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FUZZY LOGIC CONTROL

Fuzzy thinking provides a flexible way to develop an auto-
matic controller. When process control is based on mathemat-
ical models, the degree of precision often presents difficulties
in achieving adaptation and/or rigor. A high degree of under-
standing about the process is necessary to design effective
model-based controllers that adapt to changing process condi-
tions.

On the other hand, fuzzy logic sets up a model of how a
human thinks about controlling a process rather than creat-
ing a model of the process itself. The structure of such a sys-
tem is exactly as we might verbalize our understanding of
the process. Rules are constructed almost as spoken by an
experienced operator, that is,

If CURRENT DRAW is LOW then INCREASE FEEDRATE
A LOT,
provided the SURGE BIN LEVEL is not TOO HIGH.

A set of rules like this one provides a complete means to
implement control in a rapid and effective manner. Precision
is not a requirement in fuzzy logic control, but a high degree
of accuracy in the desired I/O map can be obtained through
testing. Stability issues with fuzzy control still lack a formal
mathematical proof, but stability can be a demonstrated fea-
ture of a properly tuned system through simulation.

Fuzzy logic is now an accepted technology for control sys-
tems at either the supervisory or local control level. Conven-
tional and modern control methods demand considerable
mathematical skill and knowledge to implement and tune,
whereas a fuzzy controller can be set up with ease, allowing
a system to mimic directly how an experienced operator
achieves consistent process output. The system grows incre-
mentally by defining rules that relate input variables to out-
put variables in the language used by the operating person-
nel. Although each rule may be a simple expression of a
specific I/O relationship, when the set of rules are imple-
mented in a cooperative fashion, the combined result often
represents complex, nonlinear relationships.

WHAT IS FUZZY LOGIC?

Fuzzy logic, an apparent oxymoron, evolved from the in-
credible figment of one man’s imagination generated over
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32 years ago, into an accepted figure of speech used today as a
catch-phrase to sell commercial products such as rice cookers,
washing machines, vacuum cleaners, and 35 mm and video
cameras, and to develop complex multivariable control sys-
tems for power systems, mineral processing plants, chemical
plants, pulp mills, cement kilns, Japan’s famous bullet train,
and even for use on the space shuttle.

If one looks up these words in a modern dictionary, one
might find the following:

Degree
of

belief

100

0
Time of day

Day timeNight Night

Dawn Dusk

Fuzzy set definitions for
night and day time

logic n. science of reasoning; philosophical inquiry into Figure 1. Fuzzy sets for ‘‘dawn’’ and ‘‘dusk’’ are located in the bound-
aries between night and day.principles and methods of validity and proof; formal ar-

gument or reasoning of an inference or natural conse-
quence.

fuzzy adj. 1. frayed, fluffy, blurred, indistinct; frizzed. 2. one fully accepts that it is not daytime. Figure 1 shows a map-
(math.) not precise, approximate; a set whose members ping of these ‘‘dusk’’ and ‘‘dawn’’ fuzzy sets across the uni-
lie across a spectrum of values that approximate a cen- verse of discourse of the 24-hour clock.
tral value. So, a fuzzy set is simply a set of elements in a universe of

discourse that defines a particular state, in which each ele-
Although the dictionary of the times recognizes the role of ment has a rank or membership in the set on a scale from 0

fuzziness in set theory, one may wonder: ‘‘How can an inquiry to 1 (or 0 to 100%). Those elements with rank of 1 (or 100%)
into methods of proof produce imprecision?’’ And yet, even rig- are full members, whose occurrence make the set TRUE.
orous mathematical models can claim to achieve only an ap- Those elements with rank of 0 are nonmembers, which make
proximate representation of reality. They cannot possibly ac- the set FALSE. Those elements with intermediate rank are
count for all intervariable relationships over all ranges of partial members, whose instance suggests that there is poten-
data. Clearly, when the truth or denial of an hypothesis is tial movement into or out of an adjacent set, or that there is
established beyond all reasonable doubt, there is nothing uncertainty about the validity of the set or concept. (Is it
fuzzy about belief in that fact. But, what happens when doubt dawn or is it dusk?—one might need additional information.)
does exist or when the process is fraught with unknown or There are many examples of real-life, practical fuzzy sets
immeasurable inputs—into which state does one place such such as these. Here are a few others:
situations: ‘‘Are things TRUE or are they FALSE?’’

Traditional logic systems have great difficulty with such • An automobile changing lanes while passing
cases. Often, attempts are made to define new states as mutu-

• The position of the shoreline during tidal inflow or out-ally exclusive concepts of the original state. This redefinition
flowcan be awkward and time-consuming, and does not really

• A door being closed or openedmimic the way in which the human mind actually reasons.
• A water valve being opened or closedOn the other hand, fuzzy logic allows one to address directly

the way one thinks about problems in which one has limited • A glass of water
fundamental knowledge or in which one does not have the • The mixing together of two primary colors
time, money, or patience to conduct a detailed formal

• The age of a young customer in a baranalysis.
• The time it takes to drive from home to workConsider the concept darkness. Everyone knows the differ-
• The waiting time in a queueence between day and night—at least those who are not blind

can easily distinguish these states. But imagine abruptly
awaking from an afternoon nap around dusk without a clock. Think of some others that one deals with in day-to-day activ-
Would you wonder if it was dawn? You might get dressed for ities.
work if it was a weekday, before realizing that it is getting
darker, not lighter. So what are these terms—dusk and

A BRIEF HISTORY OF FUZZY LOGICdawn—with respect to day and night? They are simply the
boundary conditions between day and night. Neither sharp

From a mathematical viewpoint, fuzziness means multival-nor crisp, these regions extend over the finite and measurable
ued or multivalent and it stems from the Heisenberg Uncer-time that the sun takes to rise and set each day. In addition,
tainty Principle, which deals with position and momentum. Athe degree of darkness and its rate of advance or decline dur-
three-valued logic was evolved by Lukasiewicz (1,2), to handleing these transitions depend on the season, the latitude, and
truth, falsehood, and indeterminacy or presence, absence, andany number of environmental factors that include cloud-
ambiguity. Multivalued fuzziness corresponds to degrees ofcover, rain, or perhaps volcano dust. A solar eclipse or the
indeterminacy, ambiguity, or to the partial occurrence of anpresence of a full moon might present temporary confusion
event or relationship. Consider a number of paradoxical state-about the change from day to night, or vice versa.
ments:Dusk and dawn are classic examples of real-life fuzzy sets.

As dusk begins, belief that it is night increases until, when it
is completely dark, one has no doubt that night has arrived. A man says: Don’t trust me. Should you trust him? If you

do, then you don’t:Similarly, belief in day-time declines until, at the end of dusk,
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A politician says: All politicians are liars. Is this true? If the fuzzy mechanism, in the form of a rule-based system to
control a laboratory steam engine, was developed. In 1982,so, then he is not a liar.
Holmblad and Oostergaard (11) described the first commer-A card states on one side: The sentence on the other side
cial application of fuzzy control of a cement kiln. For manyis false. On the other side appears: The sentence on the
years this was the major application area for fuzzy control, asother side is true. How do you interpret this card?
commercialized by F. L. Smidth of Denmark. But, despiteBertrand Russell’s famous paradox: All rules have excep-
these isolated successes, for many years the second wave wastions. Is this a rule? If so, then what is its exception?
a lonely ride, with much derision and denigration of Zadeh’s
uncertainty calculus as being illogical and not rigorous. SomeThese ‘‘paradoxes’’ all have the same form: a statement S and
‘‘philosophers’’ sloughed off ‘‘fuzzy-reasoning’’ as being ‘‘folkits negation not-S, both of which have the same truth-value
art.’’ Many mathematicians scorned the theory as ‘‘unscien-t(S):
tific,’’ despite the fact that most all people use their own fuzzy
calculus—some without even realizing it. The tools of exactt(S) = t(not-S) (1)
science may be decision aids but, in the end, final control is
always ‘‘fuzzy.’’But the two statements are both TRUE (1) and FALSE (0) at

With the exception of probability theory, the artificial in-the same time, which violates the laws of noncontradiction
telligence (AI) community (12) almost completely shunnedand excluded middle in the field of bivalent logic. This ap-
numerical approaches to uncertainty management. This igno-proach states that negation produces the reverse truth value.
rance certainly slowed acceptance of ‘‘intelligent method-Hence:
ologies’’ among the conventional scientific community. When
examining material on uncertainty principles in some of thet(not-S) = 1 − t(S) (2)
recent historical and technical books on AI, one can only won-
der in dismay at the total lack of information on the subjectSo, by combining these two expressions, one gets:
of fuzzy logic. It is interesting to note that, at the 1998 World
Congress on Expert Systems, held in Mexico City, Lofti Zadeht(S) = 1 − t(S) (3)
was presented with the Feigenbaum Award—the highest
award from the AI community. AI has belatedly embracedThis is clearly contradictory for if S is true, then 1 �0 and if
fuzzy methods in the face of the union of fuzzy logic, artificialS is false, then 0 �1.
neural networks, and genetic algorithms into the new fieldsBut a fuzzy interpretation of truth values can handle this
known as soft-computing (13) and computational intelligencerelationship. By solving for t(S) and allowing t(S) to assume
(14).values other than the set �0,1�, one gets:

Fuzzy expert systems are clearly superior to conventional
ones, because of their intrinsic ability to deal directly witht(S) = 0.5 (4)
uncertainty allowing ‘‘crisp’’ rules to operate as a continuum
across an I/O space-state map. The variety of methods to cre-So with fuzzy logic, ‘‘paradoxes’’ reduce to literal half-truths.

They represent, in the extreme, the uncertainty inherent in ate this flexibility indicates that a fuzzy logic approach, by
itself, is a ‘‘fuzzy’’ concept.every empirical statement and in many mathematical expres-

sions. The similarities between fuzzy reasoning and neural net-
work modeling suggest the marriage of these two methods,Quantum theorists in the 1920s and 1930s allowed for in-

determinacy by including a middle truth value in the ‘‘biva- to create a thinking machine, able to respond dynamically to
environmental stimuli; to learn and be trained; to explain itslent’’ logic framework. The next step was to provide degrees

of indeterminacy, with True and False being two limiting actions to others; and to understand the importance of con-
text-reasoning which underlies the general approach to adap-cases on the indeterminacy scale. In 1937, the quantum phi-

losopher Max Black (3) applied continuous logic to sets, lists tive response (5,15). While artificial neural networks have an
architecture and dynamic structure that can be applied to aof elements, and symbols. He must be credited with the first

construction of a fuzzy set membership graph. He used the wide variety of problems, in which ‘‘memories’’ are stored as
distributed weight-links on myriad interconnections, fuzzyterm vagueness to describe these diagrams.

In 1965, Zadeh published the seminal paper (4) on a theory systems store information in banks of fuzzy associative mem-
ories (FAM) that connect data symbolically in the form ofof fuzzy logic, in which the ubiquitous term ‘‘fuzzy’’ was intro-

duced. This generated a second wave of interest in multival- rules-of-thumb.
Fuzzy-neural systems are combinations of these technolo-ued mathematics, with applications ranging from systems

theory to topological mapping. With the emergence of com- gies in which link-weights are used within a rule-based FAM
to relate input variables to output variables in a single rule.mercial products and new theories in the late 1980s and early

1990s, a third wave has arisen—particularly in the hybridiza- These rules can be viewed as interacting nodes within a lay-
ered neural network structure. The link-weights can betion of fuzzy logic and artificial neural networks (5).

At first, Zadeh believed the greatest success of fuzzy logic ‘‘learned,’’ using the backpropagation algorithm (15) or with a
genetic algorithm (16).would be found in the area of computational linguistics (6).

However, it was fuzzy control that provided the necessary Despite its newness, successful real-world applications of
fuzzy logic have been developed in many commercial areas:springboard to take his idea from pure theory to one with

numerous real-world applications (7,8). subway braking systems (17), camera and video recorders
(15), light-meter and image-stabilization systems, color-TVIn 1974, Mamdani and Assilian (9,10) presented the first

application of fuzzy control, in which the basic paradigm of tuning (18,19), automobile transmissions (20,21) and cruise
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control systems (22,23), washing machine load cycles (24), au-
tomatic vacuum cleaners (24), rice cookers, security invest-
ment, traffic control (25), elevator control (26,27), cement kiln
operation (11,28,29), nuclear power plant control, (30), sec-
ondary crushing plants (31), thickener operations (32), contin-
uous casting of steel (33), electric induction motors (34), Kanji
character recognition, golf club selection, and even flower ar-
ranging.

Many of the early success stories in Europe actually dis-
guised the applications, by using terms such as ‘‘multival-
ued,’’ ‘‘continuous,’’ or ‘‘flexible’’ logic. Perhaps inspired by

A(x)µ

Fuzzy set terminology

Supremum

Fuzzy
singleton

1

0

Crossover
point
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Universe of discourse
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A

these efforts, in the early 1980s, the Japanese quickly as-
Figure 2. Fuzzy set terminology.sumed the lead in promoting widespread use of fuzzy control

in commercial products. At first, resistance in North America
was high, most likely because of our cultural abhorrence for

singleton is a fuzzy set whose support is a single element ofambiguity. Japanese society readily accepts such vagueness
X. Integers can be classified as fuzzy singletons, but linguisticand so, opposition was less. But, as products began to enter
terms may also be singletons. Figure 2 shows these termsthe marketplace in ever-increasing quantities, the competi-
graphically for a trapezoidal-shaped fuzzy set.tive forces in North America have been unable to resist any

The supremum (or height) of a fuzzy set A are those valueslonger.
of X whose membership rank is 1.0 (or 100%). This character-
istic can be a discrete value or a range of values, depending

FUZZY SETS upon the shape of the set in question. The ratio of the supre-
mum range to the support range is a measure of the unique-

The details below present some information to help under- ness of a fuzzy set. As this ratio approaches 1.0, the set be-
stand the principles behind fuzzy control. comes nonfuzzy or crisp. But as this ratio approaches 0, the

set becomes unique with respect to its supremum. A unique
Notation supremum can represent a set in a statistical sense. For ex-

ample, a triangular-shaped fuzzy set with supremum positionThe following list contains some of the commonly used nota-
at 10 and support from 9 to 11 can be described (35) as thetion in set theory:
fuzzy number 10 with range �1.

The degree of fuzziness is a term that describes how muchX a whole set or the universe of discourse
uncertainty is associated with a set over its entire support

x one element in X range. If all membership grades of elements of X consist of
A a subset the set �0,1�, then the degree of fuzziness is 0. The maximum

degree of fuzziness (or 1.0) occurs when all elements have�0,1� the set of 0 and 1
membership grade of 0.5 (see Fig. 3).[0,1] the interval of real numbers from 0 to 1

When the height of a fuzzy set is 1.0 (or 100%), the set isa∧b the minimum of a and b
described as normal. In practice, fuzzy sets are normal—at

a∨b the maximum of a and b least they start out that way. But during the inferencing and
� for every defuzzification process that operate on these sets, they may
� belonging to transform into subnormal sets with supremum positions ap-

preciably below 1.0 (or 100%).¬a the complement of ‘a’; i.e., ‘not a’

Fuzzy Set OperationsIn set theory, a universe of discourse is defined as all ele-
ments which can be grouped as identifiable, labeled units, There are several actions that can be performed on a group of
known as sets or subsets within the universe of discourse. A fuzzy concepts or sets. These operations may compare two or
fuzzy subset A of a universe of discourse X is characterized more concepts, or may extract the minimum or maximum de-
by a membership function �A(x). This function assigns to each gree of belief from the group. Likewise, the implication of one
element x � X, a number �A(x) within the closed interval [0,1]
(or 0,100%), which represents the grade of membership (or
degree of belief, certainty, or truth) of x in A. Two ways,
among many, to denote a fuzzy set are:

A = {x1, x2, . . ., xn} or A = {(xi, µA(xi))} ∀ xi ∈ X
(5)

The support of A is the set of elements of X which have
�A(x) grades greater than zero. A cross-over point (or saddle
point) of A is any element of X whose membership rank in A

Fuzzy set
(High degree of

fuzziness)

Fuzzy set
(Low degree of

fuzziness)

Crisp set
(Degree of

fuzziness = 0)

is 0.5 (or 50%). These points define the transition of the set
from a tendency of being true to a tendency of being false. A Figure 3. Fuzzy sets with different degrees of ‘‘fuzziness.’’
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concept based on the belief states of other fuzzy concepts is particular concept or fact. A hedge is simply a qualifier word
used with a concept to avoid total commitment or to make aan important operation, especially with respect to expert sys-

tems. A few of the important and simple ones are given below. vague statement. The Random House Word Menu, by Stephen
Glazier, lists five categories of such qualifiers, which include:

Equality and Inequality. Two fuzzy subsets A and B are said
1. Limitations and Conditions 325 entriesto be equal if the following holds:
2. Approximations and Generalizations 150 entries

µA(x) = µB(x) ∀ x ∈ X (6)
3. Emphasizers 85 entries
4. Maximizers and Superlatives 105 entriesIf the membership grades of one set are less than or equal to
5. Absolutes and Guarantees 185 entriesthose of another for all values of x, then the former set is

described as a subset (or child) of the first. Conversely, the
The English language is full of rich linguistic terms to pro-latter set is known as a parent of the former. Child and parent

vide ‘‘shades of gray’’ to a concept. Consider the following setfuzzy sets take on important significance in the field of lin-
of words: beautiful, pretty, gorgeous, voluptuous, cute, sexy,guistics, where qualifiers can be used to create new fuzzy sets
handsome, fabulous, marvelous, outstanding, remarkable, ex-that are generational relations of the original set.
traordinary. Each of these terms could describe the attrac-
tiveness of an individual, but the meaning of the descriptionUnion. The union of two subsets A and B is a fuzzy subset
is quite different, depending on the phrase and context indenoted as A � B, with its membership function defined as:
which it is used. Notice how one’s mind instantly switches
context as one moves from one word to another. The termµA∪B(x) = µA(x) ∨ µB(x)) ∀ x ∈ X (7)
‘‘handsome,’’ for example, is typically reserved for males,

So the combined membership function is the maximum of the while ‘‘gorgeous’’ generally refers to females, but not always.
two individual sets: Context identification or generalization may be a negative

factor, which can introduce bias, stereotyping, or ‘‘stick-in-
µA∪B(x) = max(µA(x),µB(x)) ∀ x ∈ X (8) the-mud’’ attitudes into the analysis of a problem—the pro-

cess is always based on experiential knowledge and must be
This operation is equivalent to the use of the OR operator for viewed and used with caution. To provide revolutionary ap-
two concepts in a rule-based expert system or in a fuzzy infer- proaches to thinking, rules-of-thumb must always be chal-
ence. The degree of belief to be transferred from the rule lenged periodically, if time and money permit, or else the un-
premise to the rule conclusion will be the maximum of the derlying fundamental relationships will never be discovered.
two concepts in question. Nevertheless, some simple qualifiers such as ‘‘very,’’ ‘‘almost,’’

‘‘nearly,’’ ‘‘definitely,’’ ‘‘certainly,’’ ‘‘more-or-less,’’ ‘‘maybe,’’
Intersection. The intersection of two subsets A and B is a ‘‘somewhat,’’ or ‘‘could be,’’ can each be used with fuzzy con-

fuzzy subset denoted as A �B with its membership function cepts by applying a mathematical operation to the member-
defined by: ship function of the original fuzzy set. In his original discus-

sion on linguistic hedges, Zadeh (6) defined the followingµA∩B(x) = µA(x) ∧ µB(x)) ∀ x ∈ X (9)
operators:

In this case, the combined membership function is the mini-
mum of the two individual sets: concentration of A: “very”: µCon{A}(x) = µA(x)2 (12)

dilation of A: “somewhat”: µDil{A}(x) = µA(x)0.5 (13)
µA∩B(x) = min(µA(x), µB(x)) ∀ x ∈ X (10)

It is interesting to note that a concentrated hedge becomes aThis operation is equivalent to the use of an AND operator
child of the original fuzzy set while dilation produces a par-for two concepts in a rule-based expert system or in a fuzzy
ent. This confirms one’s intuitive sense that ‘‘very’’ and ‘‘some-inference. The degree of belief to be transferred from the rule
what’’ tend to make the terms they modify more exclusive andpremise to the rule conclusion will be the minimum of the two
more inclusive, respectively. Similar operators can be speci-concepts in question.
fied for terms such as ‘‘extremely’’ (grade of membership is
cubed) or ‘‘more or less’’ (membership grade is the cube root),Complementation. The complement of a fuzzy subset A is
and so on.denoted by ¬A, with its membership function defined by:

Linguistic hedges can be thought of as newly defined states
of the universe of discourse. For example, the statement ‘‘Weµ¬A(x) = 1 − µA(x) (11)
are 81 percent certain that it is cold,’’ could be replaced by

This operation is equivalent to the NOT operator in a rule- the more definitive statement ‘‘We are 90 percent sure it is
based expert system. In these systems, if a statement refers somewhat cold,’’ or the less definite one ‘‘We are only 66 per-
to a particular concept as being ‘‘not true,’’ then the degree of cent sure it is very cold.’’
belief returned is the complementary function of the member- Alternatively, the belief values in the same fuzzy concept
ship rank of the fuzzy concept. Complementation is often im- can be replaced with appropriate predicate functions, which
plemented in a fuzzy expert system by using the equivalent are actually fuzzy relations such as:
statement that a fact is ‘‘false’’ instead of using ‘‘not true.’’

90 percent certainty in cold ����we are very certain it is cold
81 percent certainty in cold ���� we are kind of certain it is coldFuzzy Linguistic Hedges. There are numerous linguistic ex-

pressions used in everyday speech to ‘‘flavor’’ certainty in a 66 percent certainty in cold ���� we are somewhat certain it is cold
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Fuzzy Relations. Fuzzy relations are used to map one or an overall system that relate multiple input variables to a
more fuzzy concepts into another. They represent rules in an single output variable. Such rule-sets interact through a vari-
Expert System, which can infer one fact from others or com- ety of combinatorial mathematics, to yield an aggregated in-
pare or combine two input facts in a rule premise statement. ference on each particular output.

A fuzzy relation R from a fuzzy set X to Y is a fuzzy subset A typical AI rule-based system rounds off the truth value
of the Cartesian product X 
 Y, where the membership func- of each input to true or false, examines only those rules that
tion in this subset is denoted by �R(x, y). For example, con- can be fired from information that is true, and then chains
sider the sets X��x1, x2� and Y��y1, y2� with fuzzy subsets A through the knowledge base structure, using appropriate
and B, respectively. The fuzzy relation from X to Y is the strategies such as depth-first or breadth-first, to examine the
Cartesian product R � A 
 B, of the fuzzy subsets A and B rule base and reach a unique decision. A fuzzy system also
with membership function in the Cartesian product X 
 Y, uses a preset strategy to search its rules, but uncertainty em-
of �R(xn, ym), where bodied in the input data is retained. All rules are examined

with the uncertainty propagating through the system as it
µR(xn, ym) = [µA(xn) ∧ µB(xm)],xn ∈ X, xm ∈ Y (14) chains toward a final conclusion. Premises are used in a

weighted fashion to flavor a decision based on belief in the
This relation is represented by the relation matrix R, where input variables. Accumulation of these separate trains of

thought are equivalent to examining a series of vague princi-
ples rather than specific hard-cold rules. Combination of
these fuzzy facts and principles can be considered an act of

R =
[
µR(x1, y1) µR(x1, y2)

µR(x2, y1) µR(x2, y2)

]
(15)

intuition or judgement, explainable in terms of current facts
and relevant principles embodied within the rule-sets. If nec-Now if R is a relation from X to Y, and S is a relation from

Y to Z, then the fuzzy relation from X to Z, which is called essary, a rule can be excluded by applying a fuzzy confidence
the composition of R and S and denoted by R 	 S, is defined level to the system in which a rule with a net degree of truth
by below this limit does not fire successfully.

The FAM rule-sets associate input data with output data
with only a few FAM rules necessary for smooth control. Con-µR◦S(x, z) = ∨y[µR(x, y) ∧ µS(y, z)] (16)

ventional AI systems generally need many precise rules to
where element [i, j] in the relation matrix R 	 S is given by approximate the same performance. Adaptive fuzzy systems

can use neural or statistical techniques to extract fuzzy con-
cepts from case-studies and automatically refine the rules as
new cases occur. The methods resemble our everyday pro-

max[min(µR(xi, y1), µS(y1, z j )), min(µR(xi, y2), µS(y2, z j )), . . .

min(µR(xi, yn), µS(yn, z j ))] (17)

cessing of common-sense knowledge. Machines of the future
This relation is known as the max–min operation. Other ex- may have the ‘‘intelligence’’ to match and, perhaps, exceed
amples of common binary fuzzy relations are ‘‘is much greater our ability to learn and apply fuzzy information—knowledge
than,’’ ‘‘resembles,’’ ‘‘is relevant to,’’ ‘‘is close to,’’ and so forth. that is rarely expressed, but which is used to run everyday

lives.

MANAGING UNCERTAINTY IN FUZZY SYSTEMS

OPERATION OF A FUZZY LOGIC CONTROLLERKosco (5) suggests that well-designed fuzzy logic-based sys-
tems perform more efficiently and effectively than do conven-

During operation, the ‘‘fuzziness’’ associated with a system istional expert systems based on binary logic. Although these
embedded, and so is hidden from the external environment.latter systems create logical decision trees of a knowledge do-
The controller receives discrete input information; maps thesemain, the structures are usually much wider than they are
numbers into a series of fuzzy sets that describe the processdeep, and tend to exaggerate the utility of bivalent rules.
states of each input variable; applies the degrees of beliefOnly a small portion of the stored knowlege is acted upon
(DoBs) in these fuzzy terms to a knowledge base that relatesduring any consultation, and interaction among the rules
input states to output states according to a set of rules; infersdoes not generally take place.
the degrees of belief in the output fuzzy sets that describeThe power of a fuzzy system relates to its interaction abil-
the output variable(s); and assembles these DoBs into aity. All of the inference rules within each particular fuzzy as-
discrete output value through a process known as defuzzifi-sociative memory rule-set (FAM) fire on every cycle to influ-

ence the outcome. These FAMs exist as separate sections of cation. Figure 4 presents a diagram of the three major parts

Figure 4. Major components of a fuzzy
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of a fuzzy controller—fuzzification, inferencing, and defuzzi- may need adjustment during testing of the controller, but it
is most important that there exist at least one fuzzy set withfication.

Fuzzy set definitions are predetermined or may be ad- partial belief for all values of the universe of discourse.
So, fuzzy sets such as LOW, OK, and HIGH can be used tojusted dynamically using other rules or FAM rule sets located

in the knowledge base. The rule base that links input and describe possible states of an input variable. When placed
within rules, the DoBs in these concepts can combine withoutput fuzzy sets together is also predetermined and can be

modified dynamically, as required, during operation. The the DoBs in the states of other variables to infer the DoBs of
various output fuzzy set states such as NEGATIVE-BIG, NOmethods of inferencing and defuzzification are also prede-

fined, but as Smith (36) has demonstrated, dynamic-switching CHANGE, and POSITIVE-BIG. Table 1 shows an example of
a fuzzy control system in which two input variables map intoof these procedures can provide significant improvement in

the degree of control and system stability. a single output variable.
Construction of a two-dimensional ‘‘grid’’ of rules as in Ta-

ble 1, is a useful way to check for completeness, consistency,
HOW TO BUILD A FUZZY LOGIC CONTROLLER and redundancy. Basically, the developer must look for evi-

dence that set definitions have been defined for the entire uni-
Development and application of a fuzzy logic controller can be verse of discourse for each input variable or concept (com-
interesting and straightforward, or it can become a daunting pleteness). Next, the various output regions are examined to
project that appears to have no end point. Many people are see if more than one output concept is dominant across the
concerned about the extreme number of data points that must universe of discourse (consistency). Finally, rules are exam-
be selected to ‘‘tune’’ a fuzzy controller. Still others, in partic- ined in regard to adjacent map regions to ensure efficient op-
ular those experienced with conventional control, are often eration of the system (redundancy). If similar outputs are
unhappy with the inability to quantify measures that deter- given for adjacent sets, then these rules can be subsumed into
mine system stability. The steps required to build a fuzzy a common rule by defining a new input fuzzy set that is a
logic controller are as follows: combination of the existing ones. For example, ‘‘Low’’ and

‘‘Medium’’ could be combined into ‘‘Low-to-Medium.’’
Define Fuzzy Sets At the same time, if a region produces two or more outputs

• Select linguistic terms to describe all I/O variable states. related as parent or child, these rules can be subsumed by
• Map these terms onto discrete numerical values to create examining for exclusivity or inclusivity requirements. Again,

fuzzy sets. subsuming with adjacent regions may prove expedient. The
goal is to reduce the rule set to the lowest number of consis-

Generate a Rule Base tent and efficient rules without jeopardizing effectiveness.
Developing the prototype is a relatively quick operation.• Assemble the input variable states into rule premise

After completing the design phase, the controller should bestatements.
run under a wide variety of input conditions to determine its• Assemble the output variable states into rule conclusion
performance. Discrete mapping of various input/output com-statements.
binations must be done, to ensure that an acceptable relation-

• Link the appropriate input states to the appropriate out- ship is achieved. These simulations provide the testing
put states. ground for proving controller reliability under different op-

erating conditions. Simulation is the best substitute for the
Select the Inference and Defuzzification Methods lack of conventional stability tests for fuzzy control systems.

• Develop a method to ‘‘infer’’ the degree of belief in a con- Interpolation across the full universe of discourse usually
clusion statement based on the degrees of belief in the demonstrates a system’s ability to provide tight control when
premise statements. near to the setpoint and very strong response when far from

• Develop a method to ‘‘defuzzify’’ the fuzzy output states the target value (see Fig. 12).
into a single discrete value. Some changes in fuzzy set definitions may be helpful at

this stage, but the major goal is to check on the scope of the
rules linking inputs to outputs. It may be discovered thatThe process begins by asking an experienced operator

or individual expert to characterize the universe of discourse adaptive methods are useful in which input fuzzy sets are
redefined dynamically. The setpoints may also have to adjustfor each of the variables in question. Terms such as High,

Low, OK, Big, Small, and No Change are defined and stan-
dardized.

The procedure involves questions like: What is the lowest
value for which the term HIGH is true? What is the highest
value for which the term NOT HIGH is appropriate? What is
the range of values that would be considered completely OK?
What is the range of values that might be considered OK?
These questions formulate the support and supremum ranges
for all fuzzy sets.

Selection of a fuzzy set shape is somewhat more arbitrary.
Triangular and trapezoidal shapes are very popular and pro-
duce reasonable interpolation results. Bell-curves, however,
yield the smoothest transition from one concept into another
after defuzzification. The relative size and spread of the sets

Table 1. Feed Rate Change as a Function of Current Draw
and Screen Bin Level in a Secondary Crusher

Screen Bin Level
Current
Draw Very Low OK High

High NB NB NB
Medium high NS NS NB
OK NC NC NB
Medium low PS NC NB
Low PB PS NB

Where NB, NS, NC, PS, and PB represent, respectively, Negative-Big, Nega-
tive-Small, No Change, Positive-Small, Positive-Big.



FUZZY LOGIC CONTROL 145

to changing input conditions or changes in the external envi- statement, according to:
ronment. This can be designed into the system with supre-
mum and support ranges allowed to move back and forth DoBconc = NdT ∗ CF/100 (18)

across the universe of discourse, according to a set of overrid-
The rule structure can be designed in a number of ways toing FAM rules.

accommodate a particular relationship:When operated as a supervisory controller, the system
should be implemented initially in a monitoring mode in par-

• use of a single rule for each output fuzzy state;allel with a human. As decisions are made, the human opera-
• use of multiple rules for each fuzzy state; andtor should examine the advice and evaluate its effectiveness.

If a situation exists in which the system is obviously deficient, • use of fuzzy-neural rules for each fuzzy state.
then modifications are necessary, usually to the rule-base.

Selection of a structure is a trade-off issue between desiredOnce the controller is functioning reliably without significant
speed and flexibility. If processing speed and system re-upsets, it can be placed into a control mode and allowed to
sources are most important, then the single-rule approach ismanipulate the output variable on its own.
preferred. Using multiple rules provides significant adapta-
tion capability, while using fuzzy-neural rules gives the best

RULE STRUCTURE IN A FUZZY LOGIC CONTROLLER of either option, but requires more detailed design.

Rules in a fuzzy logic controller are expressed in a fashion Use of a Single Rule for Each Output State
similar to that found in many expert system programs. For

The input variables are represented here by X and Y, whileexample, a rule to control feedrate to a crusher might be writ-
the output is denoted by Z. A single rule can be used to relateten as:
these variables. By deleting unnecessary fuzzy set relation-
ships, a system can be constructed with one rule for each ZIF CURRENTDRAW is LOW
fuzzy set definition, as follows:AND BIN LEVEL is_not HIGH.

THEN FEEDRATE_CHANGE is POSITIVE_BIG CF�100
IF x1 AND y1

OR x1 AND y2Logical connections between input fuzzy set variables can be
.either AND or OR. An OR connection may be either inclusive
.or exclusive as follows:

OR x1 AND yn

OR x1 AND ynIF CURRENTDRAW is MEDIUM-HIGH
.AND BIN LEVEL is (VERY LOW OR OK) -inclusive OR
.THEN FEEDRATE_CHANGE is NEGATIVE_SMALL CF�100

OR xn AND yn

THEN zi cf � CFiIF CURRENTDRAW is MEDIUM-LOW
AND BIN LEVEL is VERY_LOW Delete premise parts above as required
OR CURRENTDRAW is LOW -exclusive OR
AND BIN LEVEL is OK The degree of belief in a conclusion is calculated from a
THEN FEEDRATE_CHANGE is POSITIVE_SMALL CF�100 single rule, as follows:

Note that the rule conclusion statement, which is preceded by
the logical connection THEN, has an attached certainty factor

DoB(zi) = CFi
∗ max[min (DoB(x1), DoB(y1)), . . . ,

min(DoB(xn), DoB(yn))] (19)
(CF), which can be used to modify the relative importance of
this particular conclusion statement. where DoB � degree of belief

The process of moving from the premise part of a rule to CFi � certainty factor for output i
its conclusion is called Inferencing. Three stages are involved: i � output fuzzy set index

n � total number of input fuzzy sets for variables
1. Determine a Net Degree of Truth (NdT) of the rule X and Y

premise.
This method provides the fastest operation of a fuzzy system.2. Calculate the Degree of Belief (DoB) in the conclusion
Note, however, that only one certainty factor value is avail-statement.
able for each output fuzzy set. Multiple rules or fuzzy-neural3. Apply the DoB in the conclusion to the output fuzzy set
rules possess increased flexibility by providing multiple cer-in question.
tainty factors or link-weights, respectively, for each premise
part of the above single rule.The net degree of truth (NdT) is determined by combining the

DoBs of the premise statements according to a chosen strat-
Use of Multiple Rules

egy. The conventional approach is to pick the MINIMUM DoB
for ANDed statements and the MAXIMUM DoB for ORed The use of multiple rules is the most common approach. By

using multiple rules with one premise combination in each, astatements. This part of the inferencing process provides a
NdT value, which can be used to calculate the DoB in the neural structure begins to emerge. The system can be built to

represent the knowledge as required by deleting rules or byconclusion statement. The conventional approach is simply to
factor the NdT by the CF value attached to the conclusion placing a 0 value on the CF factor in any rule conclusion.
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where DoB � degree of beliefIF x1 AND y1 THEN zi cf�CFi11

IF x1 AND y2 THEN zi cf�CFi21 Wijk � link-weight for rule premise part jk and out-
put i.

. i � output fuzzy set index
j � input fuzzy set index for variable XIF x1 AND yn THEN zi cf�CFi1n

. k � input fuzzy set index for variable Y
n � total number of input fuzzy sets.

IF xn AND yn THEN zi cf�CFinn

Alternatively, each fuzzy set for each variable can have its
Delete rules above or set CF values to 0 as required own unique link weight, which makes for ultimate flexibility

in dealing with complex I/O relationships. The link weights
The Degree of Belief in a conclusion is calculated from mul- used in fuzzy-neural rules can be determined from a set of

tiple rules, as follows: ‘‘learning rules’’ that receive information about the actual and
desired system output. These weights can be initiated as ran-
dom values; by a ‘‘best guess’’; or by selections made by an
expert. The error between the actual and desired output is

DoB(zi) = max[CFi11
∗ min (DoB(x1), DoB(y1)), . . . ,

CFinn
∗ min(DoB(xn), DoB(yn))] (20)

determined and the ‘‘learning rules’’ would apply this error to
adjust the weights using regression analysis or methods that

where DoB � degree of belief have been developed specifically to train an artificial neural
CFijk � certainty factor for rule jk and output i network such as backpropagation (38) or CMAC (39). Op-

i � output fuzzy set index erating in a learning mode, the system iterates between these
n � total number of input fuzzy sets ‘‘learning’’ rules and the fuzzy-neural rules using a new set of

data on each iteration until the overall total error is within
Smith and Takagi (37) list a number of other combining equa- an acceptable limit. Learning can be instigated whenever ad-
tions that have been identified in the literature to replace the aptation is needed due to external changes in the process en-
use of the max-min operator, as above. Most of these options vironment. The link weights are stored in a data file for use
provide a smoother transition between adjacent fuzzy sets not by the controller during operation and learning.
provided by the max–min operator. The important point to
note is that each rule premise has its own unique certainty

SELECTION OF AN INFERENCE METHODfactor. The CF factors mimic the link weights of an artificial
neural network and can be derived in a fashion similar to

The process by which a fuzzy controller changes the DoBs inneural network training. For even more flexibility, a fuzzy-
the linguistic terms that describe a conclusion into a discreteneural rule can be designed.
output value takes place in two steps:

Use of Fuzzy-Neural Rules
1. Inferencing or applying the DoB value to the output

This approach provides a compromise between the single-rule fuzzy set; and
and multiple-rules methods. A fast system can be devised, 2. Defuzzification or aggregation of all inferred output
which also possesses significant adaptation capabilities. With fuzzy sets into a discrete number.
fuzzy-neural rules, only a single rule is necessary for each
output fuzzy set description. Attached to the rule is an infer- Application of the DoB in a linguistic expression describing a
ence equation, which directly calculates the DoB in the output conclusion to the specific fuzzy set prepares the system for
fuzzy set. An example is given below for link weights applied defuzzification. There are many inferencing methods avail-
to each combination of input sets: able—Smith and Takagi (35) list ten methods to combine

premise DoBs. Three of the main ones are:
IF x1 AND y1

OR x1 AND y2 1. correlation-minimum;
. 2. correlation-product; and
. 3. correlation-translation.

OR x1 AND yn

. The discussion which follows applies to the effect of inferenc-

. ing methods on area-centroid weighting defuzzification which
OR xn AND yn will be discussed later. The choice of inferencing method is
THEN zi cf � 100 rather subjective and context-sensitive, but it is useful to un-

derstand the impact of each method on the area and centroid
Attach an inference equation to the rule as follows: of a fuzzy set used during defuzzification. Each method pro-

duces a different contribution of the output fuzzy set to the
final defuzzified discrete output value.

Correlation-minimum is perhaps the most popular infer-
encing technique, but correlation-product is the easiest to im-
plement. Correlation-translation was the original option pro-
posed by Zadeh, but it is used today only under rare

DoB(zi) =

n∑
j=1

n∑
k=1

[Wi jk
∗ min(DoB(xj ), DoB(yk))]

n∑
j=1

n∑
k=1

[min(DoB(xj ), DoB(yk))]
(21)
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Correlation-translation inference

Effective area of
output fuzzy set

Degree

of belief

100

0
Output fuzzy set

mo(y) = Max (0,(mo(y)–(100–DoB)))′

Correlation-minimum inference

Effective area of
output fuzzy set

Degree

of belief

100

0
Output fuzzy set

mo(y) = MIN (DoB, mo(y))′

Figure 7. Correlation-translation inferencing strategy.Figure 5. Correlation-minimum inferencing strategy.

situations. Adaptive control can dynamically select a method zification process that lies above 0 after translating the set
down until the supremum position falls on top of the currentby examining the current context of the situation to cause a
DoB. Translation is accomplished by subtracting the comple-system to change its strategy.
ment of the DoB from all membership values in the fuzzy set.
In this case, the supremum range remains constant as beliefCorrelation-Minimum Inferencing
declines, while the support decreases until it equals the su-

The correlation-minimum method cuts off the top of the fuzzy premum at 0 belief (see Fig. 7).
set (often referred to as �-cut), using only that area of the set Correlation-translation inferencing implies that only ele-
which lies below the current DoB. Low belief in a fuzzy con- ments in the fuzzy set with membership values greater than
cept implies that the true discrete value lies outside the su- or equal to its DoB are relevant to the defuzzification process.
premum region. The supremum region expands as belief de- It is interesting to note that this method produces a comple-
creases from 100 to 0 until it equals the support of the fuzzy mentary effect on the percent area retained to that produced
set (see Fig. 5). by the correlation-minimum method (see Fig. 8).

If one wishes to retain the impact of a set as its degree of Figure 8 shows how each inferencing method combines
belief drops, then correlation-minimum inferencing has merit, with the DoB to affect the area of a triangular fuzzy set used
since the percent area of the set is notably higher than its in a fuzzy controller. Note that at 50% DoB, correlation-mini-
DoB (see Fig. 8). mum inferencing still retains 75% of the fuzzy set’s original

area, while correlation-translation inferencing only retains
Correlation-Product Inferencing 25% of the original area. These two techniques can be viewed

as extremes in the application of fuzzy control. Under normalThe correlation-product method multiplies all membership
circumstances, correlation-product inferencing may be best.values in an output fuzzy set by the fraction of the current
But when risk-taking is desired, the minimum method can beDoB. This method is the easiest to program and is used natu-
used, while if a conservative approach is preferred, the trans-rally by most expert system development tools that employ
lation method is preferred. The reverse could be true as well,certainty factor arithmetic. In this case, the supremum and so all three methods can be calculated with the most appro-

support ranges remain constant as DoB drops, implying that priate output for the current circumstances selected for imple-
belief in all support values decrease in proportion to their mentation.
original value (see Fig. 6). With the correlation-product
method, the percent area of the fuzzy set retained for defuzzi-

IMPACT OF FUZZY SET SHAPE ON DEFUZZIFICATIONfication equals its DoB (see Fig. 8).

Fuzzy sets can assume a variety of shapes, depending on theCorrelation-Translation Inferencing
application and knowledge of the experts. The percent area

If accelerated removal of the impact of a fuzzy set is desired
as its DoB drops, then correlation-translation is the best
choice. Correlation-translation applies that area to the defuz-
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Figure 8. Influence of inferencing method and degree of belief on the
retention of area for a triangular fuzzy set.Figure 6. Correlation-product inferencing strategy.
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As DoB declines, the centroid moves away from the steeper
boundary until at 0 belief, it lies in the exact middle of the
support.

For correlation-translation, the centroid moves toward the
steeper-sloped boundary until at 0 belief, it lies at the mid-
point of the supremum range. The amount of movement in
both cases is not large, unless the boundary slopes are ex-
ceeding different (see Fig. 9).

SELECTION OF A DEFUZZIFICATION METHOD

Table 2. Influence of Degree of Uniqueness on the Percent
Area Applied Using the Correlation-Minimum Method

Ratio of Degree of Belief Degree of Belief
Supremum Range of 90% of 50%

Shape to Support %Area %Area

Triangle 0.0 99 75
� 0.2 96 65
� 0.4 94 60

Trapezoid 0.6 93 56
� 0.8 92 53
� 0.9 91 51

Rectangle 1.0 90 50
Following selection of an inferencing method that produces a
composite output distribution or discrete number which rep-
resent each fuzzy set, a single output value must be calcu-
lated. For a fuzzy controller, a discrete numerical output sig-
nal is sent to a final control element or a setpoint is sent to aapplied as the DoB in a set drops, is affected by the fuzzy set

shape as well as by the inferencing method. With a crisp local control loop. For a universe of discourse containing a
series of fuzzy linguistic expressions, it may be necessary tofuzzy set shaped like a rectangle, the area applied is equiva-

lent to the correlation-product effect shown in Fig. 8, regard- give a combined belief weight to the ‘‘best’’ fuzzy set output.
As with inferencing, there are alternative methods devisedless of which inferencing method is selected.

For fuzzy sets that possess nonunique supremum positions to accomplish defuzzification. Smith and Takagi (37) list eight
methods, based on whether the individual sets are combined(such as trapezoid-shaped sets), the curve for the percent area

applied when using correlation-minimum lies between those first and then defuzzified, or discretized first and then com-
bined. Four of these methods are described here:shown for correlation-minimum and those for correlation-

product for triangular sets. The exact curve position depends
on the uniqueness of the fuzzy set (the ratio of the supremum 1. Weighted-average method;
and support ranges). For correlation-translation, the applied 2. Area-centroid weighting method;
percent area lies between the curves for triangular sets shown 3. Application of a fuzzy confidence level; and
in Fig. 8 for the correlation-translation and correlation-prod-

4. Maximum membership method.uct methods, again depending on the degree of uniqueness.
In Table 2, as the shape of a fuzzy set approaches that of

Weighted-Average Method. The weighted-average methoda rectangle, the applied area approaches that determined by
is a defuzzify-combine approach, which is the easiest of allthe correlation-product method. So, the less fuzzy the bound-
methods to program. The method involves multiplying the de-aries between adjacent fuzzy sets, the more likely that corre-
gree of belief in each set by its supremum position (or averagelation-product is the most appropriate method, since all meth-
supremum); summing the results, and dividing by the sum ofods produce the same result.
all DoBs.

EFFECT OF INFERENCING METHOD
ON CENTROID POSITION

Area is not the only factor affected by the DoB of a fuzzy set.
The centroid position of the set, with respect to its universe

z =

m∑
i−1

[DoB(zi)
∗Sup(zi)]

m∑
i−1

DoB(zi)

(22)

of discourse, is also affected by its DoB and the inferencing
method selected. Output from the defuzzification method us-
ing area-centroid weighting is obviously dependent on the
centroid position of each applied fuzzy set area.

With symmetrical fuzzy sets (whether they be triangles,
trapezoids, rectangles, etc.), the centroid position is indepen-
dent of DoB and inferencing method. In these cases, the
centroid is always located at the midpoint of the supremum
range or at the supremum position for a triangular-shaped
set. So, with symmetrical fuzzy sets, the supremum position
(or average) can be used instead of calculating the centroid on
each cycle through the controller, that is, the fuzzy set can be
considered as a singleton.

With asymmetrical fuzzy sets, the situation is somewhat
different. The centroid position depends on its DoB and infer-
encing method. With correlation-product, the centroid re-

Correlation
minimum

Supremum
Correlation product

Change in centroid position as function
of belief and inferencing method 

100

0
0 1007550 58.4

Degree
of

belief

Correlation
translation

Fuzzy set support
mains constant as belief declines. For correlation-minimum,
at full belief the centroid is located at a point on the side of Figure 9. Change in centroid position as a function of degree of belief

and inferencing method.the supremum where the shallower-sloped boundary exists.
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where z � discrete value for variable Z used in situations where the system is either very uncertain
or very certain. In this way, a conservative or risk-taking ap-DoB(zi) � degree of belief in z1

Sup(zi) � supremum position (or average) for zi proach can be implemented with ease as very little computa-
tion is required—simply choose the supremum or centroid po-i � output fuzzy set index

m � total number of output fuzzy sets sition of the fuzzy set with maximum belief.

Application of a Confidence Level. Either of the first twoWith this method there is no need to calculate centroid posi-
methods can be modified to achieve certain specific results bytions or areas of the output fuzzy sets. The shape and support
applying a fuzzy confidence level to the defuzzification pro-that define each fuzzy set play no role in the defuzzification
cess. The argument supporting the use of a cut-off limit is: ifprocess. In fact, it can be argued that, by using this method,
you are less than 50% certain (for example) about applying aat this point one has dispensed with fuzziness in the fuzzy set
fact, then do not use this fact.definitions, since one needs only represent each output set by

a unique, discrete output-value—the supremum position,
that is, the output sets are ‘‘fuzzy’’ singletons. Nevertheless,
interpolation across the universe of discourse of the input
fuzzy sets can generate complex, nonlinear, multivariable re-
lationships, but some flexibility is lost in adjusting individual
output sets to model I/O relationships at certain unique posi-

z =

m∑
i−1

[DoB(zi)
∗Sup(zi)]

m∑
i−1

DoB(zi)

for all DoB(zi) ≥ FCL (24)

tions on the universe of discourse.
where z � discrete value for variable Z
DoB(zi) � degree of belief in ziArea-Centroid Weighting. This method is the most popular

defuzzification method in use today. Following application of Sup(zi) � supremum position (or average) for zi

FCL � Fuzzy Confidence Levelthe desired correlation-inferencing method, each fuzzy set is
represented by two concepts—an output area and an output i � output fuzzy set index

m � total number of output fuzzy setscentroid position. The weighted average centroid position is
then calculated by summing the product of each output area

Applying a fuzzy confidence level excludes those fuzzy con-times each output centroid, and then dividing by the sum of
cepts from the calculation whose belief is less than an accept-the output areas:
able threshold. The fuzzy confidence level represents a factor
which prevents fuzzy concepts with low DoBs from affecting
the calculated discrete output value. With fuzzy control, nor-
mal defuzzification uses either the weighted-average or area-
centroid weighting approach to combine the degrees of belief
of all output sets into a single discrete output. There can be

z =

m∑
i−1

[A(zi)
∗C(zi)]

m∑
i−1

A(zi)

(23)

significant advantages in using an intermediate fuzzy confi-
dence level to prevent those sets which are tending toward

where z � discrete value for variable Z False from influencing the output value.
A(zi) � area of fuzzy set zi Systems using a FCL value of 0 apply all sets to the pro-
C(zi) � centroid position of the sub-normal fuzzy set zi cess of defuzzification, even those close to False. At the other

i � output fuzzy set index extreme, if FCL is set to 100, the system is required to use
m � total number of output fuzzy sets only those sets that are absolutely true. Work with this tech-

nique (40) has indicated that using a fuzzy confidence level
If each of the original fuzzy sets are balanced (i.e., they between 20% and 50% produces improvement in the response

each begin with the same areas) and the correlation-product of a controller for a crushing plant simulator in terms of sys-
inferencing method is employed, the result will be the same tem stability (see Fig. 10).
as for the weighted-average method presented above. Area- When a fuzzy confidence level above 0 is used, gaps in the
centroid weighting is the most flexible of all methods used. It I/O space-state map can result. These have been referred to
can be combined with any of the three common correlation- as vacuums of knowledge (41), as shown in Fig. 11. Our goal
inferencing methods to yield complex and unique nonlinear would be to improve on the performance generated by the I/
solutions to an I/O space-state map, with as few as two fuzzy O map shown in Fig. 12, which appears to be the desired rela-
set definitions. By manipulating the relative positions of the tionship but for which an adaptable (or changeable) relation-
critical points on each fuzzy set (supremum and support end- ship can provide improvement. The gaps shown in Fig. 11 can
points), extremely complex changes can be modeled. produce significant stability problems for a fuzzy controller

whenever inputs fall within such regions. To avoid these
gaps, default values can be provided as a fall-back position.Maximum Membership Method. Some researchers believe

the correct selection of a discrete value from an output distri- However, this can lead to a pulse discontinuity in the input/
output map (see Fig. 13). By dynamically switching the defuz-bution curve is that value with maximum belief. This may be

true for crisp systems that use many sets to characterize the zification method from weighted-average (or area-centroid) to
the maximum membership, these discontinuities can be re-variables. The system must select the subnormal fuzzy output

set which has the largest DoB. The maximum membership moved to produce the more useful response surface shown in
Fig. 14. The results show that with an FCL of 20%, the perfor-method, on its own, may produce step-changes in the I/O map

with potential discontinuities. Its application should only be mance of the system is enhanced by about 4% (40).
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Figure 10. Effect of using a fuzzy confi-
dence level on the stability of a fuzzy con-
trol system for a secondary crushing
plant.
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This dynamic switching of the defuzzification method from with as few as two sets (LOW and HIGH). The use of three
sets provides a target range for each input variable with theweighted-average (with FCL�0) to the maximum member-

ship method has merit in improving the reliability and effi- provision of gain-scaling as the process state approaches the
set point. Five fuzzy sets give added flexibility, by providingciency of the original control system. At high FCL levels, dy-

namic switching is absolutely necessary to ensure that the fine and coarse tuning rules. Some systems may need seven
or nine fuzzy set definitions to accommodate certain featurescontroller does not ‘‘go to sleep’’ because of the larger regions

of vacuums created. At FCL levels below 20%, dynamic on the I/O map. This increases the complexity of the system
and its maintenance. Many more rules are needed in suchswitching does not help with stability, since vacuum regions

are nonexistent. The value of FCL can also be a fuzzy concept, FAM modules. In most cases, five fuzzy sets are sufficient.
How should the critical points of each set be defined? Todependent on external factors outside of the particular con-

trol system. obtain useful definitions of a fuzzy linguistic term, ask the
expert(s) these questions (we will use MEDIUM and HIGHDynamic switching simply involves making a temporary

change in the fuzzy confidence level to the maximum DoB power for the example):
value of the input fuzzy sets. This restores the system to an
acceptable relationship although, as Fig. 13 shows, the num- • What is the lowest power level that you would describe
ber of steps in the I/O graph depends on the number of fuzzy as being HIGH?
set descriptions. • What is the highest power level that you would describe

as NOT-HIGH?
COMMONLY ASKED QUESTIONS ABOUT

For intermediate set definitions, three questions are needed:FUZZY CONTROL—A SUMMARY

• What is the range of discrete values for which a ME-How many fuzzy sets are needed to define each variable? The
DIUM power level is TRUE?number of fuzzy sets required to describe a Universe of Dis-

course for a variable depends on several factors: • What is the highest value from the bottom of the uni-
verse of discourse for which MEDIUM power level is

• the expertise as defined by the expert(s); definitely FALSE?
• the speed of execution required; • What is the lowest value from the top of the universe of
• the complexity of the input/output mapping; and discourse for which MEDIUM power level is definitely

FALSE?• the form of data input.

The number chosen will be a compromise between these is- If multiple experts disagree on these critical points, this sug-
gests the expertise is either poorly understood by some or thesues and others. Very complex mappings can be generated

Figure 11. Vacuums of knowledge created
when using a fuzzy confidence level.
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Figure 14. Influence of dynamic defuzzification on the I/O map whenFigure 12. Possible relationship map of fuzzy output sets and fuzzy
a fuzzy confidence level is used.input sets.

definitions do not matter. Alternatively, it may mean that mum and support extremities, so only three or four data
points are required to define each fuzzy set. This approachthere are underlying relationships still to be discovered that

can be exploited to allow the set definitions to be changed reduces storage, since only the support and supremum values
of the set are required. The I/O relationships generally aredynamically during use.

How should adjacent sets overlap? Discussions with the stepped approximations of the desired curve with these
shapes, although, when adjacent sets have significantly dif-expert(s) on the location of critical points will generally ad-

dress this issue. It is very important, however, to ensure that ferent boundary slopes, curved relationships do result. The
shape of a fuzzy set has important implications on the defuz-all discrete input values be partial members of at least one

set. If this is not addressed, regions of ‘‘no control’’ may exist zification process, particularly when area-centroid weighting
is used.on the I/O map and issues with continuity will occur. Map-

ping of the fuzzy sets can be a useful exercise to establish Which inference method is best? Smith and Takagi (37)
have characterized eight different methods (there are more)if any terms can be subsumed into parent terms. Significant

overlap of adjacent sets can indicate that combining these to infer belief in a rule conclusion from its corresponding
premise part. Each method has certain principles behind itssets into one term may be useful. The rules must be examined

carefully before completing this modification. evolution but the differences are only significant when defuz-
zification involves area-centroid weighting. When theWhat is the best shape to use for each set? Triangles and

trapezoids are expedient shapes to use with fuzzy logic con- weighted average technique is used to defuzzify, only the DoB
of the output set together with its supremum position is im-trollers. The boundaries are straight lines between the supre-
portant.

The max operator for ORing and the min operator for
ANDing are the best ones to use initially to combine variables
into the premise of a rule. There are three basic options to
transfer the net degree of truth from the premise to the rule
conclusion fuzzy set: Correlation-minimum, correlation-prod-
uct, or correlation-translation. Dynamic switching between
these methods can prove useful to adapt a system to circum-
stances that change from the need for a conservative ap-
proach to one that is prepared to take risks.

Which defuzzification method is best? The following meth-
ods have been described in this work:

• Weighted average method (often the same as area
centroid-weighting);

• Area-centroid weighting method;
• Maximum membership method; and
• Fuzzy confidence level method.N
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Some authors (37) use other names like height, best rules,Figure 13. Formation of vacuums of knowledge when a fuzzy confi-
dence level of 100% is used. and winning-rule to describe the weighted-average, fuzzy con-
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fidence level and maximum membership method, respec- • dynamic switching of the inferencing or defuzzification
methods.tively. Each one produces somewhat different results which

are not always predictable. Weighted-average and area- • dynamic switching of separate FAM modules for new
centroid weighting produce similar results, particularly when inputs.
correlation product inferencing is used. Often the centroid
and supremum position are identical for a subnormal fuzzy The first method is useful when the knowledge is well un-
set, hence the weighted-average method is usually sufficient derstood. Most FAM modules contain at least two input vari-
and easiest to program. ables (although often one of these is ‘‘change in the other vari-

How can the stability of the controller be measured? able,’’ i.e., a time-series analysis).
Conventional control systems focus considerable attention on Allowing fuzzy set definitions to change dynamically based
system stability. Many mathematical techniques have been on an analysis of conservative or risk-taking contexts can be
developed to deal with stability issues but few can apply to a fast and efficient way to implement multivariable control
fuzzy control. As a result, the field is wide open to formulating (40). A synergy is observed when both input and output sets
techniques for stability analysis. In fact, it can be said that are allowed to change simultaneously in comparison with re-
the lack of a suitable mathematical technique to handle sta- sults obtained when each are allowed to change on their own.
bility studies in fuzzy control is a major impediment to devel- System stability also improves under simultaneous dynamic
oping site-critical applications for fuzzy control. changing of both input and output fuzzy sets.

Some researchers have applied a modified version of the Smith (36) has pioneered the adaptable approach to infer-
Lyapunov theorem for nonlinear system stability analysis encing and defuzzification, listing up to 80 separate methods
with some success (42,43). Some automated techniques (44) that can be switched to during defuzzification. His work indi-
have been developed to generate fuzzy rules sets from data, cates that about seven major methods are sufficient and that
using the Lyapunov technique to ensure stability in the con- an external set of performance rules can establish the best
troller at the creation stage. Still others are working on time- method to use under different circumstances that generally
domain stability criteria for nonlinear systems (45). Kosco relate to the position of the process state on the I/O space-
(46) has demonstrated how feedback fuzzy systems can be state map.
proven to be stable from an analysis of their individual rule
set components. A particularly good analysis of stability is-

THE FUTURE OF FUZZY CONTROLsues is given by Drianov et al. (47), in which fuzzy systems
are examined using classical nonlinear dynamic systems

The future of fuzzy control is bright. The zenith of the field istheory.
still before us. The twenty-first century is likely to see a majorSince fuzzy control implements its strategy through a rule
proliferation of fuzzy control systems because of the ease ofbase rather than a mathematical expression, a rigorous anal-
implementation and the confidence that comes from success-ysis is not straightforward. Part of this difficulty relates to
ful applications. Process control as a separate field is oftenrepresenting the I/O relationship mathematically.
considered of secondary importance during commissioning ofProcess and controller simulations are the main ways to
new plants, since it is often difficult to build workable controlensure sufficient rules and terminology definitions are pres-
solutions a priori. Fuzzy control systems, on the other hand,ent. If the system contains significant regions that generate
can be constructed based on our understanding of the princi-vacuums of knowledge, it is likely that instability will be ob-
ples of plant operation. This will lead to increased utilizationserved during operation of the controller. The use of MathLab
of control in general, and provide better plant start-up perfor-(from The Math Works, Inc., Natick, MA) and Mathematica
mance.(from Wolfram Research, Inc., Champaign, IL) software tools

Studies into methods to characterize system stability willhave provided very easy-to-use programs to create models and
result in ways to verify a system before implementation. Theconduct simulations quickly and effectively.
marriage of fuzzy control with artificial neural networks willWe must also consider system redundancy. This character-
provide systems that can adapt or ‘‘learn’’ in real time, andistic is particularly important with fuzzy systems, since the
also explain their actions to humans, if necessary. Geneticvery nature of the rule-based approach contains built-in re-
algorithms will play an important role in yielding extremelydundant features. Often the FAM maps may contain suffi-
rapid solutions to adaptable systems. ‘‘Intelligent methods’’cient rules to accommodate a significant absence of informa-
will provide widespread solutions to many real-world prob-tion. The system can still provide useful control with
lems, with fuzzy logic-based control at the center of the tech-cooperating inputs through other rules. As such certain fuzzy
nology.controllers can be considered to be a type of ‘‘soft sensor.’’

How does the system handle multivariable inputs? There
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