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NEURAL NET APPLICATIONS

The most complex computing device in nature recognized at
present is the human brain. A computer model that matches
the functionality of the brain in a very fundamental manner
has led to the development of artificial neural networks (1).
These networks have emerged as generalizations of mathe-
matical models of neurobiology based on the assumptions that
information processing occurs at many simple elements called
neurons; that signals are passed between neurons over con-
nection links; that each connection link has an adaptive
weight associated with it that, in a typical neural network,
multiplies the signal transmitted; and that each neuron ap-
plies an activation function to its net input to determine its
output signal.

PRINCIPLES

Inspiration from the Brain

There exists a close analogy between the structure of a biolog-
ical neuron and that of the artificial neuron or processing ele-
ment that is the basic building block of an artificial neural
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Figure 1. A biological neuron showing
the cell body and the axon which trans-
mits action potentials to neighboring neu-
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rons via their dendrites.

network (henceforth referred to simply as a neural network). can sometimes be trained to take over the functions of the
damaged cells. In a similar manner, artificial neural networksA biological neuron has three types of components that consti-

tute its structure: the dendrites, the soma, and the axon. The can be designed to be insensitive to minor damage to the
physical topology of the network, and can be retrained to com-many dendrites receive signals from other neurons, which are

electrical impulses (action potentials) that are transmitted pensate for major topological changes or damage.
across a synaptic gap, via the synapses that are located at

Model of an Artificial Neurondendritic ends, by converting electrical energy into chemical
energy. The action of the chemical transmitters modifies the In an artificial neural network, the unit analogous to the bio-
incoming signal in a manner similar to the adaptive adjust- logical neuron is referred to as the processing element. A pro-
ment of weights in a neural network. The soma (i.e., the cell cessing element has several input paths (dendrites), and it
body) weights and sums the incoming signals. When the sum combines, usually by a simple summation operation, the val-
exceeds a certain threshold, the cell fires; that is, it sends out ues of these input paths. The result is an internal activity
an action potential over its axon to other cells. The transmis- level for the processing element. This combined input is modi-
sion of the action potential signal from a neuron is caused by fied by a transfer function. The transfer function can be a
concentration differences of ions on either side of the neuron’s threshold function that passes information only if the com-
axon sheath. The ions most directly involved are sodium, po- bined activity level reaches a certain value, or it can be a
tassium, and chlorine. A generic biological neuron is illus- continuous function of the combined input. It is most common
trated in Fig. 1 together with an axon from a neighboring to use the sigmoidal family of functions for this purpose. The
neuron from which the illustrated neuron can receive input output value of the transfer function is passed directly to the
signals and the dendrites of one other neuron to which the path leaving the processing element.
illustrated neuron can send signals. The output path of a processing element can be connected

Several key properties of the processing elements of artifi- to the input paths of other processing elements through con-
cial neural networks are suggested by the properties of biolog- nection weights which correspond to the synaptic strengths of
ical neurons: the neural connections. Since each connection has a corre-

sponding weight, the signals on the input lines of a processing
1. The processing elements receive many signals as input. element are modified by these weights prior to being summed
2. Signals are modified by weights at the receiving syn- as is illustrated in Fig. 2. Thus, the resulting function is a

apses. weighted summation. McCulloch and Pitt (2) proposed a sim-
3. The processing elements sum the weighted inputs. ple model of a neuron as a binary threshold unit. Specifically,
4. For sums above a certain threshold, the neuron trans-

mits a single output.
5. The output from a single neuron may serve as input to

many other neighboring neurons.
6. A synapse’s strength may be modified by experience.
7. Neurotransmitters may be excitatory or inhibitory.

Another important characteristic that is shared by biologi-
cal and artificial neural networks is that of fault tolerance.
Biological neural networks are primarily fault-tolerant in two
respects. First, humans are able to recognize many input sig-
nals that are somewhat different from any signal they have
seen before. Second, humans have the ability to tolerate dam-
age to the neural system itself. Humans are born with ap-
proximately 1011 neurons. Most of these neurons are located
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in the brain, and for the most part are not replaced when they
die. In spite of an ongoing loss of neurons, humans continue Figure 2. A simple artificial neuron depicting a mathematical model

of the biological neuron.to learn. Even in cases of traumatic neural loss, other neurons
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the model of the neuron, as described above, computed a vised learning and is by far the most common learning strat-
weighted sum of its inputs from other units, and output a one egy. A network is said to be have been trained if it can suc-
or a zero according to whether this sum was above or below a cessfully predict an outcome in response to novel inputs. If
certain threshold as given by the desired output is different from the input, the trained net-

work is called a heteroassociative network. If, for all the train-
ing examples, the desired output vector equals the input vec-
tor, the net is called an autoassociative network. Rumelhart,

ni(t + 1) = �

(∑
j

wijn j (t) − µi

)
(1)

Hinton, and Williams (3) discuss several applications of net-
works incorporating supervised learning methods.where ni, which can be either 1 or 0, represents the state of

If no desired output is shown, the learning is called unsu-the neuron i as firing or not firing, respectively. The time in-
pervised learning. Learning occurs by clustering, i.e., the de-dex t is treated as being discrete, with each processing step
tection of structure in the incoming data. Kuperstein (4) hasbeing equal to one time step. �(x) is the activation function of
implemented a neural controller in a five-degree-of-freedomthe neuron, and in this case is specifically the unit step func-
robot to grasp objects in arbitrary positions in a three dimen-tion given by
sional world. This controller, called INFANT, learns visual–
motor coordination without any knowledge of the geometry of
the mechanical system and without a teacher. INFANT�(x) =

{
1 if x ≥ 0

0 otherwise
(2)

adapts to unforeseen changes in the geometry of the physical
motor system, to the internal dynamics of the control circuits,

The weight wij represents the strength of the synapse connect- and to the location, orientation, shape, weight, and size of ob-
ing neuron j to neuron i and can be either positive or nega- jects.
tive, depending on whether it is excitatory or inhibitory. The A third kind of learning falls in between the above two
neuron-specific parameter �i is the threshold value for neu- modes. This is called reinforcement learning. Here a critic ap-
ron i, and the weighted sum of its inputs must reach or exceed

propriately rewards or penalizes the learning system until it
the threshold in order for the neuron to fire.

ultimately produces the correct output in response to a givenIn itself, this simplified model of a neuron is not very im-
input pattern. Anderson (5) has simulated an inverted pendu-pressive. However, a number of interesting effects result from
lum as a control task with the goal of learning to balancethe manner in which neurons are interconnected.
the pendulum without a priori knowledge of the dynamics.
Performance feedback is assumed to be available only as aTypical Network Architectures
failure signal when the pendulum falls or reaches the bounds

An artificial neural network consists of many neurons or pro- of a horizontal track. Whatever the kind of learning used, an
cessing elements joined together; usually organized into essential characteristic of any adaptive network is its learn-
groups called layers. A typical network consists of a sequence ing rule, which specifies how weights change in response to a
of layers with full or random connections between successive learning example. Learning may require iterating the train-
layers. There are typically two layers with connections to the ing examples through the network thousands of times. The
outside world—an input buffer where data are presented to parameters governing a learning rule may change over time
the network, and an output buffer that holds the response of as the network progresses in its learning.
the network to a given input pattern. The nodes in the input Another important phase in the operation of a network is
layer encode the instances or patterns to be presented to the termed recall. Recall refers to the manner in which the net-
network. The output layer nodes encode solutions to be as- work processes a stimulus presented at its input buffer and
signed to the instances under consideration at the input creates a response at the output buffer. Often, recall is an
layer. Layers distinct from the input and output buffers are integral part of the learning process, as when the desired re-
called hidden layers. These layers typically consist of nonlin- sponse of a network must be compared with the actual output
ear units that are used to capture and store the nonlinear of the network to create an error signal. The recall phase is
representation of the mapping under consideration.

used to gauge whether a network has learned to perform theNetworks are called fully connected if every neuron in a
specified task or not. A network is said to have learnt to per-certain layer is connected to every other neuron in a layer in
form a specified task if a predefined (task specific) objectivefront of it, and feedforward if the connections all point in one
function has been minimized successfully.direction. Network architectures where feedback connections

or loops are included are called recurrent networks. These are
typically used for the processing of temporal information. The Perceptron

A single-layered perceptron consists of an input and an out-An Introduction to Learning
put layer. It is a direct extension of the biological neuron de-

There are two main phases in the operation of a network— scribed previously. The activation function, as shown in Fig.
learning and recall. The details of these vary from network to 2, is a hard-limiting signum function. The output unit will
network. Learning is the process of changing or modifying the assume the value �1 if the sum of its weighted inputs is
connection weights in response to stimuli being presented at greater than its threshold. Hence an input pattern will be
the input buffer and optionally at the output buffer. A stimu- classified into category A at the output unit j using
lus presented at the output buffer corresponds to a desired
response to a given input; this response may be provided by
a teacher or supervisor. This kind of learning is called super-

∑
Wij Xi > � j (3)
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where Wij is the weight from unit i to unit j, Xi is the input
from unit i, and �j is the threshold on unit j (note that in Fig.
2, the subscript j is omitted, since only one output unit is
taken into consideration). Otherwise, the input pattern will
be classified into category B. The perceptron learning algo-
rithm can be described as follows:

Initialize all the weights and thresholds to small random
numbers. The thresholds are negatives of the weights from
the bias unit, whose input level is fixed at �1. The activation
level of an input unit is determined by the pattern presented
to it. The activation level of an output unit is given by

Oj = Fh

(∑
Wij Xi − � j

)
(4)
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where Wij is the weight from an input Xi, �j is the threshold, Figure 3. Linear (AND) versus nonlinear (XOR) separability.
and Fh is the hard-limiting activation function:

is linearly separable. While the XOR solution requires a non-
linear curve to separate its zero output class from its one out-

Fh(p) =
{

+1, p > 0

−1, p ≤ 0
(5)

put class, the AND can be solved using a straight line. This
is illustrated in Fig. 3. In essence, a multilayered perceptronThe weights are adjusted by
(modern day neural network) is required to solve classifica-
tion problems that are not linearly separable.Wij(t + 1) = Wij(t) + �Wij (6)

Multilayered Perceptrons and the Backpropagation Algorithmwhere Wij(t) is the weight from unit i to unit j at time t and
�Wij is the weight adjustment for iteration step at time t � 1. A typical feedforward network topology showing a multilay-
The weight change may be computed by the delta rule: ered perceptron is illustrated in Fig. 4. A multilayered per-

ceptron is a feedforward neural network with at least one hid-
�Wij = ηδ j Xi (7)

den layer. It can deal with nonlinear classification problems,
since it can form complex decision regions—unlike simple

where � is the learning rate and takes on values between 0 perceptrons, which were restricted to hyperplanes. The figure
and 1, and �j is the error at unit j given by shows a three-layered network with one hidden layer, but in

principle there could be more than one hidden layer to store
the internal representations. The fundamental concept under-δ j = Tj − Oj (8)

lying the design of the network is that the information enter-
where Tj is the target output activation and Oj is the actual ing the input layer is mapped as a nonlinear internal repre-
output activation at the output unit j. The above steps are sentation in the units of the hidden layer(s), and the outputs
iterated until convergence is achieved, i.e. the actual output are generated by this internal representation rather than by
activation (classification) is the same as the target output ac- the input vector. Given enough hidden units, input vectors
tivation. According to the perceptron convergence theorem can be encoded in a format that ensures generation of the
(6), if the input data points are linearly separable, the per- desired output vectors.
ceptron learning rule will converge to a solution in a finite
number of steps for any initial choice of the weights.

Linear Versus Nonlinear Separability

Consider a case where a perceptron has n inputs and one out-
put. Hence the perceptron equation

n∑
i=1

Wij Xi = � j (9)

forms a hyperplane in the (n � 1)-dimensional input space,
dividing the space into two halves. When n � 2, the hyper-
plane is reduced to a line. Linear separability refers to the
case where a linear hyperplane exists that can separate the
patterns into two distinct classes. Unfortunately, most classi-
fication problems fall in the category of problems requiring a
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nonlinear hyperplane to separate the patterns into their dis-
tinct classes. A good example is the XOR logic problem, which Figure 4. A typical multilayered feed-forward network topology

where output � wkj � sigmoid (wji � input).is nonlinearly separable, whereas its counterpart, the AND,
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As is evident from Fig. 4 the outputs of the units in layer and the error �j at a hidden-layer unit is given by
A are multiplied by appropriate weights wji, and these are fed
as inputs to the hidden layer. Hence, if oi are the outputs of δ j = oj (1 − oj )

∑
k

δkwkj (17)
units in layer A, then the total input to the hidden layer
(layer B) is

In practice, it has been found that one strategy to speed up
the convengence without causing oscillations is to modify the
delta rule for the sigmoid function as given above by including

netB =
∑

i

wjioi (10)

a momentum term given by
and the output oj of a unit in layer B is

�wkj[p + 1] = ηδko j + α �wkj[p] (18)
oj = f (netB) (11)

where the index p indicates the presentation iteration num-
where f is the nonlinear activation or transfer function. It is ber, or the number of times a set of input vectors has been
a common practice to choose the sigmoid function given by presented to the network. The momentum factor � is an expo-

nential decay factor having a value between 0 and 1 that de-
termines the relative contribution of the current gradient andf (x) = 1

1 + e−x
(12)

the earlier gradients to the weight change.

as the nonlinear activation function. However, any input– Practical Issues Relating to the Backpropagation Algorithm
output function that possesses a bounded derivative can be

In the past few years, the backpropagation algorithm hasused in place of the sigmoid function (3).
proven to be the most popular of all learning algorithms, asThe aim when using a neural network is to find a set of
evidenced by commercial as well as academic use (9,10).weights that ensures that for each input vector the output
Given this enormous interest, a lot of effort has been devotedvector produced by the network is the same as (or sufficiently
to determining improvements and modifications to the origi-close to) the desired output vector. If there is a fixed, finite
nal version of the algorithm together with the identificationset of input–output pairs, the total error in the performance
of key issues to pay attention to when using the algorithm.of the network with a particular set of weights can be com-
Given below is an overview of some of the prominent issuesputed by comparing the actual and the desired output vectors
and modifications. The interested reader can learn further byfor each presentation of an input vector.
studying the references cited in this section.The error at any output unit ek in layer C is

The basic backpropagation algorithm is quite slow, and
many variations have been suggested to make it faster. Otherek = tk − ok (13)
goals have been to improve the generalizational ability and
the avoidance of local minimum traps in the error surface.where tk is the desired output for the unit in layer C, and ok

Some authors have employed alternative cost functions as op-is the actual output produced by the network. A measure of
posed to the quadratic cost function used in the original ver-the total error E at the output may be defined as
sion. Others have considered transforming the data using
transforms such as wavelets, fast Fourier transforms, and
simple trigonometric, linear, and logarithmic transforma-

E = 1
2

∑
k

(tk − ok)2 (14)

tions. Also, as mentioned previously, the addition of the mo-
mentum parameter enhances the speed considerably, espe-Learning is accomplished by changing network weights so

as to minimize the error function. To minimize E by gradient cially in situations where one has cost surface valleys with
steep sides but a shallow slope along the valley floor. The ideadescent, it is necessary to compute the partial derivative of E

with respect to each weight in the network. This is the sum is to give each connection weight some inertia or momentum
such that it tends to change in the direction of the averageof the partial derivatives for each of the input–output pairs

(7). The forward pass through the network, where the units downhill ‘‘force’’ that it feels, instead of oscillating wildly with
every little kick in the learning rate parameter.in each layer have their states determined by the inputs they

receive from the units in the previous layers, is quite straight- To choose appropriate learning rate and momentum pa-
rameter values for a given problem is not a straightforwardforward. The backward pass through the network, which in-

volves the backpropagation of weight error derivatives (i.e., matter. Moreover, the best values at the beginning of the
training may not be so good later on in the process. Hencethe supervisory learning information) from the output layer

back to the input layer, is more complicated. many authors have suggested adjusting these parameters au-
tomatically, as the learning progresses (11). One could evenFor the sigmoid activation function, the so-called delta rule

(8) for iterative convergence toward a solution may be stated have separate parameter sets for each connection and modify
them according to whether a particular weight update did ac-in general as
tually decrease the cost function (12).

Although gradient descent is one of the simplest optimiza-�wkj = ηδko j (15)

tion techniques, it is not necessarily the best approach for all
where the parameter � is called the learning rate parameter problems. Instead of considering the slope of the error surface
(3). The error �k at an output layer unit k is given by (first derivative or Jacobian information), many authors have

worked with its curvature (second derivative or Hessian infor-
mation). While this offers higher accuracy, there is a tradeoffδk = (tk − ok)ok(1 − ok) (16)
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with regard to computational effort, given that one needs to cost function. Although local minima have not been too
much of a problem in most cases studied empirically,invert an N by N Hessian matrix at every iteration, taking on

the order of N3 steps every time. Hence this method is optimal still one needs to be aware of their existence and de-
velop a capability for detecting and allowing for theirfor use with small problems. Other authors (10) have consid-

ered other ways to approximate the Hessian algebraically or presence. The magnitudes of the initial weights are very
important in this regard. Perturbation techniques (14)ways to avoid the need to invert it at every step.

The very best practical algorithms still employ first-deriva- such as annealing and random dithering have been
studied by researchers as being effective countermea-tive information, but strengthen that with efficient line

search procedures that move along the error surface with sures for local minima.
adaptive step sizing and directional vectors. The conjugate

The backpropagation algorithm falls in a class of learninggradient methods fall under this category and are among the
algorithms termed globally generalizing or approximating.most practical methods for solving real world problems.
The fundamental problem with global approximation para-Hence, given the task of error minimization, deciding on
digms is that they are susceptible to global network collapsewhich direction to move in at each step and determining how
when attempting to perform on-line learning. It is caused bymuch to move at each step are the two basic issues to be con-
a lack of persistence of excitation to cause the control parame-sidered when developing variant algorithms. Following are
ters within the learning paradigm to be updated after the sys-some of the other issues that relate to the backpropagation
tem settles into a desired state. Local approximation strate-algorithm and that are critical to obtaining improved net-
gies (16) on the other hand, simply learn ‘‘pockets of thework performance:
model’’ and do not generalize over the entire model, which
prevents global network collapse. The other major problemGeneralization. This is concerned with how well the net-
when working with on-line learning tasks is the ubiquitouswork performs on the problem with respect to both seen
presence of noise in the incoming sensor data. Global learningand unseen data. It is usually tested on new data out-
paradigms change all the weights in the network in responseside the training set. Generalization is dependent on the
to incoming data. Hence, highly noisy signals can cause com-network architecture and size, the learning algorithm,
plete global degradation of the model represented within thethe complexity of the underlying problem, and the qual-
network. Local learning paradigms work around this prob-ity and quantity of the training data. Research has been
lem, since noisy data will cause damage only in portions ofconducted to determine factors such as the number of
the network and not degrade the entire learned represen-training patterns required for good generalization and
tation.the optimal network size, architecture, and learning al-

Another advantage of local paradigms is that they are com-
gorithm. Vapnik and Chervonenkis (13) showed that it putationally efficient, since only a small portion of the weight
was possible to compute a quantity called VCdim of a space is updated in response to a control input at any given
network that enabled the computation of the number of time. They also display rapid convergence, as learning is local
training patterns required for a good generalization for and is performed in distinct ‘‘pockets’’ of the systems dynam-
that network. ics. They do not encounter the problem of local minima, since

Network Pruning. In a fully connected network, generally the local error surface is quadratic. They do require large
there is a large amount of redundant information en- amounts of memory (17,18), but then again, lack of sufficient
coded in the weights. This is because of the heuristic, memory is scarcely an issue in the current era in which inex-
nonparametric manner in which the choice of the num- pensive, fast, short-access-time memory modules are com-
ber of hidden units is made when setting up the net- monplace in computer systems.
work topology for the solution of a particular problem. The cerebellar model articulation controller (CMAC) (19)
Thus, it is possible to remove some weights without af- and radial basis function (RBF) networks (20) belong to the
fecting network performance, and this reduction im- class of locally generalizing algorithms. An RBF network is a
proves the generalizational properties and lowers the one-hidden-layer network whose output units form a linear
computational burden of the network. It also ensures a combination of the basis functions computed by the hidden
solution that employs a topology with degrees of free- units. The basis functions in the hidden layer produce a local-
dom consistent with that of the natural system being ized response to the input and hence operate within a local-
approximated. Such methods evaluate the saliency of ized receptive field. The most commonly used basis function
every hidden unit and perform a rank ordering to make is the Gaussian function, where the output of a hidden unit j
a decision on weight elimination (14). Another method is given by
to help prune networks is to give each weight the ten-
dency to decay to zero unless reinforced and strength-
ened by incoming patterns. Oj = exp

(
− (X − Wj ) · (X − Wj )

2σ 2
j

)
(19)

Network Construction Algorithms. Rather than starting
where X is the input vector, Wj is the weight vector associatedwith too large a network and then pruning, work has
with hidden unit j, and 	2 is the normalization factor of thebeen reported in the literature (15) where researchers
Gaussian basis function.have started with small networks and then used the

training data to gradually grow the network to an opti-
Learning Temporal Sequencesmal size.

Local Minima. Gradient descent and all other optimiza- The backpropagation algorithm as described in the previous
sections has established itself as the most popular learningtion techniques can become stuck at local minima of the
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rule in the design of neural networks. However, a major limi- trol in manufacturing; process control in industries such as
semiconductors, petrochemical, metals, and food; roboticstation of the standard backpropagation algorithm is that it

can only learn an input–output mapping that is static. Static (27,28); medical applications such as ECG, EEG, MRI, and
x-ray data classification; drug structure prediction; and inmapping is well suited for pattern recognition applications

where both the inputs and the outputs represent spatial pat- biological systems modeling and modeling applications (29)
such as the study of low back pain.terns that are independent of time. But how does one extend

the design of a multilayered perceptron so that it assumes a An example is shown in Fig. 5, where a rotary dryer is
depicted. Dryers are among the most ubiquitous pieces of in-time-varying form and therefore will be able to deal with

time-varying signals? For a network to be able to capture dy- dustrial equipment. They are commonly employed in the food
industry to dry various materials, from corn to onions andnamic maps, it must be given memory (21). One way to do

this is to introduce time delays into the topology of the net- garlic. The objective is to dry the food so that its moisture
content lies within a certain prespecified band. Hence, thework and adjust their values during the learning phase. A

time delay neural network is a multilayered feedforward net- dryer controller uses continuous feedback from moisture me-
ters to control the various input parameters such as feedwork whose hidden and output neurons are replicated across

time as recurrent connections. The popular training approach rates and burner temperatures. However, moisture sensors
are extremely unreliable and highly susceptible to cloggingis the backpropagation-through-time algorithm (22), which

may be derived by unfolding the temporal operation of the and drift. In this situation a virtual sensor based on a tempo-
ral, dynamic neural network model of the dryer can be a reli-network into a standard multilayered feedforward network,

the topology of which grows by one layer at each time step. able alternative to effect control. The virtual sensor is based
on historical data collected as a result of a good set of experi-
ments that dictate the different variables to be collected, theirA Food Dryer Example
ranges, and the sampling frequencies. Once the sensor model

Controlling a complex industrial process can be a challenging
is built, it is validated with novel data that it has never seen

and appropriate task for a neural network, since rules are
before. After validation, the sensor is integrated with the on-

often difficult to define, historical data are plentiful but noisy,
line control loop, typically into the ladder logic of multiple

and perfect numerical accuracy is not required (23). Neural
PID (proportional plus integral plus derivative) control loops

networks can be shown to be extremely efficient in solving
on standard industrial programmable logic controllers (PLC).

mathematically hard classification, prediction, and process
control problems (24,25).

Use of Critics in Reinforcement Learning
Neural networks have been used quite extensively during

the last half decade for generating solutions to real world The successful control of dynamic systems typically requires
considerable knowledge of the systems being controlled, in-problems. Some application areas are financial forecasting

and portfolio management; credit card fraud detection; char- cluding an accurate model of the dynamics of the system and
an accurate expression of the system’s desired behavior, usu-acter and cursive handwriting recognition (26); quality con-
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ally in the form of an objective function (30). In situations The goal of this task is to apply a sequence of forces F, of
fixed magnitude but variable direction, to the cart such thatwhere such knowledge does not exist, reinforcement learning

techniques (31) can be used. Each application of a control ac- the pendulum is balanced and the cart does not hit the edge
of the track. Zero-magnitude forces are not permissible. Notetion by the reinforcement learning controller results in a

qualitative feedback from the environment, which indicates that reinforcement learning methods are applied to this prob-
lem under the assumption that the system dynamics are un-the consequences of that action (and possibly the previous ac-

tions), but the feedback does not contain any gradient infor- known and that an analytical form of the objective function is
unavailable. Bounds on 
 and x specify the states of the sys-mation to indicate what control actions should be used so that

the feedback improves (as in supervised learning). Thus, rein- tem for which failure signals can be provided. Two networks,
an action network and an evaluation network (5), functionforcement learning can be described as a problem of credit

assignment, that is, based on the sensor–action–feedback se- together to solve this problem using a temporal-difference re-
inforcement learning scheme.quences, how to determine what part of the learning system’s

reasoning process is to be credited (punished or rewarded)
and how. This is done by means of a critic or evaluator. The Unsupervised Learning Methods
extent to which a local decision or action is credited depends In unsupervised learning, no teacher or supervision exists.
on how it correlates with the reinforcement (i.e., feedback) Networks falling under this category still have inputs and
signal. If enough samples are taken, the noise caused by the outputs, but there is no feedback from the environment to
variations in other variables is averaged out, and the effect indicate what the outputs should be (as in supervised learn-
due to a single variable becomes evident. Therefore, with a ing) or whether they are correct (as in reinforcement learn-
sufficiently long learning process, an optimal probability can ing). The network must discover for itself patterns, features,
be learned for every local variable. correlations, or categories in the input data stream and report

Reinforcement learning tasks commonly occur in optimal the findings as the outputs. Hence, such networks possess the
control of dynamic systems and planning problems in artifi- quality of self-organization. Unsupervised learning methods
cial intelligence, and the techniques used are closely related are applicable in problem domains where data are plentiful
to conventional techniques from optimal control theory, as and redundant, with very little a priori process knowledge,
was established by the pioneering work of Barto, Sutton, and and for dealing with unexpected and changing situations that
Watkins (32). In contrast to backpropagation (or supervised) lack mathematical descriptions. Classification of astronomical
learning, reinforcement learning does not involve the compu- data from radio telescopes can be a good unsupervised learn-
tation of derivatives and hence lacks gradient information. ing problem.
This feature makes it suitable for application to complex There are two classes of unsupervised learning algorithms.
problems where derivative information is hard to obtain. On In the first class, which is based on Hebbian learning, multi-
the other hand, reinforcement learning is very inefficient in ple output units are often active together in collective re-
large systems. In addition, the system optimization parame- sponse to the patterns presented at the inputs. In the second
ters can get locked at a local optimum. class of algorithms, which is based on competitive learning,

only one output unit in the entire network, or one unit per
prespecified group of output units, fires in response to a pat-An Inverted Pendulum Example
tern presented at the inputs. The output units compete for

The inverted pendulum is a classic example of an inherently being the one to fire, and are therefore also referred to as
unstable system. Its dynamics forms the basis for many appli- winner-take-all units. One popular competitive learning algo-
cations such as gait analysis and control of rocket thrusters. rithm is Kohonen’s self-organizing feature map (20), which
The inverted pendulum task involves the control of a pendu- has found application for data compression and vector quanti-
lum hinged to the top of a wheeled cart that travels along a zation in two- and three-dimensional signal processing.
track as shown in Fig. 6. The motion of the cart and of the
pendulum are constrained to a vertical plane. The state of the A Fault Diagnosis Example
system at time t is specified by four real-valued variables: the

Unsupervised learning methods also find applicability in theangle between the pendulum and the vertical, 
; the corre-
area of fault detection and diagnosis. Depicted in Fig. 7 is thesponding angular velocity 
̇; the horizontal position x along
schematic block diagram of Neural Applications Corporation’sthe track; and its corresponding velocity ẋ.
neural network based prototypical system for Catastrophy
Management in uptime-critical computer networks at small
and medium sized business organizations. Unsupervised
learning methodologies are used for performing tasks such as
failure mode detection and predictive maintenance. The gen-
eral idea is to utilize historical data to recognize and cluster
trends and to isolate them as faults or failure modes.

NEURAL NETWORK APPLICATIONS IN THE REAL WORLD

Applications in Business, Science, and Industry

F

θ,θ
.

x

Only a few years ago, the most widely reported neural net-Figure 6. An inverted pendulum system that is controllable using a
reinforcement learning scheme. work application outside the financial industry was the air-
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Figure 7. Using neural networks for pre-
dictive maintenance and fault diagnostics in
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port baggage explosive detection systems developed by Sci- to muller dynamic state changes. This model is used to make
ence Applications International Corporation (33). Since that predictions (in times on the order of seconds, rather than
time, a large number of industrial and commercial applica- minutes as previously done by the automatic tester) and eval-
tions have been developed, but the details of most have been uate suggested control responses. This lookahead scheme en-
shrouded as corporate trade secrets. This growth in the num- ables faster control responses to bond needs to support an
ber of applications is due to an increase in the accessibility of agile mold production schedule.
computational power and the enhanced availability of com- The green sand process optimizer is implemented on an
mercial software packages that can be quickly tailored to pro- Intel Pentium-133 personal computer. It uses an Allen-Brad-
vide low-cost turnkey solutions to a broad spectrum of appli- ley 1784-KT communications card and Rockwell RSLINX
cations (33). Given below are case studies of two such communication software to transmit data back and forth to
applications to provide a sample of the variety of possible ap- an Allen-Bradley PLC-5 via the Data Highway Plus network.
plications using this technology. The optimizer programs are implemented in a combination

of Visual Basic and Visual C�� using Neural Applications
Case Study of the Green Sand Problem Corporation’s AEGIS� intelligent systems toolkit. The man–
in an Automotive Foundry machine interface provides a medium for communication

between the program and the process engineers, informingMolding technology is employed in automotive foundries to
them of key operational data. Process data are collected bycast critical parts such as engine blocks. Typically, a high-
the green sand process optimizer system to build the processpressure green sand molding unit is supplied with prepared
model and also to implement the alarm generation scheme.molding sand by two continuous mullers. The characteristics
Data filtering and statistical analysis are performed to sepa-of the preparation are determined by measures of compaction,
rate out the important variables from the irrelevant ones andgreen strength, and discharge sand moisture. These measure-
to further group the relevant variables as control variables,ments are made both by a procedural test in a laboratory ev-
process model input state variables, and process model outputery few hours and by an automatic testing unit (if available)
state variables. The model can be described as a fully con-every couple of minutes. Based on these measurements, one
nected, multilayered time-series neural network. This modelcomputes process measures: compaction, the available bond in
is used in the on-line control mode to provide dynamic statethe sand, and the water-to-clay ratio in the sand. The optimi-
predictions 90 seconds into the future, which are used to com-zation problem, then, is to determine every few seconds the
pute the process measures that are sent to the controller. Acorrect rate of water addition (typically in liters per minute)
second use is in the off-line what-if mode. This mode is usedand bond addition (typically in kilograms per minute) such
to perform variable-sensitivity analysis to learn process in-that the measured process measures are as close to the de-
put–output characteristics using test profiles. It allows thesired process measures as possible. The conventional control
system to serve as a low-cost, high-accuracy process simula-method can be termed reactive control, i.e., pure feedback
tor. The controller performs constrained optimization usingcontrol.
the predictive muller model. It computes optimal values ofThe existing control scheme is improved by using a control
the water addition (in liters per minute) and bond additionscheme that can be termed predictive control, which is a com-
(in kilograms per minute), roughly every 10 seconds, suchbination of feedback and feedforward control. On-line process

data are used to build a real-time muller model that adapts that the error between measured and predicted process mea-
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sures of compaction, bond availability in the sand, and water- changes in scrap makeup, electrode size, system supply volt-
to-clay ratio in the sand is minimized while adhering to sys- age, etc. It constantly reoptimizes the control criteria and pro-
tem alarm constraints and boundary conditions. A screen vides the following two major features. First, it is ‘‘three-
from the program (Fig. 8) shows a live pictorial representa- phase aware’’ in that it takes into account the effect that an
tion of the system. electrode positioning signal will have on the correlation

Results from a completed installation at the John Deere among all the three system phases. The three output signals
Foundry in Waterloo, IA indicate a 32% overall decrease in are chosen so that all three phases meet desired operating
process variability. A set of ‘‘soft benefits’’ such as better loop conditions. This drastically reduces the setpoint hunting ob-
closure for operations management, real-time visualization served in traditional controllers. Second, it continually pre-
and distributed access, and the implementation of a modular dicts event occurrences 100 to 300 ms ahead of time, and then
PC-based optimization system was also achieved. sends electrode positioning signals to correct in advance the

errors that are anticipated. This causes unprecedented
smoothness in operation.

Case Study of an Optimization System for A production version of the system has been installed at
an Electric Arc Furnace in a Steel Mill 33 different customer locations all over the world, and the

consumption of electric power has been reduced by 5 to 8%In the United States steel industry, the total annual electrical
(an average furnace has a capacity of 30 MW or more, enoughenergy consumption by electric arc furnaces (EAFs) is 16 �
power for a city of 30,000 people), wear and tear on the fur-109 kW � h, at a cost of $600 million. Currently, the primary
nace and electrodes has been reduced by 20%, and the dailysource of themal energy in EAFs is the electric arc (65%),
throughput of steel has been increased, often by 10% or more.with other energy input from oxy–fuel burners (5%), and
The final observation is that this neural-network-based con-other exothermic reactions (30%) that are supported by in-
troller increases productivity and yields tremendous cost sav-jecting oxygen into the furnace. Typically, energy input pro-
ings by decreasing electrode consumption, power-on time, andfiles are developed through trial and error, simple linear algo-
the amount of energy used per ton of steel produced. The nat-rithms, or the experience of furnace operators.
ural extension (work in progress) to this success is to investi-A neural-network-based optimization system has been de-
gate the use of similar intelligent technologies for optimiza-veloped by Neural Applications Corporation (34) that continu-

ally learns to adapt its control of the furnace to correct for tion and coordination of all three major energy sources.
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Figure 8. Screen shot from a PC-based system for green sand optimization at an automotive
foundry.
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