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FAULT DIAGNOSIS system noise, environment noise, and sampling noise. Hence,
it is necessary to conduct signal processing to minimize the

According to Webster’s New World Dictionary of the American effect of the noises. Considering a sensor signal is composed
Language, the word diagnosis means ‘‘deciding the nature of a number of components. The information may be associ-
and the cause of a diseased condition of a machine, a process, ated with certain components while the noises are associated
or a system by examining the symptoms.’’ In recent years, with the others. In this case, one can use filters for which the
fault diagnosis has been playing an increasingly important reader is referred to FILTERING THEORY.
role and expanding far beyond the traditional vibration analy- Information may not be explicitly presented in the signal.
sis of mechanical systems and failure detection of control sys- To extract the information, which will be called features, vari-
tems. This is due to the fact that machines, processes, and ous signal processing methods have been developed.
systems are becoming much more complicated, and the de-
mand for better, faster, and more cost-effective performance Time-Domain Method
is constantly increasing. It is also because the great advances

Sensor signals are time series. Hence, the time-domain fea-in computer technology make fault diagnosis feasible and
tures of the signals are very important to fault diagnosis.profitable.
Most time-domain features have clear physical meaning and
can be obtained by means of simple calculations. AssumingTHE PROCEDURE OF FAULT DIAGNOSIS
that x(t), t � 1, 2, . . ., N is a sensor signal, Table 1 presents
a number of commonly used time-domain features with theirRegardless of the differences in machines, processes, and sys-
mathematical definition and physical interpretation. Thesetems, it seems that most fault diagnosis follows a simple
features are particularly useful if the signal is stationary orthree-step procedure: (1) sensing (to acquire necessary infor-
near stationary (a signal is stationary if the signal mean is amation), (2) sensor signal processing (to capture the symp-
constant and the signal variance is independent of time).toms that characterize the faults), and (3) decision making (to
When a signal is nonstationary, we may use features such asdetermine the cause of the fault and the methods of correc-
rising rate, rising time, delay time, overshot, and steadytion, if applicable). Following this procedure, if the faults can-
state, as shown in Fig. 1.not be diagnosed by directly examining the sensor signals,

The other useful time-domain features include envelop,then signal processing is needed; and if the signal processing
short time energy, histogram, medium, mode, and number offails to diagnose the faults, then decision making must be
threshold crossing. Also, before calculating the time domainused.
features, the signals can be preprocessed by averaging:

SENSORS AND SENSING
y(t) = [x(t) + x(t + 1)]

2
(1)

Sensor signals are the window to the complicated world of
the system. Sensing acquires necessary information for fault

or by differencing:diagnosis. Depending on the applications, various sensors
would be used. For electrical engineering applications, voltage
and current are the most commonly used sensor signals. For z(t) = [x(t + 1) − x(t)]

T
(2)

mechanical engineering applications, typical sensors include
force and pressure sensors; displacement, velocity, and accel- where T is the sampling frequency. Multiple steps of averag-
eration sensors; heat and temperature sensors; flow sensors; ing and differencing could be applied as well. One may won-
sound and acoustic emission sensors; as well as optical der what features should actually be selected and whether
sensors. the selected features contain sufficient information for fault

The choice of sensors depends on the physical properties diagnosis. Unfortunately, there is no simple answer to theseof the application. In addition, various other factors must be
questions. As a special case, if a signal is stationary, then itconsidered, including cost, installation, sampling frequency
can be characterized by sufficient statistics (1). For example,(which must be greater than the Nyquist frequency), and
if a signal is stationary with normal distribution, then it cannumber of samples. Should multiple sensors be used, it may
be described by its mean and variance. They are the sufficientbe necessary to consider synchronization as well. For fault
statistics, which completely characterize the signal. On thediagnosis, a rule of thumb in choosing sensors is to get close
other hand, if a signal is a period signal then one should useto the fault as much as possible. For example, for large rotat-
the frequency-domain method.ing machinery such as turbine and power generators, me-

chanical faults often cause increased vibrations. To diagnose
Frequency-Domain Methodthe cause of these faults, vibration sensors are used, such as

eddy current displacement transducers and strain gauge ac- Fault diagnosis using frequency-domain information is the
celerometers. most commonly used method today. It is known that the fre-

Sensing also involves acquiring data from the sensors. To- quency-domain information can be obtained by means of the
day, fault diagnosis is usually done using computers. Hence, fast Fourier transform (FFT). Applying FFT to a signal re-
we will have to deal with digitized sensor signals. sults in a complex series:

SENSOR SIGNAL PROCESSING AND MODELING X ( f ) = FFT[x(t)] (3)

where f � (1/NT), (2/NT), . . ., (1/2T) is the frequency index.Sensor signals contain the information necessary for fault di-
agnosis. However, they may also contain noises, including The angular frequency � � 2�f is often used for convenience.
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Table 1. A List of Time-Domain Features and Their Mathematical Definition

Time-Domain
Feature Mathematical Definition Physical Interpretation

Mean The average value of the signalX �
1
N�N

t�1
x(t)

Variance The variation of the signal�2 �
1

N � 1�
N

t�1
(x(t) � X )2

Root mean squares (rms) The energy of the signalrms �
1
N ��N

t�1
x2(t)

SK �
N

(N � 1)(N � 2)

�N
t�1

(x(t) � X )3

�3Skewness The symmetry of the signal distribution

Kurtosis The shape of the signalKU �

�N
t�1

(x(t) � X )4

�4 � 3

Xmax � max�x(t), t � 1, 2, . . , N�
Maximum/minimum The maximum/minimum of the signal

Xmin � min�x(t), t � 1, 2, . . ., N�

Range R � Xmax � Xmin The variation of the signal

Crest factor CF �
R

X
The shape of the signal

Based on X( f), the spectrum density, or simply the spectrum, windowing techniques to prevent the information lost (leak-
age) because of the limited samples.can be found:

Stationary signals can be described by their spectrum
without information loss. From the spectrum, the frequencyS( f ) =

√
Re2[X ( f )] + Im2[X ( f )] (4)

characteristics, denoted as a tuple � f , S( f ), �( f )� (or ��, S(�),
�(�)�), can be represented in the form of a graph, also calledand the phase spectrum is
a spectrum. Visual examination of the spectrum is called
spectral analysis, requires skill and experience, and is often
objective. The spectrum is usually stored in an array in a�( f ) = arctan

Im[X ( f )]
Re[X ( f )]

(5)

computer. To use computers for automated fault diagnosis,
we need to characterize the spectra. Two types of frequency-Note that in the spectrum, the frequency range is (0, 1/2T]
domain characteristics are often used. The first one is the en-with a resolution of (1/NT). For example, sampling 1000 sam-
ergy at specific frequency bands, which is the sum of squareples at a sampling frequency of 1 kHz (T � 0.001), the fre-
of S( f ) at the frequency bands. It is interesting to note that,quency range would be (0, 500 Hz] with a resolution of 1 Hz.
according to the Passval formula, the energy of all the fre-If it is necessary to obtain the information at a specific fre-
quencies is related to the root mean square (rms) in time-quency between two resolution frequencies, we can increase
domain, that is,the sampling frequency, increase the number of samples, or

use an approximation method (2). Also, we can use various 1√
N

∞∑
f =−∞

X 2( f ) = 1√
N

∞∑
t=−∞

x2(t) = (rms)2 (6)

The other type of frequency-domain features include peak
value, peak frequency, natural frequency (�n), and damping
ratio (�). The peak values are the local maximums in the spec-
trum. After finding the peak values, the corresponding peak
frequencies can then be found. In general, there may be sev-
eral peaks in a spectrum, and the corresponding frequencies
are referred to as concerned frequencies (�i, i � 1, 2, . . .).
The concerned frequencies may include the machine rotating
frequency and its harmonics, as well as the nature frequency
of the machine. As an example, Fig. 2 illustrates a spectrum
from a spindle vibration signal containing two concerned fre-

Overshoot

x(t)

Steady
state

Rising
rate

Rising
time

Delay
time

t

quencies: �1 and �2. The first sharp peak is related to the
rotation speed of the spindle. The second peak is related toFigure 1. Illustration of several time-domain features for nonsta-

tionary signals. the dynamics of the spindle system. The dynamics of the sys-
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where x( � ) represents the sensor signal and x*( � ) is its com-
plex conjugate. Another commonly used time-frequency distri-
bution is the exponential time-frequency distribution (3):

d(t, ω) =
∫ ∫

e− jωτ

τ
√

4π/σ
e(µ−t)2/4τ 2/σ

x(t + τ/2)x∗(t − τ/2)dµ dτ

(9)

where � is a scale factor and r is a constant. The exponential
time-frequency distribution has a number of desirable proper-

S(  n)ω

S(  )

2 =   nω ω
ω1 ωp ω ωq

ω

S(  n)

2

ω

ties; for example, its integration over time is equal to the ordi-
Figure 2. Illustration of several frequency-domain features.

nary spectrum and its integration over frequency is equal to
the autocorrelation function.

Time-frequency domain information is usually described
by a two-dimensional figure. Its quantitative analysis is simi-tem can be characterized by its natural frequency, �n(�n �
lar to that of spectral analysis. One can use a baseline to com-�2), and damping ratio, �, which can be approximated by
pare against others, or use the energy in certain time win-
dows and frequency bands as the fault indices. However, the
applications of time-frequency distributions are often limitedδ = ωq − ωp

2
(7)

by the fact that an increase of time window would cause a
reduced frequency resolution, which results in informationwhere, �q and �p are the bandwidth frequencies as illustrated
loss. As a result, for nonstationary signals that are stronglyin Fig. 2. Frequency-domain information can also be obtained
time dependent, it would be difficult to capture the useful in-through the time-series model and the dynamic system mod-
formation at the right time with sufficient accuracy. Thisels, which are discussed in a later section of this article. Fre-
problem could be solved by using wavelet transform.quency-domain features usually have clearly physical mean-

ings. For instance, in the vibration signals from a rolling Wavelet Transform
element bearing, there are characteristic frequencies associ-

Wavelet transform was first developed for image processingated to the out race, inner race, and rollers. By examining
in the late 1980s and early 1990s. Since then, it has beenthese frequencies, we can diagnose the bearing faults.
applied to many fields with great success. Similar to the Fou-An extension of spectral analysis is modal analysis, which
rier transform, the wavelet transform of a signal is an inte-uses the frequency information from multiple vibration sen-
gration transform defined as follows (4):sors to analyze the vibration of a structure or a machine. In

particular, the frequency characteristics of the vibration are
described by natural frequencies and the structural charac- Ws[x(t)] =

∫ +∞

−∞
x(τ )

1
2




(
t − τ

s

)
dτ (10)

teristics of the vibration are described by mode shapes. For
the details of modal analysis, the reader is referred to SPEC- where � � 1, 2, . . . are times, s � 1, 2, . . . are scales, and
TRAL ANALYSIS. �( � ) is the wavelet base function, also called the mother

wavelet. The mother wavelet may take various forms, such as
the Morlet’s function, the Mexican hat function, the piecewiseTime-Frequency Method
constant wavelet function, and the Lemarie and Battle’s func-

Spectrum analysis is effective for stationary signals. For non- tion, most of which are symmetric and continuous. (Hence,
stationary signals (e.g., the signals whose frequency charac- there are various wavelet transforms.) Different wavelets
teristics vary and/or amplitudes undulate), it may be neces- have different features, advantages, and limitations. Next, as
sary to use time-frequency domain information for fault shown in Fig. 3, through a process of dilation (which changes
diagnosis. The most commonly used method for analyzing
time-frequency domain information is a waterfall diagram. A
waterfall diagram is actually a number of spectra stacked to-
gether along a time axis. The use of the waterfall diagram is
based on the assumption that within a short time period (e.g.,
in minutes or hours), the signal is nonstationary. The water-
fall diagram is very useful for tracking slowing developed
faults.

If a signal is nonstationary even within a short time pe-
riod, then one can use time-frequency distributions. A number
of time-frequency distributions have been developed. Among
them, one of the most commonly used distribution is the Wig-
ner-Ville distribution:

10(t) = —    (—)
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Figure 3. A mother wavelet, its dilation and translation.

d(t, ω) = 1
2π

∫ ∫ ∫
ei(ξµ−τω−ξ t)x(t + τ/2)x∗(t − τ/2)dµ dτ dξ

(8)
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the shape of the mother wavelet) and translation (which 4. Reconstruction. A signal f (t) can be reconstructed from
its wavelet transform at any resolution without infor-translates wavelet bases along the time axis), the mother

wavelet generates a family of wavelet bases: mation loss. These features make the wavelet trans-
forms very effective for analyzing nonlinear time-vary-
ing sensor signals.


sτ (t) = 1
s



(
t − τ

s

)
(11)

Equation (11) represents continuous wavelet transforms.
For digitized signals, discrete wavelet transforms should beEach wavelet base represents a time window at a specific fre-
applied (4) in which the scale parameter, s, is taken as anquency band. Using the wavelet bases, a signal, x(t), can be
integer of base 2 (i.e., s � 2j, j � 1, 2, . . .) and the timerepresented as follows:
parameter, �, is taken as a series of integer k (i.e., � � k � 1,
2, . . .). That is,

x(t) = 1
C


∫ +∞

−∞

∫ ∞

0
Ws[x(τ )]

1
s

sτ (t)ds dτ (12)

ψjk(t) = 1
2 j 


(
t
2 j − k

)
(13)

where C� is a constant dependent on the base function. This
implies that the signal can be decomposed onto the wavelet Discrete wavelet transform can be calculated recursively.
bases, and at the base �s�(t) the weighting coefficient is Given the wavelet base function, �(t), and an orthogonal
Ws[x(t)]. Note that the wavelet bases are two-dimensional function, �(t), there exists a pair of mirror filters, h(t) and
functions, and hence, like time-frequency distributions, wave- g(t):
let transforms are two-dimensional transforms. Equation (12)
is also called a reconstruction or inverse wavelet transform φ j (t) = h(t) ∗ φ j−1(t) (14)
since it converts the wavelet function, Ws[x(�)], back to its
original. 
 j (t) = g(t) ∗ 
 j−1(t) (15)

A detailed description of wavelet transforms can be found
in WAVELET TRANSFORMS. Briefly, all wavelet transforms pos- where * denotes convolution. Furthermore, let operators H

and G be the convolution sum:sess four important properties:

1. Multiresolution. A wavelet transform decomposes a sig- H =
∑

k

h(k − 2t) (16)
nal into various components at different time windows
and frequency bands. These components form a surface
in a time-scale plane. The size of the time window is

G =
∑

k

g(k − 2t) (17)

controlled by the translation, while the length of the
Then the discrete wavelet transform can be represented asscale is controlled by the dilation. Hence, one can exam-
follows:ine the signal at different time windows and scales by

controlling the translation and the dilation. This is
called multiresolution. In comparison, time-frequency Aj[x(t)] = H{Aj−1[x(t)]} (18)

distributions use only fixed time windows and fre- Dj[x(t)] = G{Aj−1[x(t)]} (19)
quency bands.

2. Localization. As shown in Fig. 3, the dilation changes where Aj[x(t)] is called the (wavelet) approximation and
the shapes of the wavelet bases. The smaller the dila- Dj[x(t)] is called the detail signal, which represents informa-
tion j, the sharper the shape. On the other hand, the tion loss. It is seen that the binary wavelet transforms uses
translation shifts the wavelet bases along a time win- H and G only on the approximation Aj�1[f (t)] and, hence, loss
dow. By controlling the dilation and the translation, information at each recursive step. If the operators H and G
specific features of a signal at any specific time-scale are applied on both Aj�1[f (t)] and Dj�1[f (t)], then the wavelet
can be explicitly obtained. Called localization, this packet transform is delivered:
allows us to magnify specific features of the signal. In
comparison, in time-frequency distributions, the infor- Aj[ f (t)] = H{Aj−1[ f (t)]} + G{Dj−1[ f (t)]} (20)
mation in every time-frequency window can only be
equally weighted. Dj [ f (t)] = G{Aj−1[ f (t)]} + H{Dj−1[ f (t)]} (21)

3. Zoom-in and zoom-out. From Fig. 3, it is seen that the
Let Pi

j(t) be the ith packet on jth resolution; then the wavelettime window and the scale of the wavelet bases change
packet transform can be computed by the following recursivecorrespondingly through the dilation. The wider the
algorithm:time window, the narrower the scale, and vice versa.

This is called zoom-in and zoom-out. It implies that the P1
0 (t) = x(t) (22)

wavelet transforms are capable of capturing both the
short-time high-frequency information and the long- P2i−1

j (t) = HPi
j−1(t) (23)

time low-frequency information of the signal. In com-
parison, in the Fourier transforms and time-frequency P2i

j (t) = GPi
j−1(t) (24)

distributions, an increase of time window causes re-
duced frequency resolution and, hence, results in infor- where t � 1, 2, . . ., 2J�j, i � 1, 2, . . ., 2j, j � 1, 2, . . ., J,

and J � log2 N.mation loss.
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Figure 4. Example of wavelet packet transform.
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Figure 6. Example of a filtered orbit diagram.

Figure 4 shows an example of a wavelet packet transform.
The spatial correlation of the two sensor signals can beIt is seen that the signal is decomposed into a number of

obtained by the orbit diagram and/or filtered orbit diagram.packets, with each packet representing a component of the
The orbit diagram is obtained by simply plotting the time-signal at a specific time window and frequency band. This is
domain signals, Xh and Xv, against each other at same timethe multiresolution. We can focus on selected packets. This is
instance in a two-dimensional plot. Due to the effect of noises,the localization. Also, we can examine a larger packet at
orbit diagrams often exhibit unrecognizable random patterns.lower resolution or smaller packets at higher resolution. This
In this case, the filtered orbit diagrams should be used. Theis the zoom-in and zoom-out.
filtered orbit diagram is obtained in two steps: First, the sen-The quantitative description of the wavelet packet trans-
sor signals, Xh and Xv, are filtered by a non-phase-shiftingform of a signal involves the packet selection and packet char-
band-pass filter. Then the filtered sensor signals are plottedacterization. The selected packets should contain principal
against each other just like the orbit diagram. One may alsocomponents of the original signal (5). For example, in Fig. 4
use a keyphasor or an encoder mounted on the shaft to relatethe selected packets will be P2

5(t) and P12
5 (t). Furthermore, each

sensor signals in an orbit diagram to an angular orientationpacket can be viewed as a compressed or filtered time series
of the shaft.and hence can be described by the time-domain indices and/

The orbit diagram (or filtered orbit diagram) representsor frequency-domain indices discussed previously.
the spatial information of the sensor signals. Take, for exam-
ple, two signals:Time-Space Method (Orbit Diagram)

In some applications, sensor signals may contain spatial in- xh(t) = sin(ωt) (25)
formation. For example, the vibration of a rotating machinery xv(t) = sin(ωt + 90◦) (26)
is in two dimensions and the force of a machining process
is in three dimensions. The time-space domain information The orbit diagram is a unit circle. On the other hand, if the
represents the spatial coordination of a system and is often two signals have no phase difference, the orbit diagram will
used for fault diagnosis. be a straight line. As an example, Fig. 6 shows a filtered orbit

To capture the spatial information, sensors must be built diagram from a rotating machinery. From the figure, it is
in a specific configuration. Figure 5 illustrates a typical sen- seen that the vibration in the x direction is the same as in
sor setup used in large rotating machinery. It consists of two the y direction. According to the analysis above, this indicates
vibration (displacement) sensors set up perpendicularly; the that the two signals are 90� apart in phase, which could be
sensor signals, Xh and Xv, are sensed simultaneously. caused by an unbalanced mass hitting the two sensors 90�

apart spatially.
For complicated signals (e.g., signals consisting of many

frequency components), quantitative description of orbit dia-
grams becomes very difficult. Hence, the use of orbit diagrams
may not be automated.

A related technique is the phase diagram. It depicts the
relationship between a signal and its derivative. For a unit
sine waveform, the phase diagram is an unit circle. Similar
to the orbit diagram, it has clear physical meaning. For exam-
ple, a signal phase difference across a coupling typically indi-
cates misalignment. Also, the phase difference from one end
of a rotor to another may indicate a coupled imbalance or

Eddy current
displacement

sensor

Stator
Rotor

Xv
Xh

looseness. Similar to the use of orbit diagrams, an inherited
problem in the use of phase diagram is the quantification andFigure 5. A typical sensor setup used in diagnosis of large rotating

machinery. interpretation of the diagram.
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Frequency-Space Method (Holospectrum)

Arguably, the most effective tool for analyzing spatial infor-
mation is the holospectrum, which describes the frequency-
space domain information of the signals. The basic idea of the
holospectrum is rather straightforward. Using the preceding
notation, the signals from the horizontal sensor, Xh, will be
described by ��, Sh, �h�, and the signals from the vertical sen-
sor, Xv, will be described by ��, Sv, �v�. Furthermore, let us
assume that the concerned frequencies are �1, �2, . . ., �n.
Then, the Fourier approximations of the signals are
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Figure 8. Example of a four-dimensional holospectrum.Xh(ωi) =
n∑

i=1

Ah(ωi) exp(−δh(ωi)t) sin
(
ωit + φh(ωi)

)
(27)

Xv(ωi) =
n∑

i=1

Av(ωi) exp(−δv(ωi)t) sin
(
ωit + φv(ωi)

)
(28)

where a positive sign is used if cos(�v(�i) � �h(�i)) 
 0; other-
wise, a negative sign is used.

Assuming that � � 0, which is true for most mechanical sys- The indices ai, bi, ci, and di quantitatively describe the el-
tems, then at each frequency �i the frequency characteristic lipse, which in turn describes the spatial correlation of the
of the signal is described by the amplitude A(�i) and phase

sensor signals. Following the preceding rotating machinery
�(�i) forming an ellipse in a two-dimensional space. The holo-

vibration analysis example, at the rotating frequency �1,spectrum is composed of a number of such ellipses. Figure 7
a1 � b1 (i.e., the ellipse becomes a circle) implies that the vi-shows an example of holospectrum.
bration amplitudes in both horizontal and vertical directionsHolospectrum can be described quatitatively. At the fre-
are the same, but the vibration phases are 90� apart. Thisquency �i, denote
would indicate that the machinery is in a state of unbalance
because the unbalance mass hits the two sensor exactly 90�Ai = A2

h(ωi) + A2
v(ωi) (29)

spatially.
Bi = 2|Ah(ωi)Av(ωi) sin(φh(ωi) − φv(ωi))| (30) If the sensor signal is a three-dimensional signal, such as

force, then we can use the four-dimensional (three spatial di-Then the major axis and the minor axis of the corresponding
mensions plus the frequency dimension) holospectrum (6).ellipse in the holospectrum are
Similar to the holospectrum, at a concerned frequency, �i, the
signals can be approximated by2ai =

√
Ai + Bi +

√
Ai + Bi (31)

2bi =
√

Ai + Bi −
√

Ai + Bi (32) Xx(ωi) = Ax(ωi) exp(−δx(ωi)t) sin
(
ωit + φx(ωi)

)
(35)

The eccentric ratio of the ellipse is Xy(ωi) = Ay(ωi) exp(−δy(ωi)t) sin
(
ωit + φy(ωi)

)
(36)

Xz(ωi) = Az(ωi) exp(−δz(ωi)t) sin
(
ωit + φz(ωi)

)
(37)

ei =
√

a2
i − b2

i

ai
(33)

Again, assuming that � � 0, the preceding equations repre-
sents an elliptic curve in three-dimensional space. A four-di-and the inclination angle (i.e., the angle between the major
mensional holospectrum consists of several such curves, andaxis and the horizontal axis) is
each curve describes the spatial-frequency correlation of the
signals at a concerned frequency. An example of a four-dimen-
sional holospectrum is shown in Fig. 8. The quantitative indi-ci = cos−1 ±

√
1 − bi/Sh(ωi) sin(�(ωi) − �(ωi)

1 − (bi/ai)
2 (34)

ces of a four-dimensional holospectrum include the major and
minor axes, the eccentric ratio and the inclination angle of
the ellipses, and the orientation of the ellipses (i.e., whether
the ellipse is formed clockwise or counterclockwise).

Other Signal Processing Methods

There are several other signal processing methods that have
been used for fault diagnosis. These include the higher-order
spectrum and cepstrum. The higher-order spectrum is an-
other technique for nonstationary sensor signal processing.
The motivation of using higher-order spectra is 3-fold: (1) to
extract information due to deviations from Gaussian distribu-
tions, (2) to estimate the phase information of non-Gaussian
signals, and (3) to detect and characterize the nonlinear prop-
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–2 0

Xh ω
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erties of mechanisms that generate time series via phase rela-
tions of their harmonic components.Figure 7. Example of a holospectrum.
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The most commonly used higher-order spectra is the bis- in the model, if applicable); and (2) estimating the model pa-
rameters. According to literature, dozens of methods havepectrum:
been developed, though none has been proved better than the
others for all applications.

In general, there are two ways to use time-series models
B(ω1, ω2) =

∞∑
τ=−∞

∞∑
ν=−∞

b(τ , ν)e− j(ω1 τ+ω2ν ) (38)

for fault diagnosis. They both are based on the assumption
that the faults will result in a change of the time-series mod-where b(�, �) � E�x(t)x(t 
 �)x(t 
 �)� is the third-order mo-
els. The first method is the prediction error method. Assumement of the signal. The bispectrum has a number of distinct
that a time-series model is built using the data obtained whenproperties for stationary signals, and it is capable of repre-
the system is known in normal condition and denote it assenting the phase information of nonstationary signals (7).
(�̂1, �̂2, . . ., �̂p, �̂1, �̂2, . . ., �̂q). This model can be consideredHowever, it is often difficult to perceive the physical meaning
as a filter, which transforms the correlated time series, xt, toof the higher-order spectrum.
an uncorrelated white noise series, at. When a new time seriesCepstrum is the spectrum of the spectrum. It is obtained
is filtered through the model, the prediction error, ât can beby taking a Fourier transform of the Fourier transform of a
computed recursively using the following equation:signal. It relates to the phase information of the signal.

Time-Series Models

The signal processing methods discussed previously are based

ât = Xt − φ̂1Xt−1 − φ̂2Xt−2−, . . ., −φ̂pXt−p

+ θ̂1ât−1+, . . .,+θ̂qât−1, t > q
(42)

on examination of the appearance of the signal in the time
If the new data correspond to the normal condition, then, ac-domain, frequency domain, time-frequency domain, and fre-
cording to the definition, the prediction error series should bequency-space domain. Another type of signal processing
a white noise. On the other hand, if the new data correspondmethod is to model the signal using specific models, among
to a fault, the prediction error series would not be a whitewhich the most popular one is the time-series models.
noise as the data correspond to a different model. To examineAssuming that the sensor signal, �x1, x2, . . ., xn�, or de-
whether the series ât is a white noise series, we can use thenoted as �xt, t � 1, 2, . . ., n�, is the output of a dynamic
Quantile-Quantile (Q–Q) plot. If ât is a white noise series,system, then the system’s current output is likely dependent
then it must conform to a normal distribution N(�a, �a) andon the system’s previous output. Assume such a dependence
the following relationship must be true:is linear; then

ât = µa + σaZt (43)Xt − φ1Xt−1 − φ2Xt−2−, . . .,−φpXt−p = at (39)

where Zt is a random variable conforming to the standardwhere p is the order of the system and at represents an impe-
normal distribution N(0, 1). To test whether there exists atus, called shock or noise, which induces the variation to the
linear relationship between at and Zt, first rearrange at in as-system output. Equation (39) is called an autoregressive (AR)
cending order. Then for the kth data, there are k/N valuesmodel. Assuming further that the impetuses affect the system
less than or equal to it as it is the (k/N)th sample percentile.output in several steps (e.g., yesterday’s cold front affects to-
If at is normally distributed, it should be linearly related today’s temperature), then
the (k/N) percentile of N(0, 1), which can be found from statis-
tics books. In other words, plotting the rearranged at against
the Zt, a straight line would indicate such a linear relation-

Xt − φ1Xt−1 − φ2Xt−2−, . . .,−φpXt−p

= at − θ1at−1−, . . .,−θqat−q
(40)

ship. Otherwise, the relationship is nonlinear, which, in turn,
implies that at is not a white noise series and it must corre-

where q is the order of the moving average (MA) part of spond to a fault.
model. Equation (40) is called an autoregressive and moving The second method is to examine the variation of the
average (ARMA) model. In general, we assume that the pa- model parameters. In general, the parameters of the model
rameters of the model ��1, �2, . . ., �p, �1, �2, . . ., �q� are ��1, �2, . . ., �p, �1, �2, . . ., �q� do not have physical meanings
constants and at is a white noise at � N(0, �a). By introducing and, hence, are inconvenient to use. However, we can exam-
the back-shift operator B (i.e., BXt � Xt�1), the ARMA model ine the roots of �(B), or the eigenvalues of the model. It is
can be rewritten to a compact form: known from a pair of eigenvalues, �1 and �2, that we can cal-

culate the natural frequency (�n) and the damping ratio (�):
�(B)Xt = �(B)at (41)

where �(B) � 1 � �1B � �2B2 � , . . ., �pBp and �(B) � 1 �
�1B � �2B2 � , . . ., � �qBq. The ARMA model may look sim- ωn = 1

T

√√√√ [ln(λ1λ2)]2

4
+
[

cos−1 λ1 + λ2

2
√

λ1λ2

]2

(44)

ple, but it is actually a nonlinear model since at the right
hand side of the equation both the model parameters ��1, �2,
. . ., �q� and the noise series �at, t � 1, 2, . . ., n� are unknown
(though their statistical properties are known). This makes
the construction of the model mathematically and computa-

ζ = − ln(λ1λ2)√
[ln(λ1λ2)]2

4
+ 4

[
cos−1 λ1 + λ2

2
√

λ1λ2

]2 (45)

tionally complicated. In general, building an ARMA model
consists of two steps: (1) determining the structure of the Obviously, if we build two time-series models from two sets

of data, both obtained from the same system condition, thenmodel (the orders of AR and MA as well as the nonzero terms
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the eigenvalues (the natural frequencies and damping ratios)
of the two models will be rather similar (though the parame-
ters of the two models may not). On the other hand, a change
of the eigenvalues would indicate the change of the system
and may correspond to a fault. Since many systems can be
modeled by time-series models and their eigenvalues have
distinct meanings, the time-series models are often used for

Sensor
signals

xc

R(  )

Signal
processing

System

Sensor
fault

Signal
features

fault diagnosis. However, it should be noted that time-series
Figure 9. The model of signal classification.models are sensitive to not only the system health conditions

but also to the system working conditions, and they do not
work for nonlinear systems.

For nonlinear systems, we may use nonlinear time-series
shown in Fig. 9, the fault can be considered as the input, themodels, for which the reader is referred to AUTOREGRESSIVE
features are the outputs, and the relationship is a function

PROCESSES. Also, the idea of using time-series models for fault
R( � ). Mathematically, the relationship can be represented asdiagnosis can be extended to using other systems models such

as transfer function models and state-space models.
xxx = R(c) (46)

Remarks on Using Signal Processing Methods Note that the relationship may take various forms, such as
patterns, fuzzy membership functions, decision rules, and ar-In summary, the following rules are recommended for choos-
tificial neural networks (ANN). It is the key to the signal clas-ing signal processing methods for fault diagnosis:
sification.

In general, signal classification consists of two phases:
learning and reasoning. In the learning phase, also called1. Start at time-domain features such as mean, variance,
training, the relationship R(c) is built based on availablerms, skewness, kurtosis, and crest factor. Also, use his-
learning samples and domain knowledge, or a combination oftograms, threshold crossing counts, as well as other spe-
both. The reasoning, also called classification, can be viewedcial features. Averaging, differentiating, and filtering
as an inverse operation: Based on the relationship, estimatewill be helpful. Note that before calculating these fea-
the corresponding system condition of a new sample, x; thattures, applying a band–pass filter to the signals is al-
is,ways helpful.

2. If the signal is stationary, use frequency-domain fea- c = R−1(xxx) (47)
tures and spectral analysis.

3. If the signal is nonstationary, use wavelet transform. where, depending on the forms of relationship R, the inverse
of relationship, R�1, may be pattern matching, fuzzy classifi-4. If the signal has spatial information, use holospectrum,
cation, decision tree searching, and ANN classification.4D holospectrum, or orbit diagram.

In general, assume that through sensing and signal pro-
cessing, we obtain N sets of training samples from m different
system conditions, which may include the normal system con-

SENSOR SIGNAL CLASSIFICATION dition and various faults. The system conditions will be re-
ferred to as classes and denoted as c1, c2, . . ., cm. On the other

The sensor signal processing techniques described in the pre- hand, each sample is described by a set of signal features X1,
vious section are usually effective in detecting the faults. X2, . . ., Xi, . . ., Xn. Note that the signal features may be the
However, to diagnose the faults (i.e., to pin-point the cause of signal itself or the features of the signal, such as mean and
the faults) requires to extract distinct signal features that are variance. Arrange the training samples as in Table 2, where
correlated to each and every specific fault. This is much more c(xi) � �c1, c2, . . ., cm� implies that the sample xi � �xi1, xi2,

. . ., xin� is from one of the predefined classes. Note that bothdifficult due to the following four reasons: (1) Engineering
the values and the classes of all the training samples mustsystems may be very complicated and the sensor signals are
be known.just a window to the system providing only limited informa-

Although many classification methods are available, fromtion; (2) The signal processing techniques used may introduce
a mathematical point of view, what these methods do is eitherdistortions, such as phase shifting, causing the loss of infor-
weighting or decomposition. Figures 10(a) and 10(b) show amation; (3) The system operating conditions may vary (e.g.,
simple example where two features, X1 and X2, are used tothe change of speed and/or the load) resulting mixed informa-
classify two classes, c1 and c2. In Fig. 10(a), a partition line istion; and (4) The system may be affected by various noise dis-
used to separate the two classes. The partition line can beturbance, such as environment noise and sampling noise.
represented byConsequently, for fault diagnosis, it is often necessary to con-

duct signal classification to correlate signals (or the features
of the signals) to the specific faults. a0 + a1X1 + a2X2 = 0 (48)

Let us assume that there exists a relationship between a
fault, denoted as c (there may be many different faults: c1, where a0, a1, and a2 are constants. This is called the weighting

method because the classification is determined by thec2, . . ., cm), and the signal features, denoted by a vector x. As
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Table 2. The Organization of the Training Samples

X1 X2 . . . Xi . . . Xn Class

x1 x(1, 1) x(1, 2) . . . x(1, i) . . . x(1, n) c(x1)
x2 x(2, 1) x(2, 2) . . . x(2, i) . . . x(2, n) c(x2)
. . . . . . . . . . . . . . . . . . . . . . . .
xN x(N, 1) x(N, 2) . . . x(N, i) . . . x(N, n) c(xN)

‘‘weighting’’ factors a0, a1, and a2. For a new sample x � �x1, Pattern Recognition Method
x2�, the classification rule is represented as follows:

In general, the pattern recognition methods can be divided
into two categories: statistical methods (also called nondeter-If a0 + a1X1 + a2X2 > 0, then c(xxx) = c1 (49)
ministic methods) and distribution-free methods (also called
deterministic methods).If a0 + a1X1 + a2X2 ≤ 0, then c(xxx) = c2 (50)

Statistical pattern recognition methods are based on the
Bayes estimation. Assume that the probability density func-The partition line can also be piecewise linear, quadric, and
tion that a sample x corresponds to class cj is f j(x/�j), whereso on. Pattern recognition, fuzzy classification, and ANN are
�j represents the parameters of the probability density func-all weighting methods.
tion and is known or can be found from the training samples.In comparison, the decomposition method decomposes the
Also assume that pj is the a priori probability that the samplefeature space into two areas, as shown in Fig. 10(b). The de-
x corresponds to cj, and C�j is the cost of misclassification (re-composition methods may look attractive since they are more
lates x to c� when it actually corresponds to cj). Then the pos-effective. For example, there are two misclassified samples in
terior probability density function would beFig. 10(a) and there is none in Fig. 10(b). However, the best

decomposition is difficult to find. With an increase in the
number of learning samples and features, possible decomposi-
tion quickly becomes unmanageable. For example, suppose qj (xxx) =

n∑
α=1

pjCα j f j (xxx/� j ) (51)

there are 100 learning samples and 10 features. Then, ac-
cording to the permutation rule, there will be

This equation is rather difficult to use; however, if f j(x/�j) is
Gaussian and the mean vector �j and covariance matrix VjP100

10 = 100 · 99 · 98 · . . . · 90 ≈ 1020
are known, and the costs C�j are all equal, then it can be sim-
plified as follows:

possible decompositions. It is unlikely to examine all these
decompositions to determine the optimal decomposition. As a
result, we are forced to search for the suboptimal solutions. qj(xxx) = −1

2
(xxx − µµµ j )

TV −1
j (xxx − µµµ j ) + ln pj − ln

√
Vj (52)

Decomposition is usually described by decision rules, which
leads to the decision tree method.

This is relatively easy to calculate. Based on the posteriorBefore choosing a classification method (from those de-
probability, the Bayes estimation can be found by the follow-scribed in the following subsections), it is interesting to know
ing formula:that none has been proved to outperform the others for all

applications, either mathematically or practically. Therefore,
it is best to try several methods and choose the one that per- j∗ = arg max

j

(
qj (xxx)

)
(53)

forms the best.

where arg max implies finding the maximum respect of the
argument.

A modified version of the Bayes estimation is the nearest
neighbor method. Instead of posterior probability, it uses the
following discriminate function:

qα(x) = f j p j
n∑

α=1

fαPα

(54)

where f j is called the nearest neighbor. There are a number
of ways to define the nearest neighbor. For example, the near-
est neighbor defined based on the Mahalanobis distance,
xTV�1x, is as follows:��
��
��

�
�
�Division

line
X2

X1

: The samples from c1
: The samples from c2

(a) (b)

: The samples from c1
: The samples from c2

X2

X1

Figure 10. Classification methods. (a) Weighting method, and (b) de-
composition method.

f j = (V −1/2
j )Txxx (55)
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In comparison to Eq. (51), the nearest neighbor method is in- bis’s method, the linear discrimination method, and Fisher’s
method. In Mahalanobis’s method, the patterns are thedependent of the probability distribution and, hence, is easier

to use. means of the learning samples (i.e., pj � �j, j � 1, 2, . . ., m),
and the distance is defined asIn the learning phase, the cost C�j and a priori probability

pj are first defined (a common assumption is C�j � 1 and pj �
1/m, where �, j � 1, 2, . . ., m). Also, based on the available qj (xxx) = (xxx − pppj )

TVj (xxx − pppj ) (58)
learning samples, we can estimate the mean and the covari-
ance: The linear discriminate method, also called the K-mean algo-

rithm, uses the same pattern, but the distance is defined as
µµµ j = 1

Nj

N∑
k=1

δjkxxxk (56)

qj(xxxk) =
m∑

i=1

wij[x(k, i) − cij]
2 (59)

V 2
j = 1

Nj

N∑
k=1

δjk(xxxk − µµµ j )(xxxk − µµµ j )
T

where wij and cij are the weights and centers of the patterns,
respectively. They can be determined by minimizing:

where Nj is the number of samples that correspond to the jth
process condition, and �jk is a delta function defined as fol-
lows: J =

N∑
k=1

n∑
j=1

δjkq j(xxxk) (60)

Similarly, Fisher’s method uses the same patterns, but the
δjk =

{
1 i f c(xxxk) = c j

0 i f c(xxxk) �= c j

(57)

distance is defined as

The performance of the statistical pattern recognition
methods depends on the probability distribution of the sam- qj(xxx) = βT

j xxx (61)

ples. It has been shown that if the probability distribution is
Gaussian or close to Gaussian, the Bayes estimation is the where �j is determined by maximizing:
optimal classification and the nearest neighbor method also
performs well. However, if the probability distribution is not
close to Gaussian, then the distribution-free methods are pre- J =

n∑
j=1

βT
j Vjβ j (62)

ferred.
The distribution-free pattern recognition methods are

In the classification phase, the distribution-free methods arebased on the similarity between a sample x and the patterns.
similar to the statistical methods. They use the minimum dis-From a geometrical point of view, the signal features span
tance:into an m-dimensional space. In this space, each class is char-

acterized by a vector (pattern) pj � [p1j p2j . . . pnj]T. On the
other hand, the sample x is also a vector in the space. Hence, j∗ = arg min

j

(
qj (xxx)

)
(63)

the similarity between a pattern and a sample can be mea-
sured by the distance between them. As shown in Fig. 11, the Pattern recognition methods are typical weighted methods.
distance between the sample and pattern p1 is d1, and the Their effectiveness depends not only on the discriminate func-
distance between the sample and pattern p2 is d2. The mini- tion, but also the distribution of the learning samples as well
mum distance would indicate the resemblance and hence can as the definition of the classes. In practice, many faults are
be used for classification. ‘‘fuzzy’’ in nature. For example, in the diagnosis of large rotat-

There are a number of ways to define patterns and dis- ing machinery, the rotor unbalance may be in many states,
tances. This results in various distribution-free pattern recog- from minor to severe. Hence, the diagnosis is often not what
nition methods. Commonly used methods include Mahalano- the fault is, but to what degree the fault is. This question may

be better answered by fuzzy logic.

Fuzzy Logic Method

Details of fuzzy logic and fuzzy systems are discussed in
FUZZY LOGIC SYSTEMS. Under the fuzzy concept, uncertain
events are described by means of fuzzy degrees (also called
relationship functions, possibility functions, or membership
functions). Briefly, if A is an uncertain event defined in the
universal set U, then A can be described by

A = {x|µA(x)} (64)

where x � U is the value of A, and �A(x) is the fuzzy degree.

p2
d2 d1

x3

x1

x2

x

p1

The fuzzy degree �A(x) is a monotonous function, 0 � �A(x) �
1, while 0 means certainly no and 1 implies certainly yes. TheFigure 11. The distribution-free pattern recognition methods.
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The fuzzy linear equation method is first introduced in Ref.
9. It is assumed that the relationship between the signal fea-
tures and the classes, as shown in Fig. 8, can be described by
a fuzzy linear equation:

rrr = QQQ ◦ ppp (70)

where r represents the fuzzy degree of the signal features, p
represents the fuzzy degree of the classes, Q is the fuzzy rela-
tionship function, and the symbol ‘‘�’’ is a fuzzy operator (10).

Fuzzy
set

Crisp
set

x

1

0

Rewriting Eq. (71) in matrix form,
Figure 12. An example of fuzzy membership function.

difference between a fuzzy concept and a certain concept is
illustrated in Fig. 12.

An often confused issue is the difference between the fuzzy
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
 (71)

degree and the probability. The fuzzy degree represents the
For each row, we haveimprecision of an event (e.g., how similar A is to another

event B) while the probability describes the occurrence fre- ri = qi1 ⊗ p1 ⊕ qi2 ⊗ p2 ⊕ . . . ⊕ qin pn (72)
quency of A (e.g., how likely it is that A will occur). Based
on fuzzy logic, a number of classification methods have been where � denotes the fuzzy multiplication and � denotes the
developed. These include the fuzzy C-mean method and the fuzzy addition. The element qij is the fuzzy relationship that
fuzzy linear equation method. relates the ith signal feature to the jth class. In the learning

The fuzzy C-mean method was first introduced by Bezdek phase, the relationship is determined by the occurrence fre-
(8). It uses a cluster center, V � [v( j, i)], and a fuzzy degree, quency and the strength of support of the learning samples.
U � [u(k, j)], for classification. In the leaning phase, the clus- Let Si � �x(1, i), x(2, i), . . ., x(N, i)�, which is the set that
ter center and the fuzzy degree are determined by minimiz- contains the ith signal features of all learning samples, and
ing: let

xi,max = max
i

{x(1, i), x(2, i), . . ., x(N, i)} (73)JJJ(UUU ,VVV ,XXX ) =
N∑

k=1

n∑
j=1

m∑
i=1

u(k, j)v‖x(k, i) − j, i)‖v (65)

xi,min = min
i

{x(1, i), x(2, i), . . ., x(N, i)} (74)

subject to
Furthermore, dividing the interval between xi,max and xi,min into
L evenly distributed subintervals (in practice, L � N/10 � N/
15 is recommended so that there will be enough samples inMMM =

{
[u(k, j), v( j, i)

/ n∑
j=1

u(k, j) = 1,∀k = 1, 2, . . .

}
(66)

each interval). Each subinterval, denoted by v(i, k), k � 1, 2,
. . ., L, is defined as follows:where v is a positive number that controls the shape of the

fuzzy degree (usually v � 2 is used), � � � represents the norm, v(i,k) = [xi,min + (k − 1)�xi, xi,min + k�xi] (75)
and M represents the feasible solution sets. It has been shown
(8) that the necessary condition for solving Eq. (66) is where

�x = xi,max − xi,min

L
u(k, j) = 1

m∑
i=1

m∑
α=1

( ‖x(k, i) − v( j, i)‖
‖x(k, i) − v(α, i)‖

)1/v−1 (67)

Then qij can be represented by a set with L elements:

qij = {v(i,k)|q(i, j, k),k = 1,2, . . ., L} (76)

where the fuzzy degree, q(i, j, k), is determined by the occur-
rence frequency and the strength of support of the learning

v( j, i) =

N∑
k=1

uv(k, j)x(k, i)

N∑
k=1

uv(k, j)

(68)

samples as defined in the following equation:

Equations (67) and (68) cannot be solved analytically but can
be solved by iterations. Once the cluster center is found, the
correlation of a new sample, x, to the classes can be evaluated

q(i, j, k) = α
Cijk

Cik
+ (1 − α)

Cijk

Cij
(77)

based on its fuzzy degrees, u(x, j), j � 1, 2, . . ., n, calculated
where Cijk is the number of training samples that correspondusing Eq. (67). Furthermore, its estimated class is the one
to jth class and located inside the kth subinterval, Cik is thethat has the maximum fuzzy degree:
number of samples that are located inside the kth subinter-
val, Cij is the number of samples in Si that correspond to the
jth process condition, and 0 � � � 1 is a constant.

j∗ = arg max
j

(
u(xxx, j)

)
(69)
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Once the relationship function, Q, is found, and a new consists of an input layer, a hidden layer, and an output
layer. The nodes in the hidden layer can be described bysample, x, is given, the classification is done in two steps.

First, since each element, qij, of the fuzzy relationship func-
tion is a set, it is necessary to determine which element of the
set should be used. Such an element is called the value of the yk = F

(
n∑

i=1

xiwik + θk

)
(82)

fuzzy relationship and is denoted by Qv. It is determined
based on the sample: Suppose the value of the ith feature of

where k � 1, 2, . . ., h is used to index the nodes in the hid-the sample is located inside the kth subinterval, v(i, k); then
den layer (h is the number of nodes in the hidden layer), xi is
the inputs, wik is the weights, �k is the thresholds, and F( � ) is

qv
ij = q(i, j, k) (78) a nonlinear function. F( � ) may be in various forms and one of

them is defined as follows:
By so doing, the fuzzy relationship Q is reduced to a m � n
matrix Qv. The second step is to solve the linear fuzzy equa-
tion. A commonly used solution is the max-min solution de-

F(t) = 1
1 + e−t

(83)

fined in the following equation (10):
Similarly, the output nodes of the network can be described
bypj = max

i
min{qv

ij, ri} (79)

An often better performed solution is the one proposed in
Ref. 9:

zk = F

(
h∑

i=1

yigik + ρk

)
(84)

where k � 1, 2, . . ., m is used to index the output nodes of
the ANN, gik is the weights, and �k is the thresholds.pj =

m∑
i=1

min{qv
ij, ri} (80)

In the learning phase, building an ANN involves (1) de-
signing the architecture of the ANN (namely, select number

Based on the preceding solutions, the corresponding class of of layers and number of nodes in each layer), (2) assigning
the new sample is the one that has the maximum fuzzy de- desirable or target outputs of the ANN, denoted by d � (d1,
gree; that is, d2, . . ., dm), and (3) applying a training algorithm to find the

weights and the thresholds of the ANN, �wik, �k, gik, and �k�
that minimize the error:j∗ = arg max

j
{pj} (81)

Artificial Neural Network
E =

N∑
j=1

(dj − z j )
2 (85)

Since its rediscovery in the 1980s, the ANN has quickly be-
where zj is the actual output corresponding to sample xj.come one of the most commonly used methods for fault diag-

Regarding the structure design, it has been agreed thatnosis. The reader can find a detailed discussion on ANN in
one hidden layer is usually sufficient. It is also known thatNEURAL NET ARCHITECTURE. In short, as shown in Fig. 13, from
the number of nodes in the hidden layer must be sufficient.a mathematical point of view, an ANN can be considered as
However, if too many nodes are used, the network may cap-a nonlinear mapping function, which maps a set of signal fea-
ture and memorize insignificant patterns or noises in thetures x (input of the ANN) to a pattern z (output of the ANN).
training samples. As a result, its ability to reason is reduced.From the figure, we also see that a typical feedforward ANN
The optimal number of nodes can be found based on the fact
that the best ANN is the one most similar to the training
samples. The similarity can be defined in a number of differ-
ent ways, and one of them is as follows:

S =
N∑

i=1

N∑
j=1

aij ln
aij

bij
+ bij ln

bij

aij
+ aij ln

aij

cij
+ cij ln

cij

aij
(86)

where aij � �xi � xj�, bij � �yi � yj�, and cij � �zi � zj�. Note
that the similarity is a function of h (the number of nodes in
the hidden layer); that is, S � S(h). Accordingly, the optimal
number of nodes can be found by minimizing the total simi-
larity:

h∗ = arg min{S(h)} (87)

where h* is the optimal number of nodes in the hidden layer.
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There are two ways of assigning target outputs. The first
one is the so-called 0–1 assignment. It assigns a one to theFigure 13. Nonlinear mapping in an ANN.
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output corresponding to the class of the sample and zero to
the others. For example, if c(x) � c1, then d(x) � [1, 0, . . .,
0]. The other one is based on the similarity. That is, the target
outputs shall be similar to the patterns of the training sam-
ples. Obviously, the most similar assignment is the training
samples themselves. However, this assignment will force the
ANN to follow a large number of unorganized patterns so that
the ANN becomes very complicated and, more important,
loses its ability to reason. The second most similar assign-
ment is the mean of each class of the training samples. That
is,

Node 3

Node 2 Node 1

. . . . . .

. . . . . .

Root

X2 = X21 + X22 X1 = X11 + X12

X = X1 + X2

Cm

Figure 14. Building a decision tree.di = xxxi = 1
NCi

N∑
j=1

δijxxxk (88)

N is large, regardless of how powerful a computer may be.where NCi is the number of training samples that correspond
Hence, the best we can do is to find a suboptimal partition. Ato the jth class, ci, i � 1, 2, . . ., m.
number of methods have been developed to find suboptimalWhen the structure is designed and the target outputs are
partitions, and one of the effective ones is an algorithm calledassigned, we can then train the ANN. There are a number of
ID3 (Iterating Dichotomizer Three).ANN training methods. Unarguably, the most commonly used

Algorithm ID3 was first introduced by Quinlan (12). It usesmethod is the back propagation (BP) algorithm. It is a set of
the minimum entropy gain to direct the search of the parti-iteration equations used to determine the coefficients wik, �k,
tion. Suppose at a node of a tree, there are S(S � N) samples,gik, and �k that minimize the estimation error defined in Eq.
XS � �x1, x2, . . ., xS,�, to be partitioned. The partition is asso-(84), and these equations can be found in ART NEURAL NETS
ciated to the entropy determined by the distribution of the(11). Whereas the ANN is trained and a new sample is pre-
samples. Let NCk, k � 1, 2, . . ., m, be the number of samplessented, the corresponding class of the new sample can be esti-
in XS that correspond to class ck, andmated by calculating the output of the ANN and comparing

the output to the target output. This is similar to the pattern
recognition method and the fuzzy logic method discussed in PSCk

= NCk

S
(89)

the previous sections.

Then the entropy, denoted by I(XS), is defined as follows:Decision Trees

The classification methods described previously are all
weighting methods, in which decisions are made by weighting

I(XXX S) =
m∑

k=1

PSCk
log2(PSCk

) (90)

the signal features. For example, the pattern recognition
methods use linear (K-mean algorithm) or quadratic (Fisher’s The partition is to decompose the training samples into two
algorithm) weighting functions; the fuzzy logic methods use subsets: XS � XS1 
 XS2, where XS1 and XS2 have S1 and S2
fuzzy degrees, and the neural networks use nonlinear map- samples, respectively; and S � S1 
 S2. Suppose, furthermore,
ping functions. As point out earlier, classifications can also be that the jth signal feature, Xj, is used as the pivot of the parti-
done by decomposing the signal features. tion. Then the entropy of the partition is

The most effective way of decomposition is the use of deci-
sion trees. The decision tree can be built by partitioning the
training samples. For simplicity, let us consider how to build E(XXX S, Xj ) = S1

S
I(XXX S1) + S2

S
I(XXX S2) (91)

a binary tree. It starts from the root of the tree, at which a
and the entropy gain of the partition issignal feature and a threshold are selected to partition the

training samples, X � �x1, x2, . . ., xN�, into two sets: X �
X1 
 X2. Each set contains mutually exclusive patterns. Then, G(XXX S, Xj ) = I(XXX S) − E(XXX S, Xj ) (92)
two nodes are built following the root of the tree. Then, at
Node 1, the training sample set X1 is further partitioned into Note that for each signal feature, there may be a large

number of possible partitions. However, only a few could re-two subsets (i.e., X1 � X11 
 X12); and at Node 2, the training
sample set X2 is partitioned into two subsets (i.e., X2 � X21 
 sult in a small entropy gains and, hence, provide desirable

classification. These are the partitions that make XS1 and XS2X22). Such a partition process continues until all the training
samples are grouped according to their corresponding classes. contain mutually exclusive patterns. For example, XS1 con-

tains only the samples from a certain class: c1 or c2, . . ., orThis process is illustrated in Fig. 14.
There are many different ways to partition the training from two classes: c1 
 c2, c1 
 c3, and so on; and XS2 contains

the complement. In particular, there are only m partitionssamples. The optimal partition can be obtained by finding all
the possible partitions and choosing the one that minimizes a that make XS1 contain the samples from one class, which can

be found easily by sorting the data. Note that there may notgiven objective function. However, as mentioned earlier, this
leads to a so-called NP complete problem just like the travel- exist a signal feature that is capable of completely separating

one class from the others. In this case, the partitions thating salesperson problem. It requires an exponential computa-
tion load and cannot be solved when the number of samples make XS1 contain most samples from a certain class will be
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the knowledge. Regardless the applications, the basic func-
tions of the interface and inference engine are the same, and
hence expert system shells are developed. As a result, the
main effort of using expert systems for fault diagnosis is to
develop the knowledge base. The knowledge base may be in
various forms; the most commonly used form is the rule base,
where the knowledge is represented in terms of rules: ‘‘If . . .,
then’’. Although there may be cases in which multiple rules
may apply and different applicable rules lead to contrary re-
sults, the expert system shell usually manages to deliver good
results. Therefore, the main task in developing the knowledge
base is to develop the rules. This is called knowledge acqui-

Xi ≥ di

Xk ≥ dk

Xj ≥ dj

ck

Y
N

N

N

Y

Y

New sample

. . . . . . . . .

sition.Figure 15. Decision tree method.
There are several knowledge acquisition methods: (1) ma-

chine learning, (2) system modeling and simulation, and (3)
domain experts consultation. The decision tree method de-

used. When a partition is determined, the threshold of the
scribed previously is a typical example of machine learning.

partition is the arithmetic mean of the two closest points in
It is called learning from samples. The samples may be ob-XS1 and XS2. tained from historical records (operation records and mainte-

In the ID3 algorithm, the aforementioned partitioning pro-
nance records of the system and other similar or related sys-

cess starts at the root of the decision tree, where all the sam-
tems). Many systems, such as power generation stations,

ples are to be partitioned. It examines all the partitions of
large turbine machinery sets, and automobile assembly lines,

every signal feature and selects the partition that has mini-
kept extensive historical records ranging from quality control

mum entropy gain (if there is more than one partition having
charts to maintenance service records. These records and the

the same minimum entropy gain, then the one that has
records of other similar or related systems are important

largest difference between the two sets XS1 and XS2 shall be
knowledge sources for fault diagnosis. From a theoretical

selected). Then the partitioned samples are partitioned again.
point of view, historical records and samples represent spe-

The process ends when all partitioned samples are properly
cific instances of faults. Learning from samples is a general-

classified (i.e., each partitioned subset contains only the sam-
ization process that constructs diagnosis rules from these

ples from the same class), resulting a binary decision tree.
samples. Because of the incompleteness of the learning sam-

When a decision tree is built, the classification can be done
ples (in practice, there are always new samples that are dif-

by searching through the tree. Since most decision trees are
ferent from the learning samples), the learned decision rules

rather simple, a binary search is usually sufficient. As shown
are often partial. The accuracy of the learned rules can be

in Fig. 15, given a new sample, x � �x1, x2, . . ., xn�, the search
evaluated by error, which includes bias and variation. For ex-

starts at the root: If xj 
 dj, then the search is directed to the
ample, upon obtaining a new sample, we can calculate the

right. Next, assuming that xk � dk, the search is directed to
new mean and new variance of a class. If the new mean is

left, and so on. Finally, the corresponding class of the new
almost the same as the old mean, then we say that the esti-

sample, ck, is found, as indicated by a leaf of the tree.
mation is unbiased. If, furthermore, the new variance does

The decision tree method often works very well. According
not change, then we say the variation is small. Also, there

to the simulation study by Quinlan (12), if the training sam-
may be a large number of samples from a same class (e.g., the

ples cover 50% of the problem space, the success rate is 75%.
normal class). This is called redundant information. Using re-

If the training samples cover 85% of the problem space, then
dundant information can improve classification accuracy as

the success rate may reach as high as 95%. Another interest-
well.

ing feature of the decision tree method is that it may not use
Computer modeling and simulation allow us to look into

all the signal features. In fact, the unused signal features are
the inside a system under various working conditions and

the less effective features and, hence, can be disregarded.
hence are excellent tools of knowledge acquisition. Depending

However, the decision tree method learns only from the
on the applications, various system models can be used, such

training samples and cannot capture any faults that are not
as dynamic models or finite element (or finite difference) mod-

in the training samples, no matter how simple they may be.
els. The dynamic models are often used for fault diagnosis.

For example, sensor malfunction is a common problem in
This is due to the fact that most engineering systems are dy-

fault diagnosis and can be easily captured since it is always
namic systems and the dynamic features, such as natural fre-

associated with either no signal or a saturated signal. Never-
quencies and damping ratios, are effective features for fault

theless, this cannot be recognized unless extensive training
diagnosis. The use of the finite element model (FEM) is based

samples are provided during the training of the decision tree.
on the consideration that engineering systems are, in fact,

To solve this problem and hence add flexibility to the fault
distributed-parameter systems. Hence, it is important to ex-

diagnosis, we can use the expert systems method.
amine not only the behavior of the system as a whole but also
the behavior of the system at particular areas. Models are

Expert Systems
simplified representations of systems, and the accuracy of a
model depends greatly on the formation of the model as wellExpert systems are discussed in the article EXPERT SYSTEMS.

In general, expert systems consist of three basic components: as on the key parameters (such as system parameters, mate-
rial constants, and friction coefficients). When checking aan interface, an inference engine, and a knowledge base. The

interface is the window of communication between the user handbook, it is not unusual to find that these parameters
vary over a wide range. As a result, the system model mayand the computer. The inference engine is used to manipulate
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behave differently. To improve the accuracy of the model, we understand the system. After all, the system faults occur
within the system. Without a good understanding of the sys-can use the sensor signals to fine-tune the key parameters.

Based on computer models and simulation, various system tem, it would be difficult to understand what are the faults
and what may cause the faults. Consequently, it would befaults can be simulated. Since the simulation costs no more

than the computation cost, it is arguably the cheapest method pointless to use the fault diagnosis tools described in this arti-
cle or any other tools. Fortunately, for most engineering sys-of knowledge acquisition.

Domain experts are those people who know how. They may tems, there is usually abundant literature including product
user manuals, trade magazine articles, case study reports,include the people who research, design, manufacture, oper-

ate, and maintain the system and/or similar and related sys- monographs and academic journals, and conference papers.
These provide all kinds of information necessary for fault di-tems. They know the system from different aspects and often

possess the knowledge in-substitutable. Acquiring knowledge agnosis. For example, for fault diagnosis of large rotating ma-
chinery, one may refer to Refs. 14 and 15. In particular, Ref.from the domain experts involves interviewing them and or-

ganizing knowledge. Interviewing the domain experts should 14 presents some 54 practical cases with detailed fault pat-
terns and correction methods. Following these works, we min-be subjective and specific. Subjective means not leading the

questions and adding opinions. Specific means focusing on the imize the fault diagnosis errors and, hence, optimize the oper-
ations of the engineering systems.issue. The following lists are a selection of questions.

For system operators and maintenance workers:
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