
130 FUZZY LOGIC

C
h

o
t

1

0 25
T(°C)

Figure 1. The characteristic function �Chot for a crisp set.

plied. In many consumer products like washing machines and
cameras, fuzzy controllers are used in order to obtain higher
machine intelligence quotient (IQ) and user-friendly products.
A few interesting applications can be mentioned: control of
subway systems, image stabilization of video cameras, and
autonomous control of helicopters. Although industries in the
United States and Europe hesitated in accepting fuzzy logic
at first, they have become more enthusiastic about applying
this technology in recent years.

FUZZY SETS VERSUS CRISP SETS

In the classical set theory, a set is denoted as a so-called crisp
set and can be described by its characteristic function as fol-
lows:

µC: U → {0,1} (1)

In Eq. (1), U is called the universe of discourse, that is, a
collection of elements that can be continuous or discrete. In a
crisp set, each element of the universe of discourse either be-
longs to the crisp set (�C � 1) or does not belong to the crisp
set (�C � 0).

Consider a characteristic function �Chot representing the
crisp set hot, a set with all ‘‘hot’’ temperatures. Figure 1
graphically describes this crisp set, considering temperatures
higher than 25�C as hot. (Note that for all the temperatures
T, we have T � U.)

The definition of a fuzzy set, proposed by Zadeh (1), is
given by the characteristic function

µF : U ⇒ [0, 1] (2)

In this case, the elements of the universe of discourse can
belong to the fuzzy set with any value between 0 and 1. This
value is called the degree of membership. If an element has a
value close to 1, the degree of membership, or ‘‘truth’’ value
is high. The characteristic function of a fuzzy set is called the
membership function, for it gives the degree of membership

FUZZY LOGIC for each element of the universe of discourse. If now the char-
acteristic function of �Fhot is considered, one can express the

In this article, a brief introduction is given to fuzzy systems. human opinion, for example, that 24�C is still fairly hot, and
The materials in this article can be used as basic knowledge that 26�C is hot, but not as hot as 30�C and higher. This re-
on fuzzy set theory and fuzzy logic in support of other articles sults in a gradual transition from membership (completely
on the subject in this publication. However, many introduc- true) to nonmembership (not true at all). Figure 2 shows the
tions similar to this one have been published over the years membership function �Fhot of the fuzzy set Fhot.
in other reports, articles, and books on fuzzy logic and control.

Fuzzy sets are those with unsharp boundaries.These sets
are generally in better agreement with the human mind that
works with shades of gray, rather than with just black or
white. Fuzzy sets are typically able to represent linguistic
terms, for example, warm, hot, high, low. Today, in Japan,
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Europe, the United States, and many other parts of the world,
fuzzy logic and its applications are widely accepted and ap- Figure 2. The membership function �Fhot for a fuzzy set.
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In this figure, the membership function has a gradual
transition. However, every individual can construct a differ-
ent transition according to his/her own opinion. Membership
functions can have many possible shapes, depending on the
subjectivity of the issues involved. In practice, the transitions
may be linear to simplify the computations.
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Figure 3. Example of a �-function.Example 1. Suppose someone wants to describe the class of
cars having the property of being expensive by considering
cars such as BMW, Buick, Cadillac, Ferrari, Fiat, Lada, Mer-
cedes, Nissan, Peugot, and Rolls Royce. Describe a fuzzy set with piecewise straight lines with a platform are called �-
‘‘expensive cars.’’ functions (e.g., trapezoidal function) (see Fig. 3).

Some cars, like Ferrari or Rolls Royce, definitely belong to Other common shapes and forms are shown in Fig. 4,
the class ‘‘expensive,’’ while other cars, like Fiat or Lada, do below.
not belong to it. But there is a third group of cars, which are
not really expensive, but which are also not cheap. Using Definition 1. The function �: X � [0, 1] is defined by four
fuzzy sets, the fuzzy set of ‘‘expensive cars’’ is, for example, parameters (�, �, �, �):

{(Ferrari,1), (Rolls Royce, 1), (Mercedes, 0.9), (BMW, 0.8),

(Cadillac,0.8), (Nissan,0.7), (Buick,0.6),

(Peugot, 0.5), (Fiat, 0.2), (Lada,0.1)}

Example 2. Suppose one wants to define the set of natural

�(x; α,β, γ , δ) =




0 x < α

(x − α)/(β − α) α ≤ x ≤ β

1 β ≤ x ≤ γ

1 − (x − γ )/(δ − γ ) γ ≤ x ≤ δ

0 x > δ

(6)

numbers ‘‘close to 5.’’ Find a fuzzy set representation.
This can be expressed in the discrete case by the fuzzy set:

Further, we have a decreasing membership function with
straight lines, the L-function; an increasing membership
function with straight lines, the �-function; a triangular func-5

∼
= (3,0.2) + (4,0.5) + (5,1) + (6,0.5) + (7,0.2)

tion with straight lines, the �-function; and a membership
function with the membership function value 1 for only oneThe underscore � under number 5 designates fuzziness.
value and the rest zero, the singleton. They are all specialThe sign ‘‘�’’ represents membership of new elements in the
cases of the �-function. This is shown in Eqs. (7–10). Supposefuzzy set ‘‘close to 5’’ and not a summation operator. The
that the underlying domain is [�6, 6]; then the followingmembership function in the continuous case of the fuzzy set
equations hold:of real numbers ‘‘close to 5’’ is, for example,

�(x;α, β) = �(x;α, β, 6, 6) (7)

L(x; γ , δ) = �(x;−6,−6, γ , δ) (8)µ5∼
= 1

1 + (x − 5)2
(3)

�(x; α, β, δ) = �(x;α, β, β, δ) (9)
and the fuzzy set 5� contains, for example, the elements (5, 1), singleton (x;α) = �(x;α, α, α, α) (10)
(6, 0.5). In general, we denote any discrete fuzzy set by

Hence, most standard shapes are special cases of the �
function.A∼ =

∑
xi ∈X

µA(xi )/xi (4)

FUZZY SETS OPERATIONS
or for the continuous case:

As in the traditional crisp sets, logical operations, for exam-
ple, union, intersection, and complement, can be applied to
fuzzy sets (1). Some of the more common operations are dis-

A∼ =
∫

x∈X
µA(xi )/xi (5)

cussed in this section.

Note that the � and � signs do not denote the mathematical
sum or integral.

THE SHAPE OF FUZZY SETS

α β α αβγ γδ
x

1

The membership function of a fuzzy set can have different
shapes. This depends on its definition. Membership functions Figure 4. Examples of the �, L, �, and singleton.
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Figure 5. The fuzzy set operations union and intersection.

Union

The union operation (and the intersection operation as well)
can be defined in many different ways. Here, the definition
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that is used in most cases is discussed. The union of two fuzzy
sets A and B with the membership functions �A(x) and �B(x) Figure 7. Excluded middle laws for fuzzy sets. (a) Fuzzy A� � Ā� �

U. (b) Fuzzy A� � Ā� � 0�.is a fuzzy set C�, written as C� � A� � B�, whose membership
function is related to those of A and B as follows:

1. Law of contradiction (A� � Ā� � �). One can easily notice
that the intersection of a fuzzy set and its complement∀x ∈ U : µC(x) = max[µA∼

(x), µB∼
(x)] (11)

results in a fuzzy set with membership values up to �� in
where U is the universe of discourse. The operator in this our case and thus does not equal the empty set (see the
equation is referred to as the max-operator. equation below and Fig. 7).

Intersection ∀x ∈ U : µ
A∼∩A∼

(x) = min
[
µA∼

(x),
(
1 − µA∼

(x)
)] ≤ 1

2
= � (14)

According to the min-operator, the intersection of two fuzzy
sets A and B with the membership functions �A

�
(x) and �B

�
(x), 2. Law of excluded middle. The union of a fuzzy set and

respectively, is a fuzzy set C�, written as C� � A� � B�, whose its complement does not give the universe of discourse
membership function is related to those of A and B as follows: (see Fig. 7).

∀x ∈ U : µC∼
(x) = min[µA∼

(x),µB∼
(x)] (12) ∀x ∈ U : µ

A∼∩A∼
(x) = max

[
µA∼

(x),
(
1 − µA∼

(x)
)] ≤ 1

2
= U (15)

Both the intersection and the union operation are explained
by Fig. 5. Min and max operators are special cases of more Fuzzification and �-Cut Sets
general operators called t-norm and t-conorm (s-norm), re-

It is the crisp domain in which we perform all computationsspectively.
with today’s computers. The conversion from crisp to fuzzy
and fuzzy to crisp sets can be done by the following means.Complement

Definition 2. The process of assigning a set of fuzzy linquis-The complement of a fuzzy set A� is denoted Ā� as with a mem-
tic labels to a physical variable within a range [�U, U] isbership function defined as (see also Fig. 6):
termed as fuzzification of that variable.

As an example, the temperatures ranging from �30� to∀x ∈ U : µ
A∼
(x) = 1 − µA∼

(x) (13)
�100�C can be partitioned into seven segments, leading to
seven linguistic labels: very cold, cold, zero, moderate, warm,Most of the properties that hold for classical sets (e.g., com-
hot, very hot, as shown in Fig. 8.mutativity, associativity, and idempotence) hold also for fuzzy

sets, manipulated by the specific operations in Eqs. (11–13),
except for two properties:

Very cold

Membership
function

Very hot

T (°C)

1

–30 –20 –10 0 10 20 30 40 50 60 70 80 90 100x
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x
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A
(x

)
~ µ
A
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Figure 6. Fuzzy set and its complement. Figure 8. Fuzzification of physical variable temperature.
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Definition 3. Given a fuzzy set A, the �-cut (or �-cut) set of
A is defined by

Aα = {x|µA∼
(x) ≥ α} (16)

Note that by virtue of the condition on �A(x) in Eq. (16), that
is, a common property, the set A� in Eq. (16) is now a crisp
set. In fact, any fuzzy set can be converted to an infinite num-
ber of cut sets.

Example 3. Consider a fuzzy set

A =
{

1
x1

+ 0.9
x2

+ 0.8
x3

+ 0.75
x4

+ 0.5
x5

+ 0.2
x6

+ 0.15
x7

+0.1
x8

+ 0.05
x9

+ 0
x10

}

It is desired to find the number of �-cut sets for different val-
ues of �.

The fuzzy set A� is shown in Fig. 9. The �-cut sets A1, A0.8,
A0.5, A0.1, A0� and A0 are defined by

A1 = {x1}, A0.8 = {x1, x2, x3}
A0.5 = {x1, x2, . . ., x5}
A0.1 = {x1, x2, . . ., x8}
A0+ = {x1, x2, . . ., x9} and A0 = U

Note that by definition, the 0-cut set A0 is the universe of
discourse. Figure 10 shows these �-cut sets.

Extension Principle

x
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x1 x2 x100

(a)  A1

x
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(b)  A0.8

(c)  A0.5

(d)  A0.1

(e)  A0+

(f)  A0 = U
In fuzzy sets, just as in crisp sets, one needs to find a means

Figure 10. Schematic of 5 �-cut sets for fuzzy set of Example 3.to extend the domain of a function; that is, given a fuzzy set
A and a function f ( � ), then what is the value of function
f (A)? This notion is called the extension principle (2–4).

Let the function f be defined by

Then, the extension principle asserts that the function f is a
f : U → V (17) fuzzy set, as well, which is defined, in the simplest case, by:

where U and V are domain and range sets, respectively. De-
fine a fuzzy set A � U as B∼ = f (A∼ ) = µ1

f (u1)
+ µ2

f (u2)
+ · · · + µn

f (un)
(19)

In other words, the resulting fuzzy set has the same member-
A∼ =

{
µ1

u1
+ µ2

u2
+ · · · + µn

un

}
(18)

ship values corresponding to the functions of the elements
ui, i � 1, 2, . . ., n. The following examples illustrate the use
of the extension principle, which are also an illustration of
fuzzy arithmatic.

Example 4. Given two universes of discourse U1 � U2 � �1,
2, . . ., 10� and two fuzzy sets (numbers) defined by

“Approximately 2” = 2∼ = 0.5
1

+ 1
2

+ 0.8
3

and

“Almost 5” = 5
∼

= 0.6
3

+ 0.8
4

+ 1
5

x

1

0.5

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

1
0.9

0.8
0.75

0.5

0.2
0.15 0.1

0.05 0

0

Figure 9. Fuzzy set A� of Example 3. It is desired to find ‘‘approximately 10,’’ that is, 10� � 2� 
 5�.
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The function f � u1 
 u2: � v represents the arithmetic
product of these two fuzzy numbers which is given by a

U V

b

c

1

2

Figure 11. A crisp Sagittal diagram.

matrix expression

10
∼

= 2∼ × 5
∼

=
�0.5

1
+ 1

2
+ 0.8

3

�
×
�0.6

3
+ 0.8

4
+ 1

5

�
= min(0.5,0.6)

3

+ min(0.5,0.8)

4
+ min(0.5,1)

5
+ min(1,0.6)

6
+ min(1, 0.8)

8

+ min(1,1)

10
+ min(0.8,0.6)

9
+ min(0.8,0.8)

12
+ min(0.8,1)

15

= 0.5
3

+ 0.5
4

+ 0.5
5

+ 0.6
6

+ 0.8
8

+ 0.6
9

+ 1
10

+ 0.8
12

+ 0.8
15

Rc = U × V = 1
2

[
1 1 1
1 1 1

]
(21)

a b c

Here, intersection properties of fuzzy sets have been used.
The above resulting fuzzy number has its prototype, that is, or in a so-called Sagittal diagram (see Fig. 11) (see Ref. 3,
value 10 with a membership value 1 and the other 8 pairs are Chap. 2). In classical set relations, one can perform opera-
spread around the point (1, 10). tions on crisp relations using max-min composition, similar to

The complexity of the extension principle would increase those in Example 5.
when more than one member of u1 
 u2 is mapped to only one The fuzzy relations, similarly, map elements of one uni-
member of v; one would take the maximum membership verse, say U, to elements of another universe V through
grades of these members in the fuzzy set A. The following Cartesian product, but the strength of the relationship is
example illustrates this case. measured by the grade of a membership function (4). In other

words, a fuzzy relation R is a mapping:
Example 5. Consider the two fuzzy numbers,

R
∼

: U × V → [0, 1] (22)

The following example illustrates this relationship; that is,
2∼ = “approximately 2” = 0.5

1
+ 1

2
+ 0.5

3

4∼ = “approximately 4” = 0.8
2

+ 0.9
3

+ 1
4 µR∼

(u,v) = µA∼×B∼
(u,v) = min

(
µA∼

(u),µB∼
(v)

)
(23)

It is desired to find 8�. Example 6. Consider two fuzzy sets A�1 � 0.2/x1 � 0.9/x2 and
The product 2� 
 4� would be given by the following expres- A�2 0.3/y1 � 0.5/y2 � 1/y3. Determine the fuzzy relation among

sion: these sets.
The fuzzy relation R�, using Eq. (23), is

R
∼

= A∼ 1 × A∼ 2 =
[

0.2
0.9

]
× [0.3 0.5 1]

=
[

min(0.2,0.3) min(0.2,0.5) min(0.2,1)

min(0.9,0.3) min(0.9,0.5) min(0.9,1)

]

=
[

0.2 0.2 0.2
0.3 0.5 0.9

]

2∼ × 4∼ = min(0.5,0.8)

2
+ min(0.5,0.9)

3

+ max{min(0.5,1), min(1,0.8)}
4

+ max{min(1,0.9),min(0.5,0.8)}
6

+ min(1,1)

8

+ min(0.5,0.9)

9
+ min(0.5,1)

12
= 0.5

2
+ 0.5

3
+ 0.8

4

+ 0.9
6

+ 1
8

+ 0.5
9

+ 0.5
12

In crisp or fuzzy relations, the composition of two relations,
using the max-min rule, is given below. Given two fuzzy rela-Note here that due to multipoint mapping case, max–min
tions R�(u, v) and S�(v, w), then the composition of these rela-composition has been used.
tions is

Fuzzy Relations T∼ = R
∼

◦ S
∼

with µT (u,w) = max
v∈V

{
min

�
µR(u, v),µS(v, w)

�}
Consider the Cartesian product of two universes U and V,
defined by or using the max-product rule, the characteristic function is

given by
U × V = {(u,v)|u ∈ U, v ∈ V } (20)

µT∼
(u,w) = max

v∈V
{µR∼

(u, v) · µS∼
(v, w)}

which combines elements of U and V in a set of ordered pairs.
As an example, if U � �1, 2� and V � �a, b, c�, then U 
 V � The same compositional rules hold for crisp relations. In gen-
�(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)�. The above product is eral, R� 	 S� � S� 	 R�. The following example illustrates this

point.said to be a crisp relation which can be expressed by either a
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Example 7. Consider two fuzzy relations 1. disjunction (∨)
2. conjunction (∧)
3. negation (�)
4. implication (�)R

∼
= x1

x2

[
0.6 0.8
0.7 0.9

]
and S

∼
= y1

y2

[
0.3 0.1
0.2 0.8

]y1 y2 z1 z2

5. equality (} or 	)

It is desired to evaluate R� 	 S� and S� 	 R�. to form logical expressions involving two simple propositions.
Using the max-min composition, we have These connectives can be used to form new propositions from

simple propositions.
Now, define sets A and B from universe X where these sets

might represent linguistic ideas or thoughts. Then, a proposi-
T∼1 = R

∼
◦ S

∼
=

[
0.3 0.8
0.3 0.8

]

tional calculus will exist for the case where proposition P
measures the truth of the statement that an element, x, fromwhere, for example, the (1, 1) element is obtained by
the universe X is contained in set A, and the truth of themax�min(0.6, 0.3), min(0.8, 0.2)� � 0.3.
statement that this element, x, is contained in set B, or more
conventionally letThe max-min composition of results in S� 	 R�

P: truth that x � A
Q: truth that x � B, where truth is measured in terms ofS

∼
◦ R

∼
=

[
0.3 0.3
0.7 0.8

]
= R ◦ S

the truth value; that is,

which is expected. If x � A, T(P) � 1; otherwise, T(P) � 0. If x � B, T(Q) � 1;
Using the max-product rule, we have otherwise, T(Q) � 0, or using the characteristic function to

represent truth (1) and false (0),
T2 = R

∼
◦ S

∼
=

[
0.18 0.64
0.21 0.72

]
χA(x) =

{
1,x ∈ A

0,x /∈ A
where, for example, the term (2, 2) is obtained by max�(0.7)
(0.1), (0.9) (0.8)� � 0.72. The above five logical connectives can be used to create com-

The max-product composition S� 	 R� results in pound propositions, where a compound proposition is defined
as a logical proposition formed by logically connecting two or
more simple propositions. Just as one is interested in the
truth of a simple proposition, predicate logic also involves the

S
∼

◦ R
∼

=
[

0.3 0.3
0.7 0.8

]
= R ◦ S

assessment of the truth of compound propositions. For two
simple proposition cases, the resulting compound propositionswhich is, once again, expected.
are defined below in terms of their binary truth values,

FUZZY LOGIC AND APPROXIMATE REASONING

In the final section of this article, an introduction to fuzzy
logic and approximate reasoning is given. Parts of this section
are based on the work of Jamshidi (2) and Ross (4).

Predicate Logic

Let a predicate logic proposition P be a linguistic statement
contained within a universe of propositions which are either
completely true or false.

The truth value of the proposition, P can be assigned a

P : x ∈ A,P : x /∈ A

P ∨ Q ⇒ x ∈ A or B

Hence, T(P ∨ Q) = max(T(P), T(Q))

P ∧ Q ⇒ x ∈ A and B

Hence, T(P ∧ Q) = min(T(P),T(Q))

If T(P) = 1, then T(P) = 0; If T(P) = 0, then T(P) = 1

P ↔ Q ⇒ x ∈ A,B

Hence, T(P ↔ Q) = T(P)

= T(Q)

binary truth value, called T(P), just as an element in a uni-
The logical connective implication presented here is alsoverse is assigned a binary quantity to measure its member-
known as the classical implication to distinguish it from anship in a particular set. For binary (Boolean) predicate logic,
alternative form due to Lukasiewicz, a Polish mathematicianT(P) is assigned a value of 1 (true) or 0 (false). If U is the
in the 1930s, who was first credited with exploring logicsuniverse of all propositions, then T is a mapping of these
other than Aristotelian (classical or binary logic) logic. Thispropositions to the binary quantities (0, 1), or
classical form of the implication operation requires some ex-
planation.T : U → {0,1}

For a proposition P defined on set A and a proposition Q
defined on set B, the implication ‘‘P implies Q’’ is equivalentNow, let P and Q be two simple propositions on the same

universe of discourse that can be combined using the follow- to taking the union of elements in the complement of set A
with the elements in the set B. That is, the logical implicationing five logical connectives:
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X
B

A

YA

B

A\B

Figure 13. The Cartesian space for the implication IF A, THEN B.Figure 12. Venn diagram for implication P � Q.

is analogous to the set-theoretic form, equivalent of the implication. That is,

P → Q ⇒ IF x ∈ A, then y ∈ B, or P → Q ≡ A ∪ B

The shaded regions of the compound Venn diagram in Fig. 12
represent the truth domain of the implication, IF A, THEN B

P → Q ≡ A ∪ B is true either “not in A” or “in B”

So that (P → Q) ↔ (P ∨ Q)

T(P → Q) = T(P ∨ Q) = max
�
T(P), T(Q)

�

(P implies Q). In the problem section, the case of IF A, THEN
B, ELSE C is considered.This is linguistically equivalent to the statement, ‘‘P implies

Q is true’’ when either ‘‘not A’’ or ‘‘B’’ is true. Graphically, this Tautologies
implication and the analogous set operation is represented by

In predicate logic, it is useful to consider compound proposi-the Venn diagram in Fig. 12. As noted, the region represented
tions that are always true, irrespective of the truth values ofby the difference A�B is the set region where the implication
the individual simple propositions. Classical logical compound‘‘P implies Q’’ is false (the implication ‘‘fails’’). The shaded re-
propositions with this property are called tautologies. Tautol-gion in Fig. 12 represents the collection of elements in the
ogies are useful for deductive reasoning and for making de-universe where the implication is true; that is, the shaded
ductive inferences. So if a compound proposition can be ex-area is the set
pressed in the form of a tautology, the truth value of that
compound proposition is known to be true. Inference schemes
in expert systems often employ tautologies. The reason for
this is that tautologies are logical formulas that are true on
logical grounds alone (4).

A \ B = A ∪ B = (A ∩ B)

If x is in A and x is not in B then

A → B fails A \ B(difference)

(24)

One of these, known as the modus ponens deduction, is a
very common inference scheme used in forward chaining rule-Now, with two propositions (P and Q) each being able to take
based expert systems. It is an operation whose task is to findon one of two truth values (true or false, 1 or 0), there will be
the truth value of a consequent in a production rule, givena total of 22 � 4 propositional situations. These situations are
the truth value of the antecedent in the rule. A modus ponensillustrated in Table 1, along with the appropriate truth val-
deduction concludes that given two propositions, a and a-im-ues, for the propositions P and Q and the various logical con-
plies-b, both of which are true, then the truth of the simplenectives between them.
proposition b is automatically inferred. Another useful tautol-Suppose the implication operation involves two different
ogy is the modus tollens inference, which is used in backward-universes of discourse; P is a proposition described by set A,
chaining expert systems. In modus tollens, an implication be-which is defined on universe X, and Q is a proposition de-
tween two propositions is combined with a second proposition,scribed by set B, which is defined on universe Y. Then, the
and both are used to imply a third proposition. Some commonimplication ‘‘P implies Q’’ can be represented in set-theoretic
tautologies are listed below.terms by the relation R, where R is defined by

B ∪ B ↔ X
(
A ∧ (A → B)

) → B (Modus Ponens) (26)

A ∪ X ; A ∪ X ↔ X
(
B ∧ (A → B)

) → A (Modus Tollens)

A ↔ B
(27)

R = (A × B) ∪ (A × Y ) ≡ IF A, THEN B

If x ∈ A where x ∈ X , A ⊂ X

then y ∈ B where y ∈ Y, B ⊂ Y

(25)

ContradictionsThis implication is also equivalent to the linguistic rule form:
IF A, THEN B. The graphic shown below in Fig. 13 represents Compound propositions that are always false, regardless of
the Cartesian space of the product X 
 Y, showing typical the truth value of the individual simple propositions compris-
sets A and B, and superposed on this space is the set-theoretic ing the compound proposition, are called contradictions. Some

simple contradictions are listed below.

B ∩ B

A ∩ φ; A ∩ φ
(28)

Deductive Inferences

The modus ponens deduction is used as a tool for inferencing
in rule-based systems. A typical IF-THEN rule is use to deter-

Table 1. Truth Table

P Q P P � Q P 
 Q P � Q P } Q

T(1) T(1) F(0) T(1) T(1) T(1) T(1)
T(1) F(0) F(0) T(1) F(0) F(0) F(0)
F(0) T(1) T(1) T(1) F(0) T(1) F(0)
F(0) F(0) T(1) F(0) F(0) T(1) T(1)
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mine whether an antecedent (cause or action) infers a conse- fuzzy logic, for example, disjunction
quent (effect or action). Suppose we have a rule of the form,

IF A, THEN B

P∼ ∨ Q
∼

⇒ x is A∼ or B∼
T(P∼ ∨ Q

∼
) = max

�
T(P∼), T(Q

∼
)
�

This rule could be translated into a relation using the
the implication is given byCartesian product of sets A and B; that is,

P∼ → Q
∼

⇒ x is A∼ THEN x is B∼R = A × B

orNow, suppose a new antecedent, say A� is known. Can we use
the modus ponens deduction to infer a new consequent, say
B�, resulting from the new antecedent? That is, in rule form

T(P∼ → Q
∼

) = T(P∼ ∨ Q
∼

) = max
�
T(P∼), T(Q

∼
)
�

Thus, a fuzzy logic implication would result in a fuzzy ruleIF A′ : THEN B′?

The answer, of course, is yes, through the use of the composi-
P∼ → Q

∼
⇒ If x is A∼ THEN y is B∼

tion relation. Since ‘‘A implies B’’ is defined on the Cartesian
and is eqivalent to the following fuzzy relationspace X 
 Y, B� can be found through the following set-theo-

retic formulation, R
∼

= (A∼ × B∼ ) ∪ (A∼ × Y ) (31)

B′ = A′ ◦ R = A′ ◦ (
(A × B) ∪ (A × Y )

)
(29)

with a grade membership function,

A modus ponens deduction can also be used for the compound µR∼
(x, y) = max

{�
µA∼

(x) ∧ µB∼
(y)

�
,
�
1 − µA∼

(x)
�}

rule,

Example 9. Consider two universes of discourse X � �1, 2, 3,
IF A, THEN B, ELSE C 4� and Y � �1, 2, 3, 4, 5, 6�. Let two fuzzy sets A and B be

given by
using the relation defined as

R = (A × B) ∪ (A × C ) (30)

and hence.

A∼ = 0.8
2

+ 1
3

+ 0.3
4

B∼ = 0.4
2

+ 1
3

+ 0.6
4

+ 0.2
5

It is desired to find a fuzzy relation R� corresponding to IF A�,Example 8. Let two universes of discourse described by X �
THEN B�.�1, 2, 3, 4, 5, 6� and Y � �1, 2, 3, 4�, and define the crisp set

A � �3, 4� on X and B � �2, 3� on Y. Determine the deductive
Using the relation in Eq. (31) would giveinference IF A, THEN B.

The deductive inference yields the following characteristic
function in matrix form, following the relation,

R = (A × B) ∪ (A × Y ) =

1
2
3
4
5
6




1 0 0 1
1 0 0 1
1 1 1 1
1 1 1 1
1 0 0 1
1 0 0 1




1 2 3 4
A∼ × B∼ =

1
2
3
4




0 0 0 0 0 0
0 0.4 0.8 0.6 0.2 0
0 0.4 1 0.6 0.2 0
0 0.3 0.3 0.3 0.2 0




1 2 3 4 5 6

A∼ × Y =
1
2
3
4




1 1 1 1 1 1
0.2 0.2 0.2 0.2 0.2 0.2
0 0 0 0 0 0

0.7 0.7 0.7 0.7 0.7 0.7




1 2 3 4 5 6

and, hence, R� � max�A� 
 B�, Ā� 
 Y�Fuzzy Logic

The extension of the above discussions to fuzzy deductive in-
ference is straightforward. The fuzzy proposition P� has a
value on the closed interval [0, 1]. The truth value of a propo-
sition P� is given by R

∼
=

1
2
3
4




1 1 1 1 1 1
0.2 0.4 0.8 0.6 0.2 0.2
0 0.4 1 0.6 0.2 0

0.7 0.7 0.7 0.7 0.7 0.7


 (32)

1 2 3 4 5 6

T(P) = µA(x) where 0 ≤ µA ≤ 1

Approximate ReasoningThus, the degree of truth for P�: x � A is the membership
grade of x in A�. The logical connectives of negation, disjunc- The primary goal of fuzzy systems is to formulate a theoreti-

cal foundation for reasoning about imprecise propositions,tion, conjunction, and implication are similarly defined for
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2. M. Jamshidi, Large Scale Systems: Modeling, Control and Fuzzywhich is termed approximate reasoning in fuzzy logic techno-
Logic, Englewood Cliffs, NJ: Prentice-Hall, 1996.logical systems.

3. M. Jamshidi, N. Vadiee, and T. J. Ross (eds.), Fuzzy Logic andLet us have a rule-based format to represent fuzzy infor-
Control: Software and Hardware Applications. Englewood Cliffs,mation. These rules are expressed in conventional anteced-
NJ: Prentice-Hall, 1993.ent-consequent form, such as

4. T. J. Ross, Fuzzy Logic and Engineering Application, New York:
McGraw-Hill, 1995.Rule 1: IF x is A� THEN y is B� where A� and B� represent fuzzy

propositions (sets).
MOHAMMAD JAMSHIDI

The University of New Mexico
Now let us introduce a new antecedent, say A��, and consider
the following rule:

Rule 2: IF x is A��, THEN y is B��.

From information derived from Rule 1, is it possible to derive
the consequent Rule 2, B��? The answer is yes, and the proce-
dure is a fuzzy composition. The consequent B�� can be found
from the composition operation

B∼
′ = A∼

′ ◦ R
∼

′ (33)

Example 10. Reconsider the fuzzy system of Example 9. Let
a new fuzzy set A�� be given by A�� � (0.5/1) � (1/2) � (0.2/3).
It is desired to find an approximate reason (consequent) for
the rule IF A�� THEN B��.

The relations of Eqs. (32) and (33) are used to determine
B��.

B∼
′ = A∼

′ ◦ R
∼

′ = [0.5 0.5 0.8 0.6 0.5 0.5]

or

B∼
′ = 0.5

1
+ 0.5

2
+ 0.8

3
+ 0.6

4
+ 0.5

5
+ 0.5

6

Note the inverse relation between fuzzy antecedents and
fuzzy consequences arising from the composition operation.
More exactly, if we have a fuzzy relation R�: A� � B�, then will
the value of the composition A� 	 R� � B�? The answer is no, and
one should not expect an inverse to exist for fuzzy composi-
tion. This is not, however, the case in crisp logic, that is,
where all these latter sets and relations are crisp. The follow-
ing example illustrates the nonexistence of the inverse.

Example 11. Let us reconsider the fuzzy system of Examples
9 and 10. Let A�� � A, and evaluate B��.

We have

B∼
′ = A∼

′ ◦ R
∼

= A∼ ◦ R
∼

= 0.3
1

+ 0.4
2

+ 0.8
3

+ 0.6
4

+ 0.3
5

+ 0.3
6

= B∼

which yields a new consequent, since the inverse is not guar-
anteed. The reason for this situation is the fact that fuzzy
inference is not precise, but approximate. The inference, in
this situation, represents approximate linguistic characteris-
tics of the relation between two universes of discourse.
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