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HOPPING CONDUCTION

Electrical conductivity in amorphous materials is described as a sequence of hops in which an electronic charge
moves stochastically between localized states. This article discusses the nature of the disorder which leads
to localization, the mechanisms which govern the microscopic hopping process, and the consequences for the
electrical properties of various amorphous materials. Transient photo-induced currents are used to determine
the dependence of charge carrier mobility on temperature and the applied electrical field. The results obtained
through such experiments are discussed in terms of theories which account for the randomness both in the
energy of the electronic states and in the transition rates between states. Finally, a summary is given of several
technologies which depend on materials exhibiting hopping conduction.

Electrical conduction in crystalline solids (1), including most metals and semiconductors, can be described
in terms of a gas of charged particles, electrons, moving in response to an electric field. The medium in which this
gas moves is the lattice of positive ion cores consisting of the atomic nuclei plus their tightly bound remaining
electrons. In classical terms, we think of the particles as moving ballistically between collisions with defects
in the lattice and with ion cores which are displaced from their equilibrium positions by thermal agitation.
During the time between collisions, the electrons are accelerated by the electric field, but the collisions, on
average, dissipate the velocity gained; that is, the electrons are equally likely to be scattered in the direction
opposite to the electric field as with it. In this picture, the concept of “mean free path” arises quite naturally as
the average distance traveled between collisions.

The quantum mechanical description of the conduction process is quite analogous to the classical one.
There are many subtleties which will be ignored here in order to highlight briefly the essence of the quantum
physics. One describes the electrons in terms of their wavefunctions. Because of the translational symmetry of
the crystalline lattice, the wavefunctions are Bloch waves; that is, they have a component which reflects the
underlying symmetry of the lattice, but otherwise, they have the characteristics of plane waves propagating
freely in space. The de Broglie wavelength of the wavefunction gives the momentum of the electron which is
modified by the application of an electric field, and just as in the classical case, the electron waves occasionally
scatter from a defect in the lattice or from a thermally excited vibrational mode of the ions, a phonon. Again,
the concept of mean free path arises as the average distance between scattering events.

An additional important feature of the quantum mechanical description is the Pauli exclusion principle—
only one electron can occupy any given wavefunction. Since electrons have spin 1/2, there are two distinct spin
wavefunctions, and therefore, only two electrons (one spin “up,” the other “down”) can have the same Bloch
state. If one thinks of adding the conduction electrons to the solid, the lowest energy Bloch states are filled
first; one keeps adding until the crystal is electrically neutral. Thus, states of all energies up to a certain level,
the Fermi energy, are filled. To understand the conductivity (and many other properties), one really only needs
to consider the electrons near the Fermi energy because well below that level for every electron moving in a
given direction, there is another moving with equal and opposite momentum. These lower energy electrons,
therefore, contribute no net current.

We now focus on what happens if the lattice becomes disordered. As more and more defects are introduced
(impurity atoms, vacancies in the lattice, atoms “out of place” from the regular lattice structure), the mean
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free path gets shorter and shorter until it becomes comparable to the interatomic spacing itself. At this point,
the nature of the conduction process changes qualitatively. Instead of ballistic particles colliding with defects
(or freely propagating waves scattering from them), the particles (or the wavefunctions which describe their
position and momentum) become localized in space (2). Electrical conduction is now better described as a
hopping process—each charge carrier spends more time in one localized state and then, as a result of thermal
fluctuations and the effect of the electric field, hops to another nearby state. The time spent in each state is
relatively long compared with the time that it takes to make the transitions between them.

Hopping conduction is observed in several distinct classes of materials (3). Much early work focused
on impurity states (donors or acceptors) randomly distributed in crystalline semiconductors. At sufficiently
low temperatures, the donors’ electrons (or holes from the acceptors) are localized by Coulombic attraction to
the impurity atoms and move by hopping from impurity to impurity. As another example, the localization of
intrinsic charge carriers is observed in amorphous semiconductors such as selenium (a-Se), arsenic triselenide
(As2Se3) or hydrogenated amorphous silicon (a-Si:H). Also, the motion of injected charge in glassy insulators
(for example, fused quartz—SiO2) is a hopping process. Much recent work has involved amorphous organic
materials (4), such as molecular glasses and molecularly doped polymers where the charges are either injected
from a metallic electrical contacts or created by photo-excitation. In this case, the localized states are molecular
orbitals, and the hopping rates are determined by the (typically small) overlap between adjacent states.

The Hopping Mechanism

In order to understand the process of hopping conduction, one must consider the nature of the localized
states and the interaction between them that determines the hopping rate. In addition, since it is currently
impossible to observe experimentally a single hopping event in bulk materials of the type described previously,
it is necessary to account for the stochastic nature of the hopping process in order to obtain the average behavior
which is measured in a macroscopic sample. The difficulty of the problem (and the fact that it continues to be
of interest after more than 30 years of research) lies in the fact that it is impossible to separate the effects of
the microscopic hopping mechanism from the statistics inherent in the macroscopic observables.

Nevertheless, considerable progress has been made toward obtaining a theoretical understanding of the
vast amount of experimental data which has been accumulated.

In doped semiconductors, the impurity states are hydrogenlike orbitals (5). For example, phosphorus acts
as an electron donor in silicon. At low temperature, the extra electron is bound in a spherical 1s state to the P
atom which has a positive charge because of its extra proton. The binding energy is reduced relative to that of
an isolated hydrogen atom by the (square of the) dielectric constant of the Si host, and the radius of the first
Bohr orbit is correspondingly increased to many times the lattice spacing. In order to observe experimentally
the conductivity associated with hopping from one donor state to another, several conditions must be met (6).
First, the concentration of donor states (i.e., P atoms) must be low enough that any one overlaps with only a
small number of other states. Thus, the hopping from one state to another will be relatively unperturbed by
additional interactions. Second, the majority of donor states must be empty so that an electron in one of the
few occupied states will find the majority of nearby states unoccupied and, therefore, available as a target to
which to hop. This condition implies that the concentration of donors be very nearly compensated by a slightly
lower number of acceptors such as boron or aluminum. Finally, the temperature must be sufficiently low such
that few acceptors are ionized to create free holes in the valence band, and few donors contribute free electrons
to the conduction band. Then, conventional conduction mechanisms are unimportant, and hopping among the
impurity states can be observed.
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Under these circumstances Miller and Abrahams (6) showed that the phonon assisted transition proba-
bility from one donor state, i with energy, εi, to a nearby vacant state, j energy εj, has the form

where W0 and r0 are constants, and rij is the distance between the two sites. The energy differences between
localized states are due not only to the applied electric field but also to a random internal local field which arises
because of the random distribution of occupied (negatively charged) acceptors and unoccupied (positive) donors.
These equations imply that an “uphill” transition (i.e., to a state of higher energy) occurs with a thermally
activated rate, where the activation energy is proportional to the energy difference between the states. The hop
requires that phonons of energy (εj − εi) are available to be absorbed in the process so that energy is conserved.
(For this reason the mechanism is frequently termed phonon assisted hopping.) Conversely, the downhill hop
emits a phonon, and it is irrelevant how many phonons of that energy are already present so that the rate
is independent of temperature. These equations apply when there are few phonons available to provide the
energy for an uphill hop, that is, at low temperature.

The distance dependence is readily understood in terms of the overlap between the spherical hydrogenic
orbitals of the localized states. The probability of a hop between two states is proportional to the interaction
between them, that is, to the overlap of their wavefunctions. The wavefunctions decrease exponentially with
distance from the impurity atom, with characteristics decay length, r0, and hence, the overlap integral decays
exponentially with 2r0.

In their paper, Miller and Abrahams (6) then proceeded to analyze the conductivity of such a system in
terms of a random resistor network where the resistances are inversely proportional to these transition rates.
They were able to obtain fairly good agreement with the temperature and donor concentration dependence in
experimental data obtained in nearly compensated silicon.

Amorphous Semiconductors

The nature of the localized states in amorphous semiconductors such as a-Se, and As2Se3 is rather different
(3). Whereas in doped tetrahedral semiconductors, there are just a few localized impurity levels in a relatively
narrow band of energies; in amorphous semiconductors, the disorder introduces a broad distribution of states
extending above the valence band and below the conduction band into the energy gap. (See Fig. 1.) These are
called the band tails. The concept of the band edges (the top of the valence band and the bottom of the conduction
band) must now be replaced since there are available states over a broad distribution of energies. The relevant
demarcation energy is the mobility edge, following an idea and analysis due to Mott (7). Conduction band
states above the electron mobility edge are delocalized, and electrons therein propagate freely. Electron states
below the mobility edge are localized, and transport of electrons in those states occurs either by hopping or by
thermal excitation to the mobility edge. A similar picture holds for holes in the valence band below and above
the hole mobility edge.

The two mechanisms of charge transport in amorphous semiconductors were compared by Noolandi (8),
who showed that there is no essential difference in the kinetics of charge propagation between hopping from
one site to another and the sequence consisting of excitation out of a localized state to above the mobility edge,
motion in extended states, and relaxation into another localized state. The characteristics of charge transport,
particularly of photo-excited carriers, in such materials have been studied extensively by many workers and
have been reported in several books and review articles (3,4,9,10). These studies involve the time dependence
of the transient current following a short light pulse. The experimentalist varies the applied electric field and
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Fig. 1. Schematic density-of-states of an amorphous semiconductor, illustrating the concepts of band tailing and mobility
edges. Holes in states above the mobility edge in the valance band are localized, as are electrons below the mobility edge in
the conduction band. At zero temperature, states below the Fermi energy are filled. In many amorphous semiconductors,
there is also a band of localized states near the middle of the gap. In such materials at low temperature, variable range
hopping [see Eq. (2)] can be observed.

the temperature and may add impurities to the sample in order to understand the effects of trapping the mobile
charge. By these means, it is possible to distinguish between hopping conduction and the transport of charges
which have been thermally excited above the mobility edge. In general, the data are satisfactorily analyzed in
terms of the theory of dispersive transport, described below.

Variable Range Hopping

In amorphous semiconductors and related systems, the disorder manifests itself in two distinct ways (2), First
is that the available states for the charge carriers are distributed in energy as, for example, the band tails
discussed in the previous section. This aspect is frequently called energetic disorder or diagonal disorder, the
latter term arising because the diagonal element of the Hamiltonian matrix are random. The second effect of
disorder is that the transition (or overlap) matrix elements between one state (or site) and another are also
random: hence the term “off-diagonal disorder.” The transition matrix elements dictate the hopping rates from
one state to another, as given by the distance dependent term in Eq. (1). In order to arrive at a microscopic
description of charge transport in amorphous conductors, both features of the disorder must be taken into
account. The phenomenon of variable range hopping (3,11) occurs because of a competition between the two
aspects of disorder.

Consider a charge carrier in a localized state. It may hop to another nearby state which has a strong
overlap with the first. However, the closest states may be higher in energy than the first state, and therefore,
the activation energy for these transitions is higher than that for a longer range hop, having a less favorable
transition matrix element. Thus, the most probable hop at each site is dictated by the combination of the
energies of the available states and the matrix elements coupling them to the original site. This situation was
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analyzed by Mott and Davis (3), who showed that it results in a temperature dependent conductivity of the
form

where d is the dimensionality of the system.
Variable range hopping is most easily observed in amorphous materials where the valence and conduction

band tails overlap in the middle of the gap. This implies that the Fermi level lies within the band tails so that
even at low temperature, there are empty states immediately above the Fermi level available, and a carrier
may hop with minimal cost in energy. In such systems at sufficiently low temperatures, the experimentally
measured conductivity is found to have the form of Eq. (2) (3).

Polarons

The electron-phonon interaction leads to important consequences for charge transport in both crystalline and
amorphous materials. In the latter particularly, the carriers are resident for relatively extended times in
localized states, and the nearby nuclei have time to respond to the presence of the electronic charge, relaxing in
the Coulomb potential. This, in turn, alters the characteristics of the electronic wavefunction, tending to localize
it further. Thus, there is a self-consistent redistribution of the electronic charge and the nuclear positions. The
composite object of the electron and the distorted lattice is termed a polaron (12,13).

The motion of polarons is considerably different from that of an electron alone. It must involve also
displacement of the nuclei. The nuclear distortion at the starting site for a hop is removed and replaced by
a distortion around the target site. The mechanism of this process depends on the random, thermally excited
motion of the nuclei, themselves. Random thermal fluctuations of the nuclear positions occasionally bring the
electronic state into a situation where there is higher probability, both energetically and via more favorable
transition matrix elements, of hopping to a nearby state. This problem was analyzed in considerable detail
by Holstein and Emin (12,14). The resulting transition rates, for high temperatures when many phonons are
involved, and for strong coupling of the electron to the lattice, are given by

where Ep is the polaron binding enegy, that is, the change in electronic energy that results from the nuclear
distortion. The form of this equation is identical to that which arises in charge transfer in chemical and
biological systems where it takes the names of Marcus (15) and Levich (16) who first analyzed the process
for these cases. The theory of Holstein and Emin also includes the low temperature, weak coupling limit for
phonon assisted hopping. In this limit, the Miller–Abrahams form [Eq. (1)] is recovered.

Experimental Methods

Charge transport phenomena are most directly studied by applying an electric field to a sample and measuring
the current which flows as a result. This is one of the simplest experimental techniques imaginable, and
yet, since it is readily done as a function of temperature and perhaps electric field, it can provide a wealth of
information. In its simplest form, it yields a determination of the (linear) electrical conductivity of the material.
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Fig. 2. Schematic of the time-of-flight transient experimental arrangement. Following a short light pulse, a photo-induced
current transient flows in the circuit containing the sample causing a voltage to appear across the series resistor. The voltage
is amplified and captured by a transient digitizer.

However, two independent variables enter the expression for the conductivity

namely n, the density of charge carriers, and µ, their mobility. In a semiconductor, the number of mobile carriers
is usually a strong function of temperature, and so one needs additional information, for example from a Hall
effect measurement, to separate it from the temperature dependent mobility which contains information about
the hopping rates of the carriers.

A technique which determines the carrier mobility more directly is the photo-induced time-of-flight tran-
sient method (17) (Fig. 2), which can be employed with most nonmetallic materials. Here, the sample to be
measured is placed, usually in a thin film geometry, between two electrodes, one of which is semitransparent,
and a voltage is applied. The electrodes are arranged to be “blocking” by coating them with a thin layer of insu-
lator so that there is minimal current flow in the dark. A light pulse is incident through the semitransparent
electrode and is absorbed within a thin layer of the semiconductor adjacent to the electrode, exciting charge
carriers (electron-hole pairs). Depending on the sign of the applied voltage, one or other of the carriers moves
across the layer of semiconductor, resulting in a current flow which is detected in the electric circuit attached
to the electrodes. The duration of this current transient is a measure of the time it takes the charge carriers to
cross the thickness of the sample (the transit time)

where L is the thickness of the film, V is the applied voltage, and E is the (assumed uniform) electric field in
the sample. Ideally, the experiment is carried out with a minimal number of excited charge carriers so that the
electric field that they create (the space charge field) is small compared to the field applied at the electrodes.

Other methods can be used to determine the transport characteristics of charges injected into materials
of interest (17). For example, a high voltage pulse may be used to inject carriers of a given sign, which then
drift in the electric field given by a much smaller steady voltage. In other techniques, electrons are injected in
a pulse from an distant electron gun similar to that used in an electron microscope. Then, the current in the
sample is monitored as a function of time. In another method, using a geometry similar to the time-of-flight
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method, but with (at least one) electrode selected so that it readily injects charge in the dark, the space charge
limited current (18) can be used to determine mobility. However, the photo-induced current transient method
has become by far the most popular experimental method of determining carrier mobility.

The mobility (and indeed the entire shape of the current transient, which will be discussed in more detail
below) depend on several experimental parameters. First is the applied electric field, itself. In many cases
(4,19,20), the electric field dependence is well described by the form

The so-called zero-field mobility, µ0, and β are parameters determined by experiment, and both are gener-
ally temperature dependent. In some cases, the zero-field mobility is thermally activated with an Arrhenius
dependence—µ0 ∼ exp(−�/kT), while in other cases, especially for molecular glasses and molecularly doped
solids, the data are better described by the form

As will be discussed in more detail in the section on the Gaussian Disorder Model (GDM) below, the parameter
σ (not to be confused with the conductivity above) is a measure of the degree of energetic disorder. The factor
of 2/3 also arises in the GDM.

The form of Eq. (6) is reminiscent of the Poole–Frenkel (PF) (21) mechanism which describes the field
assisted escape of carriers from charged traps, and for this reason, β is frequently called the Poole–Frenkel
parameter. However, it is now generally recognized that the PF mechanism is not active in most materials
which show hopping transport. Rather, the electric field dependence arises, at least in part, because energetic
disorder is not totally random. A theoretical account of this phenonemon is given below.

Another parameter of experimental interest is the concentration of localized states, which in turn, affects
the mean hopping distance. In molecular solids, it is frequently possible to span the range of concentration
from 100% (i.e, the pure molecular glass) to less than 10% of the active molecule doped into a passive host
polymer. It is then found that mobility depends on the mean intersite distance r in the form µ ∼ exp − r/2r0.
As discussed above in connection with Eq. (1), such a distance dependence is easily understood in tems of the
distance dependence of the overlap integral of localized wave functions. This is one aspect of the microscopic
mechanism which persists in experiments on macroscopic samples.

Dispersive Transport

In this section, the concept of dispersive transport, commonly observed in materials with hopping conduction,
is introduced by contrasting the normal band transport seen in crystalline materials.

There are several different uses of the term dispersive in the literature, not all of which are precisely
defined. We will try to indicate these various uses and provide some clearer definitions.

In a single crystal of semiconductor, charge transport (1,5) is well described by a picture in which the
carriers drift under the influence of an applied electric field, all the carriers having a velocity close to some
mean value. If a packet of carriers is injected into such a crystal, the small fluctuations in velocity lead to
diffusional spreading of the charge packet. The situation is well described by Gaussian statistics: while the
mean displacement of the packet increases linearly with time (x0 = µEt), its (root mean square) width increases
with the square root of time
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where the diffusion coefficient, D, is related to the mobility by the Einstein relation

Thus, in a transient time-of-flight experiment, at the end of the transit time, the width of the carrier packet
relative to its displacement is given by

Note that this depends only on temperature and the applied voltage, not the thickness of the sample or the
carrier mobility. In a typical experiment at room temperature and with an applied voltage of order 100 V, w ∼
10− 2. One would therefore expect the current to be constant to a time within about 1% of the transit time, then
fall to zero rapidly as all the carriers reach the collecting electrode. Such an ideal current transient [Fig. 3(a)]
is never observed in materials which show hopping conductivity. Rather, in [Fig. 3(b)] the current rises sharply
after the light pulse, then starts falling immediately. The rate of fall may slow noticeably giving a “plateau”
before accelerating again near the transit time as the carries reach the electrode and no longer contribute
to the current. The width of the carrier packet, which is given by the length of the tail in the transient,
is often comparable to the transit time itself—that is, w ∼ 1. The large spread is intimately related to the
disorder inherent in hopping conduction. Although the term “dispersive” has been applied to the excessive and
non-Gaussian broadening of the carrier packet, a better term to use in this context is “anomalous diffusion.”

In many materials (4,9,19), and especially at low temperatures it is not possible to observe the plateau
in a linear plot of current (i) versus time (t). The current just appears to fall smoothly towards zero [Fig. 3(c)].
This makes it difficult to identify the transit time. In such cases, it is common to plot the current-time behavior
on a log-log scale. The transit time can then be identified as a change in slope [Fig. 3(d)]. In experiments on
many materials, it is observed that the log(i) versus log(t) plot, both before and after the transit time, is linear
over a significant range of time; that is

(The meaning of the parameter α is given in the next paragraph.) The absences of a plateau and a clear transit
time in a linear i-t plot has been used in the literature as indicative of dispersive transport, but this is really a
matter of degree, since it ultimately depends on the signal-to-noise ratio in the experiment.

The form of Eq. (11) was explained in a classic series of papers culminating with that by Scher and
Montroll (22). They considered statistics of residence (or waiting) times, that is, the mean length of time that
a carrier stays on a given site before hopping. (The theory is commonly called continuous time random walk.)
Many sites which have strong interactions with one or more neighbors will have short residence times, while
other, more isolated sites or those having particularly low energy, will have very long residence times. They
argued that, in amorphous materials, the distribution of residence times would be extremely wide, perhaps as
wide as the time scale (the transit time) of the experiment itself. Thus a few carriers’ paths across the sample
might take them to sites with very long residence times where they remain until the majority of the carriers
have already reached the collecting electrode. Eventually, they leave the long time sites and contribute again
to the current until they, too, reach the other side, thus explaining the wide tail in the current transient. The
wide waiting time distribution also explains the early time decay of the current transient. Initially, the carriers
occupy sites at random, so most of them are in the numerous ones with short waiting times. However, their path
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Fig. 3. Current transients obtained in time-of-flight mobility experiments. Current, i, is plotted against time, t. (a) Ideal
current transient expected for nondispersive transport and Gaussian diffusion. The current decays in a very small time
range around the transit time, t0. (b) Typical transient observed in disordered materials showing a rapid drop in current
after the light pulse, a plateau region before the transient time, and a “tail” comparable in length to the transit time.
(c) A highly dispersive current transient plotted linearly as current vs. time. (d) The data of curve c plotted on a double
logarithmic scale. Note the power law behavior below and above the transit time.

explores more and more sites, and so as time goes by, there is an increasing probability that some of the carriers
will land in longtime sites where they stay for a while. Thus, the occupation of long wait sites increases with
time, and because these stationary carriers no longer contribute, the current decreases, Scher and Montroll
analyzed the statistics in the case where the probability of residence times (τ) is given by a power-law behavior
(Fig. 4)

where the “dispersion parameter” is 0 < α ≤ 1. Such a form for the distribution has the very important properties
that it approaches zero very slowly as τ → ∞, and that the mean waiting time is infinite. Thus, there is some
(small) probability of sites with τ > t0, but because there are few of them, the carriers take a long time to
encounter them. Within the time scale of the experiment, the full width of the distribution function is not
sampled by the population of carriers. This feature of the continuous time random walk theory then gives
perhaps the most precise definition of dispersive transport; the carriers never come fully into equilibrium with
the distribution of site residence times.
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Fig. 4. Waiting time distributions plotted on log-log scales. The solid line shows the Scher–Montroll distribution; no matter
how long the transit time, there are always some sites with longer residence times, resulting in dispersive transport. The
dashed line shows a waiting time distribution with a cutoff at long times. If the transit timeis in the region of t1, the carriers
will not fully equilibrate with the distribution, and the transport is dispersive. If the transmit time is in the region of t2,
nondispersive transport may be observed, although the carrier packet will still be anomalously broadened.

The Scher–Montroll waiting time distribution has several important consequences which can be observed
in experiments (9). First is the troublesome result that the transit time, and hence the mobility, depends on
the thickness of the sample. The mean displacement of the carrier packet is x0 ∼ tα. (Since the current is
proportional to the mean carrier velocity, the time derivative of this expression gives the early time current in
Eq. (11).) Thus, the transit time and mobility are given by t0 ∼ L1/α and µ ∼ L1 − 1/α. Second is the concept of
“universality:” for a given value of α, all current transients have the same time dependence. That is, if one plots
log(i/i0) versus log(t/t0) (here, i0 is the value of the current at the transit time t0), then all the transients will
lie on top of each other. In amorphous semiconductors, for example, α does not depend on electric field, and so
transients taken at various electric fields (but at the same temperature) show universal behavior. Universality
is a consequence of dispersive transport which arises in the particular case of a power law distribution of
waiting times.

In summary, the most general definition of “dispersive transport” implies a distribution of waiting times
which is wider than the experimental time scale. The packet of carriers does not reach equilibrium with the
waiting time distribution.

Gaussian Disorder Model

The statistical theory of Scher and Montroll starts from a distribution of residence times. It says little about
the microscopic mechanism of hopping which determines the mean residence time on each site, and hence,
the temperature and electric field dependences of the distribution. Indeed, since the only parameter in the
theory is the dispersion parameter, α, the only way in which temperature and field can affect the transport
properties is through their effect on α. Moreover, the crossover between dispersive and nondispersive transport
is contained only in the limiting behavior at α= 1, where the mean waiting time becomes finite. To proceed
beyond the statistical theory, as useful as it is, to microscopic mechanisms requires a different approach.
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We have seen in the preceding sections that each individual hop between two nearby sites (i, j) is dependent
on the (random) energy difference between them

where the electrostatic energy is now explicitly included as the last term. Here, rij is the distance between the
two sites, and θij is the angle between the vector joining them and the applied field, E. The transition rate
also depends on the overlap integral between the two sites which falls off exponentially with the distance rij.
However, in asymmetric systems such as nonspherical molecules, the rate of falloff depends on the relative
orientation of the two molecules. Thus, the overlap integral is not just a function of rij, in the following, we write
it as exp γij. The complexity of the problem is now evident, there are three random variables to be considered:
the on-site energies (εi), which describe the diagonal disorder, the overlap parameters, γij, which describe the
off-diagonal disorder, and the combination of distance and angle between site positions (rij cos θij), which is
necessary to account for the electric field dependence of the hopping. It should, therefore, come as no surprise
that there is no completely analytic mathematical solution of this problem. Considerable progress has been
made, however, using computer methods to treat the problem numerically.

The computational technique which was developed explicitly to deal with random distributions of the
type encountered here for the case of transport in amorphous systems is the Monte Carlo method. One uses a
random number generator to assign to the properties of each site and site-pair a specific value of the variables
from within an appropriate distribution function. (The choices of distribution functions are inputs to the model.)
Then, a charge carrier is put on a starting site, and the computer “decides” which sequence of sites it hops to,
in accordance with the probabilities inferred from the hopping rates from the occupied site to all its neighbors.
The process is repeated many times, for many realizations of the distributions and for many carriers, and the
resulting averages are tabulated for comparison with experimental data. One of the major proponents of this
method in the field of hopping conduction has been the group of Bässler at Phillips University, Marburg (23).

The core of Bässler’s approach is the choice of distribution function for the site energies, εi. It is taken
to be a Gaussian, a form which is commonly observed in the spectroscopy of systems with inhomogeneous
broadening, and hence, the name given to this model and its many extensions is the Gaussian Disorder Model
(GDM). The center of the Gaussian is taken to be the zero of energy, and its width is σ. The hopping rates are
assumed to have the Miller–Abrahams form [Eq. (1)], where the energy difference between sites includes the
electrostatic energy.

The first result of GDM is the temperature dependence of the mobility. Rather than being simply acti-
vated with an Arrhenius form, it is found to depend on the square of temperature in agreement with many
experimental results as expressed by Eq. (7). This may be understood by means of a straightforward calcula-
tion, realizing that the carriers tend to occupy the lowest states in the distribution, according to a Boltzmann
thermal occupation factor. The mean energy is given by

which is below the peak in the density of states distribution. Thus, the rate limiting hops are thermally
activated with a cost in energy proportional to −〈ε〉, that is, the mobility µ ∼ exp −(σ/kT)2. The factor of 2/3 in
Eq. (7) is given by a more detailed analysis.

Off-diagonal disorder is included in the GDM by assuming that the pair-wise overlap parameters, γij, are
given by a simple sum γij = γi + γj, where each γ is again drawn from a Gaussian distribution of width 	. The
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results of many computer “experiments” can be expressed in the form

Although one may wonder whether the choices made for input to the computer simulation (Gaussian distri-
butions, Miller–Abrahams hopping) are entirely in agreement with the physics applicable to real systems, the
GDM provides remarkably good qualitative agreement with a large body of experimental data on molecular
glasses and molecularly doped polymers. It also gives a framework with which to analyze that data so that
parameters may be compared from one material to another. There is remarkably little variation in the value of
σ obtained from a large number of dopant molecules and host polymers (4). One finds that σ is generally about
0.1 eV to within perhaps 20%. More recent computer simulations by others (24) have explored the effects of
a polaronic form for the energetics of hopping as well as more realistic distributions for the overlap integrals
(25,26). These are found to make rather small qualitative differences, although they do affect the detailed
interpretation of the parameters. The reader is referred to original papers for an account of these differences.

Origins of Energetic Disorder

What are specific causes of the random site energy which has such important consequences in the temperature
dependence of hopping transport? When a localized state is charged the energy depends on several different
types of interactions between the electron or hole and the surroundings, and if the localized state is molecular,
with the molecule itself.

First, there is the electric field due to all the other electrons and nuclei in the neighborhood. Since apart
from the single mobile charge in the state in question, the solid is electrically neutral (recall that experiments
are generally performed in the limit where space charge effects are negligible), this field may be thought of as
the sum of fields due to a random assembly of dipoles (27). For example, in the case of a molecular solid, one
might think of a dipole associated with each of the molecules surrounding the one that is charged. It might
be even more accurate to assign a dipole to each chemical bond in the surrounding solid. In an amorphous
solid, the dipolar field is random in both magnitude and orientation. Theoretical and experimental estimates
suggest that it can be as large as 107 to 108 V/m, which is comparable to the externally applied field in many
time-of-flight experiments.

Several recent experiments (28,29) have been performed using molecularly doped polymers in an effort to
determine the magnitude of the energetic disorder provided by the charge-dipole interactions. In some cases,
nontransporting dipolar molecules were added to the molecular glass, while other experiments studied series
of charge transport molecules differing only in a substituent which altered the dipole moment of the dopant
itself. For each material (and concentration), the energetic disorder, σ, is determined from the temperature
dependence of the mobility. It is found that the experimental data agree quite well with the theoretical pre-
diction (30) that the contribution to the energetic disorder due to molecular dipoles of magnitude, p, and at
concentration, cd, is

where a is the intersite distance, and κ is the dielectric constant. k0 is a constant whose magnitude can be
estimated theoretically (30) or from Monte Carlo simulations (31). Since the charge-dipole contribution is
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assumed to be uncorrelated with other sources of energetic disorder (σ′), its effect is given by

It is found, for example (29), that when charge transport molecules with a dipole moment of about 2 Debye are
put into a nonpolar polymer binder at a concentration of about 50% by weight, the charge-dipole contribution
is comparable to all other sources of disorder.

A second source of energetic disorder lies in the variability of the local polarizability of the medium in
the vicinity of the charge site (32). Since the environment of each site differs, so too will the dielectric response
around the charge when it occupies a given site. Part of the response is due to the electronic polarizability of
the medium, and in the case of molecular solids, there is also the possibility that dipolar molecules rotate to
align with the electric field of the perturbing charge. The magnitude of this polarization energy is quite well
known for many solids; it is typically of order 1 eV (33). It is more difficult to account for its variability from site
to site in a random structure, but it is quite conceivable that it provides a major contribution to the observed
σs which are typically 0.1 eV.

In molecular solids, there is the possibility of a difference in the geometry between the neutral and charged
states of the molecule. This phenomenon has already been introduced above in the section on polarons. In the
case of organic molecules, the polaron distortion introduces a change in the bond lengths. The freedom that
a molecule has to distort in response to the presence of an electron or hole will dictate the binding energy of
the polaron. Thus, randomness in polaron binding enegy is potentially an additional contribution to energetic
disorder.

Electric Field Dependence of the Mobility

The experimental observation which has been among the most difficult to account for theoretically is the
electric field dependence of the mobility, Eq. 6, commonly seen in amorphous molecular solids. The exponential
square root form is reminiscent of the Poole–Frenkel (21) effect which applies to field-assisted ionization
of charged traps but is considered not to be active in molecular solids. The PF mechanism involves a field
dependent reduction of the barrier which a carrier must overcome to leave the trap and enter a conduction
band. That barrier is a maximum at a calculable distance from the trap, and it can be shown that the maximum
is considerably beyond the mean intersite distance in organic glasses. Moreover, the behavior persists both
qualitatively and quantitative as samples are purified in an attempt to remove charged traps. Finally the
traditional Poole–Frenkel parameter (the slope of log µ versus E1/2)) is inversely proportional to temperature
and does not reverse in sign above a certain temperature as observed experimentally. Thus, one must conclude
that the similarity in field dependence to the Poole–Frenkel effect is coincidental.

Although the Gaussian Disorder Model yields, empirically, a log µ ≈ E1/2 behavior, it does not explain its
origin in any detail. Indeed, the empirical form was suggested by experimental data and chosen as a way to
provide the most direct comparison between computer simulations and real samples. The electric field appears
in the GDM mobility in the exponential which contains the spatial disorder parameter 	. Thus, one might
think that the field dependence is related to off-diagonal disorder. However, recent theoretical work suggests
another origin.

An analysis of transport in amorphous media has been given (27,34,35) which goes beyond the simple
distribution functions described above. The concept is that site energies are not truly random, but because of
the slow spatial variation of dipolar fields, they are similar for neighboring molecules; that is, the energies are
correlated. When correlations in site energy are taken into account, Dunlap et al. (34) were able to show, using
Laplace transform methods applicable to random hopping, that the mobility has the form of Eq. (6) over a wide
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range of electric fields. The values of parameters obtained by fitting the experimental field dependent mobility
data are in accord with those from the temperature dependence of the same sample. Thus, it appears likely
that the long-standing problem of the electric field dependence can be attributed to correlations in energetic
disorder due to the long range nature of the charge-dipole interaction.

Applications

Many of the ideas discussed in this article are applicable to materials of technological importance. By far,
the largest use of amorphous semiconductors is as photoconductors for electrophotographic (also termed xe-
rographic) copying and printing (commonly known as laser printers) (4). This industry began with the use
of amorphous selenium, and its alloys with arsenic and tellurium. These glassy materials can be coated uni-
formly over large areas. Amorphous silicon is also an excellent electrophotographic photoconductor, but it has
found little use because of the high cost of production. As a result of environmental and other concerns in the
last ten years, organic photoconductors have virtually replaced their inorganic predecessors. The role of the
photoconductor is to generate an electrostatic image, which can then be developed (36) with charged toner
(solid ink) particles for transfer to the paper. A surface charge is first deposited on the photoconductor from a
corona. Then, the surface is selectively discharged by exposing it to light from a page image or from a scanning
laser beam. The generated charges travel across the thickness of the photoconductor layer with sufficiently
high mobility that the latent electrostatic image is fully formed in the time that it takes to move between
the exposure and the developer. The factors affecting charge mobility and the optimization of photoconducting
materials are of great importance to the electrophotographic industry.

Hopping conduction is also observed in inorganic glassy insulators, materials which are used, for example,
as the gate insulators in the field-effect transistors used in today’s computer logic and memory chips. As the
circuitry shrinks in size and the gate insulator layer gets proportionally thinner, leakage current between the
gate and the channel becomes an increasing problem. There is a growing realization in the microelectronics
industry that the leakage is due to hopping conduction between localized defect states in the insulator (37). The
insulator is so thin that only a few such states can significantly affect the current. Indeed, in a theory developed
to deal with the phenomenon, trap assisted tunneling, only one such intermediate state is required to enable
charges to hop from gate, to defect, to channel. The identification and elimination of the defects responsible for
leakage will permit the continued trend to ever smaller circuit dimensions.

Finally in this section, one must mention a technology which is on the commercial horizon: organic
light-emitting diodes (OLEDs) are being developed and evaluated as light sources for possible flat panel
display applications (38,39). OLEDs consist of one or more layers of organic material sandwiched between two
electrodes: a cathode which injects electrons from one side of the layer(s), and an anode which injects holes from
the other when a voltage is applied to the device. The electrons and holes move toward each other under the
influence of the applied electric field and recombine to form molecular excitons. This excited state can, under
favorable circumstances, relax to the molecular ground state by the emission of light in a process which is
essentially identical to the fluorescence of the organic molecule. Several of the physical processes necessary for
operation of OLED devices involve hopping conduction. Most obvious is the mobility of the electrons and holes
as they travel across the organic layers, but two other aspects of device operation are closely related: charge
injection from the metallic electrodes into the adjacent organic material and the recombination of electron–hole
pairs. Injection can be thought of as a tunneling process (a hop) from the extended states at the Fermi energy of
the electrode into the localized states of the organic molecules. Recombination involves motion of the electrons
and holes in the field created by the sum of their mutual Coulomb attraction, the externally applied field, and
the random field of their disordered environment.

Hopping conduction is a rich scientific problem requiring an understanding of many aspects of materials
science, organic chemistry, solid state physics, experimental and computational techniques, and the statistical
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mathematics of random processes. This article has attempted to summarize in a few pages the key relevant
concepts which occupy volumes of the scientific literature: the disorder induced localization of electronic states,
the factors which govern the distance and temperature dependence of the hopping rates, roles of diagonal
and off-diagonal disorder, and the experimental, mathematical, and computational techniques which have
been developed to deal with the problem of a random microscopic process observed through its effect on a
measurable macroscopic property. We have discussed some of the materials which exhibit hopping conduction
and some of the technologies where hopping conduction is important. The field has been driven by a combination
of scientific curiosity and technological necessity, and it appears that it will continue to provide interesting
challenges in the future.
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