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DIELECTRIC PERMITTIVITY AND LOSS

Dielectrics can be defined as materials with high electrical resistivities that conduct virtually no electricity at
low dc electric fields. A large group of materials, including gases, liquids, semiconductors, ceramics, and organic
and inorganic polymers, are classified as dielectrics. There are, however, no perfect dielectric materials.

The study of the electrical properties of dielectrics arises from their practical need for efficient electrical
insulation requirements for long operational life. Many dielectric materials are classified by their electrical
breakdown strength, dielectric loss, permittivity, and polarization, and these macroscopic properties are related
to their atomic and molecular structures. Although dielectrics are widely employed in diverse applications (e.g.,
capacitors, cables, transformers, and motors), the study of dielectrics has progressed very little since the early
investigation of ferroelectric phenomena. However, the advent of microelectronics and complex control devices
and components in defence and industrial applications has made dielectric research important in its own right.

The present article reviews briefly the electrostatic concepts that lead to time- and frequency-dependent
dielectric phenomena together with the models of dielectric relaxation behavior in various materials. It also
includes some explanations for the dielectric aging of insulating materials under high fields in humid environ-
ments.

Dielectric Polarization

Static Field. When an electric field is applied to a dielectric material, three processes can occur. A
steady flow of direct current (due to the dc conductivity σ0) may occur if free charges are capable of moving
throughout the volume without restraint. Secondly, bound charges can form dipoles by aligning with the field
and provide polarization. On removal of the field the dipoles may return to their original random orientation
with the help of thermal energy, giving rise to dielectric relaxation. Thirdly, electronic and ionic charges may
hop through the defect sites. These charges are neither free nor bound, and they give rise to an intermediate
form of polarization, which involves finite charge storage.

Dielectrics may broadly be divided into nonpolar and polar materials. In nonpolar materials in an external
field a dielectric polarization occurs when the positive and negative charges experience an electric force that
causes them to move apart in the direction of the external field. As a result, the centers of positive and negative
charges no longer coincide. The molecules are then said to be polarized, and each molecule forms a dipole and
acquires a dipole moment p, defined thus:

where e is the electronic charge and dl the displacement (∼10− 10 to 10− 11 m in magnitude) between the two
charge centers. Note that dl is a vector that points from the negative to the positive charge. Such dipoles are
called induced dipoles. On removal of the field, the charges are redistributed and the dipole moment vanishes.
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With polar dielectrics, which lack structural symmetry, the charge centers of opposite polarities do not
coincide for a molecule even in the absence of an electric field. However, these molecular dipoles may be
randomly distributed, thus summing to a zero dipole moment over any macroscopic volume element (1,2,3,4,5,
6,7,8,9). In the presence of an appopriate electric field, the molecules may align themselves in the field direction
and thus provide a net dipole moment.

Macroscopically, the electric field in a dielectric is described (2) by the electric field strength E (Vċm− 1)
and the electrical displacement density, also known as the electric flux density, D (C·m− 2), both D and E being
vector quantities. Now the polarization can be defined as the dipole moment per unit volume, i.e.,

and is also a vector quantity. It should be noted that the normal component of P at the surface equals the surface
charge density per unit area. These three vectors D, E, and P, in a material medium other than vacuum, are
related thus:

or

where

ε0 is the permittivity in free space (8.85 × 10− 12 F·m− 1), and εr is the relative permittivity (dimensionless) or
the dielectric constant of the material, which takes into account the polarization effect and is defined as

where C0 is the capacitance of a capacitor with a vacuum between two conductors, and C the capacitance when
the same region is filled with the dielectric. εr is independent of the shape or size of the conductors and is
entirely a characteristic of the particular dielectric medium. Table 1 (4) gives the values of εr for static or low-
frequency (<1 kHz) fields of several materials. εr, which is a macroscopic and directly measurable parameter,
is connected with the microscopic structure of a dielectric material and with its polarization behavior.

From Eq. (3), we have
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where

and χ is the dielectric susceptibility. Thus the parameter χ also provides a link between the macroscopic
properties and the atomic–molecular theory of dielectric materials.

We may also write a general relation between P and E thus (8):

where the higher terms in E are applicable to the phenomenon of hyperpolarization. It should be noted that
χ is the ratio of bound charge density to free charge density of a capacitor. A measurement of εr and hence χ

provides the magnitude of the polarization P of a dielectric material at any particular field E.
One of the most useful methods of determining P is to measure the current density J(t) as a function of

time, as (8)
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It may be shown (3,8) that for noninteracting dipoles, χ is given by

where χ(0) is the static susceptibility in the zero-frequency limit, N the number density of polarizable molecules,
k the Boltzmann constant, and T the temperature. χ is a dimensionless and scalar quantity in an isotropic
medium.

Microscopic Concepts of Polarization

We shall consider here the three cases of electronic, ionic, and orientational polarizations.
An isolated neutral atom in an electric field acquires a dipole moment when an external electric field

produces a separation of the charge centers of opposite polarities. This is known as the electronic polarization,
and it provides an induced dipole moment

where αe is the electronic polarizability of an atom and is given by

where r0 is the radius of the spherical of an electron cloud surrounding an atomic nucleus. The molar polariz-
ability � of a monoatomic gas is given by

where N0 is the number of molecules in a gram molecule (Avogadro’s number). The lowest polarizability belongs
to the noble gases with their completely filled outer electronic shells, which screen the nuclei from the effect of
the external electric field. For hydrogen, with r0 = 0.53 × 10− 10 m, αe is 1.66 × 10− 41 F·m− 2. Hence for a field
E of 105 V·m− 1, αE = 10− 36 C·m. The length l of this induced dipole is p/e = 10− 17 m (e being the electronic
charge), which is indeed an extremely small distance compared with atomic dimensions (6).

Ionic polarization occurs in ionic substances, e.g., alkali halides, whose molecules are formed of atoms
that have excess charges of opposite polarities. In an external field the relative positions of the positive and
negative ions of a molecule may shift, thus introducing the dipole moment in addition to the induced electronic
polarization. The ionic polarization pi is given by

where αi is the ionic polarizability of the molecule, which arises from the ionic displacement. The alkali halides
(halides of the group I elements) have the highest polarizabilities, possibly because of the single electron in
their outermost shells. Table 2 (6) provides a list of values of contribution of ions to the molar polarization of
typical alkali halides.
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The third type of polarization, known as the orientational polarization, is associated with permanent
dipoles in dipolar materials that possess a dipole moment even in the absence of an externally applied electric
field. However, such a moment may not be observed macroscopically, as the thermal energy will randomize
the dipoles so that the average moment will be zero over a small physical volume. On an application of an
external electric field the dipoles will experience a torque, which will orient them in the field direction so that
the average dipole moment will no longer be zero. It may be shown (3) that the orientational polarizability α0
is given by

By adding the three polarizabilities mentioned above, the total polarization P can now be written as the
sum of the three components, i.e.,

where N is the number of contributing molecules or particles per unit volume.
Of course, not all atoms or molecules need display each of these three types of polarizability. Only the

orientational polarization is temperature-dependent. Equation (17) is known as the Langevin–Debye formula,
and we have

Thus a measurement of εr as a function of temperature may help to distinguish the orientational polariza-
tion contribution from the sum of the components αe and αi, which are practically independent of temperature.

Figure 1 shows (9) a plot of εr − 1 as a function of 1/T for the molecule of methyl amine (CH5N). The
intercept for the line at 1/T = 0 and its slope are approximately 8 × 10− 4 and 0.6 K − 1, respectively. From Eqs.
(8), (9), and (17), we have (9)
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Fig. 1. A plot of εr − 1 as a function of 1/T for a molecule of methylamine (CH5N) (9,10).

and

The further separation of αe and αi is not possible using this technique alone.
Table 3 gives the electric dipole moment of some molecules. The commonly used unit of dipole moment is

the debye; 1 D = 3.33 × 10− 30 C·M.
Space-charge (interfacial) polarization generally arises from a presence of electrons and/or ions that

have limited macroscopic motions in the bulk of a dielectric material. Eventually these charge get carriers
get localized at lattice defect sites, metal–electrode interfaces, impurity centers, and voids. As a result, the
electric field in the dielectric may get distorted, thus producing an apparent increase in the dielectric constant.
Space-charge polarization is particularly evident in multiphase and inhomogenous dielectrics, and its effect is
dominant, particularly at low frequencies, in practical dielectrics such as impregnated paper, polymers, and
sintered ceramics.
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The study of dielectric polarization and susceptibility in liquids and solids is more complicated than in
gases because of the interactions between the atoms and molecules in the condensed phase. These atoms and
molecules will still exhibit electronic, ionic, and orientational polarizations. However, the effective local field
El on an atom or molecule in a liquid or a solid dielectric may not be the same as the externally applied field
E. It is difficult to calculate the effective local field El in the condensed phase except for the most symmetric
crystals.

Since P = ε0 (εr − 1) E, for the simplest case of a cubic crystal, the Lorentz equation for the local field El
(6) is

and P = NαEl, where α is the total polarizability and N the number of molecules per unit volume. Hence,

and

Equation (23) is the Clausius–Mossotti equation, which relates the microscopic property of the polarizability α

with the macroscopic property of the relative permittivity or dielectric constant εr. Now we have

where N0 is the Avogrado’s number, M the molecular weight, and ρ the density. Substituting Eq. (24) into Eq.
(23), we obtain the molar polarizability per mole,
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Equation (25) should be used with caution, as it does not take dipolar interactions into account properly.
Equation (23) may, however, be used to calculate the electronic polarizability αe from the measured values of
εr for dilute gases, for which εr ≈ 1 and εr + 2≈3. For such cases,

Table 4 shows that the polarizability of the element argon does not vary significantly (9) between its
dilute gas and liquid states. That may not be true for other gases with more extensive electronic structure
when condensed to liquid or solid form.

The polarizabilities of αe and αi may be determined independently for ionic crystals in the solid state. The
relative permittivities εr of ionic crystals are frequency-dependent. For an applied field at low frequencies the
value of εr will be dependent on both αe and εi, whereas in the optical frequency range the lattice ions will not
be able to follow the applied field and εr will only be εe. Table 5 shows the static (low-frequency) and optical
(high-frequency) values of εr for some ionic crystals (9). The difference between the values of εr in the second
and the third column is the contribution of the ionic polarization alone, whereas the third column characterizes
the contribution due to αe.

The behavior of orientational polarization in dipolar molecules in the gas and liquid phases may be
quite large if rotation of the dipoles is possible (10). For such a case, the polarizability will have contributions
from αe, αi, and α0, where the α0, contribution will be temperature-dependent, εr increasing with decreasing
temperature. However, as the temperature is lowered and the material solidifies, the value of εr will drop
abruptly when the molecules can no longer rotate and thus rotation cannot contribute to the polarization. Figure
2(a) (9,11) illustrates such behaviour of εr for nitromethane. It may be observed that at 244 K, nitromethane
freezes and εr drops abruptly from 45 to just under 5. At this temperature α0 is zero for nitromethane and its
polarizability arises from the αe and αi contributions, which are independent of temperature. However, there
are some solids, such as HCl, which do not show this type of behavior. For HCl in the liquid state εr is large and
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Fig. 2. The behavior of εr versus T for completely hindered (a) and partly hindered (b) rotation of dipoles in the solid:
(a) nitromethane (9,11); (b) hydrogen chloride (9,12).

increases with decreasing temperature, indicating rotational behavior of the molecules [see Fig. 2(b)]. However,
below 165 K, where HCl freezes, εr still continues to increase (9,12) because of the increase in the density of
the material. At 100 K, the molecular rotation finally ceases and α0 virtually becomes zero. The polarization
contribution at this temperature in HCl originates from αe and hindered rotation (9,12).

Dielectric Loss

Time-Dependent Dielectric Response. The dielectric behavior has been represented in the previous
section by three vectors D, E, and P, which are assumed to be collinear in space and in the same phase in
time. However, neither of these two assumptions is necessarily valid. We shall only consider the nature of the
dielectric behavior with time for nonpolar materials and those containing permanent dipoles. As regards the
spatial collinearity, extensive treatment of crystal symmetry is necessary and will not be discussed here.

The time-dependent dielectric response may be synthesized (8) from three fundamental time dependences
of the electric field, viz., the delta function δ(t), the step function 1(t), and the harmonic function sin ω(t) or cos
ω(t), where ω is the angular frequency (=2πf ). Equation (3) may now be represented thus:

where the first term on the right-hand side provides the instantaneous free-space contribution and the second
the delayed polarization. We define a dielectric response function φ(t). The polarization response to a delta-
function excitation of strength E �t is (8)

where E is the electric field, acting over a time period �T. From the principle of causality, we have
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In the absence of any permanent polarization,

Furthermore, from the principle of superposition, we have (8)

Equation (29) implies that the magnitude of polarization at a time t in a dielectric will depend on its past value,
i.e., the material has a memory. On an application of an elementary step function field E1(t), the dielectric
polarization is given by

The charging current Ic(t) is given by (8)

where the delta function δ(t) represents the instantaneous free-space response of the step-function field, followed
by the polarization current dP(t)/dt of the material. σ0 is the dc conductivity, if any, of the dielectric at infinitely
long time. Thus, we have (8)

where P(∞) is the polarization with a steady electric field E after an infinitely long time when the polarizing
elements tend to get oriented along the field direction. On removal of this step-function field, a depolarization
current Id(t) will follow as the thermal agitation randomizes the orientation of the dipoles with time. For this
latter case there will be no contribution of σ0 at E = 0.

Frequency-Dependent Dielectric Response. The polarization response to a harmonic field is known
as the frequency-domain response. Taking the Fourier transform of both sides of Eq. (34), we get
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where P(ω) and E(ω) are the Fourier transforms of the time-dependent polarization and field respectively.
χ(ω) is the frequency-dependent complex susceptibility, and it is the Fourier transform of the time-dependent
response function φ(t):

The real part χ′(ω) provides the magnitude of polarization in phase with the harmonic driving field E(ω)
and does not contribute to the power loss, whereas the imaginary part χ′′(ω), which is in quadrature with
the field, is referred to as the dielectric loss. χ′(ω) and χ′′(ω) may be represented as odd and even functions of
frequency respectively:

and

In terms of permittivity, we may write

For zero frequency, i.e., the static case,

and

Equation (36) shows that both χ′(ω) and χ′′(ω) are functions of the dielectric response function φ(t), and
these two parameters are Hilbert transforms of each other, through what are referred to as the Kramers–Kronig
relations:
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where C denotes the Cauchy principal value of the integral. For the static case,

Equation (44) indicates that the variation of the dielectric parameters with frequency, i.e., the dielectric
dispersion, is an essential property of dielectric materials (8). It also shows that any mechanism that can lead
to a strong polarization in a dielectric material must also lead to large losses in some frequency range. In other
words, it is not possible to have a loss-free dielectric with a finite susceptibility (8). In most dielectrics the
loss is significant only in limited frequency ranges. Figure 3 (8) shows schematically two nonoverlapping loss
processes at the low frequencies and a resonance process in the optical frequency range. In a limited frequency
region we may define a high-frequency permittivity ε∞α, accounting for all the processes occurring at higher
frequencies; thus [see Eq. (39)]

from which we get

and

For an alternating voltage the frequency-dependent complex capacitance C(ω) is

where C′(ω) and C′′(ω) are the real and imaginary parts of the complex capacitance. The loss angle δ is the
angle between the electric field and the dielectric polarization. The loss tangent,

is independent of the geometry of the dielectric material.
The existence of the polarization with respect to the field leads to the energy dissipation in the dielectric.

Now the power dissipation per unit volume is

where Iphase is the part of the current in phase with E, and is given by
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Fig. 3. Schematic diagram of the frequency dependence of the real and imaginary parts of the complex susceptibility,
showing three processes, the last one being a resonance process (8).

Table 6 gives (6) typical values of the permittivity and loss factor of various dielectric materials at room
temperature for different frequencies. Generally polar materials have larger permittivities and loss tangents
than nonpolar materials. For many liquids the frequency at which maximum energy loss occurs at room
temperature is approximately 1000 MHz (wavelength λ ≈ 0.3 m), as shown (1) for three typical liquids in Table
7, where τ is the relaxation time (=1/f ).

Another type of energy loss occurs in a resonance absorption process at very high (i.e., IR, visible, and
UV) frequencies. Although the real and imaginary parts of the complex permittivity vary in a similar manner
to that for dipole relaxation, the origin of the energy loss is different in this process. At optical frequencies the
permittivity of the dielectric is almost entirely due to the electronic polarization. In the absence of any external
field a vibrating electron of charge e and mass m is elastically bound to its nucleus by a restoring force, and its
equation of motion is

where k is the restoring-force constant and x is the displacement of the electron. The above equation represents
a simple harmonic motion, and its solution is

where ω0 = (k/m)1/2, A is the integration constant, x0 the amplitude of oscillation, and ω0 the natural resonance
angular frequency of the oscillation. When an external alternating electric field is applied to this system, the
resulting motion is a forced oscillation, represented by
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where E is the amplitude of the field E and ω is its frequency. Clearly the response of the oscillating system
will now depend on both ω and ω0. The oscillations might be expected to build up without limit when ω = ω0,
though they are expected to be small at frequencies far away from ω0. However, at resonance, i.e., ω = ω0, the
oscillations will in fact be limited (damped) by the emission of electromagnetic radiation by the oscillating
charges, which dissipates energy. It may be shown that in a resonance absorption process (6),

and

where r is a constant of the material, called the dissipation constant. These quantities have the form shown in
Fig. 3 at very high frequencies. For ω = 0, i.e., the static case, we have

ε′′(ω) approaches zero for both ω �ω0 and ω �ω0, and it goes through a maximum value of Ne2(1/mrω). Again
ε′′(ω) represents an energy loss and the power loss is given again by

As the characteristic values of ω0 for electron clouds are very high, the resonance absorptions and their
corresponding energy losses occur at very high frequencies, i.e., in the IR-to-UV range.

For pure nonpolar dielectrics, whether solid, liquid, or gas, the polarization is essentially of electronic
nature. Some polar materials with a highly symmetric structure, like carbon tetrachloride (CCl4), may also
exhibit electronic polarization. The presence of electronic polarizability may be verified with the Maxwell
relation, ε1 = n2, where n is the refractive index of the dielectric. Table 8 compares the ε1 and n2 values for a
few marginally nonpolar materials (13,14).

Models of Dielectric Relaxation

Models. The first model of the dielectric relation is due to Debye (3). According to this model, the
susceptibility function χ(ω) for noninteracting polar molecules is given by (7)
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where ωp is the angular frequency at which the maximum loss peak occurs. The real and imaginary parts of
χ(ω) are
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and

The corresponding time-domain response φ(t) follows the exponential function (15)

The loss peak occurs here at ω = ωP = 1/τ. Figure 4 shows the dependence of χ′(ω) χ′′(ω), and φ(t) of Eqs.
(59, 60, 61) (16) in log–log representation. The loss peak is symmetric about ωP, and its width at half height
is 1.144 decades on the frequency scale. The Debye behavior has been observed in gases and in some polar
liquids. The relaxation behavior of water and deuterium oxide closely approximates that of the Debye form
(17,18,19). However, it is generally nonexistent in solids.
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Fig. 4. (a) The ideal Debye response in the frequency domain, with its characteristic frequency dependence of χ′(ω) ∝ ω− 2

and χ′′(ω) ∝ ω− 1 above the loss peak. (b) The corresponding time-domain response, which is purely exponential and is here
plotted in the somewhat unfamiliar log–log representation (16).

To account for the departure of the observed dielectric behavior, the following empirical expressions have
been proposed. The Cole–Cole equation (20) is

where α is a fitting parameter in the range 0 < α ≤ 1. Equation (60) provides a broader, and symmetrical
relaxation spectrum than the Debye type. Furthermore, for ω>ω 0, χ′(ω) and χ′′(ω) show parallelism in the
log–log plot.

The Davidson–Cole equation has the form (21)

where β is yet another curve-fitting parameter in the range 0 < β ≤ 1. Equation (61) provides asymmetric
relaxation profiles at ω ≤ ω0, whereas χ′(ω) and χ′′(ω) remain parallel at ω>ω0.

The Fuoss–Kirkwood model (22) for the imaginary part of the susceptibility is
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Another relaxation model is given by

This is an expansion into the frequency domain of the Kolrauch–Williams–Watts function (15) of time, i.e.,
exp[−(t/τ)�]. The parameter � in Eq. (65) has no physical significance and is not based on the physics of
dielectric interactions.

So far the models have had only one fitting parameter, viz., α for the Cole–Cole equation, β for the
Davidson–Cole equation, γ for the Fuoss–Kirkwood equation, and � for the Kolrauch–Williams–Watt equation.
The model due to Havriliak and Negami (23,24), the first one with two parameters, is given by

It should be stressed again that the fitting parameters α and β in the above equation have no physical
significance.

A classical form of presentation of the dielectric data is to plot χ′(ω) or ε′(ω) against χ′′(ω) or ε′′(ω), i.e., the
so-called Cole–Cole plot (20). Figure 5 shows the shapes of the Debye, Cole–Cole, and Davidson–Cole equations
for the susceptibility functions in Cole–Cole plots. It has been shown (20) that with the Debye model, a graph
of χ′(ω) against γ′(ω) over the entire frequency range will be a semicircle and χ(∞) or ε∞ is obtained from the
intercept at the horizontal axis [see Fig. 5(a)]. Thus the relaxation time τ may be obtained from the slope of a
straight line from the origin to a point on the semicircle for which ω is known. Now the Cole–Cole relaxation
model provides a symmetrical but broader relaxation spectrum, and the corresponding Cole–Cole plot is still
a semicircle. However, its center is depressed below the χ′ or ε′ horizontal axis [see Fig. 5(b)] with the angle
απ/2 between the radius of the circle and χ′ or ε′ axis. There is no molecular interpretation of this factor α, and
it has been interpreted as a “spreading factor” of the actual relaxation time about a certain mean value. The
magnitude of α must lie between zero and unity. The Cole–Cole plot for the Davidson–Cole model is a skewed
plot [see Fig. 5(c)], representing a severe departure from the Debye relaxation behavior.

The Havriliak–Negami function (23,24) with two parameters α and β [Eq. (66)] appears to provide the best
results for the fitting of the measured dielectric data for most materials. However, none of these mathematical
models that invoke a distribution of relaxation energies (25) or times offer any physical interpretation of
material properties (26,27,28,29).

It has been suggested that a dielectric loss spectrum may be regarded as a mathematical summation of a
distribution function g(τ) of Debye responses corresponding to a distribution of relaxation times (30); thus

The distribution functions are always positive, and curves of χ′′(ω) or ε′′(ω) can be formed from them by the
superposition of many single relaxation-time or frequency curves (31). It has been shown (32) that the product
of the elapsed time and the depolarization current is a convolution of the distribution function of relaxation
frequencies with a weight function of an asymmetric bell shape. A similar relationship is also shown to exist for
the imaginary part of the permittivity. The same work (32) also proposes a deconvolution procedure to determine



DIELECTRIC PERMITTIVITY AND LOSS 19

Fig. 5. The frequency dependence of the real and imaginary parts of the susceptibility and the Cole–Cole presentation
for (a) Debye, (b) Cole–Cole, (c) Davidson-Cole systems (8).

the distribution function of relaxation frequencies from experimental data. A distribution of relaxation times
from the frequency dependence of the real part of the complex permittivity has also been made with the
inverse Fourier transformation (33). As stated earlier, however, no distribution of relaxation times that can
claim physical reality can be associated, with relaxation systems in condensed matter (8,26,27).
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A two-parameter model for the complex susceptibility function χ(ω), known as the universal relaxation
law, has been proposed (8,16), which states that all solid dielectrics follow fractional power laws in frequency.
It is of interest to note that χ(ω) may be expressed by a simple empirical expression (16,23),

where the exponents m and n lie between zero and unity, and x is the normalized frequency. Equation (68)
indicates that the experimental state of dielectric susceptibility can be fitted with two power-law exponents. The
Debye function is a limiting form of the above equation for m = 1 and n = 0. For the symmetric loss peak at ωp
and x = 1, we have m = 1 − n. Furthermore, the ratio χ′′(ω)/χ′(ω) decreases as m and 1 − n become smaller, thus
providing broader peaks as in the case of the Cole–Cole function. This leads to the universal law, characterized
by two fractional power laws in frequency respectively below and above the loss-peak frequency ωP (8,16),

for ω� ωp, and

where the exponents are in the range

As a result, in the high-frequency range of the loss peak, the ratio of the imaginary to the real part of the
complex susceptibility is a frequency-independent constant,

Hence, in a log–log plot χ′′(ω) and χ′(ω) appear as parallel lines for ω � ωP. It should be noted that for the Debye
process this ratio is ωτ and thus increases linearly with frequency, which is consistent with the idea that the
process is a “viscous” phenomenon in which the dielectric loss is linearly related to the angular velocity (16).

For the low-frequency part of the loss peak (ω<ωP), we have (8,15)

where �χ′(ω) = χ(0) − χ′(ω) is known as the dielectric decrement and is the extent to which the polarization at
any particular frequency falls short of the value of the equilibrium polarization in a static field. The equations
(69) and (70) may be represented by the empirical law combining the two fractional power laws above and
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below ωp (8),

The Fourier transforms of fractional power laws correlate the frequency-domain dielectric parameters with
their time-domain behavior thus (16):

In the carrier-dominated low-frequency dispersion (LFD) or quasi-dc (QDC) systems, mobile charge car-
riers, such as ions and electrons, act as polarizing species and provide a broad dielectric response (16,34,35,36)
in which no loss peak is observed. The LFD (or QDC) relaxation is characterized by two independent processes,
below and above a certain critical frequency ωc, which may be represented by Eq. (70). The real and imaginary
parts of the complex dielectric susceptibility steadily increase with decreasing frequency for small values of n2,
at frequencies less that ωc. This is followed by a flat loss behavior above ωc with n1 ≈1 (8,16,28). The frequency
ωc plays an analogous role to ωp in a dipolar system.

Figure 6 shows (16) typical behavior of χ(ω) for the LFD (or QDC) system. Figure 7 shows schematically
the typical time-domain behavior of a dipolar LFD (or QDC) system together with the flat loss response
corresponding to n→1 (15). Note that the flat loss behavior is the limiting case of the dielectric response that
occurs in low-loss materials with a very small value of the ratio χ′′(ω)/χ′(ω). The value of n2 can never be
zero, and hence n cannot actually have a value of 1, although nearly flat loss behavior has been observed
experimentally.

There are few examples of solids, including single crystals of ferroelectrics, that show pure Debye relax-
ation behavior. A variety of solids—viz., low-loss dielectrics, dipolar materials, semiconductor p–n junctions,
and biological materials—are known to show dielectric dispersions that may be fitted with the universal frac-
tional power law Eq. (73). Furthermore, dipolar systems exhibit loss peaks, whereas the carrier-dominated
systems exhibit LFD (or QDC) behavior (8,34,35).

A stochastic model for the universal dielectric dispersion has also been proposed in recent years (37,38,39).
This probabilistic model is based on the assumption that individual dipoles and their environment interact
during the process of relaxation and the dielectric response function is given by (37)

where φ0 is a constant of the relaxation function φ(t), and k is a positive real number. In the short-time limit
this function is
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Fig. 6. The frequency dependence of a system dominated by LFD or QDC with n1 = 0.8 at high frequencies and n2 = 0.5
at low frequencies. The crossover point is deliberately shifted to high frequencies to show the LFD or QDC region (16).

where n = 1 − α and 0 < n < 1. The corresponding long-time limit is

where m = α/k and 0 < m < 1 if α < k. The exponents m and n of the universal fractional law (8) are thus related
by (37)

where k > 1 − n and 0 < n < 1. If 1 − n < k ≤ 1, then 1 − n ≤ m < 1, and this is observed in most analyzed ex-
perimental results. For k = 1 we have m = 1 − n, and this is the Cole–Cole response. For k = 1 − n we have
m = 1, which is the Davidson–Cole response. If k > 1, then 0 < m < 1, which is observed only in a small num-
ber of analyzed data (21,33,38). In the case, k→0 and the Williams–Watts response is observed (15,40). The
probabilistic model (37,38,39) thus suggests a relation between the empirical parameters m and n, defining
the low- and high-frequency regions of the complex dielectric susceptibility. It has been suggested (37) that
the parameter (k) may be related to the waiting-time distribution of the relaxing dipoles, which may follow a
Weibull distribution, viz.,

where R(s) is the waiting-time distribution, k is a positive real number, and 0 <δ< 1. It has been shown (37) that
for a particular waiting-time distribution function, the solution for φ(t) can be obtained in a simple analytical
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Fig. 7. The time-domain response φ(t/τ) of typical dielectric systems, including the Debye exponential response; the dipolar
response with n = 0.8, m = 0.6; the carrier-dominated LFD response with n1 = 0.8, n2 = 0.2; and the flat loss with n = 1 (16).

form,

The relatively recent model (41,42) based on a cluster theory is perhaps the most sophisticated approach
to the explanation of observed relaxation phenomena in imperfect materials. The theory has been derived in
the framework of quantum mechanics and takes into account the many-body interactions present in condensed
matter.

The dipoles in the condensed phase may be regarded as connected with other dipoles through their
morphological structure, and it is unlikely that they can act independently as in the Debye model. Both solids
and liquids are composed of spatially limited regions possessing partially regular structural order, and such
regions may be called clusters (41). In any material many clusters may exist, and in the presence of coupling
between them an array may form displaying partial long-range order. Absence of coupling in the limit may lead
to a cluster gas. In contrast, systems with strong coupling between these arrays will produce an almost perfect
crystal. The model also considers two kinds of interactions, viz., intracluster and intercluster exchanges, and
each of these makes its own contributions to the final behavior of the complex susceptibility function.

A dipole in the intracluster motion may first relax exponentially (d− t/τ) as suggested in the Debye model.
In doing so, it will affect the field experienced by other neighboring dipoles in the cluster. These neighboring
dipoles, in turn, may also relax exponentially, thereby affecting the field experienced by the first dipole, and so
on. As a result, the overall effect will be a process with an exponential single dipole relaxation of the form e− t/τ

and concomitant t− n behavior for the relaxation of the cluster dipole moment. The intercluster exchange will
have a larger range than for the intracluster motion, and its origin is in dipoles near the edge of the cluster



24 DIELECTRIC PERMITTIVITY AND LOSS

Fig. 8. Schematic diagram of (a) intracluster motion and (b) intercluster exchange mechanism of Dissado–Hill model of
dielectric relaxation (29,36).

interconnecting to a neighboring cluster (29,36,40). It has been shown (41) that with the intracluster motion and
with the progressive involvement of an increasing number of elements with the progress of time, a fractional
power law (i.e., ωn − 1 behavior) for the susceptibility function may be obtained. Furthermore, the parameter n
(0 < n < 1) is related to the average cluster structure. Highly ordered structure has n-values approaching unity,
thus indicating an existence of completely correlated clusters. On the other hand, n→0 would signify a large
degree of disorder, and the limit n = 0 would yield Debye-like relaxation behavior.

The intracluster coupled mode may change to an intercluster mode as the spatial extent of the coupling
(wavelength) increases beyond the cluster size. The mathematical derivation of the susceptibility function for
the intercluster exchanges is similar to that of the intracluster motion, the intercluster exchanges now being
the perturbation of an ideal state. The result is also a fractional power law (41), giving an ωm behavior for the
susceptibility function. Once again the value of m is in the range 0 < m < 1, and m represents the degree of
structural order, this time on the larger scale of the cluster, i.e., the degree of ordering in the cluster array.
Hence, m→0 indicates an almost ideal lattice structure, whereas m→1 may give rise to a wide distribution of
clusters. The intracluster motion and the intercluster exchange mechanisms are schematically represented in
the Fig. 8 (28).
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For the intracluster motion the susceptibility function is given by (41)

where 2F1 is the Gaussian hypergeometric function. It should be noted that the asymptotic limits of Eq. (82)
are the universal relaxation law [i.e., Eqs. ((69)) and ((70))] (8).

The Dissado–Hill quantum-mechanical model (41) describes a QDC phenomenon as a partial conduction
process that is equivalent to the LFD phenomenon (8) described above. In the QDC process similar considera-
tions to those for the dipoles are given to systems containing charge carriers. The difference between a QDC
process and dc conduction at low frequencies is that the latter phenomenon is characterized by

and

where σdc is the frequency-independent dc conductivity. For the high frequencies, the Maxwell–Wagner inter-
facial polarization effect (1) may be used to predict a limiting behavior of the form

and

The Dissado–Hill model (41) suggests that the motion of all charge carriers within a cluster of correlation length
is cooperative, i.e., the motion of a charge carrier to a neighboring site is limited to the vacancy of such sites and
by other charges surrounding it. The model (41) divides the response into high-frequency (short-time) behavior
above a critical frequency ωc, where intracluster motion occurs, and low-frequency (long-time) behavior below
ωc, where intracluster motion exchange occurs. The intracluster motion, which is analogous to the flipping of
dipoles, is now replaced by the hopping of charges between available sites within a correlation length ξ, which
reduces the overall polarization of the cluster. The high-frequency response has the same functional form as
for the dipoles, i.e., ωn − 1, 0 < n < 1. Again the physical meaning of the exponent n is the average degree of
structural ordering within a cluster, and small values of n will correspond to irregularities in a cluster such
as might occur when an interstitial ion or a dislocation is present. The parameter n may also be related to
the entropy density per cluster constituent. The value of n may be independent of temperature for thermally
stable cluster structuring (41).

In the intercluster exchange there is a physical transport of charges between the clusters. The charge
motion is no longer correlated with the available sites of the donor cluster, but rather with those of the acceptor
cluster. For this case the susceptibility function is shown to be a fractional power law of the form ω− p, with
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0 < p < 1 (41). A small value of p indicates a set of clusters that are almost identical to each other, whilst a large
value of p is associated with a broader distribution of clusters in which intercluster exchanges can carry the
effective charge through many clusters over a long distance. In the presence of both the intracluster hopping
and intercluster charge transport, the susceptibility function of the system is given by (42)

The asymptotic forms of χ(ω) at high and low frequencies with respect to ωc are (42)

Once again, it may be noted that the asymptotic values of this model (41,42) are the same as those of the
universal-law model (8,15). The relations between the exponents n and p of these two models are

where n1 and n2 refer to the values of the parameters of the universal law above and below ωc, respectively
(41), i.e.,

Summarizing the above, it appears that all dielectric materials commonly investigated have the following
characteristics in terms of the indices n and m (41):

(1) n = 0, m = 1 express the Debye limit of an ideal liquid with independent cluster constituents in the system.
(2) n = 1, m = 0 occurs in an ideal crystal with no internal relaxation and zero loss.
(3) For real liquids n→0, m→1, and the average clusters are weakly bound.
(4) For plastic crystals, waxes, and viscous liquids, n ≈ 1/2 and m ≈ 1/2. These materials have clusters with

restricted structural range.
(5) For solids with interstitial impurities and ferroelectrics, n→0 and m→1. Ferroelectrics have weakly bound

clusters of dipole reversals, thus yielding a small value of n.
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(6) For imperfectly crystallized materials with topographical impurities, glasses, and vitreous polymer systems,
n→1 and m→0.

It may be noted that n + m = 1 will only occur when the intra- and intercluster displacements lie along
the same coordinates, i.e., in Lennard–Jones liquids (43) and hydrogen-bonded systems (44).

The cluster model (41,42) is in many ways the most rigorous description of relaxation of defects in a
dielectric system, and it offers an ab initio derivation of the entire spectral shape of the frequency dependence
of the susceptibility function.

Table 9 lists the theoretical concepts of dielectric relaxation models, discussed above.
Electric Equivalent Circuits for Dielectric Loss. A dielectric capacitor can be represented by an

electrical circuit where the dielectric loss is reproduced mainly by an equivalent resistance R in series or in
parallel with the capacitor and, occasionally, an inductance. A Debye system can be represented, for example,
by a resistance and a capacitance in series, whilst non-Debye behavior of dielectric susceptibility may be
constructed with more complex circuits.

For such cases, the concept of a universal capacitor (8) has been proposed, and the resulting frequency
dependence of the dielectric parameters is

It should be noted that for nonideal dielectric responses, the circuit elements will have frequency-
dependent dispersive properties. Figure 9 shows schematic representations of simple circuit combinations
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Fig. 9. Schematic representation of simple circuits formed as a combination of ideal, frequency-independent elements
(a–h), and some forms of presentation of dielectric data (i, j) (8,36,45).

of ideal, frequency-independent elements and some forms of presentation of dielectric data. The frequency
response of lossy capacitors of the type represented by Eq. (89) is shown in Fig. 10 (8,36,45). The association of
universal capacitors and dispersive circuit elements is schematically represented in Table 10 (29).
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Fig. 10. The frequency response of circuits involving universal lossy capacitors of the type Cn = B (iω)n − 1: (a) response
of a series combination of Cn with a resistor R; (b) calculated frequency dependences for a range of values of the exponent
n; (c) the response of the series–parallel circuit shown, with two universal capacitors, one of which corresponds to a series
barrier region, while the other forms the equivalent of a volume region with its parallel conductance Gv. The values of
parameters assumed in the calculation are as follows: Bv = 1, Gv = 10− 6, nv = 0.85, Bs = 1, ns = 0.4. At very low frequencies
the volume behavior is dominated by the conductance, and the response is that of a series combination of Cb and Gv, which
is therefore closely similar to that seen in (a) (8).

Relaxation Behavior in Materials. The relaxation phenomena have been studied for a wide range of
materials, from covalent, ionic, and van der Waals crystals at one extreme through glasses, liquids containing
suspensions, solid synthetic polymers, and p–n junctions at the other (41).

The permittivity of nonpolar gases at normal pressure is close to unity, and the Clausius–Mossotti equation
(23) adequately describes its variation with moderate density changes (46). At high pressures the molar
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polarization of gases deviates from the Clausius–Mossotti equation. The molecular polarizability is enhanced
by the attractive forces between the molecules, whereas the repulsive forces decrease it.

Centrosymmetric molecules do not possess dipole or octupole moments, but quadrupole moments may be
present in some gases, e.g., hydrogen, carbon dioxide, carbon disulfide, oxygen, nitrogen, benzene, and ethylene.
Tetrahedral molecules, on the other hand, have zero dipole and quadrupole moments (e.g., methane and carbon
tetrachloride) (46). The presence of higher dipole moments in a molecule induces moments on its neighbors
and produces deviations from the Clausius–Mossotti equation. Polar gases display temperature dependence of
the orientational polarization, and their dielectric loss spectra follow the Debye relaxation behavior in which
partial orientation of the permanent dipoles occurs under an externally applied field. Polar gases absorb energy
in the microwave region through two processes: rotational absorption and unquantized molecular collision. The
high-frequency dielectric properties of gases have been well reviewed (47,48) and will not be discussed further
here.

There is as yet no exact theory of liquids, which have been treated either as dense gases or as disordered
solids. The dielectric relaxation in polar liquids (dilute solutions) with spherical dipolar molecules can be
interpreted in terms of the orientation of individual dipoles. In the Debye process, it is assumed that a spherical
dipolar molecule obeys Stokes’s law, which states that the relaxation time is proportional to the shear viscosity
of the liquid and to r3, where r is the radius of the sphere. However, the relaxation time must depend on the
viscosities of both the solvent and the solute. The molecular radius calculated from the relaxation time with
the Debye model is usually too small. Improved fit to the relaxation behavior of liquids may be obtained with
empirical formulae [Cole–Cole (20), Davidson–Cole (21), Havriliak–Negami (23,24)] and the universal law (8).

The intermolecular forces in associated liquids are stronger and perhaps more directional in some cases
than in other liquids. Water is probably the most important associated liquid. The dielectric relaxation behavior
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of water agrees well with the Cole–Cole model (20) with α = 0.02 ± 0.007 (45,49). It has been suggested (50) that
the kinetic process responsible for the dielectric relaxation in water is cluster formation. Water is composed
of fluctuating clusters of bonded molecules with unbonded molecules between them. Individual molecules are
able to move frequently from one cluster to another, and their dipole orientation will depend on the number of
hydrogen bonds they form (45,50). It should be noted that the clustering is a random process and that it is not
possible to subdivide water molecules into groups that remain the same over a period of time longer than the
average relaxation time, ≈9.6 × 10− 12 s, which is perhaps related to the OH stretching vibration at 1.10 × 1013

Hz. This vibration is affected by the hydrogen bonding. Alcohols have a wide distribution of relaxation times,
which tend to follow the empirical Cole–Cole (20) and Davidson–Cole (21) models. The dielectric properties of
liquids have been well reviewed elsewhere (45,50) and will not be discussed further here.

A perfect alkali halide ionic crystal such as NaCl can only be polarized by perturbing its thermal vibrations.
However, in practice all crystals contain dislocations, i.e., polarizable flaws, which do not always distort the
lattice, particularly when the ionic radii are similar (45). The dielectric relaxation behavior in such materials
is complicated by the presence of their ionic and electronic conductivities. For these materials the relaxation
time τ tends to be long (≈1 s) at room temperature, and it obeys

where Ea is the thermal activation energy and A is a constant. It is of interest to note that the mechanical
relaxation time of these materials is often half the dielectric one, neglecting electrostatic interactions. This
implies that the shear modes of polarization relax twice as fast as the tensile ones (45). The dielectric behavior
of alkali halides with divalent cations has been reviewed extensively by Meakins (51).

Organic semicrystalline and amorphous polymers are practical electrical insulating materials that consist
of macromolecules. Such molecular solids have both covalent and van der Waals bonds, which make the
molecular motions easy in comparison with entirely covalently bonded solid dielectrics. The activation process
in these materials also follows an Arrhenius relationship of the form of Eq. (90) except at the glass transition
temperature Tg. The relaxation process at Tg is approximated by the William–Landel–Ferry relationship (52),

where τ0 is a constant, and C1 and C2 are also constants with values ≈17 and ≈51 respectively (46). The
relaxation time τ decreases with increasing temperature, as may be observed in isochronal plots of depolarizing
current against temperature (53).

The relaxation behavior of polymers is related to several complex physical parameters, viz., shear modulus,
heat capacity, permittivity, and refractive index, which exhibit transitions with increasing temperature (54)
(see Fig. 11). In an amorphous polymer the principal transition is the glass transition at a temperature Tg,
which is labeled as the α-transition at Tα in Fig. 11. Above Tg the free volume decreases to a critical value, thus
severely restricting the segmental motions of the polymer chains. In a semicrystalline polymer there will be
an additional transitional phenomenon at the melting temperature Tm. There are other secondary transitions,
β and γ in order of decreasing temperature, i.e., Tα > Tβ > Tγ . For example, in polyethylene, the α, β, and γ

relaxations at 1 kHz occur at 77◦, −13◦, and −113◦C, respectively. The α relaxation is attributed to motions in
the crystalline phase, and the β relaxation arises from primary motions of the chain branches in the amorphous
phase. The γ relaxation may be associated with a combination of processes including defect migration and the
reorientation motion in the amorphous phase (55). The α, β, and γ relaxations in polypropylene occur at 80◦,
0◦, and −80◦C. Table 11 gives the glass transition temperatures Tg of some common polymers (54).
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Fig. 11. Schematic diagram of the temperature dependence of complex properties of polymers (54).

Experimental Evidence of Frequency Response and a Comparison with the Cluster Models.
Although ideal Debye response in ferroelectric single crystals has been observed (56), there exist, in general,
very few examples of such responses in condensed matter. Although water may be regarded as a classic
dielectric, its dielectric behavior displays a broadened relaxation peak that departs from a true Debye relation
(8,57). Near-Debye relaxation responses have also been observed in silicon p–n junctions (8). It may not be
appropriate to discuss experimentally observed dielectric dispersion data with the Cole–Cole, Davidson–Cole,
and Havriliak–Negami models, which are basically empirical in nature. However, relaxation spectroscopy can
provide considerable information on dielectric materials from the measurement of the shape of the loss peak as
well as the relaxation rate and amplitude. The shape of a loss peak is clearly characterized by the parameters
m and n of the Dissado–Hill (41,42) and Universal-law (8) models. This procedure has been employed to
demonstrate the presence of cluster structure in (i) the viscous liquid produced from the glassy state above
a glass transition (58), (ii) plastic crystal phases (59), and (iii) ferroelectrics (60,61). The cluster size becomes
strongly temperature-dependent in ferroelectrics near the Curie temperature (61). The amplitude and the
relaxation rate are related (60,61,62). The above considerations also hold true for liquid crystals (60,61,63).
Figure 12(a) and 12(b) show the observed dielectric response of poly-r-benzyl-L-glutamate (PBLG) and poly-
r-methyl-L-glutamate (PMLG), respectively (42). The loss peaks in both cases are broad with values of n and
m in conformity with the cluster model (41). Table 12 gives the values of shape indices n and m for PBLG
in different states, from which it may be observed that as the local order decreases in solution the value of n
decreases, and that of m increases (41,63). These examples cover some typical cluster structures with different
values of m and n (41).

It is suggested that the quantum-mechanical cluster model provides explanations for the relaxation
dynamics in materials that show non-Debye susceptibility behavior over a wide frequency range. The cluster
model shows that the free energy of a cluster is held constant and its entropy evolves at the expense of its
internal energy (i.e., enthalpy), resulting in a power-law relaxation process.
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Application of Dielectric Spectroscopy in Detecting Aging In Insulating Polymers

Dielectric Aging and Treeing. Polymers experience aging when subjected to a mechanical or electric
stress over an extended period of time. The aging produces irreversible deterioration of physical, chemical, and
dielectric and other electrical properties, which may eventually lead to electrical breakdown of an insulating
polymer. It must be stressed that physical and chemical aging may occur independently without the application
of an external electric field. However, the aging process may be accelerated by the field in conjunction with
other factors.

The mechanisms for electrical breakdown have been extensively reviewed in recent years (64). The
chemical aging models have also been reviewed (65) and will not be discussed in detail here. The present
section provides in brief the results of a study of aging of polyethylene under an ac field in humid environment
by dielectric spectroscopy.

Dielectric aging in dry environment at moderate to high electric field appears to begin mostly at imper-
fections in materials where the local field tends to be enhanced. At such locations, treelike electrical channels
may form and propagate due to the occurrence of partial discharges. Space charges play a significant role in
the initiation and growth of electrical trees (66). Water trees in polymeric insulators with ac fields in humid
environment may arise from microphase separation in partially oxidized polymers as a result of field-induced
electrochemical processes (67). It has been shown that water trees in cross-linked polyethylene consist of tracks
of hydrophilic carboxylate salts in the amorphous phase of the polymer (68,69,70). The dielectric aging and the
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Fig. 12. Master curves for the dielectric response of oriented films of (a) PBLG and (b) PMLG. The theoretical spectral
shape in the plots has been determined with the values (a) m = 0.28, n = 0.87; (b) m = 0.24, n = 0.92. Plot (a) is scaled at
333 K, and (b) at 299 K. In both, the small magnitude of the dispersion has limited the accuracy with which the real part
of the susceptibility could be determined for the higher frequency values (42).

water-tree growth incorporate electrochemical processes following the electrophysical process of water and ion
diffusion in the polymer (68). It has been suggested that the electrochemical degradation of polyolefins associ-
ated with aging and water treeing involve five fundamental steps: (i) electrolysis of water, in which oxygen and
hydrogen peroxide radicals are formed, both being oxidizing agents, (ii) initiation of degradation, (iii) catalysis
of degradation by metal ions, (iv) chain scission, resulting in the formation of ketones and carboxylate ions,
and (v) conversion of ketones to carboxylate ions (71). Electric-field-driven oxidation has also been proposed by
other workers (64,72,73,74).

The electrooxidation occurs in the local field direction, and water-tree tracks are formed by chain scission
in the amorphous regions of the polymer. The track region is hydrophilic. As a result, water molecules in



DIELECTRIC PERMITTIVITY AND LOSS 35

the polymer matrix condense to form liquid water in the track, which then transports ions to provide further
oxidation at the tip of the track. Thus a track propagates itself in a similar manner to that of a self-propagating
electrical tree or a gas breakdown channel, although at a different rate (71).

It may thus be expected that aging and its progress due to the electrooxidation of a polymer in a humid
environment may be detected by a study of its dielectric behavior over a wide frequency range.

Evidence of Aging in Frequency Response. Figure 13 shows the frequency response of the real and
the imaginary parts [χ′(ω) and χ′′(ω), respectively] of the complex susceptibility χ(ω) of unaged and cross-linked
polyethylene (XLPE) cable samples and samples ac-aged (6 kV/mm, 50 Hz) for up to 6000 h in water at room
temperature (36,75). It may be observed from the fitted response that there are three relaxation processes: (i) a
high-frequency (HF) loss peak at ∼5 × 105 Hz, (ii) a medium-frequency (MF) loss peak at ∼1 Hz, and (iii) a low-
frequency (LF) loss peak at ∼10− 4 Hz. It is suggested that the HF loss peak is due to bound water containing
ions. It has been stated that in principle there are two relaxations in water: the fluctuations in polarization
and the dissociation of water into ions. The latter relaxation occurs in the gigahertz range, whereas the former
one may be observed at ∼105 Hz. For example, for a solution of MgSO4 in water at 20◦C (76), the following
chemical reactions of the electrolyte may occur, each possessing its own relaxation characteristic:

and
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Fig. 13. Dielectric behavior of XLPE cable samples, unaged and ac-aged (6 × 106 V·m− 1, 50 Hz, room temperature, water)
up to 6000 h (36).

The first process is slower than the second, for which the relaxation peak occurs at ∼2 × 105 Hz, which is
in agreement with the location of the HF peak in Fig. 13 (45,76). The second chemical reaction is more rapid
and is outside the experimental range of Fig. 13. The HF peak (Fig. 13) is observed to be fairly independent
of the aging time. It has also been shown that the diffusion coefficient of water vapor in polyethylene is ≈1.4
× 10− 6 m2/s and is independent of electrical stress (77,78). Furthermore, polar impurities in polyethylene
have been alleged to attract water (70), which will be bound in the polymer. In view of the above observations,
the origin of the observed HF peak (Fig. 13) may be attributed to the ions in bound water, as stated before
(28,29,36).

XLPE cable samples contain cross-linking by-products (such as cumyl alcohol and acetophenon, as well
as antioxidants), which may diffuse out of the cable with the progress of time. In addition, antioxidants react
chemically with the oxidation products in the sample. The MF loss peak at ∼1 Hz appears to increase slightly
(Fig. 13) with continued aging. It also becomes broader, overlapping with the LF peak. It is suggested that the
MF peak may originate from the presence of the polar moieties discussed above (28,29,36).

The LF loss peak (Fig. 13), occurring at 10− 4 Hz, changes significantly with aging. It may be noticed that
the magnitude of this peak at first rises sharply, up to an aging time of 1000 h. Subsequently it decreases
progressively, although its magnitude is still greater after 6000 h of aging than that of the unaged sample.
Furthermore, the LF loss peak becomes broader with increasing aging time.

The LF loss peak amplitude increases initially because of the formation of free radicals. It may be argued
that a competitive process involving the production of polar moieties due to electrochemical reactions and
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Fig. 14. Analog equivalent circuits of unaged and ac-aged XLPE cable samples (28,36,75).

injected space charges establishes itself with increasing aging time. Eventually, the space-charge component
becomes dominant as the polymer becomes more conductive. The relaxation loss behavior thus shows the
presence of intracluster interaction in the MF to HF region and of intercluster charge motion in the low-
frequency region, the latter phenomenon becoming dominant with continued aging (29,36).

Figure 14 (28,36,75) shows a possible electrical equivalent circuit for the unaged and electrically aged
XLPE samples in a humid environment. The dielectric relaxation behavior of the unaged XLPE cable sample of
Fig. 13 may be represented by a parallel-connected network of (i) three series-connected frequency-dependent
resistances R1, R2, and R3 and (ii) three dissipative capacitances C1, C2, and C3, giving three dipolar peaks in
the LF, MF, and HF regions. The QDC response in the LF region with progressive aging has been taken into
account by removing the resistance R3 from the circuit. The observed broadening of the MF peak with aging
will cause R2 to diminish with aging, although it will still have a nonzero value. The values of R1 and C1 for
the HF peak should not change significantly, as the HF peak remains unaffected by field aging. Figure 14 also
incorporates the very high-frequency capacitance C∞ and G0 in parallel. The latter parameter represents any
dc conduction mechanism in the dielectric (75).

It is thus suggested that the dielectric spectroscopy, particularly in the LF range, may be a convenient tool
in identifying aging (79). Furthermore, the Debye relaxation model (3) and the intracluster and intercluster
many-body interaction model (41,42) may provide explanations for the observed relaxation behavior at a
molecular level.
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Electrochemistry, 57: 103–118, 1957.
77. J. C. Chan S. M. Jaczek The moisture absorption of XLPE cable insulation under simulated service condition, IEEE

Trans. Electr. Insul., EI-13: 194–197, 1978.
78. H. Li The association of ions and electrical properties with water treeing in low density polyethylene, PhD Thesis,

University of Strathclyde, UK, 1993.
79. D. K. Das-Gupta Conduction mechanisms and high field effects in synthetic insulating polymers, IEEE Trans. Electr.

Insul., 4: 149–156, 1997.

D. K. DAS-GUPTA
University of Wales School of Electronic
Engineering and Computer Systems


