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NOISE AND INTERFERENCE MODELING

Noise and interference are inevitable realities of collecting
data or taking measurements in the real world. In some
cases, the noise level may be so insignificant as to allow the
engineer to ignore its effects. However, this situation gener-
ally only occurs in very controlled circumstances, such as
those in the laboratory or when signal powers are exception-
ally large relative to the noise.

Unfortunately, it is more generally the case that the noise
and interference cannot be ignored. Rather, design and analy-
sis must be done with careful attention to the corruptive ef-
fects of these disturbances. One way to ensure an effective
final design is to have accurate models of the noise compo-
nents of the signals of interest. Examples of the impact of
high and low levels of noise on the observation of a sinusoid
are shown in Fig. 1.

Modeling these effects can range from being relatively
straightforward to being rather difficult if not impossible. To
assist in this endeavor, it is the purpose of this article to de-
scribe various methods of characterizing noise and interfer-
ence signals and to elaborate on some of the most popular
models in practice today.

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright # 1999 John Wiley & Sons, Inc.
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Figure 1. Plots of a common sinusoid embedded in low-level noise and high-level noise.

STATISTICAL DESCRIPTIONS OF NOISE If the joint distribution of the noise is shift invariant, that
is, if

Because of its random nature, characterizing noise necessar-
ily requires a variety of statistical methods. For applications
involving the observation of continuous time or sampled sig-
nals, the most complete statistical description of the noise

Pr[x(t1) ≤ x1; x(t2) ≤ x2, . . ., x(tn) ≤ xn]

= Pr[x(t1 + τ ) ≤ x1; x(t2 + τ ) ≤ x2, . . ., x(tn + τ ) ≤ xn] (2)
process is the so-called joint distribution of the process (1).
Throughout this article we will denote an arbitrary noise or

for all collections of times and vectors x and for all choices ofinterference signal by x(t).
n, then x(t) is said to be strictly stationary. In this case, the
entire statistical description of the process is a function of

Definition 1 The nth order joint distribution of x(t), denoted only the relative locations of the samples with regard to one
Fx(x: t), is given by another rather than the absolute locations of the time

samples.
Fxxx(xxx;ttt) = Pr[x(t1) ≤ x1 x(t2) ≤ x2, . . . x(tn) ≤ xn] (1) Unfortunately, in general, determining Fx(x; t) for large

values of n is almost always impractical. However it may of-
where the length n vectors x and t represent the collections ten be the case that one has sufficient information so as to be
�x1, x2, . . ., xn� and �t1, t2, . . ., tn�, respectively, and where, able to compute this important function for values of n � 1 or
for example, Pr[x(t1) 
 x1] is the probability that the signal 2. In this case we may introduce a weaker form of stationarity
x(t) at time t1 is less than the constant x1. For Fx(x; t) to be that has many important applications and uses in practice.
completely defined, it must be computed for all collections of This type of characterization is often referred to as the so-
times t1, t2, . . ., tn, vectors x, and all integer values of n. called second order description of x(t).

Under this characterization we seek to describe the mean
and correlation of the noise signal rather than the instanta-In modeling noise, one often wishes to know if the statisti-
neous probabilities. Prior to presenting this definition, it iscal characterization of the signal x(t) changes with time. The
advantageous for us to supply the following definitions whichmost rigorous method for determining this important prop-

erty is derived directly from the joint distribution. will be used throughout the remainder of this article:
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Definition 2 The amplitude probability density function of Power Spectral Density
the signal x(t) is given by

Engineers are often more comfortable in describing or analyz-
ing signals in the frequency domain as opposed to the statisti-
cal (or time) domain. This is equally true when dealing with
random signals. However, random signals pose a few compli-

fx(x; t) = ∂Fxxx(x; t)
∂x

for all choices of x and for all values of t (3)
cations when one attempts to apply spectral techniques to
them. This is a consequence of the fact that each time onewhile the joint amplitude density function of x(t) is given by
makes an observation of this signal, the so-called noise real-
ization (observation) is different and will therefore likely have
a different spectrum. Moreover, many of these potential noise
realizations might have infinite energy, and will therefore not

fxxx(x1, x2; t1, t2) = ∂∂Fxxx(x1, x2; t1, t2)

∂x1∂x2

for all choices of x1 and x2 and for all t1 and t2 (4)
have well-defined Fourier transforms.

Because of these complicating factors, we must considerThese two definitions completely characterize all of the first-
the power spectrum (rather than the standard energy spec-and second-order properties of x(t) (e.g., mean values, signal
trum) averaged over all possible realizations to obtain aenergy and power, correlations and frequency content). In
meaningful definition of the spectrum of a random signal.particular, the amplitude density function describes the sta-
This approach leads to the well-known and oft-used powertistical range of amplitude values of signal x at time t. Fur-
spectral density of the noise or interference as the basic fre-ther, one should recall from basic probability theory (2) that
quency domain description of x(t).the density functions f x(x; t) and f x(x1, x2; t1, t2) can be readily

To begin, assume that we only observe the noise signalobtained from the nth joint distribution of the signal x(t)
x(t) from t � �T to t � �T (we will later let T approachgiven in Eq. (1) through simple limiting evaluations. Given
infinity to allow for the observation of the entire signal). Thethese two density functions, we may define the second-order
Fourier transform of this observed signal isdescription of the noise or interference signal as follows:

Definition 3 The mean or average value of the noise as a
function of time is defined as

XT (ω) =
∫ T

−T
x(t)e− jωt dt (7)

We may then write the squared magnitude of XT(�) as follows:µx(t) = E[x(t)] (5)

where the expectation is taken with respect to f x(x; t). The
correlation function of the noise signal is defined as |XT (ω)|2 =

∫ T

−T

∫ T

−T
x(t1)x∗(t2)e− jω(t1−t2 ) dt1 dt2 (8)

Rx(t1, t2) = E[x(t1)x∗(t2)] (6) As described above, for the definition to have any utility,
we need to compute the average magnitude squared powerand where the above expectation is taken with respect to
spectrum, which requires that we must evaluate the expectedf x(x1, x2; t1, t2), and where x* denotes the complex conjugate of
value of �XT(�)�2 and then normalize this expectation by thex(t).
length of the observation of x(t) (this prevents the spectrum
from blowing up with power signals). This leads to the follow-If the mean function is a constant with respect to time (the
ing expression:average value of the noise does not change with time) and

the correlation function of the noise is a function of only the
difference of times and not their absolute locations, that is,
Rx(t1, t2) � Rx(0, t2 � t1), then the noise is said to be wide-sense
stationary. In this case we simplify the notation by letting the
mean be � and the correlation function be given by Rx(�)

1
2T

E[|XT (ω)|2] = 1
2T

∫ T

−T

∫ T

−T
Rx(t1 − t2) dt1 dt2 (9)

=
∫ T

−T

[
1 − |τ |

2T

]
Rx(τ ) dτ (10)

where � � t2 � t1.
A signal x(t) being wide-sense stationary implies that the where the second equation arises from a transformation of

average statistical properties as measured by the mean and variables. The final step in the definition is to allow the obser-
the correlation function do not depend on when one observes vation window to grow to (��, ��), that is, to take the limit
the noise and interference. This is a very beneficial property of Eq. (10) as T tends to infinity. From this we arrive at the
since designers attempting to combat this noise are not re- following definition which holds for all wide sense stationary
quired to include an absolute clock in their design, rather a random signals.
fixed design will always be optimal.

As an important observation, one should note that if the Definition 4 The power spectral density of a wide sense sta-
noise happens to be strictly stationary then the noise will also tionary random signal x(t) is given by
be wide-sense stationary. This is a direct consequence of the
fact that the mean and correlation functions are expected val-
ues taken with respect to the first- and second-order joint

SX (ω) =
∫ ∞

−∞
Rx(τ )e− jωτ dτ (11)

density functions which, by supposition, are shift invariant.
In general, the converse is not true. However, we will see Note that as a consequence of the preceding analysis, the

power spectral density turns out to simply be the Fourierlater that among the most popular models for the noise, this
will, in fact, be the case. transform of the correlation function. Thus the correlation
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function of a random signal contains all the information nec- where �(�) is the familiar Dirac delta function (3). Here one
should observe from the above equation that white noise hasessary to compute the average spectrum of the signal and,

furthermore, there is a one-to-one relationship between the zero correlation between all time samples of the signal, no
matter how close the time samples are to one another. Thisaverage time dependency between samples (as measured by

the correlation function) and the average frequency content does not imply that all samples of white noise are indepen-
dent from one another, rather that they simply have zero cor-in the signal.

The term ‘‘power spectral density’’ arises from the fact relation between them.
Unfortunately, by integrating the power spectral densitythat SX(�) behaves like a probability density function. First,

just like a standard density function, it is always non-nega- over all frequencies we observe that the total power in white
noise is infinite, which, of course, requires more energy thantive, and second, when integrated over a certain frequency

range one obtains the average power of the signal over that exists in the entire universe. Therefore, it is physically im-
possible for white noise to exist in nature. Yet, there arefrequency range. That is, computing the integral
many noise processes which have essentially a constant
power spectral density over a fixed and finite frequency
range of interest, which suggests that white noise may be

∫ −ω1

−ω2

SX (ω) dω +
∫ ω2

ω1

SX (ω) dω (12)

an appropriate and simplifying model. Yet, the real utility
results in the total power in the signal x(t) between the fre- of the white noise model is in describing other ‘‘nonwhite’’
quencies �1 and �2 (Note: we must consider both positive and noise signals.
negative frequencies.) This is just like the situation when one To demonstrate this, consider the output of a linear time-
integrates a probability density function over a particular invariant system with frequency response H(�) to a white
range to obtain the probability that the random variable will noise input. Under very general conditions, it can be shown
fall into that range. (2) that this output, given by y(t), is a noise signal with power

Now given these few basic definitions, we may proceed to spectral density given by
characterize various forms of noise or interference. From the
statistical perspective, what differentiates various types of
noise are, first and foremost, the specific joint distribution of SY (ω) = N0

2
|H(ω)|2 (15)

the process. Since these joint density functions are exceed-
ingly difficult to obtain, we are often relegated to comparing Now, conversely, let us assume that we observe some non-
and classifying noise signals through fX(x; t) and fX(x1, x2; t1, white noise signal with power spectral density SY(�). If � ln
t2), as well as the mean and correlation function or power SY(�)/1 � �2 d� � ��, then y(t) can be modeled as the output
spectral density. of some linear time invariant system with a white noise input.

That is, there will exist some well-defined system with fre-
quency response given by H(�) such that N0/2�H(�)�2 � SY(�).NOISE MODELS
These processes are, in fact, physically realizable and consti-
tute all random signals seen in practice. Thus, from a spectralWhite Noise
perspective we may replace essentially all random signals

White noise is a model used to describe any noise or interfer-
seen in nature by a linear system driven by a white noise

ing signal which has essentially equal power at all frequen-
signal.

cies. More precisely, signals with a power spectral density
given by

Gaussian Noise

Gaussian noise is the most widely used model for noise orSX (ω) = N0

2
for all frequencies (13)

interference both in practice and in the scientific literature.
There are two primary reasons for this: (1) many observationsare said to be white because, similar to white light, these sig-
in nature follow the Gaussian law, and (2) the Gaussian den-nals have equal power at all (visible) frequencies. Through
sity function is mathematically easy to analyze and manip-simple integration it is easily shown that the amount of power
ulate.contained in white noise over an angular frequency range of

The reason that so many natural observations areB radians per second is N0B. (Note that the factor of 2 in the
Gaussian arises from the so-called Central Limit Theorem.definition of the power spectral density accounts for the two-
This theorem is stated as follows:sided nature of the Fourier transform.)

It is important to note that this definition of white noise is
not an explicit function of either the amplitude density func- Theorem 1 Assume that Zi are independent, and identically
tion or the joint density function given in Eqs. (3) and (4), but distributed random variables, each with mean �Z and finite
rather a function of only the power spectral density of the variance �2

Z. Then the so-called ‘‘normalized sum’’ given by
signal. Thus, any noise source, irrespective of the specific
forms of fX(x; t) and fX(x1, x2; t1, t2) can be white noise, so long
as the power spectral density is a constant. Yn

1√
n

n−1∑
i=1

Zi − µZ

σZ
(16)

The corresponding correlation function of white noise is ob-
tained through the inverse Fourier transform as

approaches a standard Gaussian random variable with mean
equal to zero and unit variance, irrespective of the original
distribution of the random variables Zi.

Rx(τ ) = N0

2
δ(τ ) (14)
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What this very powerful theorem establishes is that if a Now, let us extend this by considering the limiting case
where the length of time between steps tends to zero (T � 0).particular observation of interest is a combination of infinitely
It is easy to show that E[x2(nT)] � ns2 � ts2/T for t � nT. Tomany small and independent random components, then the
ensure that we do not have a variance going to zero (thecombination, when properly normalized, is Gaussian Random
walker stops) or blowing up (not physically realizable), let usvariable with density function given by
also add the condition that the size of the step be proportional
to the square root of the time between steps, that is s2 � �T.
Then the well-known Wiener Process is the signal x(t), which

fxxx(x; t) = 1√
2π

e−x2/2 (17)

is the limit of the random walk under these conditions. Exam-
ples of this are given in Fig. 2, where we have depicted real-This might suggest that all natural observations are
izations from three succeeding approximations to the WienerGaussian since most physical phenomena are impacted by
process. In all figures, we have let the proportionality con-many random events; however, extensive experimental re-
stant � � 1. In Fig. 2(a) T and s equal 1, in Fig. 2(b) T � 0.1sults establish otherwise (4). Therefore, in addition to various
and s � �0.1, and in Fig. 2(c) T � 0.01 and s � 0.1. One canforms of Gaussian noise, later in this article we will present
see that as the approximation gets closer to the limiting valuea number of other ‘‘non-Gaussian’’ noise models.
it becomes smoother (more continuous) and begins to exhibit
long-term trends. This, of course, makes sense because theDefinition 5 A random noise signal is said to a Gaussian
steps are getting much smaller and, as a consequence, itsignal if all nth-order joint density functions are jointly
takes longer periods of time for the walker (signal) to changeGaussian, that is, if all joint density functions are of the form
positions (values).

It should be pointed out that as T � 0, the position of the
random walk at any point in time is the sum of infinitelyfxxx(xxx) = 1

(2π)n/2
p

det(KKK)
exp

[
−1

2
(xxx − µµµ)TKKK−1(xxx − µµµ)

]
(18)

many random steps, and therefore by the Central Limit Theo-
rem, the location at any point in time is a Gaussian randomwhere the vector � and the matrix K represent the mean vec-
variable with zero mean and variance given by �t.tor and covariance matrix (2), respectively, of the vector

To compute the correlation function of the Wiener process,x(t1), x(t2), . . ., x(tn). we note that x(t2) � x(t1) is independent of x(t1) due to the fact
that, by supposition, the random movements between times

The important feature here is we see that for any value t1 and t2 are independent of the random movements up to
n, the joint statistics of a Gaussian signal are completely de- time t1. From this it must be that
termined from the mean and correlation functions of x(t). Fur-
thermore, when the signal is in addition wide-sense station- E[(x(t2) − x(t))x(t1)] = E[x(t2) − x(t1)]E[x(t1)] = 0 (20)
ary, then the joint statistics are shift invariant, and as such,

from which it is easy to show that RX(t1, t2) � �t1 wheneverthe signal is also strictly stationary.
t2 � t1. Determining the correlation for the case that t1 � t2Gaussian noise is further differentiated by the nature of
results in the final value for the correlation function of thethe mean functions and the correlation functions. When the
Wiener process ascorrelation function is given by RX(�) � N0/2�(�), then the sig-

nal is said to be Gaussian White Noise, which is the single
RX (t1, t2) = α min(t1, t2) (21)most common model in noise analysis. In this case, each time

sample will be independent from all others and have infinite One can readily see that the Wiener process is not wide-sense
variance. Other well-known Gaussian models which we de- stationary and therefore does not have a computable power
scribe below are Wiener noise, Thermal noise, and Shot noise. spectral density. Nevertheless, it is a highly useful, physically

motivated model for Gaussian data with relatively smooth
Wiener Noise realizations and which exhibits long-term dependencies.

The Wiener Process is the limiting case of a random walk
Thermal Noisesignal. A random walk is a popular abstraction for describing
Thermal noise is one of the most important and ubiquitousthe distance an individual is from home when this individual
sources of noise in electrical circuitry. It arises primarily fromrandomly steps forward or backward according to some proba-
the random motion of electrons in a resistance and occurs inbility rule. The model is as follows: Every T seconds an indi-
all electronic circuits not maintained at absolute zero degreesvidual will take a length s step forward with probability 1/2
Kelvin. This resulting low-level noise is then scaled to sig-or a length s step backward with probability 1/2. Therefore,
nificant levels by typical amplifiers used to amplify other low-at time nT, the position of the random walk will be x(nT) �
level signals of interest.ks � (n � k)s, where n is the total number of steps taken, and

To derive a model for Thermal noise, let us assume thatk is the number of forward steps taken. For large values of
we have a conducting rod of length L and cross-sectional areatime, it can be shown using the DeMoivre–Laplace Theorem
A for which we expect to measure low-level random voltages.(2) that
Let Vx,k(t) denote the component of velocity in the x direction
of the kth electron at time t. The total current denoted by
I(t) is the sum of all electron currents in the x directionPr(x(nT ) = ks − (n − k)s) ≈ 1

p
nπ/2

e−(2k−n)2/2n (19)

or that the location of the walker is governed approximately
by a Gaussian law.

I(t) =
nAL∑
k=1

ik(t) =
nAL∑
k=1

q
L

Vx,k(t) (22)
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Figure 2. Plots of realizations from numerical approximations to the Wiener process for various
values of s and T. In all cases, � � 1. In (a), T � 1 and s � 1, in (b) T � 0.1 and s � 0.3162 and
in (c) T � 0.01 and s � 0.1.

where n is the number of electrons per cubic centimeter and where R is the resistance of the rod. Recognizing that E(t) �
q is the charge of an electron. Let us assume that the average RI(t), we can easily obtain the correlation function of the volt-
velocity of each electron is zero and that all electrons behave age as
independently of one another and have an identical distribu-
tion. From this, it is easy to show that the correlation function
of the current is given by RE (τ ) = kT Rαe−α|τ | (25)

Note that as the intensity of the electron collisions � in-
RI (τ ) = nAq2

L
E[Vx(t)Vx(t + τ )] (23)

creases, the correlation function begins to approach a Dirac
where we have dropped the subscript k for convenience. As- delta function, implying that the spectrum of thermal noise
suming that electron collisions occur according to a Poisson begins to better approximate white noise. Furthermore, we
law with intensity given by � (2) and that the average vari-

also observe that as we lower the temperature of the circuitryance of the velocity of an electron is given by kBT/m, where
T, the power RE(0) in the thermal noise deceases proportion-kB is Boltzmann’s constant and m is the mass of an electron
ally. This, of course, suggests that if one wants to process very(from the equipartition theorem for electrons), it can be
weak signals, for example, deep space signals, then the cir-shown that
cuitry must be cooled using some form of coolant. The Central
Limit theorem can be used to show that the voltage is very
well approximated by a Gaussian process.

RI (τ ) = kT
R

αe−α|τ | (24)
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Shot Noise

Shot noise is used to model random and spontaneous emis-
sions from dynamical systems. These spontaneous emissions
are modeled as a collection of randomly located impulses
(Dirac delta functions) given by z(t) � �i �(t � ti) where the
locations of the impulses in time (ti) are governed by a Poisson
law with intensity � which is then driven through some
system.

The output of a system with impulse response h(t) to the
input z(t) is said to be ‘‘shot noise.’’ From the convolution theo-
rem, it is easily shown that this output is

x(t) =
∑

i

h(t − ti) (26)

Using the properties of the Poisson law, is is easy to show
that the mean value of shot noise is �x � �H(0), where H(�)
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is the frequency response (Fourier Transform) of the system.
Figure 3. Plots of various specific amplitude density functions fromThe power spectral density function of x(t) is given by
the Generalized Gaussian model.

SX (ω) = λ2H2(0)δ(ω) + λ|H(ω)|2 (27)

tails which decay to zero faster than the Gaussian tail giveThus the frequency content of the shot noise is determined
rise to data sets with fewer large values in the noise than oneentirely by the system h(t) and the intensity of the Poisson
might see with Gaussian data. On the other hand, when theprocess, that is, average rate of emissions. As before, because
tail of the amplitude density decays slower than that of thex(t) at large values of time is composed of the superposition
Gaussian, one is more likely to see large random values of theof many random elements [see Eq. (26)] x(t) is often modeled
noise signal x(t) than one would with Gaussian data. So, un-as a wide-sense stationary Gaussian random process with
like differentiating noise models based on the spectrum of thepower spectral density given by Eq. (27).
noise, as seen in the preceding section, with non-Gaussian
noise we typically differentiate various forms by the nature of

NON-GAUSSIAN MODELS the tail of the amplitude density function.

While the scope of the Central Limit Theorem might suggest Generalized Gaussian Noise
otherwise, there are many data sets derived from the environ-

The Generalized Gaussian model is the most straightforwardment which do not conform well to the Gaussian model. Most
extension of the standard Gaussian model. In this case, theof these data contain interfering signals emitted from a mod-
amplitude probability density function is given byest number of interferers or from interferers overlapping the

signal of interest in the frequency domain in such a way that
one could not easily remove these unwelcome elements by fil-
tering.

fX (x; t) = a(p)exp
�

−
[ |x|

A(p)

]p�
(28)

Approaches to remedy this modeling problem fall into two
categories: (1) generalize the Gaussian model to allow for sta- where the constant p parameterizes the density function and

where A(p) � �[�(1/p)/�(3/p)], a(p) � p/[2��(1/p)�A(p)] andtistical variation around the Gaussian process, or (2) attempt
to derive new statistical models directly from the physics of where �(z) is the gamma function (generalized factorial). It

should be noted that, irrespective of the value of p, the vari-the problem. In both cases, most non-Gaussian specifications
typically do not go beyond the amplitude probability density ance of the amplitude density function is held constant (in

this case the variance is arbitrarily set to one). Plots of thefunction given in Eq. (3) and power spectral density. This is
due, in large part, to the severe complexity of merely speci- amplitude density function for p � 1, 2, 5, and 50 are depicted

in Fig. 3. One can see that for small values of (p  2), the tailsfying valid and useful joint probability functions with the de-
sired amplitude density. of the density functions maintain relatively large values for

large arguments. Conversely, for large values of (p  2), theThese non-Gaussian models for noise and interference gen-
erally differ statistically from Gaussian noise in the rate at tails decay to zero quite rapidly.

From Eq. (28), it is easily recognized that for p � 2, thewhich the so-called ‘‘tail’’ of the amplitude density tends to
zero. More specifically, for Gaussian noise the amplitude Generalized Gaussian model results in a standard Gaussian

model. Alternatively, when p � 1, we obtain the well-knownprobability density function is approximated by e�x2/2�2 for
large values of �x�. That is, the tails (the probability density Laplacian model for noise. In this case, the tail of the ampli-

tude density function decays at a rate of e��x�, thus implyingfunction from some large value to � infinity) of the amplitude
density decay at an exponential rate with exponent equal to that one will likely observe many more large values of noise

than one would see with Gaussian noise. In general, forx2. From a physical point of view, this rate translates into the
relative frequency of observing large amplitude values from p  2 we obtain tails with more mass (more probability), re-

sulting in ‘‘impulsive’’ data, while for p � 2 we obtain tailsthe noise signal. That is, amplitude density functions with
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Figure 4. Plots of realizations from various density functions from the Generalized Gaussian
family of density functions.

with less mass, resulting in data sets with very few outliers in the exponent of the characteristic function rather than the
exponent of the amplitude density function (5).and more uniformly distributed over its range.

To demonstrate the variation in the data under this model,
Fig. 4 shows sample realizations from Laplacian noise (p � Definition 6 A noise or interference signal is said to be an
1), Gaussian noise (p � 2), and Generalized Gaussian noise �-sub Gaussian signal if for any positive integer n and time
p � 50. One can see that these data sets, all with a common vector t � �t1, t2, . . ., tn�, the characteristic function of the
variance (power), exhibit quite different behavior. The Lapla- joint density function of [x(t1), x(t2), . . ., x(tn)] is given by
cian noise better models interference which might contain
spikes such as those produced by man-made devices, while
p � 50 might better model interference arising from signals
with well-contained powers.

ϕ(uuu) = exp

�
−

[
1
2

n∑
m,l=1

umulR(tm, tl )

]α/2
�

(29)

where � � (1, 2] and where R(t, s) is a positive definite func-Sub-Gaussian Noise
tion and where u � �u1, u2, . . ., un�.While in general one specifies a random signal through the

joint distribution function, sub-Gaussian noise is specified Importantly, if the parameter � � 2 then the sub-Gaussian
process is simply a Gaussian process. Otherwise, the noisethrough the joint characteristic function (2). As a reminder,

this function is simply the Fourier transformation of the joint signal corresponds to some signal which has been parameter-
ized away from the Gaussian signal. In all cases other thandensity function and, as such, there exists a straightforward

one-to-one relationship between characteristic functions and � � 2, the corresponding tail of the amplitude density func-
tion decays at a polynomial rate (rather than an exponentialjoint density functions. As opposed to the Generalized

Gaussian noise model, sub-Gaussian noise is parameterized rate) which translates into many more very large amplitude
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Figure 5. Plots of realizations from the sub-Gaussian noise family. (a) corresponds to � � 1.99;
(b) corresponds to � � 1.5.

values than one would typically see with pure Gaussian noise. cant number of outliers or impulses and, in some applications,
it serves well as a replacement for shot noise as an efficientTherefore this model might be appropriate for characterizing
model.data that contain many impulses.

There are a number of important properties of sub-
Middleton Noise and InterferenceGaussian processes (6,7). From a modeling point of view, the

most significant is that any sub-Gaussian process can be ex- Unlike both the Generalized Gaussian model and the sub-
pressed as the product of a Gaussian process scaled by a so- Gaussian model, Middleton models have been derived directly
called �/2 stable random variable. That is, if x(t) is an �-sub from physical arguments. These models attempt statistically
Gaussian signal, then to characterize the amplitude density of the envelope (8) of a

signal in the presence of various types of man-made interfer-
ence after it has passed through the front end of receiver.x(t) = S1/2y(t) (30)
Importantly, these models are canonical, in the sense that

where y(t) is a Gaussian random process with zero mean and they do not depend on the specific source of the interference—
correlation function given by R(t, s) and S is an independent, only the relative bandwidth of the interferers with respect to
positive �/2-stable random variable. (A �/2-stable random the receiver. Therefore, interferers such as power lines, atmo-
variable is a random variable with characteristic function spheric noise, and various mechanical machines are all ac-
given by �(u) � exp[���u��/2].) One interesting property of sub- commodated well by these very powerful models.
Gaussian signals is that all samples from this signal are al- There are two basic forms of Middleton noise (9–11). Class
ways dependent on one another. In addition, for � � 2, it can A noise represents the statistical interference when the band-
be shown that samples from x(t) will have infinite variance, width of the interfering signals are on the order of or smaller
thus making this model somewhat problematic in terms of than the bandwidth of the front end of the receiver. In this
accurately representing the average power of an interference case, transient effects from the receiver can be ignored.
signal. Nevertheless, the sub-Gaussian noise model has been Alternatively, Class B noise considers the case where the

receiver bandwidth is substantially smaller than the interfer-used extensively to model noise or interference with a signifi-



382 NOISE AND INTERFERENCE MODELING

ence bandwidth and thus transient effects must be accounted �-Mixture Noise
for. In addition to Class A and B noise, Middleton has intro-

One might observe from the above Middleton models that the
duced the notion of Class C noise, which is simply a linear

amplitude density functions are infinite linear combinations
combination of both A and B noise (12).

of zero mean Gaussian models. Interestingly, it has been well
known in the statistics literature that appropriately scaled

Physical Model. For both Class A and Class B noise, it is Gaussian density functions can be combined together to ob-
assumed that there are an infinite number of potential tain nearly all valid amplitude density functions, so it is not
sources of interference within reception distance of the re- surprising that this combination appears as a canonical rep-
ceiver. The individual interfering signals are assumed to be resentation of signal interference.
of a common form, except for such parameters as scale, dura- However, working with infinite sums of density functions
tion, and frequency, among others. requires much careful analysis. It is because of this that re-

The locations and parameters of the interferers in the searchers have introduced a simplifying approximation to the
source field are assumed to be randomly distributed according Middleton Class A model, which is referred to as the �-mix-
to the Poisson law. The emission times for each source are ture model.
also assumed to be random and Poisson-distributed in time. In this simplification, the amplitude probability density
Physically speaking, this implies that the sources are statisti- function of interference plus background or thermal noise is
cally independent both in location and emission time. approximated by a combination of just two Gaussian density

functions:
Class A Noise. As described above, the physical model for

Class A noise assumes that the bandwidth of the individual
interfering signals is smaller than the bandwidth of the re- fxxx(x; t) = (1 − ε)

1�
2πσ 2

ε

e
− x2

2σ 2
ε + ε

1�
2πγ σ 2

ε

e
− x2

2γ σ 2
ε (33)

ceiver (data-collection system.) This allows for the simplifica-
tion of ignoring all transient effects (ringing) in the output of

where the constant � determines the fraction of impulsivitythe receiver front end.
found in the data and where � represents the ratio of intensi-Avoiding the tedious analysis and simply stating the re-
ties of the impulsive component to nominal ambient noise. Insult, the (approximate) amplitude probability density function
order to maintain a fixed power level of �2 in the noise andunder these assumptions was shown by Middleton (9) to be
interference model for all choices of � and �, the parameters
must satisfy the following power constraint:

fxxx(x; t) = e−A
∞∑

m=0

Am

m!
1�

2πσ 2
m

e
− x2

2σ 2
m (31)

σ 2
ε = σ 2

1 − ε + εγ
(34)

where
Sample realizations from the �-mixture model are depicted

in Fig. 6. The top figure corresponds to purely Gaussian noise
(� � 0), while the middle and bottom figures correspond toσ 2

m = m/A + �

1 + �
and � = σ 2

G/ (32)

� � .01 and .1, respectively. As one can see, as � increases the
average number of ‘‘impulses’’ (spikes in the data) increases,One can see from the above equation that the Class A model
while the average power of background thermal noise de-is parameterized in three parameters (A, �, 	), each with
creases in accordance with Eq. (34). Therefore, this model of-physical significance. The parameter A is a measure of the
fers some of the flexibility required by the Middleton modelsimpulsiveness of the interference and is given by the product
without the requisite computational complexity.of the average number of impulses emitted per unit time with

the average duration of the an impulse. Small values of A
indicate a highly impulsive signal, since this would imply a CONCLUSIONS
small number of interferers each with very short pulses. For
large values of A we have many interferers each with long This article has described the basic techniques for character-
duration and, thus, by the Central Limit theorem, the inter- izing noise and interference from both a statistical and a sig-
ference is nearly a Gaussian process. The constant � quanti- nal processing perspective. These approaches have varied
fies the ratio of the intensity of the independent Gaussian from the most analytic and fundamental (nth-order joint den-
component arising from thermal or ambient noise (given by sity or distribution functions) to more practical and data-ori-
�2

G) to the mean intensity of the interference (given by 	). ented (means, correlation functions, and power spectral
density.)

The primary differentiation between various noise modelsClass B Noise. Class B noise assumes that the bandwidth
of the interfering signals is larger than the front-end band- has been based on the statistical characteristics of the signal.

Of particular importance was the ‘‘Gaussianity’’ or non-width of the receiver. This assumption significantly compli-
cates the analysis. In particular, one is required to use two Gaussianity of the signal. In many important applications,

the Central Limit Theorem implies that the corruptive effectsseparate models for small and large signal levels instead of a
single model as in the Class A model. Because of the level of of noise will be well approximated by a Gaussian process.

However, basic physical arguments, such as those found indetail required to describe this model, it is recommended that
the interested reader seeking a precise definition be directed Middleton’s work, also suggest that much of what we consider

to be Gaussian noise is, in fact, substantially non-Gaussian.to the original work found in (9).
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Figure 6. Plots of realizations from the �-mixture noise family. (a) corresponds to � � 0 (pure
Gaussian noise,) (b) corresponds to � � 0.01 (a 1% chance of observing interference at any point
in time) and (c) corresponds to � � .1 (a 10% chance of observing interference at any point in
time.) One should observe that as � increases, the empirical frequency of ‘‘impulses’’ arising from
interference increases proportionally.
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