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RELAY CONTROL

The block diagram of a simple feedback control loop with a
reference input or setpoint ysp, process output y and control
signal u is shown in Fig. 1. The main function of the controller
is to automatically compute or generate the correct control
signal to null the control error e rapidly and with good damp-
ing either when the setpoint is changed or when an unknown
load disturbance l is introduced.

The simplest form of the controller is the relay or on–off
control. An ideal relay has the characteristics shown in Fig.
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Figure 1. Block diagram of a process with a feedback controller.

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.



406 RELAY CONTROL

controllers in industry for a long time and will remain domi-
nant in the foreseeable future.

PID controllers have been routinely used when precise
closed-loop control is demanded in practice. A large industrial
plant may have hundreds of PID controllers. The controllers
will perform extremely well if the three PID controller param-
eters (kc, Ti, Td) are properly selected or tuned to match the
process dynamics (e.g., process gain, dead time, major time
constant, etc). Nevertheless, in spite of its popularity and long
history, it was common experience that many PID controllers
were in practice poorly tuned prior to the advent of simple
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and yet reliable methods of automatic tuning (or autotuning
Figure 2. Simple control characteristics. (a) Ideal relay. (b) Relay in short) in the late 1980s and 1990s. The main reason was
with hysteresis. that any manual method of tuning was tedious and time-con-

suming. In a typical process plant where the major time con-
stant is of the order of tens of minutes, it would take several
hours or longer to tune just one loop. If a major process dis-

2(a). Its input is the control error e, and its output is umax turbance occurs during this process of tuning, the tuning pro-
when e � 0 and umin when e � 0. The most important advan- cedure would have to be stopped and the whole procedure re-
tages of relay control are (1) its wide applicability to most peated. Faced with tens or hundreds of PID controllers in a
industrial processes and dynamic systems, and (2) the sim- large plant, it would not be very practical to manually tune
plicity of its design. The relay constants umax, umin, and u0 in all the controllers. On the other hand, for a smaller plant
Fig. 2 can be simply set by steady-state analysis or by trial where there are only a few PID controllers, it would be feasi-
and error. It can be made robust to the influence of noise by ble to manually tune all the controllers during the start-up
incorporating a small hysteresis as shown in Fig. 2(b). Owing phase where expert instrument engineers from the vendor
to their simplicity and low cost, relay controllers are found in were present. During normal operation, however, a need for
many of our domestic appliances such as irons, refrigerators, retuning may arise when the process dynamics drift signifi-
and air-conditioners, as well as in some industrial processes cantly owing to changes in process operating point, wear and
that do not need precise control. The greatest disadvantage of tear of control valves, and other influencing variables such as
relay control is that it gives rise to steady-state oscillations or throughput and disturbances. Experienced personnel who are
limit cycles which are not acceptable in industrial applica- competent to do manual tuning are rarely available in the
tions which require precise control. small plants, and hence a practical solution prior to the ad-

Another simple and widely used control is the PID control- vent of autotuning was to tune the controllers conservatively
ler. It has a proportional or P term (which is proportional to to achieve robustness at the expense of optimal performance.
the control error), an integral or I term (which is proportional The introduction of autotuning capabilities to PID control-
to the integral of the error), and a derivative or D term (which lers has enabled the control system commissioning time to
is proportional to the derivative of the error). The propor- be shortened and has facilitated control optimization through
tional term with a gain of kc varies the output of the controller regular retuning. This success has led to the subsequent de-
to speed up the transient response when there is a change in velopment work to extend autotuning methods to advanced
setpoint or load disturbance. It will, however, produce a controllers such as the cascade controller, the Smith pre-
steady-state offset or error which can be automatically elimi- dictor, and multivariable controllers. Some autotuning meth-
nated only if integral action (I term) is added. The relative ods have also been extended to tune fuzzy controllers and
contribution of the I term is fixed by the integral time Ti. A gain-scheduling controllers.
shorter integral time will speed up the time taken to null the There are many different methods of autotuning which
offset; however, it can destabilize the system or make the have been successfully developed and commercialized. The
transient response much more oscillatory. This can be com- simplest and yet reliable method of autotuning, which has
pensated by adding the D term, which has a predictive or received wide acceptance in practice since the late 1980s, is
damping action that is proportional to the derivative time the relay feedback autotuning introduced by Astrom and Hag-
Td. The properly combined actions of the P, I, and D terms as glund (1). This technique has several attractive features.
given by Eq. (1) can produce fast, well-damped, and accurate First, it facilitates simple pushbutton tuning since it automat-
control performance: ically extracts information needed for controller tuning with-

out requiring a separate open-loop pretuning step which is
essential in all other autotuning methods. Second, it is car-
ried out under closed-loop control and the process can be kept

uc = kc

(
e + 1

Ti

∫
e dt + Td

de
dt

)
(1)

close to the setpoint. This helps to keep the process in the
linear region where the frequency response is of interest,The operational properties of the PID controller are well un-

derstood by both experienced plant operators and instrument which is precisely why the method works well on highly non-
linear processes when combined with gain-scheduling control.engineers who can select (or tune) the controller parameters

(kc, Ti, Td) by trial and error or by a systematic procedure such The process parameter estimation is also more accurate for
the purpose of controller design as the relay transients andas the well-known Ziegler–Nichols method. It is the simplic-

ity, wide applicability, and familiarity to plant personnel that oscillations help to focus attention on frequencies near the
process crossover frequency. Third, unlike other autotuninghave made PID controllers the most widely used feedback
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Nichols formula of Eqs. (2), which aims to yield quarter am-
plitude damping:Relay
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kc = 0.6ku

Ti = 0.5tu

Td = 0.125tu

(2)

Figure 3. Block diagram of a relay feedback autotuning system.
It is difficult to automate the above manual procedure and
perform it in such a way that the amplitude of oscillation is
kept under control. It is also very time-consuming to completemethods, it does not require a careful choice of the sampling
the trial-and-error procedure which also demands undue at-rate from the a priori knowledge of the process or from the
tention of the plant operator. The relay control is an indirectpretuning step.
but simple way to quickly generate sustained oscillationThe block diagram of the relay feedback autotuning
which can thus be used to automate the tuning procedure.scheme (or relay autotuner in short) is shown in Fig. 3. There

is a switch that selects either relay or PID control. When an
operator demands autotuning, the controller is automatically
disconnected and the relay is switched in as shown. Under RELAY AUTOTUNING
relay control, the process output is maintained near the set-
point but will exhibit a limit cycle or sustained steady-state A typical response when relay control is switched in is shown
oscillation. The autotuner will adjust the relay magnitude in Fig. 4. It is evident that we can obtain a first approxima-
such that the oscillation magnitude can be automatically reg- tion of the ultimate gain as
ulated to a preset limit (e.g., 5% of the measurement span).
Based on the steady-state or transient analysis of the relay
oscillation response, information on one or more points of the ku = d

a
process frequency response will be obtained which will in turn
be used to compute the optimal values of the PID controller where d and a are the amplitudes of the relay oscillation and
parameters. The relay is then switched out and the controller the process output oscillation, respectively. By considering
with the new PID parameters resumes its operation. The the first harmonic in the relay oscillation and assuming the
analysis and design of the relay autotuner will be presented process output to be near-sinusoidal, a more accurate esti-
later under the headings of ‘‘relay autotuning’’ and ‘‘PID con- mate of the ultimate gain (1) can be obtained:
troller design.’’

The basic idea of relay autotuning was motivated by the
observation that the classic Ziegler–Nichols rule (2) for ku = 4d

πa
(3)

tuning PID controllers only made use of the knowledge of one
point on the Nyquist curve of the process to be controlled (i.e.,

The ultimate period tu, which is equal to the period of theone point on the open-loop frequency response). This point is
sustained oscillation, can be easily measured from the timesthe intersection of the Nyquist curve with the negative real
between zero-crossings. With the estimated ku and tu, the PIDaxis, which can be described in terms of the ultimate gain ku

controller parameters can be computed using the Ziegler–and the ultimate period tu. In the manual tuning procedure,
Nichols formula of Eqs. (2).the I and D terms are switched off and the proportional gain

In the presence of noise, a relay with hysteresis is used.is gradually increased until steady oscillation is obtained; the
The hysteresis width, 	, is selected on the basis of the noiseproportional gain when this occurs is the ultimate gain, and
level—for instance, two times larger than the noise ampli-the period of the oscillation is the ultimate period. The con-

troller settings can then be computed according to Ziegler– tude. The approximate formula for computing the ultimate
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Figure 4. Relay oscillations.
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gain should then be changed to order to cater to a wide range of process dynamics, the follow-
ing refined Ziegler–Nichols formula has been introduced (3):

k′
u = 4d

π
√

a2 − ε2
(4)

In addition, in order to obtain a reasonable signal-to-noise ra-
tio, the relay magnitude d should be automatically adjusted
so that the oscillation at the process output is acceptable, e.g.,
about three times the amplitude of the noise.

The formula of Eq. (4) is derived based on a more detailed
harmonic analysis. The complex gain and phase of the relay
can be represented by its describing function (1):

kc = 0.6ku

Ti = 0.5µtu

Td = Ti/4

β = 15 − kukp

15 + kukp
; µ = 1 for 0.16 < θ < 0.57

or

β = 8
17

(
4
9

kukp + 1
)

; µ = 4
9

kukp for 0.57 < θ < 0.96

(8)

where � is the normalized dead time computed as the ratio ofN(a) = 4d
πa

(√
1 −

( ε

a

)2
− j

ε

a

)
(5)

the process dead time (or apparent dead time) and major time
constant; � is the setpoint weighting factor which is used to

The oscillation amplitude a and frequency 	 should satisfy reduce the overshoot of the setpoint response without affect-
ing the load disturbance response; the integral time is re-Gp( jω)N(a) = −1
duced by the factor � to prevent a large undershoot when
the � is large. The practical form of a PID controller whichHence, we obtain
incorporates setpoint weighting and also performs the deriva-
tive action on the filtered output only isGp( jω) = −1/N(a) (6)

where Gp( j	) is the frequency response or Nyquist curve of
the open-loop process. Hence by changing the values of the
relay amplitude and hysteresis, more points on the Nyquist
curve can be identified using Eq. (6). A filter with known

uc = kc

[
(βysp − y) + 1

Ti

∫
e dt − Td

dyf

dt

]
dyf

dt
= Nf

Td
(y − yf)

(9)

characteristics can also be introduced in cascade with the re-
lay to identify other points on the Nyquist curve.

where the filter time constant is Td/Nf; Nf is chosen in the
range of 3 to 10 depending on noise level with a default valuePID Controller Design
set at 10.

The estimates of ultimate gain and period could be used in The computation of � requires further knowledge of the
the Ziegler–Nichols formula of Eq. (2) to compute the PID process model, the simplest of which is a first-order plus dead-
controller parameters, and this yields the simplest controller time model:
design. Other PID controller design methods may be pre-
ferred if the quarter amplitude damping performance crite-
rion as specified by the Ziegler–Nichols design is found to pro- Gp(s) = kp

e−SL1

1 + sT1
(10)

vide insufficient damping or robustness against parameter
variations. Even for maintaining the quarter amplitude

Most industrial processes with open-loop dynamics which aredamping performance, the range of applicability of the
well-damped can be adequately represented by this model. ItZiegler–Nichols formula is known to be limited to a small
is straightforward to relate these model parameters to the ul-class of process dynamics. For instance, when the process
timate gain and period obtained from relay control (3). Wedead time is very small, the output response to a step change
thus have the following equations:in setpoint will have high overshoot and is very oscillatory.

When the process dead time is large compared with the major
time constant, the closed-loop response becomes more slug- T1 = tu

2π

√
(kukp)2 − 1 (11)

gish and a significant undershoot is developed. Another sim-
ple controller design is the phase margin design based on the
analysis of the gain and phase modification of the process Ny- L1 = tu

2π

(
π − tan−1 2πT1

tu

)
(12)

quist curve by the controller (1). If the desired phase margin,
as determined on the basis of desired damping or robustness, The static process gain kp can be easily estimated on-line from
is �m, the tuning formula is the steady-state input–output data following any step change

in setpoint. Together with the estimated values of ku and tu,
T1 and L1 can be computed from Eqs. (11) and (12). The nor-
malized dead time �, which is simply computed as the ratio
of L1 and T1, can then be used to implement on-line tuning or
controller design given by the refined Ziegler–Nichols formula

kc = ku cos φm

Ti = 4Td

Td = 1 + sinφm

4π cos φm
tu

(7)

of Eq. (8).
With the model of Eq. (10), other tuning formulae such asThis formula works well when the process dead time is small.

It gives sluggish response when the dead time is large. In the Internal Model Control (IMC) tuning formula which aims
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to yield well-damped responses may be used: the PID controller, the relay autotuning method has been ap-
plied to phase-lead and phase-lag compensators (6) which are
widely used in servomechanisms and to the increasingly pop-
ular fuzzy logic controllers (7). Owing to the simplicity of its
operation, which merely requires the operator to push a but-
ton to start it, the relay autotuner has been combined with
gain-scheduling for the control of a wide class of highly non-
linear processes. The instrument or control engineer would

kc = 1
kp

2T1 + L1

2λ + L1

Ti = T1 + L1

2

Td = T1L1

2T1 + L1

(13)

first need to specify a gain-scheduling variable, such as
throughput, control valve output, level, and so on, which must

The constant � is equivalent to the desired closed-loop time be measurable. At different regions of operations associated
constant. The controller gain can thus be chosen to be aggres- with a specific value of gain-scheduling variable, the PID con-
sive or conservative by varying � (with a lower recommended troller parameters are obtained using the relay autotuner.
bound of 0.2T1 or 0.25L1). With a few more settings of PID controller parameters ob-

tained at different regions, the gain schedule is automatically
Autotuner set. The simplicity of the relay autotuner has then facilitated

the automatic generation of the gain schedule and made thisThe combined relay control and on-line controller design to
nonlinear control strategy much easier to apply in practice.form an autotuner will be demonstrated in the following

through an example. The process has a transfer function of
e�0.4s/(1 � s)2. In the simulation result of Fig. 5, the first part PRACTICAL CONSIDERATIONS
of the response shows relay control with the resultant sus-
tained oscillation. The Ziegler–Nichols formula was used to As in other control applications, signal filtering and averaging
tune the PID controller and the relay was switched out. The should be used wherever possible to reduce the effect of mea-
next setpoint change shows that the process output was rea- surement noise. The relay magnitude and hysteresis should
sonably good except that the overshoot was excessive. Mean- also be adjusted either manually or automatically as dis-
while, the static process gain could be measured from this cussed earlier. The need for relay bias adjustment in the pres-
setpoint response, and the refined Ziegler–Nichols formula ence of load disturbances and specific arrangement to facili-
with setpoint weighting factor were used to retune the PID tate autotuning of cascade controllers will be discussed in
controller. The subsequent setpoint change shows a much im- the following.
proved response with an acceptable overshoot.

In some applications, a P or PI controller rather than a
Effect of Load Disturbances

full PID controller would be adequate and the corresponding
tuning formulae are well-documented (4). With additional In Figs. 4 and 7 the relay oscillations are symmetrical, a basic

condition to be satisfied for good accuracy of process modeling.computation to estimate the process model of Eq. (10) using
Eqs. (11) and (12)), relay autotuning can be employed to pro- In order to operate the process output y near the setpoint and

in the presence of static load disturbance, the control signalvide on-line autotuning of model-based advanced controllers
such as the pole-placement control, generalized predictive u is normally biased to a suitable steady-state value uo. Dur-

ing the normal operation when the setpoint or the load hascontrol, and the Smith predictor (4,5). Using Eq. (6) and fol-
lowing a similar analysis and development as in the case of changed significantly, uo should also be changed accordingly.

Figure 5. Autotuning performance (kc �

3.43, Ti � 1.44, Td � 0.36; � � 0.45 at
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This can be easily accomplished by allowing it to track the the relay autotuner is demonstrated in Fig. 7 using the fol-
lowing example:average value of the integrator output of the PID controller.

If a load change of �l occurs during relay autotuning, two
possible cases will be encountered. The first is that �l is so
large that the relay oscillations will be quenched. In this case,
an additional bias component will have to be added succes-
sively until the oscillation resumes. An alternative is to cas-

G1(s) = e−s

(1 + s)2

G2(s) = e−0.1s

1 + 0.1s
cade the relay with an integrator to automatically generate

With autotuning of the inner loop, a PI controller with param-the additional bias needed to restore oscillations. The inte-
eters (kc � 1.03, T1 � 0.26) is commissioned. With autotuninggrator will then be switched off with the integrator output
of the outer loop, a PID controller with parameters (kc � 1.45,added to uo, and relay autotuning will be continued. The sec-
Ti � 2.73, Td � 0.68) is obtained. Note that the transientsond and more usual case is that oscillations will be main-
during the autotuning of the inner loop has little effect on thetained but they become asymmetrical (8). The ultimate gain
primary variable y1. It is thus safe to even retune the innerand period estimated from the asymmetrical oscillations may
loop if necessary without having to open the outer loop (9).then contain significant error. A simple way to correct this
The load disturbance response also clearly demonstrates thesituation is to add an additional bias signal to the relay, ub, effectiveness of cascade control in that the load disturbancethat is equivalent to the negative of the estimated value of
in the inner loop which occurs at t � 50 is well-regulated be-

�l. If d is the relay amplitude and t1 and t2 are the positive
fore it has a chance to upset the outer loop.

and negative relay output intervals, respectively, ub can be
computed as EXTENSIONS

Owing to the simplicity and robustness of relay autotuning,
many extensions of tuning formula and applications have

ub = t1 − t2

t1 + t2
d + 1

kp(t1 + t2)

∫ τ+t1+tτ

τ

e dt (14)

been made. One important class of tuning formula is the gain
and phase margin method. It requires a second-order pluswhere � is chosen such that the integration is performed over
dead time model which approximates a high-order processone period of the steady-state oscillation.
better than the first-order plus dead time model:

Cascade Control

The performance of single-loop controllers in the presence of
Gp = kp

e−sL2

(1 + sT2)2
(15)

load disturbance can be greatly improved if suitable interme-
It is straightforward to estimate these model parameters fromdiate (secondary) variables are available for measurement
the ultimate gain and period obtained from relay control (3):and are used to facilitate cascade control. In its simplest form,

it consists of an inner loop by feeding back the intermediate
variable so that the effect of load disturbance or certain non- T2 = tu

2π

√
kukp − 1 (16)

linearities can be largely reduced by an inner controller be-
fore it has a chance to upset the operation of the outer loop L2 = tu

2π

(
π − 2 tan−1 2πT2

Tu

)
(17)

controlling the primary variable. The block diagram of a cas-
cade control system is shown in Fig. 6, where y2 is the inter- The details of the gain and phase margin design method can
mediate variable which is highly affected by the load distur- be found in Ref. 10. The tuning formula is given by
bance l2; y1 is the primary variable to be controlled, and u2 is
the control variable. The effectiveness of cascade control de-
pends on the relative speed of the inner and outer loops, a
rule of thumb being that the inner loop should be at least
three times faster than the outer loop (9).

Figure 6 also shows how the relay autotuner could be con-
nected. In most applications, the inner loop needs to be auto-
tuned only once at the commissioning stage and there is little
need for retuning. With the inner loop closed, the outer loop
is then autotuned. The typical sequence and performance of

k′
c = ωpT2

Amkp

T ′
i =

(
2ωp − 4ω2

pL2

π
+ 1

T2

)−1

T ′
d = T2

ωp = Amφm + 1
2 πAm(Am − 1)

(A2
m − 1)L2

(18)

Figure 6. Block diagram of a cascade
control system with relay autotuner.
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Figure 7. Autotuning performance of
cascade controllers. (Autotuning of inner
loop starts at t � 3; subsequent setpoint
change at t � 30 and load change at
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where Am and �m are the desired gain and phase margins, on the Nyquist curve with only one relay test. Wang et al.
(11) have proposed such an approach by further analyzing therespectively. Note that the above PID parameters (k�c , T�i , T�d)
transient and steady-state response of the relay oscillations.are those corresponding to the interacting form (4). To convert
If the process dynamics is described by Y(s) � Gp(s)U(s), thethem into the standard noninteracting form of Eq. (1), the
frequency response is given by Gp( j	) which can be numeri-following formula can be used (4):
cally computed as the ratio of Y( j	) and U( j	). Y( j	) and
U( j	) could be obtained by taking the fast Fourier transform
(FFT) of the signals y(t) and u(t). This, however, requires that
both y(t) and u(t) be decaying to zero in finite time, which is
not the case because the relay oscillations contain periodic
components. The decay method of Wang et al. (11) overcomes
this difficulty by a further numerical processing of the pro-

kc = k′
c
T ′

i + T ′
d

T ′
i

Ti = T ′
i + T ′

d

Td = T ′
i T ′

d

T ′
i + T ′

d

(19)

cess input and output signals using an exponential window
The optimal PID controller parameters can hence be com- e��t(� � 0). We thus have in the time domain the following

exponentially weighted signals:puted from Eqs. (16)–(19) once the desired gain and phase
margins are specified based on practical requirements of
speed and robustness. Their default values can be set as (3,
60�). The performance of this gain and phase margin design

ỹ(t) = y(t)e−αt

ũ(t) = u(t)e−αt

is also much better than the simpler phase margin design of
and in the frequency domain:Eq. (7) over a wide range of process dynamics. Compared to

the refined Ziegler–Nichols method, it has the advantage that
the robustness properties could be specified. Ỹ ( jω) =

∫ tf

0
ỹ(τ )e− jωt dt (20)

We shall present two more sophisticated extensions in the
following: the frequency response approach and the relay con-
trol of multivariable systems. Ũ ( jω) =

∫ tf

0
ỹ(τ )e− jωt dt (21)

Frequency Response Approach � can be suitably chosen based on the ultimate period and the
noise level such that y(t) and u(t) decay to zero exponentiallyIn the basic relay autotuner employing Ziegler–Nichols or
at t � tf and both the transient and steady-state componentsother tuning formula, the ultimate gain and phase (or one
have been well-utilized. It is straightforward to show thatpoint on the Nyquist curve near the critical point) are identi-
Ỹ( j	) and Ũ( j	) are equivalent to Y( j	 � �) and U( j	 � �).fied and used in the controller design. It has been mentioned
We can thus compute the shifted frequency response:earlier that by varying the relay amplitude and the hysteresis

width and repeating the relay test, other points on the Ny-
quist curve can be identified. However, this is more time-con-
suming. It would thus be attractive to estimate more points

Gp( jω + α) = Ỹ ( jω)

Ũ ( jω)
(22)
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The relevant frequency response for a number of specified tained in the closed-loop dynamics. The natural frequency 	n

and the damping factor � can be easily set depending on thepoints can thus be computed at discrete frequencies (11). This
is sufficient for the purpose of controller design in the fre- speed of response and the robustness required (11). They can

also be easily computed if the specifications are given as thequency domain to complete the relay autotuning design. To
demonstrate the accuracy of the process frequency response gain and phase margins.

With the desired H(s) specified, the desired open-loop fre-thus estimated, an inverse FFT of Gp( j	 � �) can be com-
puted which produces g(kT)e��kT, where g(t) is the impulse re- quency response can be numerically computed as
sponse of the process and T is the corresponding discrete time
interval. The unshifted frequency response Gp( j	) can then
be computed by applying FFT to the computed g(kT). Figure

G0( jω) = H( jω)

1 − H( jω)
(24)

8 shows the results of frequency response estimation for four
The PID controller has a frequency response given bydifferent processes. It is evident that accurate estimation at

frequencies up to the ultimate frequency can be obtained.
An important advantage of the frequency response ap-

proach is that accurate information on the structure of the
Gc( jω) = kc

(
1 + 1

jωTi
+ jωTd

)
process model, such as the order of the system and whether

The open-loop frequency response of the combined controllerthe dynamics has oscillation modes, is not required. The con-
and process istroller design after the relay test should therefore be selected

accordingly. Following the direct controller design approach
from frequency response data proposed by Goberdhansingh Gc( jω)Gp( jω) = φ( jω)x
et al. (12), the following controller design using the shifted

wherefrequency response data computed from Eq. (22) has been de-
veloped (11).

First the desired closed-loop frequency response data
points are generated. This can be obtained from a specified

φ( jω) =
[
Gp( jω)

Gp( jω)

jω
jωGp( jω)

]
(25)

general closed-loop transfer function model of the following
form: x =

[
kc

kc

Ti
kcTd

]T

(26)

The controller design problem can now be formulated as aH(s) = ω2
n

s2 + 2ξω2
n + ω2

n
e−sL (23)

typical minimization problem of selecting x to minimize the
loss functionThe estimate of the apparent dead time L is obtained from

the relay test results using Eq. (12), or more accurately using
Eq. (17). The apparent dead time which accounts for the pure
dead time and any nonminimum phase term represents the

J =
m∑

i=1

|φ( jωi)x − Go( jωi)|2 (27)

noncontrollable part of the process dynamics and is hence re-
where m is the total number of frequency points selected.
With �( j	i) and Go( j	i) computed at each discrete frequency,
the standard least squares solution can be used to solve for x
and hence the PID controller parameters recovered from Eq.
(26). The least-squares solution of x is given by

x = (�T
2 �2)−1�T

2 �2 (28)

where

�2 =
[

Re(�1)

Im(�1)

]
, �2 =

[
Re(�1)

Im(�1)

]

�1 = [φ( jω1) . . . φ( jωm)]T

�1 = [Go( jω1) . . . Go( jωm)]T

The complete frequency-response-based relay autotuner is
given by the combination of the relay control, the FFT compu-
tation of Eq. (22), and the least-squares estimate of Eq. (28).
Since Eq. (22) is obtained in the shifted frequency domain,
the development of Eq. (24)–(28) should be modified likewise.
Another simple modification (11) is to allow the closed-loop
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transfer function from the load disturbance to the output to
be specified, and hence the controller is tuned for optimal loadFigure 8. Nyquist plots of different processes. (a) e�2s/(1 � 10s); (b)
disturbance. Simulation studies of a number of different pro-1/(1 � s)10; (c) (1 � s)e�2s/(1 � s)5; (d) e�0.2s/(1 � 0.25 � 1) (———

actual, --- estimated). cesses have shown that this method yields better results than
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Figure 9. Autotuning performance of an
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0

1

oscillatory process.

the simpler methods based on only one point on the Nyquist to large parameter changes, the supervisory software will re-
duce the PID controller gain successively until the system iscurve. Its performance will be demonstrated in the following

example of a highly oscillatory system in which case all the stable before subsequent retuning could take place. This usu-
ally results in very long recovery time. Relay control couldprevious methods based on the assumption that the process

has well-damped dynamics would produce poor results: quickly stabilize the system and simultaneously provide the
controller oscillation for autotuning. Figure 10 shows a typi-
cal case of instability when the process dead time is drasti-
cally increased. The subsequent relay control and retuning

Gp(s) = e−0.2s

1 + 0.2s + s2

demonstrate the capability of rapid recovery of this method.
The accurate frequency response estimated from the relay
control and the FFT computation has already been demon-

Multivariable Control
strated in Fig. 8(d). The frequency response approach opti-

As in the case of single-variable systems, the majority ofmized for load response would yield a PID controller of Kc �
multivariable systems are controlled in practice by multiloop1.71, Ti � 1.26, and Td � 1.37. The autotuning transients and
PID controllers without decouplers (5). The tuning of aresultant step and load responses in Fig. 9 clearly show the
multiloop PID controller for a multivariable process is natu-excellent performance of this method.
rally much more complex than the single-variable case. TheOne additional feature of relay control is that it can stabi-
extension of the simple-to-use and robust autotuning tech-lize a process rapidly. In other autotuning or self-tuning con-

trollers, when the closed-loop response becomes unstable due nique to a multivariable controller has recently been ad-

Figure 10. Relay stabilization and auto-
tuning when the system becomes unsta-
ble. (At t � 0, Gp(s) � [1/(1 � s)2]e�0.5s; at

2
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120100806040200

120100806040200 t � 20, Gp(s) � [1/(1 � s)2]e�2s.)
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loop 2 is then autotuned and the multiloop PID controller
K(s) is found to be


0.375

(
1 + 1

8.29s

)
0

0 −0.075
(

1 + 1
23.6s

)



The subsequent set point and load responses demonstrate
that the controllers are reasonably tuned. The performance is
indeed better than that tuned manually using conventional

y1u1

u2

Gp(s)

Relay 1
ysp1

ysp2

+ –

+

–
Relay 2

K(s)

y2

techniques which require a tedious trial-and-error proce-
Figure 11. Block diagram of sequential relay autotuning of a multi- dure (5).
variable system. While all the single-loop modeling and controller designs

can be used to design the multiloop PID controller, the fre-
quency response approach has an additional advantage thatdressed (13–16). It has been found that it is not worthwhile
it could be easily extended to a truly multivariable PID con-to tune all the loops together because the relay oscillations
troller with cross-coupling terms to reduce interaction effect.would interact and create complications. A sequential proce-
Such a controller has been designed on-line using the samedure has therefore been recommended, and that for a 2 
 2
sequential relay test, and the resultant multivariable PIDsystem as shown in Fig. 11 is outlined as follows:
controller (16) is found to be

1. The faster loop is first autotuned using the relay auto-
tuner, with the other loop being left opened.

2. The slower loop is then autotuned using the relay auto-
tuner, with the inner loop closed after step 1.




0.184
(

1 + 1
3.92s

)
− 0.0102

(
1 + 1

0.445s
− 0.804s

)

−0.0674
(

1 + 1
4.23s

+ 0.796s
)

− 0.006
(

1 + 1
4.25s

)



Step 2 may be repeated for the other loop if the prior informa-
The much improved set point and load responses are clearlytion on the relative speed of the loops is wrongly given. Fi-
shown in Fig. 12.nally the multivariable PID controller K(s) can be computed

using the multivariable extension of the frequency response
design approach (16). We shall illustrate the procedure by the CONCLUDING REMARKS
auto-tuning of a well studied multivariable process model of
a distillation column (17): It has been established from many real industrial applica-

tions that the relay control and autotuners are easy to apply
and they require the minimum prior information. A survey on
commercial products could be found in Ref. 18. The extension
of relay autotuners to multivariable PID controllers and to
other model-based controllers would be even more significant

Gp(s) =




12.8e−s

1 + 16.7s
−18.9e−3s

1 + 21s
6.6e−s

1 + 10.9s
−19.4e−3s

1 + 14.4s


 (29)

because they are very difficult to commission without auto-
tuning. In addition, relay control generates information onThe sequential relay autotuning is shown in Fig. 12. Loop 1,

which is the fast loop, is first autotuned. With loop 1 closed, the critical (crossover) frequency of the process which could

Figure 12. Autotuning performance of a
multivariable system (——— controller
with cross-coupling term; --- controller
without cross-coupling terms).
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be used to automate the selection of sampling rates for digital
control. They have thus found increasing applications as auto-
matic tools to initialize the more complicated self-tuning and
adaptive controllers.
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