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is put to use in a wide variety of applications ranging from
electron accelerators, to vacuum tubes, to cathode ray tube
displays.

Regarding the electron’s magnetic moment, Dirac showed
in 1928 that a relativistic, quantum-mechanical treatment of
the electron indicates an intrinsic angular momentum. Asso-ELECTRONS
ciated with this angular momentum is a magnetic moment
equal to � eh/4�m, where h is Planck’s constant. The prop-Electrons are negatively charged, subatomic, elementary par-
erty of intrinsic angular momentum is referred to as spin andticles. As elementary particles, they represent fundamental
had been hypothesized earlier by S. A. Goudsmit and G. E.units of matter—that is, it is believed that they do not consist
Uhlenbeck. An electron can have either ‘‘spinup’’ or ‘‘spin-of smaller units. Electrons can exist as free particles, control-
down,’’ depending on the sign of the magnetic moment.lable by electric and magnetic fields, as in the case of a cath-

Quantum mechanics also predicts that an electron willode ray, which consists of a stream of electrons. They also
have a wavelike nature. That this is true is evidenced in sev-represent an important building block of atoms, which are
eral experiments, including electron diffraction effects in crys-modeled as nuclei surrounded by electrons. Atomic electrons
tals. From the de Broglie relationship between momentum pare arranged in certain allowed energy levels and orbitals
and wavelength � (4)called shells. The chemical properties of an atom are largely

determined by the number of electrons in the outer shell, far-
thest from the nucleus. It is the outer-shell electrons that are p = h

λ
(2)

principally involved in the bonds holding atoms together in
molecules and solids. where h is Planck’s constant. For example, a free electron ac-

celerated from rest through a potential of 100 V gains a ki-
netic energy of 100 eV equal to p2/2m. Solving for p and then

FUNDAMENTAL PROPERTIES using Eq. (2) results in a wavelength of 0.123 nm.
From a broader perspective, electrons belong to the class

The fundamental properties of free electrons include those of of elementary particles known as leptons, which includes the
(1) charge, (2) mass, and (3) magnetic moment. Franklin (1) electron, muon, tau, and three neutrinos. The first three each
describes the experimental and theoretical developments as- have one unit of electric charge, e, whereas the neutrinos are
sociated with the determination of these properties in the lat- neutral. Based on their spin properties, all obey Fermi-Dirac
ter part of the nineteenth century and early part of the twen- statistics and are referred to as fermions. Perl (5) notes that
tieth century. Discovery of the electron as a physical entity is the elementary particles are less than 10�16 m in extent and
attributed to Joseph J. Thomson, who in 1897 deduced from perhaps have no detectable size. However, knowledge of the
experiment that cathode rays consist of ‘‘charges of negative quantum-mechanical wave function associated with a particu-
electricity carried by particles of matter’’ (2). In subsequent lar electron allows accurate calculation of the probability of
years, these particles received the nomenclature of electrons. finding it in a particular spatial region.
Thomson’s experimental results produced a value for the elec-
tron’s charge-to-mass ratio e/m, based on the deflection of

ATOMIC ELECTRONScathode rays in magnetic and electrostatic fields. However,
his experiments did not produce values for mass and charge

Electrons that exist in atomic orbitals maintain the funda-separately. Robert Millikan accomplished this in a series of
mental properties of charge, mass, and spin described in theoil drop experiments, begun in 1909, which showed that the
preceding section. In addition, they obtain additional attri-electrical charge on the drops was always equal to integer
butes as dictated by the laws of quantum mechanics. Thesemultiples of a specific unit of charge e. He combined his nu-
additional properties are principally associated with allowedmerical results for e with previous measurements of e/m to
energy and momentum states.obtain values close to the currently accepted values of e �

Many of the key properties of atomic electrons can be un-1.60217733 � 10�19 C and m � 9.1093897 � 10�31 kg for the
derstood by considering the electron associated with the sim-charge and mass of the electron, respectively (3).
plest atom, the hydrogen atom, H. The solution of Schröding-The charge and mass of the electron are directly related to
er’s equation for the single electron associated with H resultsits dynamic behavior since the force, F, experienced by a free
in only certain energy eigenvalues and therefore certain al-electron as a result of an electric field, E, and a magnetic
lowed electron energies. These energies may be expressed asfield, B, is given by
binding energies according to (4)

FFF = maaa = dppp
dt

= −eEEE − e(vvv × BBB) (1)
En = me4

8ε2
0n2h2 (3)

where v, a, and p are the electron’s velocity, acceleration, and
momentum, respectively. For sufficiently large velocities, the where �0 is the free-space permittivity and n can have integer

values. The largest binding energy is therefore for n � 1, forelectron’s mass increases as predicted by principles of relativ-
ity. Equation (1) may be used to account for an electron’s clas- which En � 13.6 eV. This is the energy required to free an

electron from the hydrogen atom when the electron is in thesical dynamics in free space when under the influence of elec-
tric and magnetic fields. It demonstrates that the trajectory lowest possible state or ground state. The parameter n is re-

ferred to as the principal quantum number, or total quantumof an electron can be controlled by applied fields, a fact that
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number, and also designates the shell number. The electron tum number of 2 and orbital angular momentum quantum
number of 0 correspond to 2s electrons using chemistry sym-energies predicted by Eq. (3) are identical to those predicted

by Bohr in his 1913 model for the atom. bolism. Electrons with a principal quantum number of 3 and
an orbital angular momentum quantum number of 1 corre-Three additional quantum numbers result from the

Schrödinger equation solution for a hydrogen-atom electron. spond to 3p electrons. For silicon atoms, for example, with 14
total electrons, the order of filling of shells is such thatThese are the orbital angular momentum quantum number,

l, which determines the magnitude of orbital angular momen- ground-state (or minimum-energy) electron configuration is
1s22s22p63s23p2. The first and second shells are entirely filledtum and which can take on positive integer values up to n �

1 as well as zero; the magnetic quantum number, ml, which and there are four electrons in the third shell, which is the
outer shell. For carbon atoms with six electrons, the ground-determines the vector direction of the orbital angular momen-

tum and which can take on integer values ranging from �l state electron configuration is 1s22s22p2. Again there are four
electrons in the outer shell, which in this case corresponds toto �l as well as zero; and the spin quantum number, which

determines either spin up or spin down. The set of four quan- n � 2.
Elements with identical outer-shell configurations tend totum numbers uniquely determines the state of the atomic

electron in terms of its energy and momentum. have similar chemical and physical properties. Consequently,
the physical and chemical properties of the elements are peri-The Schrödinger equation solution for the hydrogen-atom

electron also results in a set of allowed eigenfunctions. These odic functions of their atomic number. The periodic table of
the elements is organized to show this periodicity. For exam-correspond to the electron’s quantum-mechanical wave func-

tion �(r, t), where r represents the spatial coordinates of the ple, carbon, silicon, and germanium all have four outer-shell
electrons and are all in the same column of the periodic table.electron and t represents the time variable. The probability of

the electron being in an incremental volume dr is �*(r, t)
�(r, t)dr. The wave function is useful in calculating the ex-

ELECTRONS IN SOLIDS
pected value of physical observables. For example, taking r �
0 to be at the nucleus, the average distance from the nuclei

Kittel (6) notes that the attractive interaction between nega-
for an electron is given by

tively charged electrons and positively charged nuclei are en-
tirely responsible for the cohesion of solids. Exactly how this
interaction takes place depends on the atomic arrangement〈r〉 =

∫ ∞

0
�∗(r, t)r�(r, t) dr (4)

in the solid and on the chemical constituency of the solid. In
some solids, all of the electrons are either directly involved in

where the functional form of � depends on the electron’s strong bonds between the atoms or are attached to an atom
quantum numbers. The wave-function solutions for atomic as inner-shell electrons. In this situation, essentially no elec-
electrons are generally fairly complex, involving Legendre trons are free to move through the solid, and such a material
functions and Laguerre polynomials (4) and are beyond the would be an electrical insulator. In other cases, a large num-
scope of this discussion. However, a useful approximation for ber of electrons are essentially free to move throughout the
the average distance of an nth shell electron from the hydro- solid. Materials for which this is the case are electrical con-
gen nucleus is obtained from the Bohr model as ductors. The distinction between the resistivity of electrical

conductors and insulators is striking. At room temperature,
the dc resistivity of high-purity silicon dioxide, for example,rn = ε0n2h2

πme2 (5)
can be as high as 1 � 1016 	 
 cm while the value for copper is
1.7 � 10�6 	 
 cm. A variation of a factor of over 1020 in any

For the innermost shell, that is, n � 1, the average dis-
material property represents a remarkable range.

tance is calculated from Eq. (5) to be 0.53 Å.
For more complex atoms, with atomic number Z � 1, the

Crystal Binding
Bohr approximations represented by Eqs. (3) and (5) are mod-
ified by adding Z2 to the numerator of Eq. (3) and Z to the Many solids of interest are crystalline in nature such that the

atoms are arranged on a lattice, which is a periodic arrange-denominator of Eq. (5). Atoms with more than one electron
represent systems of three or more bodies, so closed-form ana- ment of points in space. Of the variety of bonding forces ob-

served in crystals, ionic bonding, metallic bonding, and cova-lytical solutions to Schrödinger’s equation are not obtained.
Perturbation approaches must be applied to obtain solutions. lent bonding account for most of the crystalline solids used in

electronic devices. These different types of bonding are brieflyOf principal note, however, is that the four quantum numbers
associated with the hydrogen-atom solution still apply to the described as follows.

Ionic crystals are crystals in which outer-shell electronselectrons of more complex atoms. This, combined with the
Pauli exclusion principle, provides considerable insight into are transferred from one atom type to another atom type in

such a way that the crystal is made up of positive and nega-the nature of atoms.
The Pauli exclusion principle requires that no two elec- tive ions. An example is LiF, in which case the one outer-shell

electron for lithium is transferred to the outer shell of fluo-trons in a given system, in this case the atom, have exactly
the same set of quantum numbers. Therefore, for the inner- rine, thereby providing fluorine with a complete outer shell.

As a result, the lithium atom has a positive charge and themost shell with n � 1, only two electrons are allowed; the
second shell with n � 2 can have a maximum of eight elec- fluorine atom has a negative charge. Such crystals tend to be

electrical insulators. They form relatively close-packed struc-trons; and so on. There is direct correlation between the quan-
tum numbers and conventional chemical notation for shells tures such as those associated with the body-centered-cubic

and hexagonal-close-packed lattices (6). Compounds involvingand subshells. For example, electrons with a principal quan-
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an element from column I of the periodic table combined with when solving Schrödinger’s equation for an electron in any
periodic potential, the result is that the allowed energies doan element from column VII of the periodic table are good

examples of ionic crystals. in fact fall into bands of allowed energies separated by regions
of forbidden energies. The existence of well-defined energyMetallic crystals may be envisioned as an array of ions sur-

rounded by a sea of free electrons. The forces holding the solid bands in crystals is therefore a mathematical result of
Schrödinger’s equation. The concept of energy bands is alsotogether arise from an interaction between the positive ion

cores and the surrounding free electrons. These electrons can useful in many amorphous solids as well, although experi-
ment indicates a lack of a sharp boundary between forbiddentake part in charge transport under the influence of an ap-

plied electric field, and the material is a good conductor. Me- and allowed regions of energy.
The probability of a particular allowed energy state at antallic crystals most often are either face-centered-cubic or

body-centered-cubic structures. energy E being occupied may be calculated from the Fermi–
Dirac distribution function,In covalent-bonded crystals, each atom shares electrons

with its neighbors. For example, in a silicon crystal each sili-
con atom has four nearest neighbors and four outer-shell elec-
trons. These electrons are shared in electron-pair bonds with

f (E) = 1
exp[(E − EF)/kBT] − 1

(6)

the electrons in each pair having opposite spins. The electri-
cal resistivity of covalent crystals is often highly temperature where kB is Boltzmann’s constant and T is the temperature
dependent since an electron can be thermally excited out of a expressed in degrees Kelvin. The quantity EF is referred to as
covalent bond. In such cases, the crystal is referred to as a the Fermi energy. From Eq. (6) it is apparent that an allowed
semiconductor. However, for materials with very strong cova- state with energy equal to the Fermi energy has a 50% proba-
lent bonds, the material is insulating even at high tempera- bility of being occupied by an electron. States with energies
tures. Covalent materials often form diamond or zincblende several kBT below the Fermi energy have a high probability
crystal structures as these are well suited to the tetrahedral of being occupied and states located several kBT above the
arrangement of covalent bonds. Elements from column IV of Fermi energy have a low probability of being occupied.
the periodic table and compounds from columns III and V or How the electrons occupy the energy bands leads to a natu-
from columns II and VI often form such crystals. In the latter ral classification of solids as metals, insulators, or semicon-
two cases, the bonding is partially covalent and partially ductors, according to the charge-transport properties. An en-
ionic. ergy band that is empty of electrons will clearly not

contribute to charge transport or electrical conductivity. Less
obviously, a completely full energy band also will not contrib-Energy Bands
ute to electrical conductivity. If an electron is to be acceler-

In solids, the energies available to electrons tend to fall into ated by an applied electric field, there must be empty states
bands of permitted energies that are separated by regions of at higher energies available for the electron to move to. This
forbidden energies. This is strictly true in crystalline solids is not the case for a completely full band in which every avail-
and at least approximately the case in noncrystalline solids. able state is already occupied. Therefore, only electrons in
The bands may be considered conceptually as originating partly full energy bands contribute to electrical conductivity.
from the atomic energy levels of the constituent atoms. When For metals, Fig. 1 shows that the Fermi energy lies within
atoms are in close proximity, as is the case for a solid, the an energy band so that at all temperatures, some states in
wave functions of the outer electrons overlap, essentially con-
stituting a single quantum system of electrons common to the
crystal. The interaction between neighboring atoms causes
the discrete electron energy levels of individual atoms to
spread into ranges of energies. As applied to the solid, the
Pauli exclusion principle requires that the number of quan-
tum states associated with, say, the 4s atomic state to be
2N, where N is the number of atoms in the crystal. Since N
is a very large number, the separate states are so closely
spaced in energy that they essentially form a continuum of
permitted energies referred to as an energy band. Within an
energy band, each quantum state has an energy and a mo-
mentum associated with it. An electron that occupies that
state will take on that energy and that momentum.

Specific information about the energy states available to
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electrons is key to understanding the behavior of electrons in
Figure 1. The electron distribution among energy bands in semicon-crystals. This requires a quantum solution in which Schröd-
ductors and insulators is such that as temperature approaches abso-inger’s equation is applied to the system of electrons in the
lute zero the bands are either completely full or completely empty.solid. The electrical potential experienced by an electron in a
Consequently, electrical conductivity vanishes. Semiconductors have

crystalline solid will be spatially periodic because the atomic smaller energy gaps than insulators and as a result show varying
environment of the crystal is spatially periodic. Although it is degrees of electrical conductivity as temperature increases. Metals
not possible to know this potential exactly, because of the have a partly occupied band at all temperatures and consequently
many-bodied nature of the problem, the very fact that it is exhibit significant electrical conductivity throughout the tempera-

ture range.periodic leads to important conclusions. Most importantly,
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the band are occupied and other states are empty. The elec- holes with charge �e. These quasiparticles provide another
way of accounting for the collective behavior of the populationtrons that are free to respond to an applied electric field are

those in this partly full band. The same effect is achieved if of electrons in the band. In principle, the electron flow associ-
ated with any energy band can be treated as being due tothere are overlapping bands, providing available empty

states. For an insulator, the Fermi energy lies in a forbidden either electrons or holes. In practice, holes are used to account
for charge flow in nearly full bands and electrons are used toenergy region between a band that is essentially full and a

band that is essentially empty. This is also illustrated in Fig. account for charge flow in nearly empty bands. In a semicon-
ductor, as previously noted, the nearly full band is referred to1, which illustrates the energy gap EG as being the extent of

the forbidden energy region between the highest full band as the valence band and the nearly empty band is referred to
the conduction band. Electrons in the valence band corre-and lowest empty band. For an insulator the energy gap is

several electron-volts, such that even at elevated tempera- spond to those outer-shell electrons that are involved with co-
valent or ionic bonds. Electrons in the conduction band corre-tures the upper band remains essentially empty and the bot-

tom band is full. For a semiconductor the energy gap is spond to electrons that have been liberated from such bonds.
In semiconductors, and to some extent insulators, the elec-smaller such that the Fermi–Dirac distribution results in a

nearly full bottom band (the valence band) and a nearly trical conductivity can be altered by shifting the Fermi energy
up or down in the energy gap. This is done by adding traceempty top band (the conduction band). The occupancy of these

two bands is highly temperature dependent, by nature of the amounts of impurities, a process known as doping. Adding an
impurity atom that has an extra valence electron, such asFermi–Dirac distribution function. Consequently, the electri-

cal conductivity is also highly temperature dependent. Nu- adding phosphorus to silicon, moves the Fermi energy closer
to the conduction band. The electron concentration in the con-merical examples of semiconductor energy gaps at room tem-

perature are 0.66 eV for Ge, 1.12 eV for Si, and 1.42 eV for duction band is then much larger than the hole concentration
in the valence band. The impurity is referred to as a donor,GaAs. In contrast, the energy gap of diamond is approxi-

mately 5.5 eV, which is sufficiently high to make diamond, in because it donates an electron to the conduction band, and
the material is referred to as an n-type semiconductor. Alter-its pure form, an insulator.
natively, adding an impurity atom that has one less valence
electron, such as adding boron to silicon, moves the FermiHoles
energy closer to the valence band. In this case the hole con-

The missing electrons in the nearly full band of a semiconduc- centration in the valence band is much larger than the elec-
tor can be treated like positively charged particles, referred to tron concentration in the conduction band. This type of impu-
as holes. For a sample with unit volume, the current density rity is referred to as an acceptor, because it accepts an
resulting from a given band can be written as the a sum of electron from the valence band, and the semiconductor is re-
ev�, where v� is the electron velocity of the �th state and the ferred to as p type. The electrical conductivity of a crystal can
sum is over all occupied states in the band, be modified over a large range by adding dopants. For exam-

ple, when diamond is doped with boron such that boron atoms
substitute for carbon atoms, diamond takes on the character-J =

∑
α

−evα (7)

istics of a p type semiconductor, and the resistivity can de-
crease from approximately 1015 	 
 cm for pure diamond toAlternatively, J can be written by summing over all the states
less than 1 	 
 cm even though the doping concentration rep-in the band and then subtracting the contributions of the
resents a small atomic percentage. In silicon electronic de-empty states. This is demonstrated in Eq. (8) in which the
vices, donor and acceptor concentrations are typically in thesum over � refers to a sum over all allowed states in the band
parts-per-million range.of interest and the sum over � refers to a summation over the

empty states in the band,
E(k) Plots

An informative view of energy bands is via E versus k plots,J =
∑

β

−ev j −
∑

γ

−evl (8)

where k is a three-dimensional vector related to the electron’s
momentum. The wave-function solution to Schrödinger’sHowever, as previously noted, a full band contributes zero
equation for the case of a periodic potential take the form ofto current flow, so the summation over � in Eq. (8) is equal to
Bloch functions, which extend throughout the crystal and arezero. For every allowed state with positive velocity there is a
written asstate with a corresponding negative velocity. Consequently,

Eq. (8) reduces to
�(rrr, t) = un,k(rrr) exp[− j(kkk · rrr − ωt)] (10)

where un,k(r) represents the periodicity of the lattice, n refers
J =

∑
γ

+ evγ (9)

to a specific band, and � is related to the electron’s energy.
Equation (10) shows that k is the wave vector associated withTherefore the current resulting from electron motion
the electron’s quantum mechanical wave function. It alsowithin a particular band may be viewed equivalently as ei-
plays an integral role in the electron’s dynamics and it mayther equal to the sum over all occupied states, ascribing a
be shown (7) thatnegative charge to each occupied state, or as the sum over all

empty states, ascribing a positive charge to each empty state.
The first view corresponds to the physical electrons with
charge �e and the second view corresponds to quasiparticle

h
2π

dkkk
dt

= −eEEE − e(vvv × BBB) (11)
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Comparing Eq. (1) and Eq. (11) it is seen that hk/2� plays For many semiconductors, the energy is a parabolic func-
the role that momentum does in classical mechanics. The tion of k, or nearly a parabolic function, such that m* is ap-
quantity k is referred to as the crystal momentum and, along proximately constant. For example, the electrons located near
with n, defines an electron’s quantum state. In a crystal, the the bottom of the conduction band in GaAs have an effective
state of an electron may be considered to be defined by the mass equal to 0.068m. If the dimensions of the crystal are
four quantum numbers n, kx, ky, and kz, where the latter three large compared to atomic dimensions, the dynamic behavior
are the vector components of k. of conduction-band electrons in response to applied fields is

Figure 2 illustrates the two main types of E(k) plots for determined from Eq. (1), with m replaced by m*. Electrons
semiconductors, direct-gap materials and indirect-gap materi- with a small effective mass have a high mobility, which is the
als. Direct-gap materials are characterized by a conduction- average drift velocity per unit electric field.
band minimum EC, which is directly above the valence-band More generally, when E is an anisotropic function of k, the
maximum EV, in k space, usually at k � 0. Indirect-gap mate- effective mass is a tensor for which the components are given
rials have an offset in k space between EC and EV. The distinc- by
tion is important in terms of transitions of electrons from one
band to another. Such transitions must conserve both energy
and momentum. For a direct-gap material, a transition be-

� 1
m∗

�
ij

= 4π2

h2

∂2E
∂ki∂kj

(13)

tween states near EC and EV does not involve an appreciable
change in k or momentum. Energy can be conserved on a When the effective mass is in the form of a tensor, the direc-
downward transition by emission of a photon of energy EC � tion of the acceleration vector is not necessarily in the direc-
EV, or on an upward transition by absorption of a photon,

tion of the force vector.since photon momentum is small. Direct-gap semiconductors
The curvature of energy bands in k space is such that someare generally effective light emitters. Examples are GaAs and

states have a negative effective mass. Kittel (6) notes that theGaP, which are used for light-emitting diodes and solid-state
phenomena of negative effective mass is associated with thelasers. For indirect-gap semiconductors, however, photon
Bragg reflection of the electrons for which, in going from aemission would not alone be sufficient to conserve both energy
state k to a state with k � �k, the momentum transfer fromand momentum. Such materials are generally not effective
the crystal to the electron is opposite to and larger than thelight emitters, and examples are Si and Ge.
transfer of momentum from the external field to the electron.
As a result there is an overall decrease in the forward mo-Effective Mass
mentum of the electron and the effective mass is negative.

When an electric field or magnetic field is applied to a crystal, The dynamic behavior of valence-band holes in response to
the electrons experience not only the forces due to the applied applied fields may also be described by an effective mass.
field but also the internal forces in the crystal due to nuclei
and other electrons. The rather surprisingly simple net result
of this complex situation is that the electron moves in re- CURRENT DEVELOPMENTS
sponse to the applied field as if it had a mass different than
the actual gravitational mass of a free electron. The motion After over 100 years of study, the electron may be considered
of the electron in the combined periodic and external fields is to be among the best understood of the elementary particles.
as if it were moving in response to the external field only, but However, there are still new developments taking place both
with an effective mass m*. The effective mass can be larger or on theoretical and application fronts. Of particular theoretical
smaller than the actual gravitational electron mass m and interest are systems that exhibit apparent fractionalization of
can even be negative. electrons. Under certain circumstances, experimental obser-

When E is an isotropic function of k, the effective mass is vations of electronic phenomena in solids appear to indicate
related to d2E/dk2 as particles that behave as though an electron has broken into

pieces containing, for example, one-third or one-fifth of its
charge, or into separate particles, one containing an electron’sm∗ = h2

4π2(d2E/dk2)
(12)

charge and another containing its spin. Anderson (8) notes
that such behavior may be interpreted from a quasiparticle
perspective rather than a physical disintegration of an elec-
tron. Although there is nothing present but physical electrons
with the usual charge and spin, the composite behavior is ex-
plainable by quantum particles with fractional charge. The
situation is reminiscent of conductivity associated with semi-
conductor valence bands, in which the behavior of the entire
population of electrons is explainable in terms of the quasi-
particle holes. The quantum nature of the electron is also in-
herent to the development of new electron device structures
in which the dimensions are measured in nanometers. The

+
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–

Ec

E

kEv

+

(b)

–

Ec

E

kEv

layers in such devices may be only a few atomic layers thick
and represent artificially made quantum structures, the di-Figure 2. Band-to-band transitions in direct-gap semiconductors (a)
mensions of which are on the order of the wavelength of thecan take place without significant changes in the crystal momentum
electron and which are designed for particular device func-k. Indirect-gap semiconductors (b) have band edges of the conduction

band and valence band that are widely separated in k space. tions such as switching. Such structures have exhibited elec-
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trical operation in the terahertz frequency range (9). Also in-
cluded in this general area are quantum-dot-type devices,
which may be useful in information storage.

BIBLIOGRAPHY

1. A. Franklin, Are there really electrons? Experiment and reality,
Phys. Today, 50 (10): 26–33, 1997.

2. J. J. Thomson, Cathode Rays, Philos. Mag. 44 (269): 293–316,
1897.

3. D. R. Lide, Editor in Chief, Handbook of Chemistry and Physics,
76th Edition, Boca Raton, FL: CRC Press, 1975.

4. L. I. Schiff, Quantum Mechanics, New York: McGraw-Hill, 1955.
5. M. L. Perl, The leptons after 100 years, Phys. Today, 50 (10): 34–

40, 1997.
6. C. Kittel, Introduction to Solid State Physics, 7th ed., New York:

Wiley, 1996.
7. A. C. Smith, J. F. Janak, and R. B. Adler, Electronic Conduction

in Solids, New York: McGraw-Hill, 1967.
8. P. W. Anderson, When the electron falls apart, Phys. Today, 50

(10): 42–47 (1997).
9. S. Luryi, Frequency limit of double-barrier resonant-tunneling os-

cillators, Appl. Phys. Lett., 47: 490–492, 1985.

D. K. REINHARD

Michigan State University

ELECTRON SOURCE. See CATHODES.
ELECTRON WIND EFFECT. See ELECTROMIGRATION.


