a result in most circuits the Jacobian
matrix is very sparse, meaning that most of its entries are
zero. Due to this sparseness, the number of nonzero elements
normally depends linearly on the number of total nodes
rather than quadratically, as would be expected for a full ma-

for (i=n to 2){
b(i)=b(i)/a(i,i)
for (j=1 to i-1) {

b(j)=b(j)-a(j,i)b(i)
}

}
b(1)=b(1)/a(1,1)

trix. Circuit simulation programs employ a sparse matrix
The forward and back solve are also done ‘‘in place’’ so thatstorage system that only stores the nonzero elements. Typical
when the process is finished, x resides in b. Observe that thesystems use three vectors. The first vector A contains the
decomposition step can result in the creation of nonzerofloating-point nonzero entries in the matrix. The second vec-
entries where previously there were zeros [For example, iftor IA contains the integer row indices. The third vector JA
a(i, j) � 0 but a( j, i) and a(i, k) are not zero.] These newlycontains pointers to the location of the start of each column
generated elements can generate additional nonzero ele-in IA. Consider the following example matrix:
ments, causing the nonzeros to propagate. This process is
referred to as creating ‘‘fill’’ and occurs only within the
bandwidth of the matrix A (i.e., new nonzeros are generated
only at locations between existing elements in A and the
diagonal). The fill terms can increase the computer memory
and CPU requirements. Fortunately, the bandwidth of the

1.0 3.0 0 0
0 4.0 0 9.0
0 0 7.0 6.0

5.0 0 0 8.0
matrix and resulting fill can be reduced by proper reorder-
ing of the circuit equations. The number of nonzero entriesThe vector A contains [1.0, 5.0, 3.0, 4.0, 7.0, 9.0, 6.0, 8.0]. The
in the Jacobian and result of the solution is independentvector IA contains [1, 4, 1, 2, 3, 2, 3, 4], and JA contains [1,
of how the nodes are numbered (assuming ideal arithmetic),3, 5, 6, 9]. There are other storage systems (for example, some
but the locations of the nonzero entries will depend onprograms store the matrix row wise rather than column wise;
the node ordering. A number of algorithms exist for thisit is also common to store the diagonal entries in a separate
renumbering process.floating-point array or force the matrix to be symmetric by

Double precision arithmetic is used throughout most cir-padding with zeros and then only use pointers to the upper
cuit simulators. In some cases it may be desirable to use par-1/2).
tial pivoting to improve the accuracy of the linear solution.Solving the linear problem Ax � b for a full matrix is nor-
Recent research has focused on the use of iterative linearmally performed using the LU decomposition followed by for-
solvers instead of the directed solver, which was outlined pre-ward and back solve operations. The LU decomposition fac-
viously. The simplest of these is Gauss-Sidel, but modern ver-tors the matrix A into the product of two matrices L and U.
sions often used preconditioned gradient or minimizationL is lower triangular, meaning that all entries above the diag-
techniques. Iterative solvers may be faster, more accurate,

onal are zero. U is upper triangular meaning that all its en-
and use less memory than the direct solver but can introduce

tries below the diagonal are zero. Thus Ax � b becomes additional convergence problems of their own since now iter-
LUx � b or Ly � b followed by Ux � y. Since L and U are action is involved in the linear as well as nonlinear solution.
triangular, these are easy to solve. The code for a full matrix Iterative solvers are often more sensitive to bad conditioning
is easy to program for the LU decomposition: of the Jacobian matrix than the LU decomposition.

FAST SIMULATION METHODS

As circuits get larger simulation times become longer. In ad-
dition, as integrated circuit feature sizes shrink, second-order
effects become more important, and many circuit designers
would like to be able to simulate large digital systems at the
transistor level (requiring 10,000 to 100,000 nodes). Numeri-
cal studies in early versions of SPICE showed that the linear

for(i=1 to n-1 ) {
for(j=i+1 to n) {

a(j,i)=a(j,i)/a(i,i)
}
for(j=i+1 to n) {

for(k=i+1 to n) {
a(j,k)=a(j,k)-a(j,i)*a(i,k)

}
}

}
solution time could be reduced to 26% for relatively small cir-
cuits with careful coding. The remainder is used during theThe preceding code is Dolittle’s method and computes the LU
assembly of the matrix, primarily for model evaluation. Thedecomposition ‘‘in place,’’ meaning that the computes L and
same studies found that the CPU time for the matrix solutionU are written over the original elements in A. The forward
was proportional to n1.24, where n is the number of nodes. Thesolve is
matrix assembly time, on the other hand, should increase lin-
early with node count. Circuits have since grown much big-
ger, but the models (particularly for MOS devices) have also
become more complicated.

Matrix assembly time can be reduced by a number of
methods. One method is to simplify the models; however, ac-

for(i=1 to n-1) {
for (j=i+1 to n) {

b(j)=b(j)-a(j,i)b(i)
}

}
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curacy will be lost as well. A better way is to precompute the individual nodal waveforms are consistent with each other
(global convergence):charge and current characteristics for the complicated models

and store them in tables. During simulation the actual cur-
rent and charges can be found from table lookup and interpo-
lation, which can be done quickly and efficiently. However,
there are some problems:

1. To ensure convergence of Newton’s method, both the
charge and current functions and their derivatives must
be continuous. This rules out most simple interpolation
schemes and means that something like a cubic spline

Iterate on j global convergence is obtained{
for node i=1 to n{

for timepoint k=1 to m{
Iterate on l until con-
vergence is obtained{

Vl
i(k,j)=Vl-1

i (k,j)

-
Wi(V1(k,j-1),V2(k,j-1);Vl-1

i (k,j),Vn(k,j-1))

�W/�Vi(k,j)
}}}}

must be used. Observe that the innermost loop (on l) uses Newton’s
method to solve the nonlinear equation. However, only a sin-2. The tables can become large. A MOS device has four
gle variable is solved for. In addition, W and its derivative areterminals, which means that all tables will be functions
functions only of (Vl�1

i (k, j)); all the other terms are constantof three independent variables. In addition, the MOS-
during iteration on l. Waveform relaxation is extremely effi-FET requires four separate tables (Id, Qg, Qd, Qb). If we
cient as long as the number of outer loops (on j) is small. Theare lucky, we can account for some parametric varia-
number of iterations of j will be small if the equations aretions (like channel width) by a simple multiplying fac-
solved in the correct order (that is, starting on nodes that aretor. However, if there are more complex dependencies,
signal sources and following the direction of signal propaga-as is the case with channel length, oxide thickness, tem-
tion through the circuit). This way the waveform at node i �perature, or device type, we will need one complete set
1 will depend strongly on the waveform at node i, but theof tables for each device.
waveform at node i will depend weakly on the signal at node
i � 1. The method is particularly effective if signal propaga-
tion is unidirectional, as is sometimes the case in logic cir-If the voltages applied to an element do not change from
cuits. During practical implementation, the total simulationthe past iteration to the present iteration, then there is no
interval is divided into several subintervals and the subinter-need to recompute the element currents, charges, and their
vals are solved sequentially. This reduces the total number ofderivatives. This method is referred to as bypass or taking
time points that must be stored in central memory. Variantsadvantage of latency and can result in large CPU time
of the method solve small numbers of tightly coupled nodessavings in logic circuits, particularly if coupled with a
as a group; such a group might include all the nodes in amethod that refactors only part of the Jacobian matrix. The
transistor–transistor logic (TTL) gate or in a small feedbacktricky part is knowing when the changes in voltage can be
loop. Large feedback loops can be handled by making the sim-ignored. Consider, for example, the input to a high gain op
ulation time for each subinterval less than the time requiredamp. Here ignoring a microvolt change at the input could
for a signal to propagate around the loop. The efficiency ofresult in a large error at the output. Use of sophisticated
this method can be further improved by using different time-latency determining methods could also cut into the CPU
steps (h) at different nodes yielding a multirate method. Thistime savings.
way during a given interval, small time steps are used onAnother set of methods are the waveform relaxation tech-
active nodes, whereas long steps are used at inactive nodes.niques, which increase efficiency by temporarily ignoring cou-
Waveforms at nodes may also be computed in parallel on aplings between nodes. The simplest version of the method is
multiprocessor computer since waveforms at iteration j de-the Gauss–Seidel method which is as follows. Consider a cir-
pend only on voltages at other nodes from iteration j–1 (thecuit with n nodes that requires m time points for its solution.
i � 1 to n loop can be parallelized).The circuit can be represented by the vector equation

COMMERCIALLY AVAILABLE SIMULATORS
Fi(V (t)) + dQi(V (t))

dt
= 0

The simulations in this article were performed with the eval-
uation version of PSPICE from Microsim. The following ven-

Using trapezoidal time integration gives a new function. dors market circuit simulation software. The different pro-
grams have strengths in different areas, and most vendors
allow users to try their software in-house for an ‘‘evaluation
period’’ before they buy.

Wi(V (k)) = (Fi(V (k)) + Fi(V (k − 1))) · b

+ 2[Qi(V (k)) − Qi(V (k − 1))] = 0

SPICE2-SPICE3, University of California Berkeley, CA
We need to find the V(k) that makes W zero for all k � 1 to PSPICE, Microsim Corporation, Irvine, CA
m time points at all i � 1 to n nodes. The normal method HSPICE, MetaSoftware, Campbell, CA
solves for all n nodes simultaneously at each time point before

ISPICE, Intusoft, San Pedro, CAadvancing k. Waveform relaxation solves for all m time points
SABER, Analogy, Beaverton, ORat a single node (calculates the waveform at that node) before

advancing to the next node. An outer loop ensures that all the SPECTRE, Cadence Design Systems, San Jose, CA
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TIMEMILL, Epic Corporation, Sunnyvale, CA
ACCUSIM II, Mentor Graphics, Wilsonville, OR
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