
SEMICONDUCTOR BOLTZMANN TRANS-
PORT EQUATION IN MACROSCOPIC AND
QUANTUM-CONFINED SYSTEMS

In this article we describe the carrier dynamics within a
crystal based on the behavior of the distribution function
f. The main tool used for determining the characteristics
of the distribution function f is the Boltzmann transport
equation. A model for the conductivity (and the mobility)
of carriers within a crystal is discussed in Transport in
Semiconductors, Dynamics of Carriers in Macroscopic and
Mesoscopic Systems. This model is based on the transport
behavior of one electron having an “average” velocity. We
know that in an ensemble of electrons the energy, momen-
tum, velocity, and the spatial position of individual elec-
trons vary quite substantially. To describe this ensemble
we define a distribution function f(p,r, t) in six-dimensional
coordinates, called “phase space.”

In the first section we define the probability distribution
function f(p, r, t). Then we show that the equilibrium value
of this distribution function f0(p, r, t) is the well-known
Fermi–Dirac distribution function. In the next section we
calculate the average concentration and energy of carriers
under equilibrium. In the following we derive the Boltz-
mann transport equation (BTE) by equating the change
in the distribution function caused by accelerating forces
to the change in the distribution function resulting from
scattering forces. An approximate solution to the BTE is
presented in the subsequent section. This method, which
is called relaxation time approximation (RTA) provides the
basis for describing the conductivity and mobility of crys-
tals. In the next section the conductivity of semiconduc-
tors with elliptical bands (such as silicon), multiscattering
mobility, Hall mobility, and temperature-dependence of
mobility of carriers in semiconductors are described.

A more general solution to Boltzmann transport equa-
tion, known as “method of moments” is presented in the
following section. In particular, three widely used balance
equations are derived from BTE which collectively describe
the conservation of carriers, their momentum, and their en-
ergy. These balance equations, which form an infinite chain
of balance equations, are truncated subject to several sim-
plifying approximations, which are also discussed in this
section.

Carrier dynamics within the crystals are analyzed in
many other ways. Monte Carlo technique, (MC) and the
hydrodynamic model (HD) are two of the most widely used
techniques in recent literature. In the following section we
describe the Monte Carlo simulation technique, and in the
last section we present a hydrodynamic model based on
the solution of the two higher moments of the Boltzmann
transport equation. In particular, we show how the Boltz-
mann equation is solved self-consistently with the Pois-
son and Schrödinger equations for a high-electron-mobility
transistor.

THE DISTRIBUTION FUNCTION f(r, p, t)

To describe the ensemble of carriers in a crystal, we must
define a distribution function f(p, r, t), which is a proba-

bility distribution function. This function is defined in the
phase space which is a space consisting of position and mo-
mentum coordinates. The distribution function f(p, r, t) has
various definitions, such as those that follows.

1. The distribution function f(p, r, t) is the probability
of finding an electron in a box volume of size�r, cen-
tered at r, and �p, centered at p, at time t where p
is the momentum and r is the position. The quanti-
ties p and r do not refer to a particular carrier but
are merely the momentum and position in the phase
space. With this definition, the integral of f(p, r, t)
over the entire phase space must add up to unity:∫ ∫

f (r,p, t)dp dr = 1 (1)

2. The distribution function f(p, r, t) is the average num-
ber of electrons in a phase-space box of size �p�r
located at the phase space point (r, p). With this def-
inition, the integral of f(p, r, t)) must add up to∫ ∫

f (r,p, t)dp dr = N(t) (2)

3. where N(t) is total number of electrons at time t.
4. The distribution f(v, r, t) defines the probability of

finding one electron in a velocity range v and v + dv
having space coordinate between r and r + dr. As in
the second definition,∫ ∫

f (r, v, t)dv dr = N(t) (3)

Note that in all three definitions, the Heisenberg uncer-
tainty principle is violated, for the very existence of such
distribution function f(r, p, t) inherently implies the possi-
bility of simultaneous measurement of the two quantities,
r and p, which according to Heisenberg uncertainty prin-
ciple is forbidden.

Therefore, the Boltzmann transport equation (BTE),
which is based on a time derivative of the distribution func-
tion f(r, p, t), is a nonquantum classical approach to the
transport in semiconductors. In fact BTE was developed
far earlier (BTE is now 170 years old) than quantum me-
chanics. In spite of this violation of the uncertainty prin-
ciple, the BTE is one of the most powerful tools in study-
ing the transport phenomenon in macroscopic semiconduc-
tors (semiconductor devices with dimensions of the order of
micrometer). However, recent advances in semiconductor
technologies have pushed the dimension of electron devices
down to 0.13 micron (130 nanometers), and 0.08 micron
(80 nanometers). At the research and development level,
devices with dimensions of 40 nanometers are being de-
veloped. It is anticipated that “micro-electronics” will soon
give way to “nano-electronics”, in which the effective di-
mensions of electron devices will be pushed down to less
than 10 nanometers. For a brief introduction to these new
development, see Section 10 of the article: Transport in
Semiconductors, Dynamics of Carriers in Macroscopic and
Mesoscopic Systems. There are other limitations to the va-
lidity of BTE which are discussed later in this article.
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The function f(r, p, t) is a distribution function that gen-
erates numbers between 0 and 1 which are the probability
of finding a carrier at location r with crystal momentum p
at time t. The value of f(r, p, t) is obtained by solving the
Boltzmann transport equation for one (or more) particular
scattering source(s). The equilibrium distribution function,
however, is simply the Fermi–Dirac distribution given as
(1)

f 0(r,p) = 1

1 + e
[EC(r,p)−EF]

kBTL

(4)

where kB is the Boltzmann constant,EF is the Fermi energy,
TL is the lattice temperature (which is equal to electron
temperature only under low applied fields), and f0(r, p, t)
is the equilibrium distribution function.

The Fermi energy EF is an electrochemical energy and
has several implications:

1. The amount of energy that is added to the crystal at
0 K when one electron is added to the crystal.

2. The energy level at which the probability of occu-
pancy is exactly one-half.

3. The highest occupied energy level in metals.
4. The energy level which remains constant throughout

the crystal when there is no applied electric field (and
no current transport).

The term EC(r, p) is the total energy of carriers consist-
ing of carrier potential energy, EC0(r, t) and kinetic energy
E(p):

EC(r, t) = EC0(r, t) + E(p) (5)

For a parabolic spherical band structure E(p) = p2/2m. As-
suming a nondegenerate semiconductor (low to moderately
doped under low injection levels), the distribution function
is given by

f 0(r,p) = e
−[ECo(r)−EF]

kBTL e
p2

2m∗kBTL (6)

where EC0(r) is the energy level corresponding to the bot-
tom of the conduction band. In a uniformly doped isotropic
semiconductor with no composition grading, EC0 is inde-
pendent of position. The equilibrium distribution function
f0(r, p, t) can be graphed as a function of one of the mo-
mentum coordinates, as depicted in Fig. 1, where f0(pz ) is
graphed as a function of the z-coordinate with momentum
pz . Note that the distribution function is symmetrical in
p-space, implying that the probabilities of carriers having
momentum pz and −pz are the same. Since there are equal
number of carriers with oppositely directed momenta, the
net current is zero.

When the distribution function is disturbed from its
equilibrium value by an applied field (the solid line in Fig.
1), the Fermi level, EF is shifted to a higher energy level.
This energy level is called a quasi-Fermi level which is also
called an imref level (Fermi spelled backward). The mo-
mentum distribution of carriers is altered, as shown by the
dashed line in Fig. 1. This distribution function is called the
Maxwell–Boltzmann distribution which is indeed an ap-
proximation to the Fermi–Dirac distribution in nondegen-

Figure 1. Illustration of Maxwellian distribution functions. The
solid line is the equilibrium distribution function, and the dashed
line is the nonequilibrium distribution with the Fermi energy
shifted to higher energies. After Ref. 1, reprinted with permission.

Figure 2. Illustration of displaced Maxwellian distribution func-
tions. The solid line assumes that the carrier temperature and
lattice temperature are equal, and the dashed line shows the hot
carrier phenomenon where the carrier temperature exceeds that
of the lattice. After Ref. 1, reprinted with permission.

erate semiconductors. Also note that in both distributions,
the greatest number of carriers have zero or a very small
momentum, which is indeed the equilibrium condition.

When an applied field causes the kinetic energy of car-
riers (and therefore their momentum) to increase, the dis-
tribution function f(p) is shifted toward higher momenta,
although it preserves its Maxwellian shape. This is shown
by the solid line in Fig. 2. Sometimes, the applied field is so
intense that the carriers get more kinetic energy than that
which keeps them in equilibrium with the crystal lattice.
The distribution is shifted toward positive momenta pz , and
there is a net transport of carriers in the positive direction.
Under these conditions, the carriers have more kinetic en-
ergy than they can lose to the scattering agents, and be-
cause of that they attain a temperature TC, higher than
the lattice temperature TL. Under such a high electric field,
the carriers are said to be “hot carriers.” Their distribution
is shown by a dashed line in Fig. 2. These two nonequi-
librium distributions are displaced Maxwellian distribu-
tions. It should be emphasized here that the use of the
Fermi–Dirac distribution for f(r, p, t) is limited only to ho-
mogeneous semiconductors (2).

AVERAGE EQUILIBRIUM CARRIER CONCENTRATION
AND ENERGY

When the equilibrium distribution function f(r, p, t) is
known, the average carrier concentration is obtained by
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summing up the carriers in each momentum state and di-
viding the sum by the volume �:

n(r, t) = 1
�

∑
p

f 0(r,p, t) (7)

where �p is over all states in the first Brillouin zone. Con-
verting the summation over p to integration as

∑
k

= �

4π3

∫
k

g(k)dk (8)

and transforming from wave vector k to momentum space
results in

n0(r) = 1
4π3�3

∫
p

e

−[EC0(r)−EF+ p2

2m∗ ]

kBTL dp (9)

which, after performing the integration, yields

n0(r) = 1
4

[
2m∗kBTL

π�2

]3/2

e
−[EC0(r)−EF]

kBTL (10)

The coefficient in front of the exponential is the effective
density of states in the conduction band and is denoted as
NC. Then the equilibrium carrier density is given by

n0(r) = NCe
−[EC0(r)−EF]

kBTL (11)

which is valid for a nondegenerate semiconductor in equi-
librium. It can be shown (2) that the equilibrium carriers
density for degenerate semiconductors (when the concen-
tration of carriers is high compared to the effective density
of the states) is given by

n0(r) = NCF 1
2

(
EC0(r) − EF

kBTL

)
(12)

where

Fn(x) = 2√
π

∫ ∞

0

yndy

1 + e(y−x) (13)

is the Fermi–Dirac integral, with n = 1/2 for F1/2(x). The
equilibrium average energy of carriers can be calculated
similarly as (1)

W0(r, t) = 1
�

∑
p

E(p) f 0(p, r, t) (14)

which for a parabolic spherical energy band is expressed
by

W0(r) = 1
8π3�3m∗

∫
p

p2e

−[EC0(r)−EF+ p2

2m∗ ]

kBTL dp (15)

Performing the integration yields

W0(r) = 3
2
n0(r)kBTL (16)

which gives the well-known average thermal energy per
carrier of

u0(r) = W0(r)
n0(r)

= 3
2
kBTL (17)

The average kinetic energy component associated with
each direction x, y, or z is similarly calculated as

ux0 = uy0 = uz0

= 1
2
kBTL

(18)

Equation (18) establishes the fact that the kinetic energy of
carriers is equally distributed among the three directions,
a result that is called the equipartition of energy.

BOLTZMANN TRANSPORT EQUATION

Now we have established the probability function f. The
Boltzmann transport equation simply relates the time rate
of change of f caused by forces to the time rate of change f
caused by scattering sources:

df (r,p, t)
dt

∣∣∣∣forces = df

dt

∣∣∣∣
scattering

(19)

Using the chain rule of differentiation and using wave vec-
tor k instead of p in Eq. (19), the df(r, p, t)/dt|forces term
can be expanded as

∂f

∂t
+ ∂f

∂r

dr

dt
+ ∂f

∂k

dk

dt
= df

dt

∣∣scattering (20)

which is usually written as

∂f

∂t
+ v · ∇rf + dk

dt
· ∇kf = df

dt

∣∣scattering (21)

where we have used the fact that dr/dt is the velocity v.
Equation (21) is the Boltzmann transport equation.

The validity of the BTE is restricted to the following
conditions (2):

1. The distribution function f has small variation with
position. This allows us to use the band structure
model we developed in the third section of the article
Transport in Semiconductors, Dynamics of Carriers.

2. The forces acting on the electron ensemble are small,
so that the response of the system can be considered
semiclassically within the effective mass approxima-
tion (see the fourth section of the previous article).

3. The time variation of f is assumed to be slow
within the time frame of consecutive collisions. In
other words, the variations in f are assumed to be
small within the timescale of hydrodynamic time
τH. For discussions of hydrodynamic time and other
timescales in the transport of carriers within crys-
tals, refer to the second section of the previous arti-
cle.

The left-hand side of the BTE has three terms: ∂f/∂t
which is set to zero for steady-state transport, v · ∇rf the
velocity term, and (dk/dt) · ∇k the acceleration term which
is usually related to the electric field (or magnetic field if
applied).

All of the scattering processes are lumped together in
the scattering term ∂f/∂t|scattering.

Two processes contribute to a change in distribution: (1)
carriers from states with wave vector k′ could be scattered
into state k (in scattering); and (2) carriers at state k could
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Figure 3. Illustration of four possible processes that occur when
the scattering involves phonons. These processes involve either
absorption of a phonon or emission of a phonon.

be scattered out to states k′ (out scattering). The net scat-
tering is simply the difference between these two processes,
which gives rise to a net change in f as a function of time:

∂f

∂t
|scattering =

∑
k′
f (k′)[1 − f (k)]S(k, k′)

−
∑
k

f (k)[1 − f (k′)]S(k, k′)
(22)

where f(k) and f(k′) are the probabilities that states k and
k′ are occupied and [1 − f(k)] and f(k′)] are the probability
that the two states are empty. S(k, k′) and S(k, k′) are the
probability of scattering from state k to state k′ and back.
Note that the summation �k ′ is over all possible states
k′, whereas S(k, k′) and S(k, k′) contain summations over
all possible scattering mechanisms by which electrons can
move from state k to k′ and back.

In general, the scattering probabilities S(k, k′) and S(k,
k′) are energy-dependent. In particular, when the scatter-
ing involves phonons there are four possible processes, as
depicted in Fig. 3. Depending on whether a phonon is ab-
sorbed or emitted, one of the four possible scatterings oc-
curs. In a nondegenerate semiconductor where f(E)<‘1, Eq.
(22) achieves detailed balance as (2)

f (E′)
f (E)

= S(E,E′)
S(E′, E)

(23)

which converts a sum over k into a sum over energy E.
The right-hand side of Eq. (23) is the ratio of absorption of
phonons to emission of photons which is given by

S(E,E′)
S(E′, E)

= Nq

Nq + 1

= e

�ωQ

kBT

(24)

where Nq is the phonon number and f is a
Maxwell–Boltzmann distribution. In a degenerate case,
the distribution function f is a Fermi–Dirac distribution
as discussed previously.

SOLUTION OF THE BTE: RELAXATION TIME
APPROXIMATION

In a homogeneous semiconductor without any applied field
and with an elastic (or isotropic and inelastic) scattering
source, an approximate solution for the BTE can be found
by writing a linear relationship for the scattering term in

BTE as

∂f

∂t

∣∣∣∣scattering = f − f0

τ
(25)

where f0 is the equilibrium distribution function and τ is
a characteristic time called relaxation time. Equation 25
leads to an exponentially decaying distribution function
given by

f (t) = f0 + (f − f0)e
−t
z (26)

which states simply that the perturbations in the distribu-
tion function f decay exponentially and the system relaxes
to its equilibrium with a time constant τ. This is known
as the relaxation time approximation (RTA) and is valid so
long as the perturbations have not driven the system too
far from equilibrium. It can be shown (1) that in such a sys-
tem in equilibrium, even with a position-dependent band
structure, the Fermi-energy and temperature throughout
the system are constant:

∇rEF = 0 (27)

∇rTL = 0 (28)

Now we return to the BTE, Eq. (21), use the RTA, Eq. (25),
and try to solve the BTE for a semiconductor that has a
weak, uniform, applied electric field. Considering only the
acceleration term in the BTE, and assuming that f − f0 ≈
f0 (not far from equilibrium) (2),

f (k) = f0(k) − τ

h
F · ∂f (k)

∂k

= f0(k) − τF · v
∂f (ε)
∂ε

(29)

Using F = −qE for a uniform electric field, the solution to
the BTE is given by

f (ε) = f0(ε) + qτE · v
∂f0(ε)
∂ε

(30)

Now the current density J produced by such an applied
field E can be found by summing over all of the electron
states as

J =
∫ ∞

0

N(ε)vf (ε)dε (31)

where N(ε) is the density of states. Substituting for f(ε)
from Eq. (30) in Eq. (31) gives

J =
∫ ∞

0

N(ε)vf0(ε)dε− q2E

∫ ∞

0

N(ε)v2
Eτ
∂f0(ε)
∂ε

dε (32)

Realizing that the first term in Eq. (32) can be written as

J = −q2nE

∫ ∞

0

N(ε)v2
Eτ
∂f0(ε)
∂ε

dε (33)

where vE is the drift velocity caused by an applied electric
field E.

Equation (33) can be written as

J = −q2E

∫ ∞
0 N(ε)v2

Eτ
∂f0(ε)
∂ε
dε

n
(34)

and realizing that the carrier concentration n is given by

n =
∫ ∞

0

N(ε)f0εdε (35)
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the current density becomes

J = −nq2E

∫ ∞
0 N(ε)v2

Eτ
∂f0(ε)
∂ε
dε∫ ∞

0 N(ε)f0εdε
(36)

Now we can introduce the energy-dependency of the relax-
ation time τ by noting that

v2
E = v2

3
= 2E

m∗

(37)

which assumes that the kinetic energy of carriers is mainly
thermal energy. Then the current density is given by

J = −nq
2

m∗ 〈τ〉E (38)

where 〈τ〉 is the average relaxation time of the ensemble
given by

〈τ〉 = −2
3

∫ ∞
0 N(ε)v2

Eτ
∂f0(ε)
∂ε
dε∫ ∞

0 N(ε)f0εdε
(39)

Using the fact that the density of state varies as the square
root of the energy, the denominator of Eq. (39) is propor-
tional to ∫ ∞

0

ε1/2f0(ε)dε = −2
3

∫ ∞

0

ε3/2 ∂f0(ε)
∂ε

dε (40)

which makes Eq. (39) become

〈τ〉 =
∫ ∞

0 ε3/2τ(ε)τ ∂f0(ε)
∂ε
dε∫ ∞

0 ε3/2τ
∂f0(ε)
∂ε
dε

(41)

〈τ〉, the average scattering relaxation time, is calculated
from Eq. (41), once the energy-dependency of the particu-
lar scattering source is incorporated. Now Eq. (38) is used
to define the mobility of electrons:

J = nqµnE (42)

where

µn = q〈τ〉
m∗ (43)

is the mobility. Equation (43) leads to the conclusion that
the carriers can attain high drift velocity in semiconductors
with smaller effective masses and longer relaxation times.
A slightly different derivation of average scattering relax-
ation time can be worked out by expressing the power-law
form of energy-dependent relaxation time:

τ = τ0

[
E(p)
kBTL

]s
(44)

where τ0 is a constant relaxation time. Then by definition
the average scattering time is given by

〈〈τ〉〉 = 〈Eτ(E)〉
〈E〉 (45)

where 〈A〉 is given by

〈A〉 =
∫ ∞

0 Af dp∫ ∞
0 f dp

(46)

Then the carrier mobility is defined by

µn = q〈〈τ〉〉
m∗ (47)

Substituting Eq. (44) in Eq. (45) and using the 	-function

	(p) =
∫ ∞

0

yp−1e−ydy (48)

the average relaxation time becomes

〈〈τ〉〉 = τ0
	(s+ 5

2 )

	( 5
2 )

(49)

Once the power-law dependency of relaxation time on en-
ergy is known, the average relaxation time can be calcu-
lated from Eq. (49). For example, with a scattering source
of s = 1/2, the average scattering time relaxation time is
given by (1)

〈〈τ〉〉 = τ0
4

3
√
π

(50)

The 	-function has the following three properties which
enable us to evaluate 〈〈τ〉〉 for any exponent s:

	(n) = (n− 1)!, n = integer (51)

	

(
1
2

)
= √

π (52)

	(p+ 1) = p	(p) (53)

CONDUCTIVITY AND MOBILITY IN
SEMICONDUCTORS

Spherical Versus Ellipsoid Bands

The average relaxation time and the mobility given by Eqs.
(41) and (43) are derived for a semiconductor with spher-
ical energy bands, such as GaAs. In a semiconductor with
elliptical constant-energy surfaces (such as Si) the deriva-
tion of average relaxation time (and mobility) is somewhat
more complicated. Unlike the spherical energy bands in
which the energy is related to a single effective mass, the
energy in elliptical energy bands is related to momentum
by

E(p) = Ec0 + (px − px0)2

2m∗
xx

+ (py − py0)2

2m∗
yy

+ (pz − pz0)2

2m∗
zz

(54)

where m∗
xx,m∗

yy, and m∗
zz, are the effective masses along the

three principal axes in the constant-energy surfaces, and
p0 = (px0, py0, pz0) specifies the location of the ellipsoid’s
center (see Fig. 6b in the article Transport in Semiconduc-
tors, Dynamics of Carriers).

Assuming that the applied field is along the x-axis and
allowing m∗

xx, to coincide with the longitudinal effective
mass m∗

l , the contribution to conductivity from two ellip-
soids along the x-axis is given by

σ1,2 = 2nq

(
q〈〈τ〉〉
m∗
l

)
(55)
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Figure 4. (a) Individual and combined mobility of GaAs as a func-
tion of electron concentration at 300 K. (b) Comparison of the room
temperature mobility of electrons in GaAs with the estimate based
on Mathussen’s rule. After Ref. 1 originally after Ref. 29, reprinted
with permission.

Figure 5. Temperature dependence of electron mobility in a num-
ber of semiconductors. After Ref. 2, reprinted with permission.

The other four ellipsoids respond with the transverse ef-
fective mass m∗

t :

σ3,4,5,6 = 4n
6
q

(
q〈〈τ〉〉
m∗

t

)
(56)

Adding the contributions of all six ellipsoids result in

σ = nq

(
q〈〈τ〉〉
m∗

c

)
(57)

with
1
m∗

c
= 1

3m∗
l

+ 2
3m∗

t
(58)

where m∗
c is the conductivity effective mass. Although the

conductivity of each ellipsoid depends on the direction of

Figure 6. A schematic picture of total scattering rate versus elec-
tron energy and a fictitious scattering rate 	0.

the applied field (x-direction in the above derivation), the
total conductivity is independent of the direction because
of the high degree of symmetry.

Multiscattering Mobility

When several independent scattering mechanisms are
present, the relaxation time approximation leads to a rule
of combination of mobilities:

1
µ

=
n∑
i=1

1
µi

(59)

where n is the number of scattering mechanisms involved,
which may involve impurities, acoustic phonons, and a va-
riety of optical phonons in a typical semiconductor. A plot of
individual mobilities and total combined mobility in GaAs
is shown in Fig. 4(a).

The rule of combination expressed in Eq. (59) (known as
Mathiessen’s rule) is valid only when the s-parameters (s is
the power-law form of energy dependency of the scattering
time) are equal. Because independent scattering mecha-
nisms usually have unequal s-parameters, the use of Math-
iessens rule introduces error (usually overestimation) in
overall mobility. This is shown in Fig. 4(b), where the over-
all mobility calculated by more exact methods is compared
to that estimated by Mathiessen’s rule. Although the dis-
crepancy is obvious, the ease by which Mathiessen’s rule es-
timates the combined mobility makes it rather attractive.
This is especially true considering the level of difficulty
involved in simultaneously treating several independent
scattering sources.

Hall Mobility

The solution of the BTE is rather complicated when a
magnetic field is applied, even with the relaxation time
approximation. The addition of an applied magnetic field
causes a pile-up of carriers in the direction perpendicu-
lar to that of the magnetic field, a phenomenon called the
Hall effect.The resulting conductivity (called magnetocon-
ductivity) and the associated mobility are altered from the
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electric mobility µ by a factor of

rH = µH

µ
⇒µH = rHµ (60)

where µH is the Hall mobility and rH is the Hall factor. Al-
though similar to that of mobility, the mathematics of cal-
culating, the Hall mobility are, significantly more involved.
The final result is given by (1, 2)

rH = 〈〈τ2〉〉
〈〈τ〉〉2

=
	

(
2s+ 5

2

)
	

(
5
2

)

[
	

(
s+ 5

2

)]2

(61)

where τ is the relaxation time and s is the exponential
parameter of the power-law energy-dependence of the re-
laxation time. For acoustic phonons with an s-exponent of
1/2 the Hall factor is 1.18, whereas for neutral impurities
the Hall factor is unity, making the magnetic conductiv-
ity and electric conductivity identical. The s-exponent and
Hall factor of these and other scattering sources can be
found in Ref. 1.

Temperature-Dependence of Mobility

The energy relaxation time of all scattering sources are
temperature-dependent, albeit to different degrees. Equa-
tion (44), although an imperial relaxation, clearly ex-
presses the general temperature dependence of the scatter-
ing source. This equation however, does not provide any in-
formation on the range of temperatures in which one scat-
tering source becomes dominant compared to others. We
know, however, that the deformation potential, for example,
dominates at temperatures below 80 K, whereas optical po-
lar scattering is the dominant source at room temperature
and higher. Figure 5 displays the temperature dependence
of electron mobility of a variety of semiconductors.

SOLUTION OF THE BTE: METHODS OF MOMENTS:
BALANCE EQUATIONS

From the Boltzmann transport equation we can obtain
the carrier density J and other quantities we may need
to characterize a semiconductor device. Several complica-
tions arise, however, when we attempt to solve the BTE for
a real device with finite dimensions subject to applied elec-
tric or magnetic fields. These complications which make
finding solutions for BTE almost formidable include the
following:

1. Incorporation of boundary conditions for carriers con-
centrations and current densities.

2. Quantum mechanical effects, especially in devices
with extremely narrow regions where carriers face
reduced dimensionality, such as a two-dimensional
electron gas in a high-electron-mobility transistor.
The quantum mechanical effects can be incorporated
by the Schrödinger equation.

3. The electric field and the resulting potential profiles
depend on the carrier density (intrinsically gener-

ated or externally injected). This dependence is usu-
ally accounted for by self-consistently solving the
Poisson equation which relates the electric field and
the potential profiles to the charge distribution.

These complications force us to look for simpler ways of
characterizing semiconductor devices. One such way is the
method of moments in which BTE is used to derive several
balance equations. These balance equations describe the
continuity (or conservation) of particles, momentum, en-
ergy, and other physical quantities related to the transport
phenomenon. To obtain the moments of BTE we proceed as
follows:

1. First, we multiply each and every term in BTE by
1/4 τ3 and then by φ = φ(�k), which is a function of
momentum. Depending on which physical quantities
we want to “balance,” we must choose an appropri-
ate function. For example, φ(�k) = 1 results in con-
servation of particles, φ(�k) = �k conserves momen-
tum,and energy balance requires φ(�k) = E(k),where
E = �2k2/2m∗.

2. Then we integrate the resulting terms in BTE over
all possible momenta. To work out the integrations
necessary, we may have to employ certain simplifying
assumptions, such as parabolic energy bands, simpli-
fied energy-dependent scattering rates, and low and
uniform field profiles.

3. Then we write the terms for any integral that has a
nonzero contribution.

The resulting equation is the zeroth moment of BTE if
φ(�k) = 1. The function φ(�k) = �k results in the first mo-
ment, and the function φ(�k) = E(k) = �2k2/2m∗ produces
the second moment. There are, of course, higher moments
of BTE. In fact there are infinitely many balance equations
one can generate. Here, we discuss the first three balance
equations. Complete derivation of these equations can be
found in Refs. 1–3.

Carrier Density Balance Equation

Multiplying BTE by 1/4 π3 and then by φ(�k) = 1 and inte-
grating over all k space yields (1)

∂n

∂t
= 1
q
∇ · Jn +Gn − Rn (62)

where ∂n/∂t is the net rate of increase (or decrease) of aver-
age carrier density n(r, t) at a specified location and time.
The term 1/q∇· Jn is the divergence of electron flux (elec-
tron current density). Gn is the generation rate of elec-
trons, which includes contributions from optical excitation
of carriers, avalanche breakdown, or other generation pro-
cesses. The last term Rn is the rate at which the electrons
are lost via recombination which may include recombina-
tion through traps and Auger and radiative recombination
sources. Although generation and recombination may in-
volve interaction with scattering agents, such as phonons,
the integral of the ∂nphonons/∂tscattering over all k-space van-
ishes. Equation (62) is the well-known carrier continuity
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equation and can also be written for holes:

∂p

∂t
= −1

q
∇ · Jp +Gp − Rp (63)

where p stands for holes. Usually Gn = Gp because carri-
ers are generated in pairs of electrons and holes. In many
cases, especially under low injection levels the recombina-
tion rate can be written as

Rn = n− n0

τn

Rp = p− p0

τp

(64)

where τn and τp are recombination lifetimes for electrons
and holes, respectively, and are totally different from the
scattering times or relaxation times discussed earlier. ∇n0

and p0 are equilibrium concentration of electrons and
holes, respectively. The recombination rate generally can
be written in terms of excess carrier concentration n = n −
n0 as

R = A∇n+ B(∇n)2 + C(∇n)3 (65)

where A is the radiative recombination coefficient, B is the
coefficient for recombination through traps, (also referred
to as the Schokley–Read–Hall recombination) and C is the
Auger recombination coefficient.

The Momentum Balance Equation

Using φ(�k) = �k, multiplying BTE by 1/4 π3 and then by
hk, and integrating over all k-space results in (1)

∂Jn

∂t
= 2q∇ · w

m∗ + q2n�
m∗ − 〈〈 1

τm
〉〉Jn (66)

where ∂Jn /∂t is the rate of change of carrier current, ∇·w
is the momentum flux and w is a tensor given by

wij = �
2

8π3

∫
k

vikjf dk (67)

The product of the velocity vi and momentum �kj is re-
lated to kinetic energy. The term q2n�/m∗ is the increase in
momentum caused by the accelerative force of the electric
field. The term 〈〈1/τm〉〉Jn is the loss of momentum caused
by scattering, and the quantity 〈〈1/τm〉〉 is the average mo-
mentum relaxation time given by (1)

〈〈
1
τm

〉〉
= 1
τ0

	( 5
2 − s)

	( 5
2 )

(68)

A simpler version of the momentum balance equation,
known as the drift-diffusion equation, can be derived as
follows. First, we write the momentum balance equation,
Eq. 66, as

Jn + 1
1

〈〈τm〉〉

∂Jn

∂t
= q2n

m∗ 1
〈〈τm〉〉

� + 2q
m∗ 1

〈〈τm〉〉
∇� (69)

Assuming that ∂Jn /∂t is negligible during the time
1/(1/〈〈τm〉〉) and defining mobility as

µn = q

m∗ 1
〈〈τm〉〉

(70)

Eq. (69) becomes

Jn = nqµn� + 2µn∇ · W (71)

Now ignoring the drift velocity component of w assuming
that the kinetic energy results entirely from thermal ve-
locity, and using the equipartition of energy (wij = w/3δij),
where w = 3/2nkBTc , Eq. (71) becomes (1)

Jn = nqµn� + qDn∇n+ qSn∇Tc (72)

where the first term is the drift component, the second term
is the diffusion, and the third term is the contribution to
current caused by the thermal gradient of the carriers. The
two parameters Dn = kBTc /q µn and Sn = µnkB /qn are the
diffusion coefficient and the Soret coefficient, respectively.
The contribution of qSn∇Tc to the current is extremely
small in many isothermal transport processes.

Energy Balance Equation

Similarly, the energy balance equation is obtained as (1)

∂w

∂t
= −∇ · Fw + Jn · � − 1

〈〈τE〉〉 (w− w0) (73)

where w is the carrier energy. The first term is the en-
ergy flux, the second term is the energy gained from the
field, and the last term is the energy lost to scattering
agents. 〈〈τE〉〉 is the average energy relaxation time, and
w0 is the equilibrium carrier energy. We can go on and
generate more balance equations. In fact using φ(�k) = vE

generates yet higher moments of BTE. Careful comparison
of the three balance equations already generated reveals
a very interesting fact. The continuity equation has two
unknowns, n and Jn , and it contains the current density
contains flux ∇· Jn . Needing an additional equation for the
two unknowns n and Jn , we generated the momentum bal-
ance equation which contains the momentum flux ∇· w.
But the tensor w. is related to kinetic energy, and when we
generate the energy balance equation, it contains the en-
ergy flux ∇·Fw . Now we need another balance equation for
Fw , which in turn generates yet another flux. Therefore, we
must truncate this chain of balance equations. Indeed, we
did truncate the chain of balance equations when we wrote
the drift-diffusion equation for isothermal conditions as

Jn = nqµn� + qDn∇n (74)

Equations (62) and (74), together with auxiliary equations
for generation and recombination, and with all scattering
effects lumped in a mobility model of some kind, such as µ
= µ(T, �, ND , have been the basis of modeling and charac-
terizing many devices ranging from diodes to transistors
and to solar cells. These models are called drift-diffusion
models. In the last section we describe the highlights of a
model developed by the authors, in which the two higher
moments of BTE along with the Poisson and Schrödinger
equations are self-consistently solved for a high-electron-
mobility transistor; see Refs. 4 through 10.

MONTE CARLO SIMULATION TECHNIQUE

Carrier dynamics within a device structure can be obtained
by the Boltzmann transport approach (BTE), the hydrody-
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namic model (HD), the Monte Carlo (MC) technique, and
the molecular dynamics (MD) technique. In this section,
the fundamentals of the MC techniques and its salient fea-
tures and limitations are described.

In the MC technique, individual trajectories of carriers
are simulated by using Newton’s second law allowing for
intermittent random scattering of the particle during its
travel. A detailed description of the dynamics of the car-
riers can be obtained from ensemble averages of various
dynamic quantities: position, velocity, and kinetic and po-
tential energies.

Typically, the initial conditions of various particles are
obtained from the temperature and the Fermi level at
the initial contact using either the Maxwell–Boltzmann
or Fermi–Dirac distributions, depending on the dopant
concentration. The particle starting at the initial contact
has an initial momentum and is subjected to position-
dependent electric fields. The particle motion in between
two consecutive collisions (free flight) is simulated by us-
ing Newton’s second law. Assuming an electric field E, the
force F, which is the rate of change of momentum p, is given
by

F = dp

dt

= (−q)E (75)

for an electron. Based on Eq. (75), the position and velocity
of one electron is computed after its travel for the intercolli-
sional time tc. The time tc, between collisions is determined
on the basic of a conditional probability given by:

tc = − 1
	0
ln(r1) (76)

where r1 is a pseudorandom number uniformly generated
between 0 and 1 and 	0 is the maximum scattering rate of
the carrier which is usually chosen to be larger than largest
scattering rate of the carriers. A schematic diagram show-
ing the total scattering rate versus energy of the electron is
depicted in Fig. 6. The reason for the choice of 	0 is to avoid
using an energy-dependent scattering rate in Eq. (76). The
difference between 	0 and the actual scattering rate is
called the fictitious scattering rate, and a carrier under-
going such an event just continues its travel without any
change in its momentum. Use of 	0 has no influence on the
physics of the problem, but makes the MC code extremely
efficient. Knowing tc, one can compute the kinetic energy
of the carrier at the time of collision. Knowing the initial
kinetic energy and momentum, one can identify the rates
of scattering for various mechanisms. For a discussion of
scattering rates see the previous article entitled “Transport
in Semiconductors: Dynamics of Carriers.” Using a pseu-
dorandom number uniformly distributed between 0 and 1
and the relative rates of various scattering mechanisms
including the fictitious scattering, one can pick the scatter-
ing event that occurred. Choice of a uniform distribution
guarantees that the fastest scattering event is chosen most
often and the slowest event, least often. Based on the na-
ture of the scattering event, such as elastic or inelastic and
isotropic or anisotropic, the final momentum and energy of
the particle after the collision are determined from energy
and momentum conservation principles.

Figure 7. A schematic picture of a device structure with parti-
tioned bins.

Two different Monte Carlo approaches are employed
for studying the carrier dynamics within a device; the
many-particle approach and the incident-flux approach. In
the many particle Monte Carlo method, the device is di-
vided into many slabs, and carriers are distributed within
them based on the Maxwell–Boltzmann distribution. A
schematic diagram in which the device is partitioned into
bins is shown in Fig. 7. The number of carriers in each slab
is initially chosen to satisfy the charge neutrality condi-
tion based on the local dopant concentrations. Typically,
the contacts are assumed to be perfect absorbers. The sim-
ulation is started with the initial conditions described. Af-
ter every few femtoseconds, �t, the carrier concentration
in every slab is checked and updated to satisfy charge neu-
trality. The Poisson equation is solved to recompute the
modified electrostatic potentials. By continuing the simu-
lation for many time intervals, one can achieve a steady-
state condition. At any time during the simulation, one can
collect data, such as carrier concentration, average veloc-
ity, average energy, and other required dynamic properties
as functions of position. A flow chart for the simulation is
shown in Fig. 8.

In the incident-flux MC approach, carriers are intro-
duced into the device from one of the contacts that have
an initial velocity, and the carriers are followed through
the device allowing them to scatter and respond to the lo-
cal electrostatic fields until they reach the other contact.
The initial momentum, (px , py , pz ) of the particle is chosen
on the basis of three random numbers, rx , ry , and rz , re-
spectively, chosen from a uniform distribution, depending
on the type of contact and the direction of carrier injection.
The dynamics of many particles with varying initial mo-
mentum are simulated, and average dynamic properties
are computed from the individual statistics. To eliminate
statistical fluctuations, typically, 10,000 carriers are sim-
ulated. A flow chart describing the algorithm is shown in
Fig. 9.

The MC simulation technique has several limitations.
First, one needs to run large simulations to eliminate sta-
tistical fluctuations. Secondly, the simulation is CPU time-
intensive. Thirdly, treating electron–electron scattering in
the simulation, which is important for degenerate materi-
als, is difficult. Finally, including the band structure infor-
mation, which is important for accurate results in realistic
semiconductor systems, makes the simulations computa-
tionally intensive. There are several excellent reviews on
applications of MC simulation to semiconductors (11–15)
and to devices (16, 17).
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Figure 8. A flow chart for the many particle Monte Carlo method.

SELF-CONSISTENT HYDRODYNAMIC NUMERICAL
MODELS

Hydrodynamic models consisting of simultaneous solution
of the moments of the Boltzmann transport equation have
been the basis of many analytical and numerical models in
the recent literature. In this section we present the high-
lights of a self-consistent Boltzmann–Poisson–Schrödinger
solver in which the two higher moments of the Boltzmann
transport equation are numerically solved along with the
Poisson and Schrödinger equations. This model, which is
developed for a high-electron-mobility transistor (HEMT),
takes into account the effects of quantization of the two-
dimensional electron gas in the channel of the device. The
two higher moments of the BTE in the form of a cur-
rent continuity equation and an energy balance equation
are solved to obtain the transient and steady-state behav-
ior. Using this Boltzmann–Poisson–Schrödinger solver the
(ids – vds) characteristics, transconductance, and unity-gain
frequency of a single quantum well HEMT can be simu-
lated. For details of this model and its further extension to
a “full quantum two-subband model,” see Refs. 4–10.

The HEMT Structure

The HEMT structure illustrated in Fig. 10 is considered
for simulation. The gate length is 0.5 µm, and two 0.5 µm
regions on the two sides of the gate separate the gate from
the source and drain. Beneath the gate is a highly doped
Al0.3Ga0.7AS layer of 50 nm wide and that has a doping
level of 5·1017 cm−3. A 10 nm undoped AlGaAs spacer lies

Figure 9. A flow chart for the incident-flux Monte Carlo method.
N is the number of carriers simulated.

between the highly dopedAlGaAs layer and the GaAs layer.
Such a spacer is included to separate the free electrons in
the GaAs channel from their donor impurities in AlGaAs,
thereby reducing the remote scattering of electrons by ion-
ized impurities (18). The GaAs region consists of a quan-
tum well 100 nm wide and a bulk layer of 300 nm wide and
the two layers overlapping each other, as shown in Fig. 10.
The doping level of GaAs is 1014 cm−3. On the two sides
are boundaries to two highly-doped GaAs regions that are
ohmic contacts to the source and drain.

Moments of the Boltzmann Transport Equation

To start, we assume that the two-dimensional electron gas
in the channel consists mainly of the electrons in the lowest
subband and that electrons in the second and higher sub-
bands are three-dimensional bulk electrons without any
reduced dimensionality. The current continuity equation
that describes the transport of electrons and an energy
balance equation that describes the spatial and temporal
variation of the average electron energy in the bulk of the
device are written as:

∂nb

∂t
= ∇b · [−µbnb∇bV + ∇b(Dbnb)] +Gb (77)



Semiconductor Boltzmann Transport Equation in Macroscopic and Quantum-Confined Systems 11

Figure 10. The HEMT structure used in the simulation. The
quantum well and the bulk regions overlap with a total width
of 300 nm. After Ref. 11, reprinted with permission.

and

∂nbEb

∂t
= − jb · ∇bV − nbBb + ∇b · α[−µbnbEb∇bV

+∇b(DbnbEb)] + Fb (78)

and for the quantum well these equations are:

∂nqw

∂t
= ∇qw · [−µqwnqw∇qwV + ∇qw(Dqwnqw)] +Gqw (79)

and

∂nqwEqw

∂t
= −jqw · ∇qwV − nqwBqw + ∇qw · α[−µqwnqwEqw∇qwV

+∇qw(DqwnqwEqw)] + Fqw (80)

where subscripts b and qw denote the bulk and the quan-
tum well, respectively. The terms n and j are the electron
concentration and current density, V is the potential, E is
the average electron density, µ is the mobility, D is the dif-
fusion constant, and B is the energy dissipation factor. The
term G is a generation-like term used to redistribute the
electrons between the bulk and the quantum system, and
the term F accounts for energy transfer between the two
systems, as explained in the following section. The coeffi-
cient α is the ratio of flux mobility to carrier mobility given
by:

α = µE

µ
= 〈τE2

i 〉
〈τEi〉〈Ei〉 (81)

where τ is the momentum relaxation time Ei is the elec-
tronic energy, and the brackets in Eq. (81) refer to statisti-
cal averages over the entire sample. For a power-law scat-
tering α = 2/3 (p + 5/2), where the power-law scattering is
defined as τµEp

i . For polar optical phonons in GaAs, p has a
value of 0.5. In deriving these equations, it is assumed that
the high-frequency terms in the Boltzmann moment equa-
tions are negligible because the high frequency parameter,
τHF, is on the order of 0.1 ps (19), whereas the typical cal-
culated transient time is on the order of 3 ps.

Poisson Equation

The previous transport equations are solved along with
Poisson equation:

∂2V

∂x2
+ ∂2V

∂y2
= −q

ε
[ND(x, y) − n(x, y)] (82)

where V is the electrostatic potential, ε is the dielectric con-
stant, n is the total electron concentration in the channel,
and ND is the impurity doping level.

Schrödinger Equation

The quantization of electron energy levels and the spatial
spread of electrons in the quantum well are taken into con-
sideration by a self-consistent solution of the Schrödinger
and Poisson equations. The Schrödinger equation that de-
scribes the electrons in a quantum well is given by:

− �
2

2mx

d2ψi(x)
dx2

− qV (x, y)ψi(x) = Eiψi(x) (83)

where mx is the electron effective mass in the x-direction,
ψi is the wave function corresponding to the eigenvalue Ei

for the ith subband, and V(x, y) is the electrostatic poten-
tial. The boundary conditions require that the wave func-
tions vanish at both infinities. The Schrödinger equation is
solved by using a Rayleigh–Ritz variational method (20).

To model the quantum well, one possible approach is
to define an artificial boundary across the GaAs region
that separates the bulk system from the quantized system.
Electrons confined by such artificial boundary and the het-
erojunction are considered quantized and their motion is
restricted to the y-direction, whereas electrons lying below
the artificial boundary are considered bulk carriers that
have restricted motion. Such an approach has a number of
shortcomings. First, no definite rule defines the quantum
well/bulk boundary. Because the wave function spans a rel-
atively wide region in the quantum well, much of the wave
function outside the boundary is truncated and the quan-
tum effects are greatly distorted if the well width is taken
too small. On the other hand, if the well width is taken suf-
ficiently large to include a significant portion of the wave
function, the bulk electronic behavior is neglected. Neither
case is desirable for simulating a device. Secondly, the elec-
tron concentration over the quantum well/bulk boundary
is generally discontinuous, which gives rise to a large diffu-
sion current across the boundary. This can cause erroneous
results in the simulation. Thirdly, at points where the elec-
tric field at the heterojunction is weak, the quantum well is
too shallow to confine the electrons, and the electrons at the
heterojunction behave essentially as bulk carriers. There-
fore, it is important that both the bulk and the quantum
characters of the electrons are considered, particularly at
the heterojunction where the concentration of electrons is
highest.

To avoid setting an artificial boundary separating the
bulk GaAs from the quantum well, we assume that the two
systems overlap. The quantum well and the bulk systems
both start at x = 0. The quantum well (electrons residing
in the lowest subband, E0) spreads a distance d into the
GaAs layer as shown in Fig. 10. The quantum well’s width
is determined from the wave function for the lowest sub-
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band. The bulk system (electrons residing in the second
subband, E1, and higher subbands) extend 300 nm into the
GaAs layer. Because of this overlap of the two systems,
the electrons at any point across the channel can be in the
quantum well or in the bulk, depending on their eigenener-
gies and the quantum well width at that point. Electrons in
the bulk undergo transport in both the x- and y-directions,
whereas electrons in the quantum well are restricted to
transport only in the y-direction.

The transport of electrons in the device is governed by
six coupled, nonlinear, partial differential, equations, Eqs.
(77), (78), (79), (80), (82), and the Schrödinger equation,
Eq. (83) that have the unknown variables nqw , Eqw , nb ,
Eb , V, yi (x), and Ei . The system of equations consisting of
these six equations along with several auxiliary equations
is solved iteratively by using a two-dimensional finite-
difference scheme; see Refs. (4) through (10). In each it-
erative cycle the values of the variables nqw , Eqw , nb , Eb , V,
yi (x), and Ei are updated until the correction terms to these
variables are within a tolerance range. The Schrödinger
equation is solved at each (x, y) point, and the values of the
wave functions and the eigenenergies are updated in each
iterative cycle. The discretization of the current continu-
ity equation the numerical instability problems associated
with the discretized equation, and the time step and spa-
tial mesh sizes used in these simulations are described in
a later section.

Full Quantum Two-Subband Transport

At 77 K, 98% of the electrons in the quantum well of a
HEMT device reside in the lowest subband, whereas at
300 K, the population of electrons residing in the lowest
subband is reduced to 68% (21). In fact, at 300 K close to
20% of electrons in the quantum well reside in the second
subband, and their motion is restricted to two dimensions.

The Boltzmann–Schrödinger–Poisson simulator de-
scribed previously is a one-subband model in which it is
assumed that only the electrons in the first subband are
quantized and that the electrons in the second and higher
subbands behave as bulk electrons unrestricted in their
motion. This assumption becomes questionable particu-
larly at 300 K because only 68% of electrons reside in the
first subband.

Now we extend the one-subband
Boltzmann–Poisson–Schrödinger (OS-BPS)
simulator to a full quantum two-subband
Boltzmann–Poisson–Schrödinger (FQ-BPS) model. This is
done by considering that electrons in the lowest two sub-
bands are in the quantum well form the two-dimensional
electron gas and the electrons in the third and higher
subbands behave as bulk electrons unrestricted in their
motion. In the FQ-BPS model, we solve the Boltzmann,
Poisson, and Schrödinger equations for the first subband,
second subband, and the bulk system. An additional
self-consistency is added by calculating the intersubband
and intrasubband scattering due to polar optical phonon
and ionized impurity scattering mechanisms (7). The rates
of transfer of electrons and their energies to and from each
subband are calculated from the intersubband and intra-
subband scattering rates and are used self-consistently

in the Boltzmann–Poisson–Schrödinger simulator. In the
FQ-BPS model, the two higher moments of Boltzmann
transport equation are given by

∂[ni(x, t)]
∂t

= ∇ · {−µini(x, t)∇V (x) + ∇[Dini(x, t)]}

+
∑
j 
= i

(
nj − no j

τ ji
) −

∑
j 
= i

(
ni − no j

τi j

)
i = 1,2 (84)

∂[ni(x, t)Ei(x, t)]
∂t

= − J · ∇V (x) + ∇ · {−µE,ini(x, t)Ei(x, t)∇V (x)

+ ∇[DE,ini(x, t)Ei(x, t)]}

+
∑
j 
= 1

(
njEj − nj0E0 j

τE, ji

)

−
∑
j 
= i

(
niEi − ni0Ei0

τE,i j

)

−
∑
j 
= i

(
nj − n0 j

τ ji

)
�ω0 i = 1,2

(85)

In these equations i = 1, 2 refers to the first and second
subbands, respectively. n is the electron concentration, J is
the electron current density, q is the electronic charge, µi

is the mobility, Di is diffusivity, µE,i is flux mobility, DE,i is
the flux diffusivity, E is the average electron energy, τij is
the particle relaxation time, τE,ij is the energy relaxation
time for particles moving from subband i to subband j, and
�ω0 is the polar optical phonon energy. ∇ represents ∂/∂y in
the one-dimensional quantum well. The first summation
term ( �

j 
= i
(ni − n0i/τ ji)) in Eq. (84) accounts for the parti-

cles moving from subband j to subband i, and the second
summation term [− �

j 
= i
(ni − n0i/τi j)] in Eq. (84), accounts

for the particles moving from subband i to subband j. The
first summation term [ �

j 
= i
(njEj − nj0E0 j/τE, ji)] in Eq. (85)

accounts for the energy gained from the movement of par-
ticles from subband j to subband i, and the second summa-
tion term [− �

j 
= i
(niEi − ni0Ei0/τE,i j)] in Eq. (85), accounts

for the energy loss from the movement of particles from
subband i to subband j. Finally, the last summation term
[− �

j 
= i
(nj − n0 j/τ ji)�ω0] in Eq. (85) includes the effect of the

loss of energy by the electrons to the polar optical phonons.
In the bulk (electrons in the third and higher subbands),

current continuity and energy balance equations are

∂n

∂t
= ∇[−µn∇V + ∇(Dn)] +Gi i = 1,2 (86)

∂(nE)
∂t

= −J · ∇V − nB + ∇α[−µnE∇V + ∇(DnE)] + Fi

i = 1,2
(87)

where B is the energy dissipation factor, α is a constant
relatingµ toµE and D to DE . ∇ represents (∂/∂x, ∂/∂y) in the
two-dimensional bulk. The term Gi is the generation-like
term that accounts for the transfer of electrons between the
bulk and the first (i = 1) and second (i = 2) subbands. Fi is
a similar term that account for the rate of energy transfer
between the bulk and the two subbands (8).

Self-Consistent Scattering Rates

The eigenfunctions obtained from the Boltzmann–
Poisson–Schrödinger simulator are used to calculate
the ionized impurity scattering and the polar optical
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phonon scattering rates for the two lowest subbands in the
quantum well. The rates of transfer of electrons and their
energies to and from each subband are calculated from
these intersubband and intrasubband scattering rates.
The polar optical phonon scattering rate is given by (21)

S popmn = e2ω0

8π ε0

[
1
ε∞

− 1
εs

] (
Nq + 1

2
± 1

2

)

× ∫ Hmn(Q)
Q

δ[E(k2) − E(k1) ± �ω0]dk2

(88)

where ε∞ and εs are the optical and static dielectric con-
stant, �µ0 is the polar optical phonon energy, Q is the
phonon wave-vector component parallel to the interface,
k1 and k2 denote the initial and final state wave vectors.
Nq is the phonon occupation number, and E(k1) and E(k2)
are the initial and final state energies. Hmn (Q)s are the
multisubband coupling coefficients. The ionized impurity
scattering rate is given by

Simp
mn = 1

2π�

∫
|Mmn(Q)|2δ(E(k2) − E(k1))dk2 (89)

The matrix elements Mmn (Q) account for the
electron–impurity interactions. For more details of
the modeling of scattering rates, see Ref. 7.

Numerical Methods

As shown in the flow chart of Fig. 11, we begin the numeri-
cal simulation with an initial guess for the electron densi-
ties in the bulk and in the quantum well. Then, we start the
iterative process by solving the Poisson and Schrödinger
equations self-consistently, from which we obtain the elec-
trostatic potential V, eigenenergies Ei , and eigenfunctions
ψi . The scattering rates are calculated next. The mobilities
and the coupling terms in the moments equations are de-
rived from these scattering rates. Finally we solve the two
moments of the BTE and obtain the (ids − Vds) characteris-
tics of the device.

The numerical solution of the partial differential equa-
tions outlined previously requires iterative computation
both in time and space. Numerical instability problems
often occur with such an iterative technique. An explicit
approach is commonly employed to solve the continuity
equation,

∂n

∂t
= 1
q
∇ · J+G (90)

where

J = [−µn∇V + ∇(Dn)] (91)

Equation (90) is discretized into the form

nk+1 = nk + ∇t
[(

1
q
∇ · J

)
+G

]k
(92)

The values of n, V, and G at time k are inserted into the
right-hand side of Eq. (92) and yield the value of n at the
next time step (k + 1). Although this method is extremely
straightforward, it requires excessively small time steps
to guarantee numerical stability. Specifically, it has been

Figure 11. Flow chart of the numerical iteration in the FQ-BPS
model. After Ref. 13, reprinted with permission.

shown (22) that the maximum time step without any in-
stability is given by

�t <min

[
�x2�y2

2D(�x2 +�y2)
,

2D
v2∞

]
(93)

where �x and �y are the mesh spacings, D the diffusivity,
and v∞ the saturation velocity. When the maximum allow-
able time step is exceeded, a minor perturbation in the val-
ues of ni,j at mesh point (i, j) results in a diverging solution.
The smallest mesh dimensions �x and �y used in these
simulations are 2·10−7 cm and 5·10−6 cm, respectively. The
diffusivity at low field is about 300 cm2/s. Assuming that
the mesh spacing is the factor limiting the speed of the it-
erative process, the maximum time step without causing
numerical instability problem is (for all values of v∞)

�t <6.6 · 10−17 s

which is on the order of 106 times smaller than the typical
transient time of HEMT. This poses a serious problem for
the convergence of the program. To increase the time step
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Figure 12. Calculated wave function ψ1(x)2 of the lowest sub-
band at 300 K with an applied gate voltage of 0.5 V and a drain
bias of 1.5 V. The wave function peaks at 7 nm from the interface
and spreads about 20 nm in the GaAs layer. After Ref. 11, reprinted
with permission.

and to speed up the program, one has to increase the mesh
spacing which in turn sacrifices the accuracy of the result.
Another approach to the solution of the continuity equation
is to write the equation in an implicit form:

∂n

∂t
= 1

2q
[∇ · Jk + ∇ · Jk+1] +Gk (94)

where the superscript k represents time. The price to pay
is complicated discretization and a tedious solution. Using
the implicit discretization scheme given by Eq. (95), the
time step size used in these simulations is 10−15 s. The
spatial mesh employed has nonuniform mesh spacing in
the x-direction and mesh sizes �x ranging from 2·10−7 cm
to 5·10−6 cm. The mesh sizes are smaller in the proximity of
the heterojunction. The mesh spacing�y in the y-direction
is uniform and has a mesh size of 5·10−6 cm.

Results of OS-BPS and FQ-BPS Simulations

Figure 12 shows the square of the wave function ψ1(x)2 for
the first lowest subband that has an applied gate voltage
of 0.5 V and a drain bias of 1.5 V. The function ψ1(x)2 peaks
at about 7 nm from the interface to a value of about 96·104

cm−1. The spatial spread of the well is 20 nm. The calcu-
lated eigenenergies for the first and second subbands are
46 and 69 meV, respectively.

Figure 13 shows the electrostatic potentials in the de-
vice with a gate voltage of 0.7 V and two drain biases of
0.5 V and 1.35 V. Figure 14 shows the electron concen-
trations in the quantum well and the bulk GaAs under
the same biasing conditions. The electron concentration in
the quantum well is calculated by multiplying the electron

Figure 13. Electrostatic potential profiles with a gate volt-
age of 0.7 V and drain voltage of (a) 0.5 V, and (b)
1.35 V. These potentials are calculated by the one-subband
Boltzmann–Poisson–Schrödinger solver. After Ref. 11, reprinted
with permission.

sheet density in the quantum well by the probability den-
sity ψ1(x)2. When VD = 0.5 V, the electron concentrations
in the quantum well and the bulk GaAs are relatively uni-
form from source to drain, whereas when VD = 1.35 V, the
electron concentration is sharply reduced in the region un-
derneath the drain end of the gate, which is the pinch-off
point. The spatial spreading of the quantum well and the
bulk systems are also shown in Fig. 14. It should be noted
that although the concentration of electrons in the quan-
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Figure 14. Electron concentrations in (a, b) quantum well and (c, d) bulk GaAs. The applied gate voltage is 0.7 V in all cases. The drain
bias is 0.5 V in (a) and (c) and 1.35 V in (b) and (d). These results are calculated by the one-subband Boltzmann–Poisson–Schrödinger
solver. After Ref. 11, reprinted with permission.

tum well reduces to zero at a distance of 200 Å from the
interface [Fig. 14(a)], the concentration of electrons in the
bulk system reduces to 15 × 1014 approaching the dop-
ing level of the bulk GaAs at a distance of 1000 Å from
the interface. Thus, it is concluded that the quantum well
width is about one-fifth of the active bulk layer. The results
shown in Figs. 12–14 are calculated by the one-subband
Boltzmann–Poisson–Schrödinger solver.

Figure 15 shows the ids – vds characteristics of the
device calculated by the OS-BPS simulator along with
those simulated by the full quantum two-subband
Boltzmann–Poisson–Schrödinger solver. In both cases, the
slopes of the ids – vds curves decrease as drain voltage in-
creases, but the FQ-BPS model predicts lower drain cur-
rents. Because the scattering rates are included in the
model, the electron density in the quantum well decreases,
which results in lower drain currents. Overestimation of
the drain current by the OS-BPS model can be seen from
the ids – vds characteristics of Fig. (15). When a gate bias of
0.7 V is applied in the FQ-BPS model, the slope of the drain
current decreases substantially above a drain voltage of

0.8 V, which is the saturation region, whereas the drain cur-
rent obtained from OS-BPS model still has a sharp slope
as the drain voltage is increased, and the onset of satura-
tion occurs at around 1.2 V. Therefore, the FQ-BPS model
shows that the device goes into saturation at a lower drain
voltage than the value predicted by the OS-BPS model.

The transconductance of the device as a function of
gate bias using the two simulators is plotted in Fig. 16.
The value of transconductance with the OS-BPS model de-
creases slightly (and almost linearly) as the gate voltage
is varied over the range of 0.6 V to 1.0 V, whereas the
transconductance increases at first with the FQ-BPS model
and reaches a peak value of about about 470 mS/mm at 0.9
V, and then decreases beyond that point. The pattern of
the FQ-BPS data is closer to the experimental results re-
ported (23, 24). The transconductance degradation at high
gate voltages has been investigated by many researchers.
Among the reasons cited for this degradation are increased
gate leakage current (23) reduced inversion charge in the
channel (25), dislocations (26), decreased average electron
velocity (24), increased population of electrons in the donor
AlGaAs layer (27), and neutralized donor effect (28). The
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Figure 15. (a) ids – vds characteristic: (OS-BPS) are the results
from the one-subband Boltzmann–Poisson–Schrödinger solver,
and (FQ-BPS) are the results from the full quantum two-
subband Boltzmann–Poisson–Schrödinger simulator. After Ref.
13, reprinted with permission.

Figure 16. Transconductance as a function of gate bias in a
HEMT device calculated by our Boltzmann–Poisson–Schrödinger
solver (•) with self-consistent scattering rates (ç) without scatter-
ing rates. After Ref. 17, reprinted with permission.

results of our simulations support the reason cited by
Nguyen et al., (24) namely, decreased electron velocity
caused by an increased rate of scattering of carriers by po-
lar optical phonons and ionized impurities.

MODELING QUANTUM-CONFINED TRANSPORT IN
MULTIPLE QUANTUM WELLS

As the semiconductor industry progresses toward nano-
electronics, more and more electron devices utilize single or

multiple quantum wells in their design. As was discussed
in Section 8, in a quantum well, the carriers behave as
two-dimensional entities, since their transport is restricted
to only two dimensions. In devices where multiple GaAs
quantum (MQW) wells (5 to 30 wells each with a width
of the order of 10 to 100 Å) are used in bulk AlGaAs, the
transport of carriers will be influenced by two additional
processes: capture of carriers by the wells, and escape of
carriers from the wells.

In the AlGaAs bulk regions of the device, where the
electrons and holes behave as bulk carriers with no quan-
tum confinement, the current continuity and current den-
sity equations are the traditional drift-diffusion equations
written for electrons and holes as:

dnb

dt
= Gb − Ub + nqw

τen
− nb

τcn
+ 1
q

dJn

dx
= 0 (95)

dpb

dt
= Gb − Ub + pqw

τep
− pb

τcp
− 1
q

dJp

dx
= 0 (96)

Jn = qµnnb
→
E + qDn

dnb

dx
(97)

Jp = qµp pb
→
E − qDp

d pb

dx
(98)

In these equations,
→
E is the electric field, nb and pb are the

bulk electron and hole densities, respectively, nqw and pqw
are the quantum well electron and hole densities, respec-
tively, and Jn and Jp are the electron and hole current den-

sities, respectively. The terms
nqw

τen
and

pqw

τep
are the rates

by which the electrons and holes escape the quantum well
(and enter the bulk), whereas

nb

τcn
and

pb

τcp
are the rates by

which electrons and holes are captured by the quantum
wells from the bulk. The escape and capture rates of the
bulk are (assumed to be) equal to the capture and escape
rates of the quantum wells. In other words, the carriers
that escape the bulk are captured by the quantum wells,
and those that escape the quantum wells are captured by
the bulk. The symbols τen and τep stand for the electron
and hole escape times, respectively, and τcn and τc p are the
electron and hole capture times, respectively. The terms Ub
andGb are the rates of recombination and generation in the
bulk, respectively. The other terms in the current density
equations have their usual meanings. The above equations
must be solved together with Poisson equation:

∂2V

∂x2
= q

ε
[N−

A −N+
D + nb + nqw − pb − pqw] (99)

The values of nqw and pqw are set to zero for the bulk re-
gions.N+

D andN−
A are the ionized donor and acceptor doping

levels, V is the potential, and ε is the dielectric constant.
The eigenfunctions and eigenenergies of carriers in the

quantum wells must be obtained from a field-dependent
Schrödinger equation given by:[

�
2

2
d

dx

1
m∗(x)

d

dx
+ V (x)

]
ψi(x) = Eiψi(x) (100)

where Ei and ψi(x) are the energy level and the wave-
function of the subband i, respectively. A non-constant ef-
fective mass, m∗(x), must be used to account for different
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material systems throughout the balk and the quantum
wells.

The current continuity equations for the quantum well
system are written as the rate equations in which the net
balance of four rates must vanish. These rate equations are
given by:

dnqw

dt
= nb

τcn
− nqw

τen
+Gqw − Uqw = 0 (101)

dpqw

dt
= pb

τcp
− pqw

τep
+Gqw − Uqw = 0 (102)

The terms Uqw and Gqw are the modified Shockley-Read-
Hall (SRH) recombination rate, and the generation rate
of the quantum wells, respectively. The absence of cur-
rent density terms in the above equations stems from the
fact that carriers in the quantum wells are assumed to be
bound, and therefore, to contribute to the current in the
device, these carriers must first escape from the quantum
wells. For application of the MQW model in solar cells as
well as detailed modeling of escape and capture processes,
see Ref. (30) and (31).
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