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NEURAL NETS FOR FEEDBACK CONTROL

Dynamical systems are ubiquitous in nature and include natu-
rally occurring systems such as the cell and more complex
biological organisms, the interactions of populations, and so
on, as well as man-made systems such as aircraft, satellites,
and interacting global economies. A. N. Whitehead and L. von
Bertalanffy were among the first to provide a modern theory
of systems at the beginning of the century. Systems are char-
acterized as having outputs that can be measured, inputs that
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can be manipulated, and internal dynamics. Feedback control rithms (e.g., two conscientious engineers should get similar
results) were for the most part absent. The basic problem is-involves computing suitable control inputs, based on the dif-

ference between observed and desired behavior, for a dynami- sues in NN feedback control are
cal system so that the observed behavior coincides with a de-
sired behavior prescribed by the user. All biological systems • To provide repeatable design algorithms
are based on feedback for survival, with even the simplest of • To provide on-line learning algorithms that do not re-
cells using chemical diffusion based on feedback to create a quire preliminary off-line tuning
potential difference across the membrane to maintain its ho- • To show how to initialize the NN weights to guarantee
meostasis, or required equilibrium condition for survival. stability
Volterra was the first to show that feedback is responsible for

• To rigorously prove closed-loop trajectory followingthe balance of two populations of fish in a pond, and Darwin
• To show how to compute various gradients needed forshowed that feedback over extended time periods provides the

weight tuningsubtle pressures that cause the evolution of species.
• To show that the NN weights remain bounded despiteThere is a large and well-established body of design and

unmodeled dynamics (because bounded weights guaran-analysis techniques for feedback control systems. This work
tee bounded control signals)began with the Greeks and Arabs; was put on a firm basis by

Watt, Maxwell, Airy, and others; and has been responsible for
At higher levels, an issue is to provide more brainlike capabil-successes in the industrial revolution, ship and aircraft de-
ities, such as generic learning to cope with complex problemssign, and the space age. Design approaches include classical
requiring strategic capabilities over time. Also important aredesign methods for OPTIMAL CONTROL; ROBUST CONTROL; H-IN-

techniques for combining off-line learning and prior informa-FINITY CONTROL; ADAPTIVE CONTROL; and others; for more infor-
tion with learning functions performed on-line in real time.mation refer to the articles by those names. Many systems

This article shows that NNs do indeed fulfill the promisethat we desire to control have unknown dynamics, modeling
held out of providing model-free learning controllers for aerrors, and various sorts of disturbances, uncertainties, and
class of nonlinear systems, in the sense that not even a struc-noise. This, coupled with the increasing complexity of today’s
tural or parametrized model of the system dynamics isdynamical systems, creates a need for advanced control de-
needed. All the basic problem issues just mentioned aresign techniques that overcome limitations on traditional feed-
solved for a large class of mechanical motion systems withback control techniques.
Lagrangian dynamics, including robotic manipulators. TheIn recent years, there has been a great deal of effort to
control structures discussed in this article are multiloop con-design feedback control systems that mimic the functions of
trollers with NNs in some of the loops and an outer trackingliving biological systems (1); refer to INTELLIGENT CONTROL.
unity-gain feedback loop. Throughout, there are repeatableThere has been great interest recently in ‘‘universal model-
design algorithms and guarantees of system performance in-free controllers’’ that do not need a mathematical model of the
cluding both small tracking errors and bounded NN weights.controlled plant, but mimic the functions of biological pro-

It is shown that as uncertainty about the controlled systemcesses to learn about the systems they are controlling on-line,
increases or as we desire to consider human user inputs atso that performance improves automatically. Techniques in-
higher levels of abstraction, the NN controllers acquire moreclude fuzzy logic control, which mimics linguistic and reason-
and more structure, eventually acquiring a hierarchical struc-ing functions, and artificial neural networks, which are based
ture that resembles some of the elegant architectures pro-on biological neuronal structures of interconnected nodes.
posed by computer science engineers using high-level designNeural networks (NN) have achieved great success in classi-
approaches based on cognitive linguistics, reinforcementfication and pattern recognition. Rigorous analysis has shown
learning, psychological theories, adaptive critics, or optimalhow to select NN topologies and weights, for instance, to dis-
dynamic programming techniques. Such high-level control ar-criminate between specified exemplar patterns. By now, the
chitectures are discussed in NEUROCONTROLLERS.theory and applications of NN in classification are well under-

NN controllers have advantages over standard adaptivestood, so that NNs have become an important tool in the rep-
control approaches in that no linearity-in-the-parameters as-ertoire of the signal processor and computer scientist.
sumption is needed and no regression matrix must be deter-Now, rigorous results are also beginning to appear in the
mined. This is primarily due to the NN universal functionuses of NN for control theory applications (1–4). In control
approximation property. Moreover, if designed correctly, thetheory, the NN weights must usually be tuned dynamically in
NN controller does not need persistence of excitation or cer-time. There are two classes of applications—open-loop identi-
tainty equivalence assumptions.fication and closed-loop control. Identification is similar to

classification applications, so that the same open-loop NN
weight-tuning algorithms (e.g., backpropagation tuning) often

BACKGROUND IN NEURAL NETWORKS
work. In complete contrast is the situation in feedback con-

AND FEEDBACK CONTROL
trol, where the NN becomes part of the closed-loop system so
that special steps must be taken to guarantee that its weights

Neural Network Structures and Properties
stay bounded.

Although fraught with difficulties, NN applications in There is a rich and varied literature on neural networks (5);
see NEURAL NET ARCHITECTURE. NNs can be used for twoclosed-loop control are increasing as indicated by a steady

stream of published articles. Early papers consisted for the classes of applications in system theory: signal processing/
classification and control. There are two classes of control ap-most part of ad hoc discussions followed by some simulation

examples. Theoretical proofs and repeatable design algo- plications—open-loop identification and closed-loop feedback
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control. Identification applications are close in spirit to signal By collecting all the NN weights vjk, wij into matrices of
weights VT, WT, we can write the NN equation in terms ofprocessing/classification, so that the same open-loop algo-

rithms (e.g., backpropagation weight tuning) may often be vectors as
used. On the other hand, in closed-loop feedback applications,
the NN is inside the control loop so that special steps must y = WT σ (V T x) (4)
be taken to ensure that the NN weights remain bounded dur-
ing the control run. Until the 1990s NN applications in The thresholds are included as the first columns of the weight
closed-loop feedback control were for the most part ad hoc matrices; to accommodate this, the vectors x and ( 
 ) need to
with no design algorithms or guaranteed performance. be augmented by placing a 1 as their first element (e.g., x �

[1 x1 x2 
 
 
 xn]T). In this equation, to represent Eq. (1), we
Static Feedforward Neural Networks. A feedforward neural have sufficient generality if ( 
 ) is taken as a diagonal func-

network is shown in Fig. 1. This NN has two layers of adjust- tion from �L to �L, that is (z) � diag�(zj)� for a vector z �
able weights and is called here a two-layer net. The NN out- [z1 z2 
 
 
 zL]T � �L.
put y is a vector with m components that are determined in Universal Function Approximation Property. NNs satisfy
terms of the n components of the input vector x by the for- many important properties. A main property of concern for
mula feedback control purposes is the universal function approxi-

mation property (6). Let f (x) be a general smooth function
from �n to �m. Then, it can be shown that, as long as x is
restricted to a compact set S of �n, there exist weights and

yi =
L∑

j=1

[
wi jσ

(
n∑

k=1

vjkxk + θv j

)
+ θwi

]
; i = 1, . . ., m (1)

thresholds such that we have
where ( 
 ) are the activation functions and L is the number
of hidden-layer neurons. The first-to-second-layer intercon- f (x) = WT σ (V T x) + ε (5)
nections weights are denoted vjk, and the second-to-third-layer
interconnection weights are denoted by wij. The threshold off- for some number of hidden layer neurons L. This holds for a
sets are denoted by �vj

, �wi
. large class of activation functions, including those just men-

Many different activation functions ( 
 ) are in common tioned. This equation indicates that an NN can approximate
use. In this work, it is required that ( 
 ) is smooth enough so any smooth function on a compact set. The value � is called
that at least its first derivative exists. Suitable choices in- the NN functional approximation error, and it generally de-
clude the sigmoid creases as the net size L increases. In fact, for any choice of a

positive number �N, we can find a feedforward NN such that
� � �N for all x in S . This means that an NN can be selected
to approximate f (x) to any desired accuracy �N.

σ (x) = 1
1 + e−x

(2)

The ideal NN weights in matrices W, V that are needed to
the hyperbolic tangent best approximate a given nonlinear function f (x) are difficult

to determine. In fact, they may not even be unique. However,
all we need to know for controls purposes is that, for a speci-σ (x) = ex − e−x

ex + e−x
(3)

fied value of �N, some ideal approximating NN weights exist.
Then, an estimate of f (x) can be given by

and other logistic-curve-type functions.

f̂ (x) = ŴT σ (V̂ T x) (6)

where ŵ and V̂ are estimates of the ideal NN weights that
are provided by some on-line weight-tuning algorithms, which
will be detailed subsequently.

The assumption that there exist ideal weights such that
the approximation property holds is very much like various
similar assumptions in adaptive control (7,8), including Erz-
berger’s assumptions and linearity in the parameters. The
very important difference is that in the NN case, the approxi-
mation property always holds, whereas in adaptive control
such assumptions often do not hold in practice, and so they
imply restrictions on the form of the systems that can be con-
trolled.

Weight-Tuning Algorithms. So that the NN can learn and
adapt to its environment, the weights should be continuously
updated on-line. Many types of NN weight-tuning algorithms
are used, usually based on some sort of gradient algorithm.
Tuning algorithms may either be given in continuous time or
in discrete time, where the weights are updated only at dis-
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crete time points (e.g., the delta rule). Discrete-time tuning is
useful in digital control applications of neural networks.Figure 1. Two-layer feedforward neural network.
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A common weight-tuning algorithm is the gradient algo- 2. The functional range of Eq. (11) is dense in the space of
rithm based on the backpropagated error (9), where the NN continuous functions from S to �m for countable L.
is trained to match specified exemplar pairs (xd, yd), with xd

the ideal NN input that yields the desired NN output yd. The Some special FLNN are now discussed.
discrete-time version of the backpropagation algorithm for the Gaussian or Radial Basis Function Networks. An NN activa-
two-layer NN is given by tion function often used is the Gaussian or radial basis func-

tion (RBF) (11) given as

σ (x) = e−x2/2v (12)
Ŵk+1 = Ŵk + Fσ (V̂ T

k xd)ET
k

V̂k+1 = V̂k + Gxd(σ̂ ′T
k ŴkEk)T

(7)

when x is a scalar, with variance v. An RBF NN can be writ-
where k is the discrete time index and F, G are positive defi-

ten as Eq. (4), but it has an advantage over the usual sigmoid
nite design parameter matrices governing the speed of con-

NN in that it is standard in probability theory, Kalman filter-
vergence of the algorithm. The hidden-layer output gradient

ing, and elsewhere to consider n-dimensional Gaussian func-
or jacobian may be explicitly computed; for the sigmoid acti-

tions written as
vation functions, for instance, it is

σ (x) = e− 1
2 xT P−1x (13)

σ̂ ′ ≡ diag{σ (V̂ T xd)}[I − diag{σ (V̂ T xd)}] (8)

with x � �n. If the covariance matrix is diagonal so that P �
where diag�v� means a diagonal matrix whose diagonal ele- diag�pi�, this becomes separable and may be decomposed into
ments are the components of the vector v. The error Ek that components as
is backpropagated is selected as the desired NN output minus
the actual NN output Ek � yd � yk. Backprop tuning is accom-
plished off-line and requires specified training data pairs (xd,

σ (x) = e− 1
2

∑n
i=1 x2

i /pi =
n∏

i=1

e− 1
2 x2

i /pi (14)

yd), so it is a supervised training scheme.
The continuous-time version of the backpropagation algo- This allows us to visualize the hidden-layer neurons as hav-

rithm for the two-layer NN is given by ing n-dimensional activation functions, as in Fig. 2.
Having in mind the insertion of Eq. (14) into Eq. (1), or

equivalently Eq. (4), we can make the following observations.
The first-layer thresholds �vj of the RBF NN are n-dimen-
sional vectors corresponding to the mean values of the

˙̂W = Fσ (V̂ T xd)ET

˙̂V = Gxd(σ̂ ′TŴE)T
(9)

Gaussian functions, which serve to shift the functions in the
A simplified NN weight-tuning scheme is the Hebbian algo- �n plane. The first-layer weights in VT are scaling factors that
rithm, a continuous-time version of which is serve to scale the width or variance of the Gaussians. These

are both usually selected in designing the RBF NN and left
fixed; only the output-layer weights WT are generally tuned.
Therefore, the RBF NN is a special sort of FLNN Eq. (11).

Figure 2 shows two-dimensional (2-D) separable Gaussians

˙̂W = F[σ (V̂ T x)]ET

˙̂V = Gx[σ (V̂ )T x)]T
(10)

with thresholds selected on a evenly spaced grid. To form an
RBF NN that approximates functions (see subsequent para-Thus, in Hebbian tuning, no jacobian need be computed; in-
graph) over the region ��1 � x1 � 1, �1 � x2 � 1�, we maystead, the weights in each layer are updated based on the
choose 5 � 5 � 25 hidden-layer neurons, corresponding to fiveouter product of the input and output signals of that layer.
cells along x1 and five along x2. Nine of these neurons willFunctional-Link Basis Neural Networks. If the first-layer
have 2-D Gaussian activation functions, whereas those alongweights and thresholds V in Eq. (4) are fixed and only the
the boundary require the illustrated ‘‘one-sided’’ activationsecond-layer weights W are tuned, then the NN has only one-
functions.layer of tunable weights. Such a one-layer NN is described by

The importance of RBF NNs (11) is that they show how
to select the activation functions and number of hidden-layery = WT φ(x) (11)
neurons for specific NN applications, including approxima-
tion, while also giving insight on the information stored in

where x � �n, y � �m. Now, �( 
 ) is not diagonal, but it is a the NN.
general function from �n to �L. This is called a functional- Fuzzy Neural Networks. There are many ways to bring to-
link neural net (FLNN) (10). In this case, the NN approxima- gether NNs and fuzzy logic (FL) systems (12) (see FUZZY LOGIC
tion property does not generally hold. However, a one-layer SYSTEMS), including architectures having both NN and FL
NN can still approximate functions as long as the activation components (e.g., using FL systems to initialize NN weights
functions �( 
 ) are selected as a basis, which must satisfy the or NN to adapt FL membership functions). However, one
following two requirements on a compact, simply connected point of view is to consider FL systems as a special class of
set S of �n: structured NN.

It can be shown that fuzzy logic systems using product in-
ferencing and weighted defuzzification are equivalent to spe-1. A constant function on S can be expressed as Eq. (11)

for a finite number L of hidden-layer neurons. cial sorts of NN with suitably chosen separable activation
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Figure 2. Two-dimensional separable Gaussian functions for an RBF NN.

functions. In fact, dividing Eq. (1) by Eq. (4) with thresholds From this discussion, it is evident that all the NN control
techniques to be discussed in this article also apply for fuzzy�wi � 0 is identical to the output equation for this class of FL

systems. In FL systems, logic control (14). Note specifically that backpropagation tun-
ing can be used to adapt the FL parameters. See also FUZZY

LOGIC CONTROL.Xj (xk) = σ (vjkxk + θv jk
) (15)

Dynamic/Recurrent Neural Networks. If the NN has its own
are the membership functions along component xk, shifted by dynamics, it is said to be dynamic or recurrent. An important
�vjk

and scaled by vjk. The n-dimensional membership functions recurrent NN is the Hopfield net used in classification appli-
are composed using multiplication of scalar membership func- cations. The continuous-time Hopfield net is described by the
tions as in Eq. (14). The output-layer weights wij are known ordinary differential equation
as the control representative values in FL systems.

The RBF NN in Fig. 2 is equivalent to a fuzzy system with
Gaussian membership functions along x1 and x2. FL systems τi ẋi = −xi +

n∑
j=1

wi jσ (xj ) + ui (16)

are also very closely related to the Cerebellar Model Articula-
tion Controller (CMAC) NN (13). A CMAC NN has separable with output equation
activation functions generally composed of splines. The acti-
vation functions of a 2-D CMAC composed of first-order
splines (e.g., triangle functions) are shown in Fig. 3; it is yi =

n∑
j=1

wi jσ (xj ) (17)

equivalent to a 2-D FL system with triangle membership
functions. The activation functions of a CMAC NN are called

This is a dynamical system of special form that contains thereceptive field functions in analogy with the optical receptor
weights wij as adjustable parameters and positive time con-fields of the eye.
stants �i. The offsets ui play the role of the control input termIn adaptive FL systems, we may adapt the control repre-
in system theory. In traditional Hopfield NN, the term inputsentative values W and/or the membership function parame-
pattern refers to the initial state components xi(0).ters V. If V is not adapted, then the first-layer weights and

In the discrete-time case, the NN is described by the differ-thresholds are fixed so that the membership functions are not
ence equationtuned. These FL systems are therefore FLNN, and the mem-

bership functions must be chosen as a basis on some compact
set. If both W and V are adapted, the FL systems possess the
universal approximation property Eq. (5).

xi(k + 1) = pixi(k) +
n∑

j=1

wi jσ j[xj (k)] + ui(k) (18)
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Figure 3. Receptive field functions for a two-dimensional CMAC NN with first-order splines,
showing similarity to fuzzy logic system.

with pi � 1. This is a discrete-time dynamical system with Most of the early approaches used standard backpropaga-
time index k. tion weight tuning because rigorous derivations of tuning al-

gorithms suitable for feedback control purposes were not
Feedback Control and Early Design Using Neural Networks available. (In fact, it has recently been shown that backpropa-

gation must be modified for closed-loop control purposes.)Feedback control involves the measurement of output signals
Moreover, in early applications of direct closed-loop control,from a dynamical system or plant, and the use of the differ-
the gradients (jacobians) needed for backpropagation de-ence between the measured values and certain prescribed de-
pended on the unknown system and/or satisfied their ownsired values to compute system inputs that cause the mea-
differential equations; this made them impossible or verysured values to follow or track the desired values. In feedback
difficult to compute. Thus, although rigorously applied incontrol design, it is crucial to guarantee both tracking perfor-
open-loop identification, NNs had not been fully developed formance and internal stability or boundedness of all variables.
direct closed-loop control. The most serious problem was thatFailure to do so can cause serious problems in the closed-loop
rigorous stability proofs and guarantees of closed-loop perfor-system, including instability and unboundedness of signals
mance were not available, so that the performance of thesethat can result in system failure or destruction.
controllers on actual industrial or mechanical systems wasThere is a large literature on NN for feedback control of
open to serious question. Most research papers were sup-unknown plants. Initially, design and analysis techniques
ported by computer simulation results, which often indicatedwere ad hoc, with no repeatable design algorithms or proofs
good performance, but only for the conditions and systemsof stability and guaranteed performance. Many NN design
tested.techniques mimicked adaptive control approaches, where rig-

Narendra (3) and others (1,2,4) have paved the way fororous analysis results were available (7,8). In these early
rigorous NN controls applications by studying the dynamicaltechniques, there were serious unanswered questions. Be-
behavior of NNs in closed-loop systems, including computa-cause we did not know how to initialize the NN weights to
tion of the gradients needed for backprop tuning. Severalprovide closed-loop stability, most approaches required an off-
groups have done rigorous analysis of NN controllers using aline learning phase, where the NN weights were tuned using
variety of techniques. The Bibliography lists some work bymeasurements of system inputs and outputs in a preliminary
Sanner and Slotine (11), Polycarpou and Ioannou (15,16),phase before the controller was allowed to provide system in-
Rovithakis and Christodoulou (17), Sadegh (10), Chen andputs. Such an open-loop phase has serious detrimental reper-
Khalil (18), Chen and Liu (19), and the present author withcussions for industrial and mechanical systems where control
others (20,21).is usually required immediately. Recent results show how to

Several NN feedback control topologies are illustrated incombine off-learning and a priori information with dynamic
Fig. 4, some of which are derived from standard topologies inon-line learning in real time to improve adaptibility of the

controller (see NEUROCONTROLLERS). adaptive control (8). There are basically two sorts of feedback
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Figure 4. Neural net feedback controller topologies. (a) Indirect scheme. (b) Inverse system
control. (c) Series control.

control topologies—indirect techniques and direct techniques. dynamics will be considered (21). The NN control techniques
presented may also be applied to other unknown systems in-In indirect NN control, there are two functions; in an identi-

fier block, the NN is tuned to learn the dynamics of the un- cluding certain important classes of nonlinear systems (22).
In this section is discussed feedback tracking control de-known plant, and the controller block then uses this informa-

tion to control the plant. Direct control is more efficient and sign using static feedforward NN. This amounts to the design
of what is called in control system terminology the trackinginvolves the NN directly tuning the parameters of an adjust-

able controller. control loop and in computer science terminology the action-
generating loop. In subsequent sections are discussed feed-
back control using dynamic NNs and higher-level architec-

TRACKING CONTROL USING STATIC NEURAL NETWORKS
tures such as reinforcement learning and adaptive critics.

The chief common characteristic of early NN control design
Robot Arm Dynamics and Feedback Control

techniques was that rigorous design techniques and stability
proofs were not offered. In keeping with the philosophy of The dynamics of rigid Lagrangian systems, including robot

arms, have some important physical and structural propertiesthose working in control system theory since Maxwell, Lyapu-
nov, A. N. Whitehead, and other early researchers, to provide that make it very natural to use NN in their control. These

properties should be taken into account in the design of anyguarantees of closed-loop performance, it is necessary to begin
with the knowledge available about the system being con- controller. In fact, they provide the background for a rigorous

design algorithm for NN controllers.trolled. Many industrial mechanical systems, as well as auto-
mobiles, aircraft, and spacecraft, have dynamics in the La-
grangian form, which are exemplified by the class of rigid Robot Dynamics and Properties. The dynamics of an n-link

rigid (i.e., no flexible links or high-frequency joint/motor dy-robot systems. Therefore, in this article the Lagrangian robot
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namics) robot manipulator may be expressed in the Lagrange mass, which varies in real-time applications, and the friction
terms F(q̇), which can be extremely complicated functionsform (23)
that vary as the joints heat up during use.

M(q)q̈ + Vm(q, q̇)q̇ + G(q) + F(q̇) + τd = τ (19)

Robot Controller and the Error System. In applications, the
with q(t) � �n the joint variable vector, whose entries are the nonlinear robot function f (x) is at least partially unknown.
robot arm joint angles or link extensions. M(q) is the inertia Therefore, a suitable control input for trajectory following is
matrix, Vm(q, q̇) is the coriolis/centripetal matrix, G(q) is the given by the computed-torque-like control
gravity vector, and F(q̇) is the friction. Bounded unknown dis-
turbances (including, for example, unstructured unmodeled τ = f̂ + Kvr − v (25)
dynamics) are denoted by �d, and the control input torque is
�(t). The robot dynamics have the following standard prop- with Kv � KT

v � 0 a gain matrix, generally chosen diagonal,
erties: and f̂(x) an estimate of the robot function f (x) that is provided

by some means. The robustifying signal v(t) is needed to com-
Property 1. M(q) is a positive definite symmetric matrix pensate for unmodeled unstructured disturbances. Using this

bounded by m1I � M(q) � m2I, with m1, m2 positive con- control, the closed-loop system becomes
stants.

Property 2. The norm of the matrix Vm(q, q̇) is bounded by Mṙ = −(Kv + Vm)r + f̃ + τd + v (26)
vb(q)�q̇�, for some function vb(q).

Property 3. The matrix Ṁ � 2Vm is skew-symmetric. This This is an error system wherein the filtered tracking error is
is equivalent to the fact that the internal forces do no driven by the functional estimation error f̃ � f � f̂. The error
work. system is of supreme importance in feedback control system

design because its structure allows the study of means toProperty 4. The unknown disturbance satisfies ��d� � bd,
make the tracking error r(t) small, facilitating both the selec-with bd a positive constant.
tion of good controller topologies and rigorous proofs of closed-
loop performance.Tracking a Desired Trajectory and the Error Dynamics. An

In computing the control signal, the estimate f̂ can be pro-important application in robot arm control is for the manipu-
vided by several techniques, including adaptive control (7,8)lator to follow a prescribed trajectory, a problem that appears
or neural networks. The auxiliary control signal v(t) can bein spray painting, surface finishing and grinding, and so on.
selected by several techniques, including sliding-mode meth-Given a desired arm trajectory qd(t) � �n, the tracking error
ods and others under the general aegis of robust controlis
methods.

e(t) = qd(t) − q(t) (20)
Neural Net Feedback Tracking Controller

It is typical in robotics to define a so-called filtered tracking
Even though the general control structure is now pinnederror as
down in Eq. (25), there is no guarantee that the control � will
make the tracking error small. Thus, the control design prob-r = ė + 
e (21)
lem is to specify a method of selecting the gains Kv, the esti-
mate f̂, and the robustifying signal v(t) so that both the errorwhere � is a symmetric positive definite design parameter
r(t) and the control signals are bounded. It is important tomatrix, usually selected diagonal. The objective in tracking
note that the latter conclusion hinges on showing that thecontroller design is to design a control system topology that
estimate f̂(x) is bounded. Moreover, for good performance, thekeeps r(t), and hence the tracking error e(t), small.
bounds on r(t) should be, in some sense, small enough.Differentiating r(t) and using Eq. (19), the arm dynamics

may be written in terms of the filtered tracking error as
Neural Net Multiloop Feedback Control Topology. The control

� incorporates a proportional-plus-derivative (PD) outer loopMṙ = −Vmr − τ + f + τd (22)
in the term Kvr � Kv(ė � �e). An NN will be used to provide
the estimate f̂ for the unknown robot function f (x). The NNwhere the important nonlinear robot function is
approximation property Eq. (6) assures us that there always
exists an NN that can accomplish this within a given accu-f (x) = M(q)(q̈d + 
ė) + Vm(q, q̇)(q̇d + 
e) + G(q) + F(q̇) (23)
racy �N. The basic structure of this NN controller appears in
Fig. 5, where e � [eT ėT]T, q � [qT q̇T]T. The neural networkThe vector x required to compute f (x) can be defined, for in-
that provides the estimate for f (x) appears in an inner controlstance, as
loop, and there is an outer tracking loop provided by the PD
term Kvr. This multiloop intelligent control structure is de-x ≡ [eT ėT qT

d q̇T
d q̈T

d ]T (24)
rived naturally from robot control notions and is not ad hoc.
In control theory terminology, it is a feedback linearizationwhich can be measured.

Function f (x) contains all the robot parameters such as controller (24). As such, it is immune to philosophical deliber-
ations concerning suitable NN control topologies includingpayload mass, link masses and lengths, and friction coeffi-

cients. These quantities are often imperfectly known and dif- the common discussions on feedforward vs. feedback, direct
vs. indirect, and so on. It is to be noted that the static feedfor-ficult to determine. This is especially true of the payload
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Figure 5. Neural net controller for rigid robot arms, showing inner nonlinear neural network
loop and outer tracking loop.

ward NN in this diagram is turned into a dynamic NN by and others in showing the convergence either of dynamic NN
to certain local equilibria, or the convergence of certain NNclosing a feedback loop around it [c.f. Ref. ( 3)].
weight tuning algorithms.

NN Weight Tuning for Stability and Robustness. Unfortu- In closed-loop NN feedback control a suitable energy func-
nately, there is not yet any clue on how to tune the NN tion is the Lyapunov-like function
weights. The error dynamics Eq. (26) can be used to focus on
selecting NN tuning algorithms, the signal v(t), and the con- V = 1

2 rT M(q)r + 1
2 tr(W̃T F−1W̃ ) + 1

2 tr(Ṽ T G−1Ṽ ) (28)

trol gains Kv that guarantee the stability of the filtered with tr() the trace of a matrix (e.g., sum of its diagonal ele-
tracking error r(t). Then, because Eq. (21), with the input con- ments), r(t) the filtered tracking error, and the NN weight
sidered as r(t) and the output as e(t) describes a stable sys- estimation errors given by W̃ � W � Ŵ, Ṽ � V � V̂. The first
tem, standard techniques guarantee that e(t) exhibits stable term of V (t) is a dynamic kinetic energy term, whereas the
behavior. second and third terms can be interpreted as potential energy

By placing the NN approximation Eq. (6) into the error terms. Using the error dynamics Eq. (27), we can show that,
system Eq. (26), we obtain the error dynamics corresponding while V (t) is always nonnegative, its derivative V˙(t) is al-
to Fig. 5 as ways nonpositive, so that the energy in the system is

bounded. Details and the proof are discovered in Ref. 21.
Modified Unsupervised Backpropagation Tuning for NN Feed-

back Control. Using the Lyapunov-like proof technique just

Mṙ = −(Kv + Vm)r + WT σ (V T x)

− ŴT σ (V̂ T x) + (ε + τd) + v
(27)

outlined, it can be proven that the NN controller described
completely in Table 1 yields small tracking errors and bound-It is noted that the error dynamics are excited by both the
edness of all signals in closed-loop.NN reconstruction error � and the robot disturbances �d. Un-

fortunately, this equation has a very contrary form for con-
trols design because of the presence of the tunable first-
to-second-layer NN weights V̂ within the argument of the
nonlinear function ( 
 ). In fact, selecting tuning algorithms
to stabilize this system is a nonlinear adaptive control prob-
lem because the error system is nonlinear in the adjustable
parameters V.

By using a certain Taylor series expansion of the hidden-
layer estimation error (VTx) � (V̂Tx), some adaptive control-
like manipulations, various robust control bounding tech-
niques, and finally an extension of nonlinear stability proof
techniques, we can show that the NN controllers described in
the upcoming paragraphs are guaranteed to make the system
track the desired trajectory. The proofs hinge on selecting an
appropriate energy function for the closed-loop system. This
is much the same as energy functions selected by Hopfield

Table 1. Design Specifications for NN Rigid Robot Controller

Control Input:

� � Ŵ T (V̂ Tx) � Kvr � v

NN Weight/Threshold Tuning Algorithms:

Ŵ
.

� F (V̂ Tx)r T � F̂ �V̂ TxrT � �F �r�Ŵ

V̂
.

� Gx(̂ �TŴr)T � �G �r�V̂

Design parameters: F, G positive definite matrices and � � 0
Robustifying signal:

v(t) � �Kz(�Ẑ� � ZM)r
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The NN controller in Table 1 is a general model-free con- Using rigorous nonlinear stability methods based on Lya-
punov techniques, exactly as in deriving the continuous-timetroller for any rigid-link arm in that the detailed model of the

robot dynamics is not required because it is estimated by the controllers in this article, it is possible though much more
involved to derive digital NN controllers. A typical digital NNNN. The rationale behind the NN controller in Table 1 fol-

lows. The first terms in the weight/threshold tuning algo- controller is shown in Fig. 6, where z�1 represents the unit
delay. Exactly as in Fig. 5, it has a multiloop structure withrithms have exactly the same structure as the backpropaga-

tion-tuning algorithm Eq. (9). However, they give an on-line an inner NN loop and an outer PD tracking loop. Note that
the outer loop requires current and past values of thereal-time, unsupervised version of backprop-through-time

that does not need exemplar input/output pairs for tuning. In tracking error, whereas the NN requires current and past val-
ues of the system states.fact, the proof shows that the signal that should be backprop-

agated in closed-loop NN applications is exactly the filtered Table 3 shows typical digital NN controller weight update
algorithms. The discrete-time weight tuning algorithms in theerror r(t). Moreover, the jacobian ̂� needed in Table 1 is eas-

ily computed in terms of known quantities [i.e., x(t) and the table have some features in common with open-loop tuning
algorithms used in the literature. Specifically, they are a formcurrent weights V̂].

The last terms in the weight-tuning algorithms are Naren- of delta rule with the first terms very similar to a discrete-
time Hebbian rule with some extra terms involving thedra’s e-modification, familiar in linear adaptive control (25).

However, the nonlinear tuning nature of the problem, be- tracking error rk. The last terms are similar to what have
been called forgetting factors in computer science and arecause of the appearance of tunable weights V within the argu-

ment of ( 
 ), has added two additional terms, namely, the equivalent to a discrete-time version of what is known as Nar-
endra’s e-modification in adaptive control theory. These termsmiddle term in the tuning algorithm for Ŵ and the robustify-

ing signal v(t). are required to make the NN controller robust to unknown
unmodeled dynamics by ensuring that the NN weights re-Further properties of the NN controller are discussed in

the next subsection. main bounded. To speed up learning for NN with a large
number L of hidden-layer neurons, we may modify the tuningModified Hebbian Tuning for NN Feedback Control. It can be

shown using similar rigorous stability proof techniques that algorithms based on a projection algorithm, which is well
known in adaptive control (7).the controller in Fig. 5 using the simplified tuning algorithms

in Table 2 has the same guaranteed performance features as
Discussion of the NN Robot Controllerthe backprop-related controller in Table 1. In Table 2, the
Computation of the Controller. In Table 1, any NN activa-first terms in the weight-tuning laws are modified versions of

tion functions ( 
 ) with a bounded first derivative can be usedthe Hebbian tuning algorithm Eq. (10), which does not re-
as long as they have the approximation property Eq. (5). Thequire the computation of a jacobian. The price for this simpli-
norms are the 2-vector norm and the Frobenius matrix norm,fication is a slight increase in the magnitude of the tracking
both easily computed in terms of the sums of squares of ele-error r(t).
ments. In the tuning algorithms, the hidden-layer gradient orDiscrete-Time Tuning for NN Feedback Control. Because
jacobian ̂� is easily computed in terms of measurable sig-most controllers requiring the computation of nonlinear terms
nals—for the sigmoid activation functions it is given byare implemented using digital signal processors or micropro-

cessors, it is important to design NN controllers with discrete-
time weight update algorithms, where the weights may be σ̂ ′ ≡ diag{σ (V̂ T x)}[I − diag{σ (V̂ T x)}] (29)
tuned only at the sample times. Proposed discrete-time NN

which is just Eq. (8) with the constant exemplar xd replacedtuning algorithms for feedback control abound in the litera-
by the time function x(t). In the robustifying signal, Ẑ �ture, but until the 1990s then were ad hoc modifications of
diag�Ŵ, V̂� is the matrix of all the NN weights, and ZM is anopen-loop gradient-based algorithms such as the delta rule
upper bound on the ideal weights in Eq. (5), which alwaysand could not guarantee any sort of stability or tracking in
exists and can be selected simply as a large positive number.closed-loop feedback controls applications.
The robustifying gain KZ should be selected large. Note that,
as in well-designed adaptive controllers, no acceleration mea-
surements are required by the NN controller.

Bounded Tracking Errors and NN Weights. The NN controller
in Table 1 guarantees that the tracking error is bounded by

‖r‖ ≤ εN + bd + κC
Kvmin

(30)

where �N is the NN functional reconstruction error bound, bd

is the robot disturbance term bound, and C represents other
constant terms. The divisor Kvmin

is the smallest PD gain. The
form of this bound is extremely important; it shows that the
tracking error increases as the disturbances or NN recon-
struction errors increase, but that arbitrarily small tracking
errors can be achieved by using large enough control gains
Kv. The controller also guarantees boundedness of the NN
weights Ŵ, V̂, which in turn ensures that the control � is

Table 2. NN Robot Controller with Hebbian Tuning

Control Input:

� � Ŵ T (V̂ Tx) � Kvr � v

NN Weight/Threshold Tuning Algorithms:

Ŵ
.

� F [ (V̂ Tx)]r T � �F �r�Ŵ

V̂
.

� Gx[ (V̂ Tx)]T�r� � �G �r�V̂

Design parameters: F, G positive definite matrices and � � 0
Robustifying signal:

v(t) � �Kz(�Ẑ� � ZM)r



NEURAL NETS FOR FEEDBACK CONTROL 287

Figure 6. Digital neural net controller, showing
delayed terms needed for tuning and for outer
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bounded. Similar remarks hold for the NN controllers using In most NN controllers in the literature, there is a major
problem in deciding how to initialize the NN weights to giveHebbian and discrete-time weight tuning.
initial closed-loop stability. This leads to the need for exten-It is important to note that removing the NN inner loop in
sive off-line training schemes to estimate the plant dynamics.Fig. 5 results in simply a PD controller. Although it is known
Some recent results are now showing how to combine off-linethat PD control can guarantee bounded tracking errors if the
learning and a priori information with on-line dynamicgains are large enough, there may be fundamental errors that
learning.cannot be removed (e.g., steady state errors and tracking er-

Advantages of NN Controllers Over Adaptive Controllers. Therors that cannot be made arbitrarily small). Moreover, large
NN controller is no more difficult to implement on actual sys-control signals may be needed in simple PD control. On the
tems than modern adaptive control algorithms (7,8). It alsoother hand, including the NN loop allows us to derive the
embodies some notions from robust control in the signal v(t).tighter bound Eq. (30) that can be made as small as desired.
However, in addition to the advantages just discussed, NNOn-Line NN Learning Feature and NN Weight Initialization. A
control offers two specific advantages over adaptive control.major advantage of this NN controller is that no off-line
First, to implement standard robot adaptive controllers, it isweight tuning is needed. In fact, the NN weights are initial-
necessary to perform extensive system modeling and prelimi-ized at zero, then the NN learns on-line in real time. This on-
nary analysis to compute a so-called regression matrix. [Thisline learning feature is due to the multiloop structure of the
problem is avoided in Ref. (26).] The complications arisingcontroller, for the PD outer tracking loop keeps the system
from this requirement are well known to practicing engineers.stable until the NN adequately learns the function f (x). That
By contrast, the NN controller in Fig. 5 works for any rigidis, the controller effectively works in unsupervised mode.
robot arm without any need to compute a regression matrix
or perform any preliminary analysis whatsoever. Thus, it is a
model-free controller for nonlinear rigid robot manipulators.
The model-free property of NN controllers is a consequence of
the NN universal approximation property.

Second, in adaptive control we require that the unknown
functions [e.g., f (x) in Eq. (23)] be linear in an unknown pa-
rameter vector. This is not required in the NN controller,
which in fact is nonlinear in the tunable first-layer weights

Table 3. Digital NN Robot Controller Weight Updates

Ŵk�1 � Ŵk � �1̂krT
k�1 � ��I � �1̂k̂ T

k �Ŵk

V̂k�1 � V̂k � �2 xk[V̂ T
kxk � Kvrk]T � ��I � �2 xkxT

k �V̂k

where ̂k �  (V̂ T
kxk) and � � 0
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V. The linear-in-the-parameters assumption does not hold for controller structure, and (3) makes for faster weight-tuning
algorithms.all systems and is actually a serious restriction on the types

of systems that can be controller by adaptive control tech- Partitioned Neural Nets. The unknown nonlinear robot
function Eq. (23) isniques. The NN approximation property holds for practical

systems if a proper control engineering formulation is used to
derive the error dynamics. f (x) = M(q)ζ1(t) + Vm(q, q̇)ζ2(t) + G(q) + F(q̇) (31)

NN Complexity and Number of Hidden-Layer Neurons. The
where �1(t) � q̈d � �ė, �2(t) � q̇d � �ė. Taking the four termssize of the NN required should be addressed. A larger net
in f (x) one at a time, use separate NN to reconstruct each(e.g., a larger number L of hidden-layer neurons) is more dif-
term so thatficult to implement because one integrator is needed for each

NN weight. On the other hand, larger values for L will yield
a smaller functional reconstruction error bound �N. According
to the bound Eq. (30), this will result in smaller tracking er-
rors. However, the form of that bound reveals that the
tracking error can always be made smaller by increasing the
PD gains Kv. That is, there is a design tradeoff between

M(q)ζ1(t) = WT
MσM(V T

MxM)

Vm(q, q̇)ζ2(t) = WT
V σV(V T

V xV)

G(q) = WT
G σG(V T

G xG )

F(q̇) = WT
F σF(V T

F xF)

(32)

tracking performance and NN complexity. Use of a smaller
NN can to an extent be offset by using larger PD gains, but This procedure results in four neural subnets, one for esti-
larger NN allow smaller PD gains, presumably leading to re- mating the inertia terms, one for the coriolis/centripetal
duced control signal magnitudes. terms, one for gravity, and one for friction. This is called a

structured or partitioned NN, as shown in Fig. 7. It is direct
to show that the individual partitioned NNs can be separatelyPartitioned Neural Networks and Preprocessing of NN In-

puts. A major advantage of the NN approach is that it allows tuned, making for a faster weight update procedure. That is,
each of the neural subnets can be tuned individually usingus to partition the controller in terms of partitioned NN or

neural subnets. This (1) simplifies the design, (2) gives added the rules in Table 1.
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Figure 7. Partitioned neural net, which has more structure and is faster to tune than unparti-
tioned neural network.
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An advantage of this structured NN is that if some terms cases, the NN controller in Fig. 5 still works if it is modified
to include additional inner feedback loops to deal with thein the robot dynamics are well known [e.g., inertia matrix

M(q) and gravity G(q)], then their NNs can be replaced by additional plant or performance complexities.
equations that compute them. NNs can be used to reconstruct

Force Control with Neural Nets. Many practical robot appli-only the unknown terms or those too complicated to compute,
cations require the control of the force exerted by the manipu-which will probably include the friction F(q̇) and the coriolis/
lator normal to a surface along with position control in thecentripetal terms Vm(q, q̇).
plane of the surface. This is the case in milling and grinding,Preprocessing of Neural Net Inputs. The selection of a suit-
surface finishing, and the like. In this case, the NN force/able x(t) for computation remains to be addressed; some pre-
position controller in Fig. 8 and Table 4 can be derived (27).processing of signals yields a more advantageous choice than
It has guaranteed performance in that both the position-Eq. (24) because it can explicitly introduce some of the nonlin-
tracking error r(t) and the force error �̃(t) are kept small,earities inherent to robot arm dynamics. This reduces the
while all the NN weights are kept bounded.burden of expectation on the NN and, in fact, also reduces the

In Table 4, the selection matrix L and jacobian J are com-reconstruction error � in Eq. (5).
puted based on the decomposition of the joint variable q(t)Let an n-link robot have nr revolute joints with joint vari-
into two components—the component q1 (e.g., tangenital toables qr and np prismatic joints with joint variables qp, so that
the given surface) in which position tracking is desired andn � nr � np. Because the only occurrences of the revolute joint
the component q2 (e.g., normal to the surface) in which forcevariables are as sines and cosines, transform q � [qT

r qT
p]T by

exertion is desired. This is achieved using standard roboticspreprocessing to [cos(qr)T sin(qr)T qT
p]T to be used as arguments

holonomic constraint techniques based on the prescribed sur-for the basis functions. Then the NN input vector x can be
face. The filtered position tracking error in q1(t) is r(t), thattaken as

x =
[
ζ T

1 ζ T
2 cos(qr)

T sin(qr)
T qT

p q̇T sgn(q̇)T
]T

(33)

where the signum function is needed in the friction terms.

Inner Feedback Loops: Applications and Extensions

An NN controller for rigid-link robot manipulators was given
in Fig. 5, with weight-tuning algorithms given in Tables 1–3.
Actual industrial or military mechanical systems may have
additional dynamical complications such as vibratory modes,
high-frequency electrical actuator dynamics, or compliant
couplings or gears. Practical systems may also have addi-
tional performance requirements such as requirements to ex-
ert specified forces or torques as well as perform position tra-
jectory following (e.g., robotic grinding or milling). In such

Table 4. NN Force/Position Controller

Control Input:

� � Ŵ T (V̂ Tx) � Kv(Lr) � JT(�d � Kf �̃) � v

NN Weight/Threshold Tuning Algorithms:

Ŵ
.

� F (V̂ Tx)(Lr)T � F̂ �V̂ Tx(Lr)T � �F �(Lr)�Ŵ

V̂
.

� Gx(̂ �TŴ(Lr))T � �G �(Lr)�V̂

Design parameters: F, G positive definite matrices and � � 0
Robustifying signal:

v(t) � �Kz(�Ẑ� � ZM)r
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is, r � q1d � q1, with q1d(t) the desired trajectory in the plane cal and electrical disturbances, and motor terminal voltage
of the surface. The desired force is described by �d, and the vector ue(t) � �n the control input.
force exertion error is captured in �̃ � � � �d, with � describ- This plant has unknown dynamics in both the robot sub-
ing the actual measured force exerted by the manipulator. system and the motor subsystem. The NN tracking controller
The position tracking gain is Kv, and the force tracking gain in Fig. 9 was designed using the backstepping technique. The
is Kf. NN weight-tuning algorithms are similar to the ones pre-

The structure of the NN force controller is the same as the sented in Tables 1–3 but with some extra terms. This control-
multiloop NN controller in Fig. 5, with the addition of an in- ler has two neural networks, one (NN#1) to estimate the un-
ner loop for force control. This multiloop intelligent control known robot dynamics and an additional NN in an inner
topology appears to be very versatile and powerful indeed. feedback loop (NN#2) to estimate the motor dynamics. This

multiloop controller is typical of control systems designed us-
NN Controller for Electrically Driven Robot Using Backstep- ing rigorous system theoretic techniques. It can be shown that

ping. Robot manipulators are driven by actuators, which may by selecting suitable weight-tuning algorithms for both NN,
be electric, hydraulic, pneumatic, and so on. The actuators we can guarantee closed-loop stability as well as tracking per-
are coupled to the links through coupling mechanisms that formance in spite of the additional high-frequency motor dy-
may contain gears. Particularly in the case of high-speed per- namics.
formance requirements, the coupling shafts may exhibit ap-
preciable compliance that cannot be disregarded. Many real-

Feedforward Control Loops: Compensationworld systems in industrial and military applications also
of Actuator Deadzoneshave flexible modes and vibratory effects. In all these situa-

tions, the NN controller in Fig. 5 must be modified. Two de- Many industrial motion control systems have nonlinearities
sign techniques that are particularly useful for this purpose in the actuator, either deadzone, backlash, saturation, or the
are singular perturbations and backstepping (22,28). like. This includes xy-positioning tables, robot manipulators,

A typical example of a real robotic system is the robot arm overhead crane mechanisms, and more. The problems are
with electric actuators, or rigid-link electrically driven particularly exacerbated when the required accuracy is high,
(RLED) manipulator. The dynamics of an n-link rigid robot as in micropositioning devices. Because of the nonanalytic na-
arm with motor electrical dynamics are given by ture of the actuator nonlinearities and the fact that their ex-

act parameters (e.g., width of deadzone) are unknown, such
M(q)q̈ + Vm(q, q̇)q̇ + F(q̇) + G(q) + τd = KIi (34)

systems present a challenge for the control design engineer.
The deadzone nonlinearity shown in Fig. 10 is characteris-Li + R(i, q̇) + τe = ue (35)

tic of actuator nonlinearities in industrial systems. Propor-
tional-derivative controllers have been observed to result inwith q(t) � �n the joint variable, i(t) � �n the motor armature
limit cycles if the actuators have deadzones. Techniques thatcurrents, KT a diagonal electromechanical conversion matrix,
have been applied for overcoming deadzone include variableL a matrix of electrical inductances, R(i, q̇) representing both

electrical resistance and back emf, �d(t) and �e(t) the mechani- structure control, dithering (29), and adaptive control (30,31).
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path as shown in Fig. 12. When suitably adapted, using a
weight-tuning algorithm very much like that presented in Ta-
ble 1, the NN effectively estimates a preinverse for the dead-
zone, thereby compensating for its deleterious effects. The NN
deadzone compensator can be viewed as an adaptive dithering
scheme because it injects an additional component into the
control signal that adds energy at the points where the con-
trol crosses zero, thereby overcoming the deadzone. The per-
formance of this controller has been observed to be very good
on actual CNC machine tools.

OUTPUT FEEDBACK CONTROL USING

Dd(u)

d_ d+0 u

DYNAMIC NEURAL NETWORKS
Figure 10. Nonsymmetric deadzone nonlinearity.

The previous section dealt with NN controller design of what
is called in system theory the primary feedback loop, and in

The deadzone is a piecewise continuous function f (x) whose computer science the action or control generating loop. In this
discontinuity points make most NN approximation proofs in- section and the next, it is shown that if there are additional
valid and bring into question the accuracy of the approxima- plant complexities, increased performance requirements, or
tion expression Eq. (5). To approximate the deadzone function reduced information available, then the controller requires a
well at the point of discontinuity, we must add more hidden- sort of hierarchical structure that can contain NN at higher
layer neurons. Even then, we often observe a Gibbs phenome- levels of abstraction.
non sort of oscillation in the NN output near the discontinuity

Reduced Measurements and the Output-Feedback Problempoint. To remedy these problems, we may use an augmented
NN for approximation of functions with jumps (32). The NN If all the states of the controlled plant are available as mea-
augmented for jump approximation is shown in Fig. 11. It has surements, then the static NN controllers presented in the
L hidden layer neurons that use standard smooth activation previous section can be used. It is noted that, even though the
functions ( 
 ) such as the sigmoid, plus some extra neurons NN are static in themselves, the closing of a feedback loop
having discontinuous activation functions �i( 
 ). These extra around them turns them into dynamic NN in conjunction
functions must provide a jump function basis set, the first of with the plant dynamics.
which, �1(x), is the unit step. It can be shown that, with the Unfortunately, in actual industrial and commercial sys-
augmented neurons, the NN can approximate piecewise con- tems, there are usually available only certain restricted mea-
tinuous functions very well. surements of the plant because due to economic or physical

To compensate for deadzones and other actuator nonline- constraints, all the state components cannot be measured.
arities, the augmented NN may be placed in the feedforward This is known as output-feedback control as opposed to full

state-feedback control. In this case, we must use an addi-
tional NN with its own internal dynamics in the controller
(33). The function of the NN dynamics is effectively to provide
estimates of the unmeasurable plant states, so that the dy-
namic NN functions as an observer in control system theory.

Taking the representative Lagrangian mechanical system
dynamics

M(q)q̈ + Vm(q, q̇)q̇ + G(q) + F(q̇) + τd = τ (36)

let there be available now only measurements of the joint
variable vector q(t) � �n, that is of the robot joint angles or
extensions. Specifically, the joint velocities q̇(t) are not mea-
sured. This is a typical situation in actual industrial applica-
tions, where optical encoders are used to measure q(t).

Dynamic NN Observer for Data Reconstruction
and a Two-NN Controller

It can be shown that the following dynamic NN observer can
provide estimates of the entire state x � [xT

1 xT
2]T � [qT q̇T]T

given measurements of only x1(t) � q(t)
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Figure 11. Augmented NN for approximation of functions with ˙̂z2 = M−1(x1)[τ − ŴT
o σo(x̂) + kPx̃1 + vo] (38)

jumps, showing additional neurons having jump approximation func-
tions. x̂2 = ẑ2 + kP2x̃1 (39)
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In this system, hat denotes estimates, and tilde denotes esti- plications or uncertainties, more hierarchical structure must
be added to the control system.mation errors (e.g., x̃1 � x1 � x̂1, x̃2 � x2 � x̂2). It is assumed

that the inertia matrix M(q) is known but that all other non-
linearities are estimated by the observer NN WT

oo(x̂), which HIERARCHICAL INTELLIGENT CONTROL:
has output-layer weights WT

o and activation functions o( 
 ). ADAPTIVE REINFORCEMENT LEARNING AND
This system is a dynamic NN of a special structure because HAMILTON–JACOBI–BELLMAN OPTIMAL DESIGN
it has its own dynamics in the integrators corresponding to
the estimates x̂1, ẑ2. Signal vo(t) is an observer robustifying Traditionally, control engineers design control systems from
term, and the observer gains kP, kD, kP2 are positive design the point of view of the primary feedback loops or action gen-
constants. erating loops. On the other hand, computer science engineers

The NN output-feedback tracking controller shown in Fig. focus their interest on higher-level or outer control loops
13 uses the dynamic NN observer to reconstruct the missing designed using biological or psychological precepts, such as
measurements x2(t) � q̇(t), and then employs a second static reinforcement learning, training, performance critics, or user-
NN for tracking control, as in Fig. 5. Because neither the joint specified performance criteria. The result has been a com-
velocities x2(t) � q̇(t) nor the tracking error r(t) is directly munications gap in intelligent NN controller design. In this
measurable, the control input in Tables 1 and 2 must be modi- section we attempt to bridge this gap by providing some
fied so it becomes higher-level controllers with hierarchical designs that are

similar in structure to controllers designed using computer
τ = ŴT

c σc(x̂) + Kvr̂ + 
e − vc (40) science techniques. These structures should be compared with
those described in Ref. (4) and NEURAL NET ARCHITECTURE and

where the estimated or measurable portion of the tracking NEUROCONTROLLERS. Two hierarchical controllers are detailed
error is here: an adaptive reinforcement learning NN controller and a

Hamilton-Jacobi-Bellman (HJB) Optimal NN Controller.r̂ = (q̇d − x̂2) + 
e = r + x̃2 (41)
Both can be shown by rigorous stability proof techniques to
guarantee stable tracking and closed-loop performance (33).with e(t) � qd(t) � x1(t) as before. The control NN has weights
In neither case is a preliminary off-line learning phase, soWc and activation functions c( 
 ), and vc(t) is a control robusti-
detrimental to feedback control requirements, needed.fying signal. Note that the outer tracking PD loop structure

has been retained.
Direct Reinforcement Adaptive Learning NN Controller

In this dynamic NN controller, two NN must be tuned.
Note that this formulation shows both the observer NN and Reinforcement learning techniques are based on psychological

precepts of reward and punishment as used by I. P. Pavlov inthe control NN as a one-layer FLNN; therefore, both o( 
 )
and c( 
 ) must be selected as bases. A more complex deriva- the training of dogs at the turn of the century. The key tenet

here is that the performance indicators of the controlled sys-tion shows that both can in fact be taken as two-layer NN. It
can be shown (33) that both the static control NN weights tem should be simple, for instance, ‘‘plus one’’ for a successful

trial and ‘‘negative one’’ for a failure, and that these simpleWc and the dynamic observer NN weights Wo should be tuned
using variants of the algorithm presented in Table 1. It is signals should tune or adapt an NN controller so that its per-

formance improves over time. This gives a learning featureevident from this design that if the plant has additional com-



NEURAL NETS FOR FEEDBACK CONTROL 293

driven by the basic success or failure record of the controlled filtered tracking error R(t) � sgn[r(t)]. The signum function is
shown in Fig. 14(a). The signal R(t) corresponding to a samplesystem.
signal r(t) is given in Fig. 14(b).

It is clear that R(t) satisfies the criteria required in rein-Generating the Reinforcement Signal from the Instantaneous
Utility. In the NN controllers described previously and whose forcement learning control. (1) It is simple, having values of

only 0, �1, and (2) the value of zero corresponds to a rewardstructure is given in Fig. 5, the NN tuning was performed in
an inner action-generating loop based on a filtered tracking for good performance, whereas nonzero values correspond to

a punishment signal. Therefore, R(t) will be taken here as aerror signal r(t) � qd(t) � q(t) that was measured in an outer
PD tracking control loop. The performance of the plant was suitable reinforcement learning signal. In reinforcement

learning, the signal r(t) could be called the instantaneouscaptured in this tracking error r(t), which is small as long as
the tracking is satisfactory, that is, as long as the actual plant utility.
output q(t) follows the desired trajectory qd(t). We also showed

Architecture and Learning for the Adaptive Reinforcementthat if there are complications with the plant so that its entire
Learning Controller. It is not easy to show how to tune theinternal state cannot be measured, then the controller must
action-generating NN using only the reinforcement signalbe based not on the actual filtered tracking error r(t) but on
R(t), which contains significantly less information than thean estimated tracking error r̂(t), which was reconstructed by
full error signal r(t). The success of the derivation lies in se-an additional dynamic NN observer. The output-feedback NN
lecting the Lyapunov energy functioncontroller shown in Fig. 13 requires two NN. Thus, as the

actual system performance is known less and less accurately,
as more and more uncertainty is injected, increased structure
is needed in the controller.

ν =
n∑

i=1

|ri| + 1
2

tr(W̃T F−1W̃ ) (42)

Unfortunately, using the complete filtered error signal r(t)
in tuning the action-generating NN countermands the philos- where � 
 � is the absolute value and n is the number of states

[i.e., r(t) � �n]. This is not a standard Lyapunov function inophy of reinforcement learning, where all the performance
data of the closed-loop system should be captured in simple system theory, but it is similar to enegy functions used in

some NN convergence proofs. Using this Lyapunov functionsignals that contain reward/punishment information. A sim-
ple signal related to the tracking error is the signum of the as the basis for a nonlinear stability proof, we can derive NN
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Figure 13. Dynamic NN tracking controller with reduced measurements, showing second dy-
namic NN loop required for state estimation.
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unknown dynamics. Then, after a short time the tracking per-
formance improves dramatically.

Hamilton–Jacobi–Bellman Performance-Based NN Controller

The NN controllers discussed in this article have multiple
feedback loops and can be shown using rigorous stability
proofs to have guaranteed performance in terms of small
tracking error and bounded internal signals. Modified NN
weight-tuning algorithms were given that are suitable for
closed-loop control purposes. The discussion has heretofore
centered around the primary feedback loops or action-gener-
ating loops, with the adaptive reinforcement controller intro-
ducing a performance critic loop. It has been seen that as un-
certainty is introduced in the form of less information

sgn(w)

(a)

1

0

–1

w

available from the plant, the controller requires more hierar-
chical structure to compensate.

The design of the NN controllers has involved two arbi-
trary steps. First, a matrix gain � must be selected to gener-
ate the filtered error r(t) in Eq. (21). Second, the stability
proofs for the NN controllers have relied on the selection of a
positive Lyapunov-like energy function V (t). The requirement
for stability is that the Lyapunov derivative V̇ (t) be negative
outside a compact region. This requirement leads to the tun-
ing algorithms and control structures being selected as de-
tailed. However, the Lyapunov function may seem to be a
somewhat artificial device that is introduced in an ad hoc
fashion to prove stability; perhaps a different function V (t)
would yield different control structures and NN tuning algo-
rithms. It is desirable to select a more natural way for the

–1

1

0

u*(t)

bT   (t)λ

(b)

t

user input to appear in the system design.
Figure 14. Generating the reinforcement signal R(t) from the instan-
taneous utility r(t). (a) The signum function. (b) Sample tracking er-

Interfaces Between Feedback Loops and the Human User. Theror r(t) and its signum R(t), which has reduced information content.
subject of the user interface for intelligent systems has been
debated in recent years. The NN feedback controllers exhibit
some aspects of biological systems in that they can adapt and

tuning algorithms that guarantee closed-loop stability and learn using nonlinear network structures akin to those of
tracking. neurons; therefore, they may be called intelligent systems.

The architecture of the direct-reinforcement adaptive However, it is important to provide a smooth transition be-
learning (DRAL) NN controller derived using this technique tween the regulatory functions of the feedback controller and
is shown in Fig. 15. Note that it is again a multiloop control- the supervisory functions of the human operator. The adap-
ler, with an inner action-generating loop containing a NN. tive reinforcement learning scheme in Fig. 15 is a step in this
The performance evaluation loop corresponds to a PD direction, because given the user input prescribed trajectory
tracking loop with the desired trajectory xd(t) as the user in- xd(t), the critic block evaluates the tracking performance of
put; this loop manufactures the instantaneous utility r(t). A the plant through observations of the error r(t) and manufac-
block that can be considered as a critic element evaluates the tures a simplified reward/punishment signal R(t) that is used
signum function and so provides the reinforcement signal to adapt the NN.
R(t) � sgn[r(t)], which critiques the performance of the On another issue, the NN controllers heretofore discussed
system. have exhibited a certain measure of intelligence. However,

The NN weights are tuned using they operate in a well-defined structural setting so that they
may fail some definitions of intelligence. It is desirable to im-
bue control systems with higher levels of abstraction so that˙̂W = Fσ (x)RT − κFŴ (43)
they can face additional uncertainties in the environment.

It is important to note that this involves only the simplified
signal R(t) with reduced information content, not the full Optimal Control, Performance, and the HJB Equation. Many

systems occurring naturally in biology, sociology, and else-tracking error r(t). This is similar to what has been called
sign error tuning in adaptive control, which has usually been where use feedback control to achieve homeostasis, or equilib-

rium conducive to existence. Because the bounds withinproposed without given any proof of stability or performance.
No preliminary off-line learning phase is needed for this which life can continue are very small (e.g., temperature

changes of a few degrees can eliminate populations) and thereinforcement learning controller. The NN weights are initial-
ized at zero, and the PD critic loop keeps the error bounded resources available are often limited, it is remarkable yet not

unexpected that most of these feedback control systems haveuntil the NN in the action-generating loop begins to learn the
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Figure 15. DRAL NN controller, showing inner NN action-generating loop and performance
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evolved into optimal systems, which achieve desired results The optimal control design problem is to select an optimal
with a minimum of required energy. Because naturally oc- control u*(t) that minimizes the PM Eq. (45) for the pre-
curring systems are optimal, it makes a great deal of sense to scribed dynamical system Eq. (44).
design man-made controllers from the point of view of opti- Bellman’s Optimality Principle and the HJB Equation. The ba-
mality. sic principle in the design of optimal systems is captured in

Optimal Control Design, System Performance, and Human User Bellman’s Optimality Principle:
Input. Let a system or plant be given by

An optimal policy has the property that no matter what the previ-ż = g(z, u) (44)
ous decisions (e.g., controls) have been, the remaining decisions
must constitute an optimal policy with regard to the state re-where z(t) is the state and u(t) is the control input. Desirable
sulting from those previous decisions.performance of such a dynamical system may be described in F. L. Lewis and V. L. Syrmos, Optimal Control, 2nd ed. New York:

terms of a performance measure (PM) such as the quadratic Wiley, 1995.
integral form

The design of optimal control systems is discussed in (34).
Applying Bellman’s Optimality Principle to discrete-time sys-J(u) =

∫ ∞

0
L(z,u) dt (45)

tems results in the derivation of dynamic programming algo-
rithms and to continuous-time systems results in the deriva-where the instantaneous performance is captured in the La-
tion of the Hamilton-Jacobi-Bellman equation.grangian function

It may be found from Bellman’s Optimality Principle that
a necessary and sufficient condition for a control u*(t) to opti-
mize the PM Eq. (45) for the system Eq. (44) is that thereL(z,u) = 1

2
[zT (t)Qz(t) + uT (t)Ru(t)] (46)

exists a value function V (z, t) that satisfies the HJB equation
with matrices Q, R symmetric and positive definite.

The human user input consists of the state weighting ma-
trix Q and the control weighting matrix R, which can be se-

∂ν(z, t)
∂t

+ min
u

{
H

[
z, u

∂ν(z, t)
∂z

, t
]}

= 0, (47)

lected in a very natural way to result in desirable system per-
formance of various sorts, as is well known in standard where the Hamiltonian function is given by
control theory texts (34). Selection of Q, R may be accom-
plished using engineering design based on compromises be-
tween performance [e.g., keeping z(t) small] and energy effi-
ciency [e.g., keeping u(t) small].

H
[
z, u,

∂ν(z, t)
∂z

, t
]

= L(z,u) + ∂ν(z, t)
∂z

g (48)
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Optimal NN Controller for Robotic Systems. The HJB equa- yield the positive definite symmetric matrix K and the filtered
error gain � astion is extremely difficult to solve for general nonlinear sys-

tems Eq. (44), but for linear systems it can be explicitly solved
and yields the linear quadratic regulator design equations, K = − 1

2 (Q12 + QT
12) (52)

which are basic in modern control theory (34). Fortunately,

T

s K + K
s = Q11 (53)nonlinear mechanical systems such as the robot dynamics in
Lagrangian form have special properties that allow us to 
 = 
s + K−1Z (54)
solve the HJB equation and obtain explicit controller equa-
tions (35). where the state-weighting matrix entered by the human user

Solution to the Robot System Optimal Design Problem. For is partitioned as
the robotic system Eq. (19), define the tracking error e(t) �
qd(t) � q(t), the filtered tracking error

Q =
[

Q11 Q12

QT
12 Q22

]
(55)

r = ė + 
e (49)

The symmetric portion �s is found by solving the Lyapunov
the overall state z � [eT rT]T, and the input-related term equation Eq. (53) using standard efficient techniques and Z is

any antisymmetric matrix (e.g., ZT � �Z). Note that ac-
cording to this design, � need not be symmetric. The control-u = f (x) − τ (50)
weighting matrix must satisfy R�1 � Q22.

with f (x) the unknown nonlinear robot function Eq. (23). Optimal NN Controller. In terms of these constructions, the
Then, it can be shown (33) that for the PM Eq. (45), a value optimal NN controller is given as
function that satisfies the HJB equation is given by

τ = ŴT σ (x) + R−1(ė + 
e) − v (56)

with the first term supplied by an NN, the second term the
optimal control portion, and the last term a robustifying term.

ν(z, t) = 1
2 zT P(q)z = 1

2 zT

[
K 0
0 M(q)

]
z (51)

It is not difficult to show that the value function V (z, t) serves
as a Lyapunov energy function and, hence, to prove theThe matrix P(q) is given as the solution to a nonlinear Riccati

equation. This Riccati equation may be explicitly solved to closed-loop stability of the optimal NN controller. During this
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procedure, the NN weight-tuning algorithm is found; it is sim- methods. Sadegh (10) provides NN controllers for discrete-
time systems, and Rovithakis and Christodoulou (17) use dy-ilar to that given in Table 1. Note that a one-layer FLNN is

used here, even though it is possible to use a two-layer NN. namic NN for feedback control.
The NN controller resulting from the HJB design approach

appears in Fig. 16. It is a hierarchical system with more
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