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sensitivity analyses are damped so fast that we can neglect
the effects without further computation (5). Extrapolation (6),
which predicts the initial guess from the sampled data of the
periodic points in the transient, is a very simple algorithm,
and has large convergence ratios for some kinds of circuits.

The computer algorithms (13,14) for calculating the quasi-
periodic steady-state responses are much more complicated
when compared with those for finding periodic responses. The
former (13) finds the initial guess by the Newton method, and
the latter (14) is based on the Poincaré map on the phase
plane. An amplitude modulator having a large carrier and a
sufficiently small signal can be calculated in two steps (15);
namely, first the response to the carrier is calculated by a
time-domain Newton method, and then that to the small sig-
nal can be calculated by solving the time-varying linear sensi-
tivity circuit in the frequency domain. This method can also
be applied to noise analysis (16). Since all of the time-domain

PERIODIC NONLINEAR CIRCUITS methods are based on the transient analyses, they can be ef-
ficiently applied to circuits containing any kind of nonlinear

The steady-state analyses of nonlinear circuits are very im- elements. In order to calculate the Jacobian matrix, we need
portant in the design of communication circuits such as am- to solve the sensitivity circuit starting from different unit ini-
plifiers, oscillators, modulators, and so on. In the case of a tial conditions, equal to the number of state variables. There-
linear circuit driven by a periodic sinusoidal source, the cir- fore, this is rather time-consuming for large scale circuits con-
cuit will eventually exhibit a periodic steady-state response taining many inductors and capacitors.
as a particular solution of the ordinary differential equation. In the frequency-domain approach, the steady-state solu-
However, when the circuit is nonlinear and driven by a sinus- tions are described by trigonometric-series representations,
oidal input, the steady-state waveform will contain many and their coefficients are calculated by the method of balanc-
higher harmonic components depending on the nonlinearities. ing the responses between the linear and nonlinear subcircu-
For the example of an RC amplifier, the circuit will behave its. For a linear circuit, the response can be easily calculated
like a linear circuit for small sinusoidal input. When the in- by exploiting both the superposition theorem and the phasor
put is increased, however, many higher harmonic components technique. However, in nonlinear circuits, the calculation of
will be contained in the output waveform because of the the trigonometric-series coefficients is difficult compared to
strong nonlinearity. It is also known that the distortion of an the linear circuits, because superposition can no longer be ap-
oscillator mainly depends on the choice of the dc operating

plied. There are two basic methods based on the harmonicpoint.
balance method (9,10,17,18), and the relaxation methodInput signals of communication circuits usually contain
(19,20). The harmonic balance method is efficient when themultiple frequency components, and modulators and mixers
number of nonlinear elements is relatively a few and the non-are driven by multiple inputs whose output also contains
linearities are not strong. For example, if we assume themany frequencies by the linear combinations of the input sig-
steady-state waveform contains a dc component and M fre-nals. In these cases, if the input frequencies are related in
quency components for N nonlinear elements, there existirrationally, the response is called a quasi-periodic solution
N(2M � 1) trigonometric coefficients to be determined. Theand does not have any period. Consider an amplitude modula-
determining equation can be solved by the Newton methodtor with two inputs, one of which is a high-frequency carrier
(9,10) and/or the modified method (11). In particular, thesignal and the other a low-frequency input signal. Then, the
waveforms of circuits driven by multitone signals may havemodulated response will behave as a quasi-periodic function
many frequency components resulting from linear combina-whose frequency spectrum is concentrated in the vicinity of
tions of the input frequency components. Hence, when thethe carrier frequency.
nonlinearities are strong, we must solve a system of large de-Although the steady-state responses can be calculated by
termining equations even for small circuits (21,22).the brute-force numerical integration technique (1), it re-

Conversely, relaxation methods (19,23) are very simple al-quires considerable computation time (especially in weakly
gorithms and are efficiently applied to large scale circuits ifdamped circuits) since the transient term dies very slowly.
they are partitioned into the linear subnetworks and theThere are two basic approaches for calculating the periodic
small scale nonlinear subnetworks, where the variational val-steady-state responses, namely, the time-domain approach
ues at each iteration can be calculated by the time-invariant(2–8) and the frequency-domain approach (9–12). The former
sensitive linear circuit. Although the algorithm is used foris based on the transient analysis, where the initial guess giv-
weakly nonlinear circuits, it can be also efficiently applied toing rise to the periodic steady-state response is first deter-
the stiff circuits containing transistors and diodes if we intro-mined by the Newton method (2–5), whose Jacobian matrix
duce a compensatory technique (19) for weakening the nonlin-is estimated by transient analyses of the sensitivity circuit.
earity.In this approach, the computational efficiency rapidly de-

At this point, we can conclude that the time-domain meth-creases for circuits having many state variables, which corre-
ods may be efficiently applied to small-scale circuits con-spond to the inductor currents and capacitor voltages. Fortu-

nately, in many practical circuits, some of the variables in the taining strong nonlinear elements. On the other hand, the fre-
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quency-domain methods are useful for weakly nonlinear The schematic diagram is given in Fig. 1, where T denotes
the period. Now, apply the Newton method to Eq. (2).circuits having few nonlinear elements.

Usually, large scale communication systems are composed
of many subsystems such as modulators, filters, and so on,
some of which may be classified into linear and nonlinear x j+1(0) = x j (0) =

[
∂F(x(0))

∂x(0)

∣∣∣∣
x(0)=x j (0)

]−1

F(x j(0)) (3)

subcircuits. Therefore, we recommend partitioning a given
large system into small-scale subcircuits and applying an ap-

The Jacobian matrix of Eq. (2) is given bypropriate algorithm to each subcircuit. The relaxation hybrid
harmonic balance method consists of different kinds of algo-
rithms, where the linear and/or weakly nonlinear subcircuits

∂F(x(0))

∂x(0)
= 1 − ∂x(T )

∂x(0)
(4)

are solved by a frequency-domain approach and the strong
nonlinear subcircuits are solved by a time-domain approach Let (xj(t), yj(t)) be the solution at the jth iteration of Eq. (3).
(20,23). Therefore, the large scale circuits can be efficiently To obtain the variational equation, set
solved by the application of the circuit partitioning technique
and the relaxation hybrid harmonic balance method. x(t) = x j (t) + η(t), y(t) = y j (t) + δ(t) (5)

Then, we have from Eq. (1)
TIME-DOMAIN APPROACH

The transient responses of nonlinear circuits are uniquely de-
cided once the initial guess x(0) of the state-variables is given.

f(ẋ j, x j, y j, ωt) +
[

∂f
∂ẋ

∂f
∂x

∂f
∂y

]∣∣∣∣ x=x j

y=y j


η̇(t)

η(t)
δ(t)


 = 000 (6)

Therefore, the steady-state response can be found if we can
where it is assumed that f (ẋj, xj, yj,�t) 	 0. Thus, we havefind the solution satisfying x(0) � x(T) 	 0. The equation is

efficiently solved by the Newton and extrapolation methods. [
η̇(t)
δ(t)

]
= −

[
δf
∂ẋ

∂f
∂y

]−1
∣∣∣∣∣ x=x j

y=y j

∂f
∂x

η(t) (7)
Forced Circuits

In the computer-aided analysis of nonlinear circuits with peri- We rewrite the first row of Eq. (7) into the following form:
odic inputs, the steady-state periodic response is found by
simply integrating the system equation from a given initial η̇(t) = A(t)η(t) (8)
point until the response becomes periodic, which is called a

Equation (8) is the linear time-varying system correspondingbrute-force method. In lightly damped systems, however, the
to the sensitivity circuit. Let the fundamental matrix solutionmethod requires much more computation time. In this sec-
be �(t). Then, we have from Eq. (8)tion, the Newton algorithm (2) is shown which converges rap-

idly to the steady state.
η(t) = ���(t)η(0) (9)Consider a set of the system equations

which corresponds to
f(ẋ, x, y, ωt) = 0, f(·) : Rn+m+1 → R

n+m (1)

where x � �n is the state variable vector, y � �m the non-

∂x(T )

∂x(0)
= ���(T ) (10)

state variable vector. Then, the steady-state solution satisfies
In practice, the fundamental matrix solution �(T) can be ob-the following determining equation:
tained by solving the time-varying sensitivity circuit from n
different unit initial values for the state-variables.F(x(0)) = x(0) − x(T ) = 0 (2)

Example

Now, we show the efficiency of the shooting method for the
RC-amplifier shown in Fig. 2(a). A comparison between the
brute-force method and the shooting method are shown in
Fig. 2(b), where the transistor is modeled by the Ebers-Moll
model (24). We can calculate the steady-state response with
five iterations, where the error is defined by

ε j =
�

(v j
1
(0) − v j

1
(T ))2 + (v j

2
(0) − v j

2
(T ))2 + (v j

3
(0) − v j

3
(T ))2

Oscillator Circuits

The steady-state periodic oscillation of an autonomous system
is usually calculated by the numerical integration technique

x (t)

x (0) x (T )

T
t

Figure 1. Schematic diagram of steady-state periodic solution. (1) from an initial state, which is also time-consuming for
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Figure 2. Steady-state response of the RC amplifier (a); C1 	

10 �F, C2 	 50 �F, C3 	 10 �F, R4 	 2.2 k�, R5 	 12 k�; R6 	

1 k�, R7 	 56 k�, R8 	 10 k�, R9 	 1 k�, Eb 	 20 V; e(t) 	 0.1
sin 104t. (b) Convergence ratio.
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lightly damped oscillators. Furthermore, there are many Example
kinds of coupled oscillators which have many modes oscilla-

Consider an oscillator with a tunnel diode as shown in Fig. 4.
tion (25), some of which may be stable and others unstable. The system equation is given by
In this case, the orbits of unstable oscillations can never be
found by the numerical integration techniques. Now, we show
the time-domain shooting method for autonomous systems
that can be used to calculate both the stable and unstable
oscillations once the appropriate initial guesses are given.
Consider a system equation

f (vC + E) + GvC + dvC

dt
+ iL = 0 (14a)

L
diL

dt
− vC = 0 (14b)

wheref(ẋ, x, y) = 0, f(·) : Rn+m → R
n+m (11)

f (vC + E) = −ρ1vC + ρ3v3
C + I0, ρ1, ρ3 > 0

where x is the state variable vector and y the non-state vari-
able vector. The period T is considered as a variable. It is

The determining equation for calculating the steady-state os-defined by the time difference between one of the state vari-
cillation is given byables xk passing through the same value xk0 in the transient

response as shown in Fig. 3.
Thus, the steady-state response satisfies the following de-

termining equation:

[
F1(vC(0),T )

F2(vC(0),T )

]
=

[
vC(0)

iL(0)

]
−

[
vC(T )

iL(T )

]
= 0 (15)

Now, let us calculate the Jacobian matrix for the variablesF(x(0), T ) = x(0) − x(T ) = 0 (12)
(vc(0), T)

Observe that since xk 	 xk0 is fixed, the variables are given by

{x1(0), . . ., xk−1(0), xk+1(0), . . ., xn(0)} (13)




∂F1

∂vC(0)

∂F1

∂t
∂F2

∂vC(0)

∂F2

∂t




∣∣∣∣∣∣∣∣∣
t=T

=




1 − ∂vC(t)
∂vC(0)

−∂vC(t)
∂t

− ∂iL(t)
∂vC(0)

−∂iL(t)
∂t




∣∣∣∣∣∣∣∣∣
t=T

The determining equation can also be solved by the Newton
method (3,4). We show an application of the algorithm for a
sample example of van der Pol oscillator.

x j (0)k x j (Tj)

t = 0 t = T j t

T j k x j (t)k CL

E

+

–

T

G vC

iL

Figure 4. van der Pol oscillator.Figure 3. A definition T of an autonomous system.
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Now, apply the Newton method to Eq. (15). Thus, the coefficient gk(0) can be solved as follows:

g(0) = 
−1X(T1) (21)

where

[
v j+1

C
(0)

T j+1

]
=

[
v j

C
(0)

T j

]
−

{[
1 0
0 0

]
− [J j ]

}−1 [
v j

C
(0) − v j

C
(T j )

i j
L
(0) − iL(T j )

]

j = 0, 1, 2, . . .

where

J j =




∂vC(t)
∂vC(0)

∂vC(t)
dt

∂iL(t)
∂iL(0)

∂iL(t)
∂t




∣∣∣∣∣∣∣∣∣
t=T j

(16)

and using the relations

C
dvC

dt
= iC, L

diL

dt
= vL


 =




1 1 0 · · · 0
1 cos ω2T1 sin ω2T1 · · · sin Mω2T1

1 cos 2ω2T1 sin 2ω2T1 · · · sin 2Mω2T1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1 cos 2Mω2T1 sin 2Mω2T1 · · · sin(2M)2ω2T1




g(0) =




g1,0(0) g2,0(0) · · · gn,0(0)

g1,1(0) g2,1(0) · · · gn,1(0)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
g1,2M(0) g2,2M(0) · · · gn,2M(0)




X(T1) =




x1(0) x2(0) · · · xn(0)

x1(T1) x2(T1) · · · xn(T1)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
x1(2MT1) x2(2MT1) · · · xn(2MT1)




we have

If x(t) is the steady-state solution of Eq. (18), it must satisfy
the following relation at t 	 (2M � 1)T1:

∂vC(t)
∂t

∣∣∣∣
t=T j

= 1
C

iC

∣∣∣∣
t=T j

,
∂iL(t)

∂t

∣∣∣∣
t=T j

= 1
L

vL

∣∣∣∣
t=T j

(17)

Thus, the first column of Eq. (16) is calculated by sensitivity
analysis starting from the initial state vC(0) 	 1, and the sec-
ond column is equal to the transient response at the jth itera-
tion. The iteration will be continued until the variation be-

x((2M + 1)T1) = g0(0) +
M∑

k=1

[g2k−1(0) cos(2M + 1)kω2T1

+ g2k(0) sin(2M + 1)kω2T1]

= X(T1)T [


−1]T


T
2M+1 (22)

comes sufficiently small.
Note that in the case of oscillators, the convergence ratios

of the time-domain method will usually be small compared

2M+1 = [1 cos((2M + 1)ω2T1) sin((2M + 1)ω2T1)

· · · cos(M(2M + 1)ω2T1) sin(M(2M + 1)ω2T1)] (23)
with those for the forced circuits. The slow convergence seems
to be due to the fact that although the period T is chosen as Thus, we have the determining equation for obtaining the
a variable in the shooting algorithm, it has a different prop- quasi-periodic steady-state response:
erty from the state variables.

F(x(0)) = x((2M + 1)T1) − X(T1)T [


−1]T


T
2M+1 = 0 (24)

Quasi-Periodic Solutions
Now, we apply the Newton method to Eq. (24).Now, consider a system with two input signals.

f(ẋ, x, y, ω1t, ω2t) = 0 (18)

We assume that the ratio of �1 and �2 is an irrational number.

x j+1(0) = x j (0) −
[

∂F(x(0))

∂x(0)

]−1
∣∣∣∣∣
x=x j (0)

F(x j(0))

j = 0, 1, 2, . . . (25)Then, the steady-state solution will be a quasi-periodic func-
tion, which can be described by 2-fold Fourier expansion as

The Jacobian matrix is calculated by the fundamental matrixfollows:
solution �(t) of the sensitivity circuit as follows:

x(t) = g0(t) +
M∑

k=1

[g2k−1(t) cos kω2t + g2k(t) sin kω2t] (19)

for a large M, where gk(t), k 	 0, 1, 2, . . ., 2M are period
functions of T1 	 2�/�1. Let us choose (2M � 1) data at t 	
mT1, m 	 0, 1, 2, . . ., 2M time points. Then, the steady-state
solution satisfies the following relations:

∂F(x(0))

∂x(0)
= ���((2M + 1)T1)

−
2M∑
k=0

bk




φ11(kT1) φ12(kT1) . . . φ1n(kT1)

φ21(kT1) φ22(kT1) . . . φ2n(kT1)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
φn1(kT1) φn2(kT1) . . . φnn(kT1)




(26)

where

[b0 b1 · · · b2M]T = [


−1]T


T
2M+1

x(mT1) = g0(0) +
M∑

k=1

(g2k−1(0) cos mkω2T1

+ g2k(0) sin mkω2T1) m = 0, 1, 2, . . ., 2M (20)
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Note that, to implement one iteration, we need to calculate Extrapolation Method
the transient response of Eq. (18) starting from xj(0), and n Although the time-domain method mentioned above can be
times of the sensitivity analyses in the [0, (2M � 1)T1] period. applied to any kind of circuits, the efficiency will be decreased
The algorithm can be applied to the analysis of modulator when the number of state variables is increased, because we
amplitude and FM modulator circuits. need to solve the same number of sensitivity circuits as the

state variables.
In this section, we show a time-domain extrapolationExample

method (6) which only uses the transient response, without
Consider the differential-pair amplitude modulator circuit the need for any sensitivity analysis. Namely, we calculate
(26) shown in Fig. 5(a), where e1(t) and e2(t) denote the carrier x(T) by the numerical integration of Eq. (1) starting from
and signal input, respectively. The steady-state waveform is x(0). Thus, we have
shown in Fig. 5(b). The transistor is modeled by the Ebers-

x(T ) = P(x(0)) (27)Moll model in the simulation.
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Figure 5. (a) Differential-pair amplitude modulator circuits; Vcc 	 10 V, VE 	 5 V, L 	 2 mH,
C 	 500 pF, RL 	 20 k�; e1(t) 	 0.01 cos 106t and e2(t) 	 5.3 cos 0.115 � 106t, id 	 10�8(e40v

d � 1),
d 	 99. (b) Steady-state waveforms of v0 and veb of T1.
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where P( � ) is called the Poincaré map. Now, set x0(0) 	 with undetermined coefficients (X0, X1, . . . , X2M�1, X2M). Sub-
x(0), x1(0) 	 x(T), x2(0) 	 x(2T), . . .. Then, we have the fol- stituting Eq. (33) into Eq. (32), we consider the following
lowing contraction mapping: equation with the undetermined coefficients.

x j+1(0) = P(x j (0)) (28)

Observe that the contraction mapping is exactly the same as
the brute-force method. There are some acceleration tech-
niques based on the extrapolation method. The 
-Algorithm
(6) is the simplest one as follows:

dxM

dt
= 1

T

∫ T

0
f(xM(τ ), τ ) dτ

+ 1
2T

M∑
k=1

�
cos kωt ·

∫ T

0
f(x)M(τ ), τ ) cos kωτ dτ

+ sin kωt ·
∫ T

0
f(xM(τ ), τ ) sin kωτ dτ

�
(34)

From Eq. (34), we have

ε( j)
−1 = 0, j = 0, 1, 2, . . .

ε( j)
0 = x j (0), j = 0, 1, 2, . . .

ε(n)

k = ε(n−1)

k−1 + 1/(ε(n)

k−1 − ε(n−1)

k−1 )

k = 1, 2, . . ., n = k, k + 1, . . .

(29)

Thus, the kth-order solution is given by

x k(0) = ε(n)

2k , n ≥ 2k (30)

where we need to estimate the inverse of the vectors. The
Samelson inverse (27) is defined for a vector v

F0(α) = 1
T

∫ T

0
f(xM(τ ), τ ) dτ = 0 (35a)

F2k−1(α) = 1
2T

∫ T

0
f(xM(τ ), τ ) cos kωτ dτ − kX2k = 0 (35b)

F2k(α) = 1
2T

∫ T

0
f(xM(τ ), τ ) sin kωτ dτ + kX2k−1 = 0 (35c)

k = 1, 2, . . ., M

vvv−1 = vvv/vvvTvvv (31)
where � 	 (X0, X1, . . ., X2M�1, X2M). Suppose Eq. (35) has a
solution � 	 (X0, X1, . . ., X2M�1, X2M). Then, the approximate

The extrapolation method is very easy to implement, and it is solution is given by
efficient for the steady-state analysis of nonlinear circuits
with few reactive elements giving rise to slow decaying tran-
sients. xM (t) = X0 +

M∑
k=0

(X2k−1 cos kωt + X2k sin kωt) (36)

FREQUENCY-DOMAIN APPROACH
which is called the Galerkin approximation of order M, and
Eq. (35) is the determining equation of the Mth order Galer-The steady-state waveform of a nonlinear circuit can always
kin approximation. The existence of an exact isolated periodicbe described by a trigonometric polynomial. Each harmonic
solution and the error bound is shown in Ref. 9.component must respectively balance in the circuit equation.

Thus, if we consider the M frequency components plus the dc
component, we have a set of N(2M � 1) algebraic equations Example
for N nonlinear elements. The equations can solved by the

To understand the ideas of the harmonic balance method (10),Newton and/or the relaxation methods. Note that FFT (the
consider a simple LRC circuit with a nonlinear resistor asfast Fourier transformation) is often used for the Fourier
shown in Fig. 6. Assume the characteristic of the nonlineartransformation in the frequency-domain approaches.
resistor is given by

Harmonic Balance Method
iG = ı̂G(v) (37)

The harmonic balance method is widely used in the frequency-
domain approach of the steady-state analysis of nonlinear cir-

and the input voltage sources given bycuits. The ideas are based on the Galerkin’s procedure which
states that the periodic steady-state solution can be approxi-
mated by a finite number of trigonometric polynomial (9,17). e(t) = Em cos(ωt + θ ) (38)
Now, consider a nonlinear periodic system

dx
dt

= f(x, ωt) (32)

To determine the periodic solution of Eq. (32), we first take a
trigonometric polynomial e(t) v(t)

L C iL iG

+
−

Figure 6. Simple LRC circuit with a nonlinear resistor.
xM(t) = X0 +

M∑
k=0

(X2k−1 cos kωt + X2k sin kωt) (33)
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Suppose the voltage at the nonlinear resistor is a trigonomet- where
ric polynomial as follows:

v(t) = V0 +
M∑

k=1

(V2k−1 cos kωt + V2k sin kωt) (39)

Then, the response of the linear subcircuit in the left-hand
side is easily calculated by the phasor technique

iL(t) =
M∑

k=1

(IL,2k−1 cos kωt + IL,2k sin kωt) (40)

where

JG,0,0 = 1
T

∫ T

0

∂ ı̂G

∂v
dt

JG,2m−1,2k−1 = 1
2T

∫ T

0

∂ ı̂G

∂v
cos mωt · cos kωt dt

JG,2m−1,2k = 1
2T

∫ T

0

∂ ı̂G

∂v
cos mωt · sin kωt dt

JG,2m,2k−1 = 1
2T

∫ T

0

∂ ı̂G

∂v
sin mωt · cos kωt dt

JG,2m,2k = 1
2T

∫ T

0

∂ ı̂G

∂v
sin mωt · sin kωt dt

(45)

k = 1, 2, . . ., M, m = 1, 2, . . ., M

Therefore, we must apply a total of (2M � 1) times Fourier
expansions for getting the Jacobian matrix.

Note that the scale of the determining equations is

IL,1 = ωC(V2 + Em sin θ )

1 − ω2LC
, IL,2 = ωC(−V1 + Em cos θ )

1 − ω2LC

IL,2k−1 = kωCV2k

1 − (kω)2LC
, IL,2k = − kωCV2k−1

1 − (kω)2LC

k = 2, 3, . . ., M N(2M � 1) for a circuit with N nonlinear elements. Hence,
the efficiency of the frequency-domain approach is rapidly de-

On the other hand, the response of nonlinear resistor to v(t) creased as the number of nonlinear elements increases and
is described by a trigonometric polynomial as follows: their nonlinearities become strong.

Frequency-Domain Relaxation MethodiG(t) = IG,0 +
M∑

k=1

(IG,2k−1 cos kωt + IG,2k sin kωt) (41)

To focus on the main idea of the frequency-domain relaxation
method, consider the circuit shown in Fig. 7(a), where NL de-The steady-state waveform needs to satisfy the following con-
notes a linear subnetwork and G denotes a voltage-controlleddition:
nonlinear resistor described by

iL(t) + iG(t) = 0 (42)
iG = ı̂G(v) (46)

Thus, we have the following determining equations for each
frequency component: Assuming the inputs have multiple frequencies �1, �2, . . .,

�r, then the voltage across the nonlinear resistor can gener-
ally be assumed to have the form

v(t) = V0 +
M∑

k=1

(V2k−1 cos νkt + V2k sin νkt) (47)

IG,0(V0, V2, . . ., V2M ) = 0 (42a)

IL,2k−1(V2k−1, V2k) + IG,2k−1(V0, V2, . . ., V2M ) = 0 (42b)

IL,2k(V2k−1, V2k) + IG,2k(V0, V2, . . ., V2M ) = 0 (42c)

k = 1, 2, . . ., M

whereIt can be solved by the Newton Raphson method:

νk = m1kω1 + m2kω2 + · · · + mrkωr (48)V j+1 = V j−[JL+JG(V j )]−1[IL(V j )+IG(F j )], j = 1, 2, 3, . . .

(43)
and the integers satisfy �m1k� � B1, �m2k� � B2, . . ., �mrk� � Bk

where V 	 [V0, V1, . . ., V2M]T, IL(V) 	 [IL,0, IL,1, . . ., IL,2M]T, for some sufficiently large B. Assuming that the original cir-
IG(V) 	 [IG,0, IG,1, . . ., IG,2M]T, and JL 	 diag[0, Y1(�), Y2(2�), cuit in Fig. 7(a) has a unique steady-state solution described
. . ., YM(M�)] where by Eq. (47), then v(t) satisfies

F(v(t)) ≡ iL(t) + iG(t) = 0 (49)Yk(kω) =
[

0 yI (kω)

−yI (kω) 0

]
, for yI (kω) = kωC

1 − (kω)2LC

where iL(t) and iG(t) denote the currents in the linear and non-
linear subnetworks in Fig. 7(b).On the other hand, the Jacobian matrix of the nonlinear re-

Let us calculate the steady-state solution using an itera-sistor is given by
tional technique in the frequency-domain. Assume the solu-
tion at the jth iteration is given by

v j (t) = V j
0 +

M∑
k=1

(V j
2k−1

cos νkt + V j
2k

sin νkt) (50)
JG ≡




JG,0,0 JG,0,1 · · · JG,0,2M

JG,1,0 JG,1,1 · · · JG,1,2M

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
JG,2M,0 JG,2M,1 · · · JG,2M,2M


 (44)
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Figure 7. Relaxation circuit: (a) Nonlinear circuit with a voltage-controlled resistor; (b) Partion-
ing into a linear and a nonlinear subcircuit; (c) Approximation of the linear time-invariant equiv-
alent circuit, where jj(t) 	 ı̂G(vj) � G0vj; (d) Sensitivity circuit.

To evaluate the solution at the ( j � 1)th iteration, let into the time-domain responses of the linear subnetwork in
Fig. 7(b). Observe that since Eq. (53a) is a time-varying sys-
tem, it is not easy to solve. Thus, we rewrite it as Eq. (53b),v j+1(t) = v j (t) + �v(t) (51)
where only G j

0 is used instead of G j(t). It can be further writ-
where ten in the following form:

L (�v) + G j
0�v = −L (v j ) − S (e(t), j(t)) − ı̂G(v j ) (55)

�v(t) = �V0 +
M∑

k=1

(�V2k−1 cos νkt + �V2k sin νkt) (52)

Observe that the convergence ratio will depend on the nonlin-
earity given by the difference G j(t) � G j

0. Now, we define theis some appropriate perturbation to be determined below.
residual error currentSubstituting vj�1 from Eq. (51) into Eq. (49), and neglecting

the higher-order terms of �v in the Taylor expansion of ı̂G(t),
we obtain for the weakly nonlinear system ε j (t) ≡ L (v j ) + S (e(t), j(t)) + ı̂G(v j ) (56)

Thus, we can obtain the equivalent circuits of Fig. 7(c) and (d)
from the relations Eq. (53b) and Eq. (55), respectively, where

j j (t) = ı̂G(v j ) − G j
0v j

We call the circuits relaxation circuits, which can be easily

F(v j + �v) = L (v j + �v) + S (e(t), j(t)) + ı̂G(v j + �v)

≈ L (v j + �v) + S (e(t), j(t)) + ı̂G(v j ) + G j (t)�v
(53a)

≈ L (v j + �v) + S (e(t), j(t)) + ı̂G(v j ) + G j
0 �v

(53b)
solved by the phasor technique for each frequency component.

where The iteration will be continued until the variation satisfies

2M∑
k=0

|V j
k

− V j+1
k

| < ε (57)G j (t) ≡ ∂ ı̂G

∂v

∣∣∣∣
v=v j

= G j
0 +

M∑
k=1

(G j
2k−1

cos νkt + G j
2k

sin νkt)

(54)
for some prescribed small tolerance 
.

Remark: the frequency-domain relaxation method pre-The symbols L and S denote linear operators which trans-
form the voltage v(t) and the sources (e(t), j(t)) respectively sented above can be efficiently applied to weakly nonlinear
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Figure 8. Compensation technique: (a) Series compensation
by Rc; (b) a schematic diagram of weakening the nonlinearity. (a) (b)
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circuits. However, many semiconductor devices such as diodes approximate periodic solution, and put
and transistors are characterized by strong nonlinearities, so
that the convergence of our relaxation method may not be ω1 ≈ n1�ω, ω2 ≈ n2�ω, . . ., ωr ≈ nr�ω (61)
guaranteed. In such cases, we recommend introducing com-
pensation resistors Rc in series for the nonlinear subnetwork Then, the period is given by
and �Rc for the linear subnetwork, which plays a very impor-
tant role in weakening the nonlinearity, as shown in Fig. 8.

T = 2π

n�ω
; n = GCM{n1, n2, . . ., r} (62)

Hybrid Harmonic Balance Method

In the above section, we discussed a frequency-domain relax-
ation method, where each nonlinear element is replaced by
the time-invariant linear element with the associate source
at each iteration. Thus, every frequency component can be
calculated by the phasor technique. We propose here an effi-
cient hybrid relaxation method based on both the time-domain
and the frequency-domain approaches (20,23). At the first
step, a given circuit is partitioned into subnetworks using
substitution sources (28), where one group N1 contains only
linear or weakly elements and the other N2 nonlinear ele-
ments, as shown in Fig. 9. From the computational efficiency,
we recommend to partition the circuit such that N1 contains
as many capacitors and inductors as possible, and N2 as many
resistive elements as possible. Thus, the steady-state re-
sponses of N1 are calculated by the frequency-domain method,
and those of N2 by a time-domain approach. If those two re-
sponses at the partitioning points have the same waveforms,
then the substitution sources give rise to a steady-state re-
sponse. To understand the basic ideas behind the hybrid har-
monic balance method, consider the simple circuit shown in
Fig. 9(a). Now, approximate the substitution voltage sources
in Fig. 9(b) as follows:

v(t) = V0 +
M∑

k=0

(V2k−1 cos νkt + V2k sin ν + kt) (58)

where v 	 [v1, v2]T, V 	 [V1, V2]T and �k is equal to a linear
combination of the input frequencies �1, �2, . . ., �r, namely

νk ≡ m1kω1 + m2kω2 + · · · + mrkωr (59)

where m1k, m2k, . . ., mrk are integers satisfying

|mik| ≤ Bk, i = 1, . . ., r; k = 1, . . ., M (60)
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Remark: if the relations among �1, �2, . . ., �r are irrational, Figure 9. Circuit partitioning: (a) A given circuit; (b) Partition into
v(t) in Eq. (58) will be a quasi-periodic function, and it is not two groups of N1 and N2; (c) The sensitivity circuit for calculating the

variation �v1, �v2.easy to solve the circuit. In this case, consider calculating an
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and the steady-state solution will satisfy the following de- In order to determine the accuracy of the solution, we also
need to evaluate the residual error given bytermining equation:

F(v) = iN1(v, e(t), j(t)) + iN2(v) = 0 (63)

where F 	 [F1, F2]T, i 	 [i1, i2]T. Let us solve the steady-state
solution satisfying Eq. (63) by an iteration method, and as-
sume the waveform at the jth iteration is expressed by

ε j =
s

1
T

∫ T

0
(iN1(v j, e(t), jjj(t)) + iN2(v j ))2 dt

=
�

∞∑
k=2M+1

|I2
N1,k + I2

N2,k|2 (71)

The hybrid harmonic balance method needs to apply the fre-v j (t) = V j
0 +

M∑
k=0

(V j
2k−1

cos νkt + V j
2k

sin νkt) (64)

quency-domain relaxation method to the weakly nonlinear
subnetworks N1, and the time-domain method to the nonlin-

We first solve the subnetworks N1 with the frequency-domain ear subnetworks N2 at each iteration. The variation �v(t) can
relaxation method. Of course, we can solve them by the phasor be simply obtained by the use of the admittance matrices.
technique if they are linear. The subnetworks N2 are solved Therefore, the algorithm is very efficient compared with other
by some time-domain method. If the damping coefficient is algorithms. The practical circuits are composed of many kinds
sufficiently large, we can solve it by the brute-force method. of subnetworks such as amplifiers, filters, multipliers and
Otherwise, we need to choose the Newton method (2) or the pulse circuits, and so on. For example, consider a modulator
extrapolation method (6). To calculate the solution at the ( j circuit composed of a multiplier, filter, and amplifier, where
� 1)th iteration, assume the solution the multiplier is only a nonlinear subnetwork, and the filter

and amplifier are the linear subnetworks for small signals
even if it contains nonlinear elements such as transistors. Thev j+1(t) = v j (t) + �v(t) (65)
response of the linear subnetwork can be easily calculated by

where �v(t) is a variational voltage waveform described by the phasor technique such as the SPICE ac-analysis tool. Fur-
thermore, it is sometimes possible to partition the circuits
into linear and nonlinear subnetworks such that the nonlin-
ear subnetworks have large damping terms. In these cases,�v(t) = �V0 +

M∑
k=0

(�V2k−1 cos νkt + �V2k sin νkt) (66)

we only need the time-domain analyses of the nonlinear sub-
networks at each iteration. Thus, the algorithm (20) will be-

Substituting v j�1(t) from Eq. (65) into Eq. (63), we obtain come much more simple and efficient.

Example
F(v j + �v) = iN1(v

j+1, e(t), j(t)) + iN2(v j+1)

≈ Y j
N1,0(�v) + Y j

N2,0(�v) + ε j (t) = 0 (67)
Consider a mixer circuit shown in Fig. 10. Let us partition
the circuit at (a, a�) and (b, b�). Then, the linear subnetworks

where the residual error 
 j(t) is defined by are only capacitors C1 and C2, and the rest is assumed to be
the nonlinear subnetwork. We used two periods of the brute-
force method for the time-domain analysis of the nonlinear
subnetwork. The convergence ratio is shown in Fig. 10(c), and
the frequency spectrum Fig. 10(b). Note that we obtained the
same result in 100 periods with the transient analysis of

ε j (t) ≡ iN1(vvv j, eee(t), jjj(t)) + iN2(v
j )

= ε j
0 +

M∑
k=0

(ε j
2k−1 cos νkt + sin νkt) (68)

SPICE. On the other hand, our hybrid method could calculate
the steady-state response in a total of 12 periods with theYj

N1,0(�v) and Yj
N2,0(�v) are the time-invariant linear operators

time-domain brute-force method to the nonlinear subnetwork.obtained from the sensitivity circuit at the jth iteration. Since
in many practical applications, the differences of the linear
operators in each iteration are small enough, we can approxi-

SMALL SIGNAL ANALYSIS METHOD FORmate them with those at the zeroth iteration, which corre-
PERIODIC NONLINEAR CIRCUITSspond to the incremental admittance matrices at the op-

erating point. Thus, the variational values are calculated by
Among nonlinear circuits with multiple frequency excitations,
there is a significant class of circuits with two excitations
where one of the excitations is large and the other is small.
Frequency converters normally have two excitations; one is a

[YN1,0( jνk) + YN2,0( jνk)](�V2k−1 + j�V2k) = ε j
2k−1

+ jε j
2k

k = 1, 2, . . ., M
(69) strong local oscillator (LO) signal, the other is a radio fre-

quency (RF) signal. Modulators and switched capacitor filters
where Y is the complex conjugate. The iteration is continued (SCFs) also belong to this class. Figure 11 shows a circuit
until the variation satisfies model of these circuits. Small signal responses for these cir-

cuits are one of the prime points of interest for circuit design.
This section describes numerically small signal analysis‖�V‖ < δ (70)
methods for periodically operating nonlinear circuits with a
periodic large excitation.for a given small �.
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Nonlinear
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Small
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Figure 11. A circuit model.

Linear Periodic Time-Varying Circuit

Small signal analyses for periodic nonlinear circuits can be
expected to be efficient if the circuits are modeled as the cor-
responding linear periodic time-varying (LPTV) circuits for
small signals as shown in Fig. 12. The LPTV circuit can be
obtained by applying the perturbation technique to the peri-
odic steady-state solution of the nonlinear circuit without an
input signal (29).

Consider a nonlinear system with a periodic large excita-
tion:

f(x(t), ẋ(t)) = e(t) (72)

where ẋ(t) denotes the time derivative of x(t), and e(t) is a
large excitation of period T. The periodic large excitation
might be a clock signal for SCFs or an LO signal for mixer
circuits, for example.

It is assumed that the system represented by Eq. (72) has
a stable periodic solution xst(t) with period T for all t;

xst (t − T ) = xst (t)

The steady-state periodic solution is computed using the
shooting method (2,5), harmonic balance method (10,11), or
simply using transient analysis.

Applying the perturbation technique to the periodic solu-
tion of the nonlinear system of Eq. (72), we have

g(t)�x(t) + c(t)�ẋ(t) = u(t) (73)
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u(t) = δe(t)

g(t) = ∂f(t)
∂x(t)

∣∣∣∣
x(t)=xst (t)

c(t) = ∂f(t)
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Equation (73) is an LPTV circuit as g(t) and c(t) are T-pe-
riodic.
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Figure 10. (a) A mixer circuit R1 	 R2 	 100 �, R3 	 R4 	 10 k�,

Periodic
nonlinear
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Small
input Output

Linear periodic
time-varying

(LPTV) circuit

Small
input Output

C1 	 C2 	 10 nF, E1 	 5 V, E2 	 2.5 V, E3 	 12 V e1(t) 	 0.03 sin 2�
� 0.11 � 109t, e2(t) 	 0.02 sin 2� � 0.1 � 109t. (b) Frequency spectrum Figure 12. Modeling of a periodic nonlinear circuit by an LPTV
of output waveform; (c) Convergence ratio. circuit.
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The periodic time-varying parameters are obtained during
numerical integration for one period of the periodic nonlinear
circuits. Fourier coefficients Hl(�) are calculated from LPTV
transfer functions at discrete times over one period.

Next, consider the calculation of LPTV transfer functions
at discrete times. Applying a unit complex sinusoidal signal
and evaluating Eq. (73) at t 	 nT � �m, we have

gm �x(nT + τm) + cm�ẋ(nT + τm) = ue j�(nT+τm ) (74)

ej   t

x(t)

H–1( j   )

H1( j   )

H0( j   ) H0( j  )e
j   t

H1( j  )e
j(   +     )t

e−j   ot

e j  ot

ω

ω

ωω

ω

ω

�

�

�

ω
ω

ω o

H–1( j   )e
j(   +     )tωω o

where gm 	 g(nT � �m), cm 	 c(nT � �m) and u is a vectorFigure 13. Representation of a periodic time-varying transfer func-
which indicates where the input signal is connected.tion by LTI filters and mixers.

The differential Eq. (74) is numerically solved by applying
the backward Euler method to give

Transfer Function of LPTV Circuit

The small signal response �x(t) for Eq. (73) can be written
using the LPTV transfer function (30).

�
gm + cm

hm

�
�x(nT + τm ) − cm

hm
�x(nT + τm−1) = ue j�(nT+τm )

(75)

The relationship between H(�, �m) and �x(nT � �m) can be
written as

�x(t) = 1
2π

∫ ∞

−∞
H( j�, t)U( j�)e j�t d�

where H( j�, t) is the LPTV transfer function and U( j�) is �x(nT + τm) = H(�, τm )ue j�(nT+τm ) (76)
the Fourier transform of the input signal. The transfer func-
tion is represented by a matrix whose dimension is the num- Substituting Eq. (76) into Eq. (75) gives
ber of variables. For simplicity, we use one variable after this.

Assuming that a unit input signal is u(t) 	 ej�t, a steady-
state response �x(t) to u(t) becomes

�x(t) = H(ω, t)e jωt

Expanding H(�, t) into a Fourier series using the periodicity,




J1 C1

C2 J2

· ·
· ·

CP JP


 ·




�X1

�X2
·
·

�XP


 =




u
u
·
·
u


 (77)

we have
where

�x(t) =
∞∑

l=−∞
Hl (ω)e j(ω+lω0 )t

where �o 	 2�/T. The Fourier coefficients Hl(�) represent lin-

�Xm = �X(�, τm ) = H(�, τm )u

Jm = gm + cm

hm
, Cm = −e− j�hm

cm

hm

ear time-invariant (LTI) filters. Figure 13 shows a representa-
The discretization step hm is the numerical integration timetion of an LPTV transfer function by LTI filters and mixers.
step in the transient analysis for the periodic steady-state re-It can be considered that the first Fourier coefficient H0(�)
sponse.represents a transfer function without frequency translation,

while Hl(�) for l � 0 represents transfer functions with fre-
quency translation from � to � � l�o. Examples

For example, H0(�) is used for the calculation of the base-
The first example is the eighth-order switched capacitor band-band frequency characteristics of an SCF. H1(�) is used for
pass filter as shown is Fig. 14. This circuit was made by cas-the calculation of conversion gain of an up-conversion mixer
cading a third-order elliptic low-pass filter with a cutoff fre-circuit and H�1(�) is used for down-conversion mixer circuits.
quency of 3.4 kHz and a fifth-order elliptic high-pass filterThe Fourier coefficients Hl(�) of an LPTV transfer function
with a cutoff frequency of 300 kHz. The sampling frequencycan be calculated by solving LPTV differential Eq. (73). There
is 100 kHz. First, the steady-state response is computed forare two major techniques. One is the frequency-domain
the circuit with only clock excitation. Then, small signal fre-method using conversion matrices (31–33) based on the har-
quency responses, that is H0(�), are calculated. The small sig-monic balance technique. The other is the time-domain
nal responses of this circuit are shown in Fig. 15. The param-method (16,34) using numerical integration. The time-domain
eters in Fig. 15 are the ON resistance values. The cross marksmethod is described briefly here.
show measured values. It is found that the high ON resis-In the time-domain method, an LPTV transfer functions at
tances of the switches cause attenuation in the lower stop-discrete times, that is, H( j�, �m), m 	 1, 2, . . ., P, is calcu-
band to deteriorate.lated by using periodic time-varying parameters, where the

The second example is a direct conversion mixer circuit asvariable definitions are as follows:
shown in Fig. 16. The local oscillator signal frequency is 280
MHz with an RF signal at 280 MHz plus several kilohertz.
The output frequency is several kilohertz. It is exceptionally
difficult to solve the steady-state response of this circuit by

T =
P∑

m=1

hm, τm =
m∑

k=1

hk, τp = T, τ0 = 0
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Designed value (units)
C1 :6.23
C01 :7.04
C11A:1.00
C11B:1.00
C11T:6.00
C51 :6.48
C2 :28.02
C12 :33.50
C23 :37.26
C43 :1.00
C4 :8.67
CD34:6.23
C34A:1.00
C34B:1.00
C34T:6.00
C5 :33.21
C45 :24.98

Unit capacitor:0.2pF
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Figure 14. Eighth-order switched capacitor bandpass filter.

the conventional transient analysis because of the large dif- NOISE ANALYSIS METHODS FOR
PERIODIC NONLINEAR CIRCUITSference between the output frequency and the RF and LO sig-

nal frequencies. Here, an RF input signal can be considered
This section describes noise analysis methods for periodicas a perturbation, because the circuit usually treats a small

RF input. First, the periodic response with the LO signal is nonlinear circuits modeled as linear periodic time-varying
(LPTV) circuits, such as mixer circuits, SCFs, and oscillators.found. Then, the conversion gain from the RF input to the LF

output, i.e., H�1(�), is computed. Figure 17 shows conversion Assuming stationary noises, the output noise spectrum
density of an LPTV circuit is given by (16)gains and measured values for various levels of LO signal.

S(ω) =
L∑

l=−L

|Hl (ω − lω0)|2ŝ(ω − lω0) (78)

where ŝ(� � l�o) denotes a power spectral density of a certain
noise source, for example, ŝ 	 4kTG for the thermal noise
source of a resistor R(G 	 1/R). Then, the noise current
source with an amplitude of �4kTG is connected in parallel
with the resistor. Hl(� � l�o) indicates a Fourier coefficient of
an LPTV transfer function to the output from the noise
source. The Fourier coefficients can be calculated by using the
frequency-domain method (32,35) or the time-domain method
(16). H1(� � �o) denotes up-conversion from � � �o to � and
H�1(� � �o) denotes down-conversion from � � �o to �. H0(�)
is not involved with any frequency translation. The power of
each Fourier component is summed up until l value of Eq.
(78) reaches L value specified by a user, or until its contribu-
tion become negligible. Figure 18 shows the noise power spec-
trum when the L value is 1. The total noise is calculated by
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Figure 15. Small signal responses of the eighth-order SC-BPF. summing up power spectral densities from all noise sources.
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Figure 16. Direct conversion mixer
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circuit.

Noise analysis methods for LPTV circuits including cyclo-
stationary noise sources have been described in previous
studies (16,34). Roychowdhury (35) discusses the frequency-
domain method using the harmonic balance algorithm and
Okumura (16) presented a time-domain method.

Oscillator Noise

Oscillators are also periodically operating nonlinear circuits,
though they have no external large excitation. The noise anal-
ysis method using the LPTV circuit model can be expanded
to autonomous systems (36).

Oscillator noise simulation is an important aspect of RF
circuit design. A model of oscillator phase noise spectra has
been proposed by Leeson (37). This model quantitatively
matches measured results. Phase and amplitude noises have
been analyzed using a simple oscillator model consisting of an
RLC resonator and a negative resistance (38). Using Kuroka-
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wa’s equation (38), phase and amplitude noises have been re-
Figure 17. Conversion gain of the direct conversion mixer circuit. lated to the resonator’s Q factor by Sweet (39). These results

are important for oscillators with resonators. However, oscil-
lators without resonators, such as ring oscillators and multi-
vibrators, cannot be evaluated by this method. Noise simula-
tion methods using the LPTV circuit models for oscillators
with and without resonators are described in recent work
(36,40,41). In these methods, periodic steady-state solutions
of oscillators are calculated using the shooting method
(4,5,11), or the harmonic balance method (7,10,11). Output
noise spectral density of an oscillator modeled as an LPTV
circuit is also shown in Eq. (78). The Fourier coefficients in
Eq. (78) can be calculated by using the frequency-domain

S (  )
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H0(   )H*0(   )

H1(   +   0)H*1(   –   0)
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   (   −   0)δ

ω

ω

ω ω

ω

ω

ω

   (   −   0)δ ω ω

ω

ω

ω ω ω ω

ω

ω
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ω

method (31) or the time-domain method (36). If you use the
time-domain method, a loss-less integration method, e.g.,Figure 18. Noise power spectrum of LPTV circuit.
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Step 3. Calculate Fourier components of LPTV transfer
function to the output from each noise source using the
LPTV parameters.

Step 4. Accumulate Fourier components with and without
frequency translation using Eq. (78).

Step 5. Compute total noise by summing up the power
spectral densities calculated in Step 4 from all noise
sources.

Example

An example is a Wien bridge oscillator shown in Fig. 19. This
circuit oscillates at 141.655 kHz. Figure 20 shows the noise
spectral density of total noise and a line spectrum of the
steady-state oscillator output. Noise sources considered are
also thermal noise of resistors, shot noise, and flicker noise
of transistors. Flicker noise is approximated by a stationary
colored noise. The noise in this figure contains both amplitude
noise and phase noise. This realizes a situation similar to that
when the output is measured by a spectrum analyzer.
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