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is based on the perturbation theory:
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where m0 is the free electron mass, � is the polarization vector
of the radiation, f c and f v are the electron and hole Fermi
distribution functions in the conduction and valence bandsPHOTOREFRACTIVE PROPERTIES OF GALLIUM
with final and initial energies, Ekfc

and Ekiv
, respectively, andARSENIDE AND SUPERLATTICES

� is the volume of the semiconductor. Pcv(k) is the momentum
matrix element between final conduction electron states (fc)Superlattices and multiple quantum wells have been studied
and initial valence hole states (iv) given byintensively both experimentally and theoretically over the

past 20 years (1). Because of the important optoelectronic
applications of these structures, large emphasis has been PPPcv(kkk) = 〈kkkfc

∣∣∣P̂PP∣∣∣kkkiv〉 (7)
placed on experimentally determining their optical proper-
ties. The two fundamental optical parameters of materials are where P̂ is the momentum operator and the electron wave
the absorption coefficient � and the index of refraction n. The function �k� can be written as
absorption coefficient �(�) is defined at each frequency � as
the relative rate of decrease in light intensity I(�) along its �kkk(rrr) = ψkkk(rrr)ukkk(rrr) (8)
propagation path in the material (2):

where uk(r) is a Bloch function which is periodic with the lat-
tice constant, whereas �k(r) is the envelope wave function,
which varies slowly compared to the lattice constant. The in-

α(ω) = −
[

1
I(ω)

]
dI(ω)/dx (1)

terband matrix element can be approximated as
where x is the distance along this path. The index of refrac-
tion is defined as the ratio of the speed of light in vacuum c εεε · PPPcv(kkk) = MbMenv (9)

and in the material v(�) at the same photon frequency �:
where Mb is the matrix element connecting the Bloch states
near the band edge:n(ω) = c/v(ω) (2)

Mb =< uc(rrr)|εεε · PPP|uv(rrr) > (10)
Many applications of superlattices in laser optics are based
essentially on the dispersion and optical wave-guiding proper- while Menv is the overlap integral of the envelope wave func-
ties of these structures which are directly related to the index tions between the valence and conduction bands:
of refraction (3–5). From a fundamental standpoint the opti-
cal properties are determined by the global dependence of the
complex dielectric constant, �(�) � �1(�) � i �2(�), where Menv =

∫
ψ ∗

kkkc(r)ψkvkvkv(r) dr (11)

�1(�) and �2(�) are the real and imaginary parts, on the elec-
tronic structure of materials. The polarization of optical transitions enters into the model

The absorption coefficient and refractive index are derived via the Mb factors. For quantum-well or superlattice struc-
in terms of the complex dielectric constant as (6) tures, the symmetry is lowered by the layering along the z

direction. Intraband transitions which are due to free carriers
are not considered in this analysis.α(ω) = ωε2(ω)

nc
(3)

The two parts of the dielectric function are related by the
Kramers–Krönig relations which express the analyticity and
the causality of �(�):and
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π
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which, because of small absorption at low frequency, i.e., �2 is
ε2 = −2ω

π

∫ ∞

0
dω′ ε1(ω) − 1

ω′2 − ω2 (13)

small, gives n(�) � ��1(�). The real and imaginary parts of
the dielectric function are given by Fermi’s golden rule, which From Eq. (3) and Eq. (6), containing the energy conservation
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�-function, it is seen that the absorption coefficient is essen- ing only those bands which give the largest contributions.
This approximation results in a slight overestimation of thetially determined by electron transitions between energy

states separated by the photon energy ��, whereas the index matrix elements involving these bands. In all of Löwdin
states, it is often necessary to add d-symmetry states ontoof refraction involving the real part �1(�) of the dielectric con-

stant [Eq. (5)] is not restricted to such transitions. Conse- those states of �15 symmetry in order to obtain the correct
energy-band curvatures. This idea was suggested by Chadiquently, while the absorption coefficient is restricted to a nar-

row energy range of the semiconductor spectrum, the index of (13,14), who showed from pseudopotential calculations that
there is appreciable mixing of d-symmetry states to an s–prefraction is determined by virtual transitions over the whole

Brillouin zone. basis set results in more accurate wave functions and energy
bands.As the computation of �1(�) and �2(�) requires the knowl-

edge of the entire band structure of semiconductor materials, Energy expansion about the �-point is given by Kane (8).
For III–V compounds it is often assumed the energy disper-it is necessary to determine the wave functions and energy

bands throughout the irreducible region of the first Brillouin sion is isotropic and renormalization involving the lowest �15

conduction states is only considered. The neglect of the �1 va-zone.
lence state and the lowest �12 conduction states is reasonable
because of the strength of the s–p wave-function interaction.
The X- and L-point expansions have been discussed by Kanek 	 p METHOD AND BRILLOUIN-ZONE PARTITION
(8), Dresselhaus (15), and Kahen and Leburton (9).

The entire band structure of specific semiconductors can be
obtained with the k 	 p technique by expanding about one

EFFECTIVE MASSESsymmetry point (8); however, this requires a large basis set
and matrix Hamiltonian. In order to predict and to get physi-

Table 1 lists the low-temperature (5 K to 77 K) values of thecal insight into the optical properties of III–V compounds in
band-edge effective masses at the three symmetry points forgeneral, it is desirable to have simple, analytical expressions
the five III–V compounds (9). Presented are the longitudinalfor the energy bands and matrix elements. The hybrid k 	 p
and transverse masses for the X and L states and the density-model (9) which combines the advantages of the k 	 p method
of-states masses for the � states. When experimental data arewith the generality of the pseudopotential method (10)
not available, the masses are calculated using the results ofachieves this objective. In this technique the band structure
nonlocal pseudopotential calculations which include the spin–is generated by expanding the energies and wave functions
orbit interaction. These masses along with the energy gapsabout one or several symmetry points of the Brillouin zone.
are used to determine the direct interaction and Löwdin coef-As the majority of low-energy optical transitions (i.e., �� � 6

eV) originate from regions near the main symmetry points �,
X, and L, k 	 p expansions are carried out about three symme-
try points, �, X, and L, by using a small number of bands in
each of the k 	 p basis sets, thereby limiting the accuracy of
the energy-band expressions to regions surrounding the
expansion points. Furthermore, because these are the highest
symmetry points, it is mathematically straightforward to ob-
tain expressions around these points, leading to a partition of
the Brillouin zone (11). In the hybrid model, the k 	 p band
parameters are fitted empirically with experimental energy
gaps and effective masses, when available; otherwise, these
parameters are estimated from nonlocal pseudopotential cal-
culations which include spin–orbit effects. Since the band pa-
rameters are fitted using experimental data, the k 	 p method
reproduces very accurately the band structure in the vicinity
of the expansion points. Because of the size of the X and L
regions, expansions about the K and W points supplement
the X- and L-point expansions. However, because of the low
symmetry characterizing these two points, it is difficult to ob-
tain experimentally the energy dispersion relations and opti-
cal matrix elements in the volumes surrounding these points.
Therefore, they are obtained directly from the pseudopoten-
tial calculations.

In order to evaluate the dielectric constant for energies less
than 6 eV, it is reasonable to restrict the calculation to transi-
tions between band-edge states where the transition rates are
the largest. Consequently, in performing the energy expan-
sions about �, X, and L, the band-edge states are treated ex-
actly and the effects of the other bands (Löwdin states) are
incorporated by using a perturbation technique described by
Löwdin (12). The renormalizations are performed by includ-

Table 1. Low-Temperature Theoretical and Experimental
Band-Edge Masses at the �, X, and L Symmetry Points

GaAs AlAs InAs InP GaP

�c
1 m* 0.067a 0.140 0.023b,c 0.077b 0.122

�v
hh m* �0.510a �0.536 �0.40d �0.58e �0.56e

�v
�h m* �0.082a �0.087 �0.026d �0.12e �0.16e

�v
so m* �0.154a �0.217 �0.166 �0.179 �0.289

Lc
6 m� 1.854 1.592 2.333 2.149 1.988

mt 0.136 0.157 0.143 0.144 0.147
Lv

4,5 m� 1.731 2.011 1.668 2.021 1.948
mt �0.277 �0.290 �0.308 �0.295 �0.278

Lv
6 m� 1.731 2.011 1.668 2.021 1.948

mt �0.277 �0.290 �0.308 �0.295 �0.278

Xc
7 m� 0.495 0.385 0.593 0.566 0.551

mt 0.258 0.254 0.305 0.279 0.249
Xc

6 m� 2.100 1.158 4.516 2.772 1.70 f

mt 0.277 0.268 0.307 0.278 0.191 f

Xv
7 m� 1.209 1.300 1.236 1.341 1.258

mt �0.744 �0.659 �1.109 �0.839 �0.628
Xv

6 m� 1.209 1.300 1.236 1.341 1.258
mt �0.744 �0.659 �1.109 �0.839 �0.628

Each of the experimental masses is referenced. For �, only the density of states
masses are given; while for X and L, both the longitudinal and transverse
masses are presented.
a Reference 22.
b Reference 23.
c Reference 24.
d Reference 25.
e Reference 26.
f Reference 27.



368 PHOTOREFRACTIVE PROPERTIES OF GALLIUM ARSENIDE AND SUPERLATTICES

ficients at the three symmetry points. Instead of taking the
masses directly from the energy-band curvatures, a technique
with a fair amount of uncertainty, the mass m* at the point
k0 is calculated using (8)

1
m∗ = 1

m0
+ 2�2

m2
0

∑
n′

|sss · ∇∇∇mn′ |2
En(kkk0) − E ′

n(kkk0)
(14)

where s is a unit vector in the direction of a principal axis,
�nn� is the gradient operator between the states n and n� at
the point k0, and the summation is over all n� � n.

DIELECTRIC-CONSTANT FORMULATION

X

X
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Γ

The dielectric constant is calculated as the sum of interband
Figure 2. Partition of the first Brillouin zone of a zinc-blended latticeoptical transitions. It is often sufficient to consider transitions
into the G, X, and L regions. The G region is a sphere, while the Xbetween the highest valence-band states and the lowest con-
and L regions are both cones. The K and W points are also part of

duction-band states. Consequently, for the �-region contribu- the X region.
tion, transitions between the upper three valence bands and
the lowest conduction band are considered; for the X-region
contribution there are transitions between the upper two va-

mated by a sphere and two cones, respectively (see Fig. 2).lence bands and the two lowest conduction bands, and for the
For GaAs, the volumes of these regions, taking into accountL-region contribution there are transitions between the upper
the sixfold and eightfold degeneracies of the X and L regions,two valence bands and the lowest conduction band. In Fig. 1,
respectively, are 8.24 � 10�2 Å�3, 1.35 Å�3, and 4.01 Å�3, forarrows on the GaAs band structure represent the aforemen-
�, X, and L, respectively. The total volume of 5.44 Å�3, is lesstioned interband transitions. In the hybrid model both the L
than 1% different from the actual volume of the first Brillouinand X regions include the K and W points, even though Fig.
zone of GaAs.1 only shows the K point as being part of the X region.

The integrations over the X and L regions are performedIn computing the dielectric constant, the summation over
by taking into account the anisotropy of the two regions intok states in Eqs. (3) and (4) is replaced by an integration over
the hybrid model in the k 	 p expansions from both points to-the first Brillouin zone. However, the integration is performed
ward the �, K, and W points. By using the results of nonlocalseparately for each region around the �, X, and L points. The
pseudopotential calculations, analytical expressions forintegration volumes for the �, X, and L regions are approxi-
expansions from K and W toward the �, K, and L points can
be obtained; the energies and matrix elements between the
expansion lines can be computed by linear interpolation,
which, in spite of its roughness, yields reasonable results.

Figure 3 shows the �2(�) curves obtained by the hybrid
model and compared with the experimental data of Aspnes
and Studna (16). Because the theoretical curves have been
generated by using low-temperature (5 K) band-structure
data, the experimental data which are obtained at 300 K have
been shifted by 0.1 eV in order to account for this temperature
difference. Experimental data do not exist for AlAs. The most
noticeable feature of all of the curves is the presence of the
two well-known E1 and E2 peaks. The E1 peak arises from
transitions occurring over a large portion of the Brillouin zone
around the L points. There is no E1 peak for AlAs because
the L- and K-point energy gaps differ by less than 1 eV; hence,
the position of the AlAs E1 peak overlaps with the low-energy
slope of its E2 peak. Except for InAs and GaAs for which the
theoretical curves show a small structure due to the L-point
spin–orbit splitting, the Ga and In compounds exhibit un-
split E1 peaks which are broader than the experimental
peaks. This is mainly due to the absence of exciton effects in
the hybrid model. Exciton effects might have various conse-L
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quences on the magnitudes of the E1 peaks because they alter
both the density of states and the optical matrix elements.Figure 1. Optical transitions between the band-edge valence and
According to Velicky and Sak (17) and Hanke and Sham (18),conduction bands for the three regions, �, X, and L, for GaAs. Only

these transitions are included in the hybrid model. excitons should sharpen and enhance the E1 peak. Without
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Figure 3. Imaginary part of the dielectric constant of five III–V compounds. The solid and dot-
ted–dashed lines are calculated by the k 	 p and nonlocal pseudopotential methods, respectively,
while the dashed line is the experimental results. (a), (b), (c), (d), and (e) are for GaAs, GaP,
InAs, InP, and AlAs, respectively. The experimental data are extrapolated to 5 K.
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excitons, the E1 peak arises from transitions away from the �0.1 eV. Consequently, for these four compounds, the �2(�)
curves have been shifted so that the L-point energy gapsL–� line because the band-edge conduction and valence bands

along that line have small transverse masses and, corre- agree with the spin–orbit results. From k 	 p theory, it can be
shown that this is a good approximation since the spin–orbitspondingly, small densities of states which are insufficient to

support a peak. Consequently, the peak is shifted to higher interaction only shifts the bands, having a small effect on the
band curvatures and matrix elements at L, X, and K (8).energies where the phase space is larger. Exciton effects

should lower the L gap and raise the transverse effective The results of the hybrid model compare favorably with
both the experimental and pseudopotential results. The mag-masses, resulting in higher densities of states along the L–�

line. Thus, the structure of the line would be reflected in the nitudes of our E1 peaks are larger and more closely approxi-
mate the experimental peaks than those determined by theshape of the E1 peak, that is, the peak would become split.

This argument is corroborated by the theoretical model: pseudopotential calculations. For GaAs, InAs, and InP, the
E2 peaks calculated by the k 	 p and pseudopotential methodsThe InAs band-edge matrix elements are a factor of 2 smaller

than those of GaP; however, InAs has the largest E1 peak. are comparable in magnitude, but slightly shifted with re-
spect to the experimental E2 peaks, while for AlAs and GaPFurthermore, its peak is the sharpest and the most centered

of the four compounds. This occurs because its transverse en- the k 	 p peaks are substantially larger than the pseudopoten-
tial peaks. The discrepancy in the magnitudes of the E1 andergy-band curvature is the smallest among these compounds;

hence, the E1 peak is supported mainly by transitions oc- E2 peaks calculated by the k 	 p and pseudopotential methods
can be attributed to the difference in the values of the opticalcurring close to the L–� line.

The E2 peak originates from a region around the special k matrix elements and to the linear interpolation approxima-
tion of the off-expansion line energies as discussed previously.point (��, ��, ��) as suggested by Aspnes (19) and computed by

Chelikowsky and Cohen (20). Indeed, the density of states in As mentioned above, the k 	 p matrix elements involving the
Löwdin states are overestimated due to the neglect of all butthis region is more important than the magnitude of the opti-

cal matrix elements in influencing the strength of the E2 the closest higher bands of the proper symmetry. However,
the band-edge k 	 p and pseudopotential matrix elements dif-peak. Excitons should lower the E2 peak (17,18). A possible

explanation is that excitons could disrupt the parallel-band fer by only a few percent. This result agrees with the calcula-
tion of Hermann and Weisbuch (21), who found that the �-curvature in the vicinity of the special k point. This would

lower the effective density of states in this region and, conse- point band-edge matrix elements are insensitive to the
higher-band contributions. Since the band-edge matrix ele-quently, reduce the E2 peak. The same exciton effect can ac-

count for the slight energy difference between the experimen- ments determine the low-frequency dielectric constant, the
discrepancy in the peaks is, therefore, largely the result oftal and theoretical curves for GaAs, GaP, InAs, and InP.

The other regions of the Brillouin zone have small contri- our linear interpolation approximation. The problem with this
approximation is that although it provides a good average en-butions to the dielectric constant in the 0 eV to 6 eV range.

The �-valley contribution is negligible because of its small ergy dispersion relation, it sometimes produces a poor value
for the density of states. This discrepancy also accounts forphase space as shown before. The X-region contribution is

small because its phase space and matrix elements are, re- the difference in the shapes of the two curves. Nevertheless,
despite the approximations involving the matrix elementsspectively, about a factor of 3 and 2 smaller than those of the

L region. and energy dispersion relations, the results of the two models
are comparable for GaAs, InAs, and InP and assert the valid-
ity of our model.

COMPARISON WITH PSEUDOPOTENTIAL

Figure 3 also compares the results of the hybrid model with THE ZERO-FREQUENCY DIELECTRIC CONSTANT: �1(0)
those generated by a nonlocal pseudopotential calculation.
The spin–orbit interaction is not included in the pseudopoten- Table 2 gives the electronic contribution to the real part of

the dielectric constant at low frequency �1(0) at 5 K for thetial calculations. For GaP, the effect of the omission is negligi-
ble; however, for the other four compounds, the spin–orbit five III–V compounds. Also listed are the experimental values

and the individual contributions of the three regions. Onlyinteraction effectively lowers the important band gaps by

Table 2. Theoretical and Experimental �1(0) Values at 5 K for
Five III–V Compoundsa

Contributions of the
Three Regions

�1(0) �1(0) Percent
Material Theory Experimental Error L X �

GaAs 8.68 10.60 18.1 6.01 1.25 0.41
AlAs 7.42 7.90 6.1 5.12 1.16 0.14
InP 9.13 9.27 1.5 6.68 1.12 0.33
InAs 10.10 11.49 12.1 7.26 0.94 0.91
GaP 8.77 8.80 0.4 6.30 1.21 0.25

a Also included are the calculated individual contributions of the �, X, L regions to �1(0)
for each of the five compounds.
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the GaAs experimental data are 5 K values; for the other four
materials the values are extrapolated from 300 K by using
the GaAs �1(0) temperature dependence. The theoretical val-
ues are uniformly low with an average error of �7.5%. The
error is partly due to the omission of all high-energy transi-
tions. The errors for AlAs, InP, and GaP are small because of
the overestimation of the virtual transitions corresponding to
the E2 peak. This effect is particularly pronounced for GaP
where the E2 transitions compensate for the small contribu-
tion from the E1 transitions. For GaAs, the error results also
from its weak E1 contribution. For InAs the error is �12% in
spite of its large E1 peak. This probably stems from the fact
that its E2 peak is small and �1(0) of this small gap material
is affected most by the neglect of higher-band contributions
in the hybrid model.

The valley contributions are split up according to the parti-
tion of the Brillouin zone as presented previously. For all ma-
terials, the L region contributes approximately 60% to 70% to
the total value of the dielectric constant while the � region
accounts for about 5% to 10%. This general trend is also con-
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Figure 4. Band structure of GaAs and the effect of quantization ongap. Thus, the index of refraction is essentially determined each of the symmetry points.

by the band structure away from the center of the Brillouin
zone. The implications of these results are important for com-

whose periodic part is found from the solution of the coupledplex materials and superstructures, where the modifications
square-well potential. In this approximation it is assumedof the electronic structure at L and X, rather than at �, pro-
that the superlattice periodicity acts only upon the envelopeduce the variations in the index of refraction. An additional
wave function in the z direction. Therefore, the periodic partconsequence of these results is a better understanding of the
of the Bloch wave function is unchanged from its bulk valuevalidity of the Penn model (22). The latter is based on a three-
and is determined using a k � p band calculation describeddimensional (3D), nearly free-electron, band model. The Bril-
above. Consequently, the superlattice band structure differslouin zone is approximated as a sphere and the band edges
from the corresponding bulk material band structure only inare displaced from the center to the surface of the zone, re-
the quantization direction. This appears to be a reasonablesulting in a singular density of states around the band gap.
approximation, as will be shown by the good agreement be-Penn pointed out that such a singular behavior in a 3D sys-
tween the theoretical results and the experimental data latertem would not appear if the gap is placed at the center of the
on. The following simplified expression for the energy disper-zone. It is the fortuitous coincidence of this singular density
sion relation of the minibands in the z direction is assumedof states at the edge of the zone with the actual description of
(23):the states around the L and K points, characterized by large

interband matrix elements and densities of states, which pro- Ej (Kz) = Ej + (−1) jWj cos(Kzd) (16)
vides the Penn model with its validity and success in calculat-
ing the dielectric constant. where Ej and Wj are the midband energy and energy width of

the jth miniband, respectively, and d is the period of the su-
perlattice. The superlattice miniband energy dispersion rela-SUPERLATTICE ELECTRONIC STRUCTURE
tion Ej

SL(kx, ky, Kz) is calculated by adding Eq. (16) onto the
bulk relation EB(kx, ky, kz) and quantizing the kz wave vector.Superlattices are artificial structures made of thin alternat-
The superlattice optical matrix element MSL between the va-ing layers of semiconductor materials of different composi-
lence and conduction bands is obtained by quantizing the ztions such as GaAs/AlAs. In long-period superlattices the pe-
component of the k vector in the bulk matrix-element expres-riodic variation of the band gap produces quantization of the
sion Mb, which is obtained from previous calculations, Eq.electronic states which results in the formation of minibands
(10). Hence,which are superimposed upon the bulk band structure of the

constituent materials. We account for this band modulation
by quantizing the z component of the wave vector k which
results in a superlattice wave function of the form

EB(kx, ky, kz) → E j
SL

(kx, ky, Kz )

= EB(kx, ky, kj ) + �Ej + (−1) jWj cos(Kzd) (17)

Mb(kx, ky, kz) → MSL(kx, ky, kj ) (18)
�k = eikkk‖ ·rrr‖ � j

Kz
(z)|b > (15)

Here �Ej is the shift in the energy of the jth level resulting
where Kz is the superlattice traveling wave vector in the z from the carrier confinement. The values of Wj and �Ej are
direction, r� and k� are the position coordinate and wave vec- determined using the interface-connection rules described be-
tor in the plane parallel to the superlattice layers, �b� is the low and kj � [2( j � 1) � 1] �/2d. By applying Eqs. (17) and
periodic part of the bulk Bloch state, and �j

Kz
(z) is the super- (18) at the three symmetry points, �, K, and L, we obtain the

quantized electronic band structure presented in Fig. 4. Sincelattice envelope wave function of the jth quantized state
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K and W are low-symmetry points, the effects of quantization
are negligible for the contributions coming from these regions.
Therefore, these contributions are treated in a mean-field ap-
proximation where the energy and matrix-element dispersion
relations are approximately equal to the compositionally aver-
aged bulk alloy values. The alloy values are calculated using
the virtual-crystal approximation (VCA) (24).

INTERFACE-CONNECTION RULES

The envelope wave function �j
Kz

(z) and the quantization of the
z component of the k vector are obtained through the use of
connection rules across the interfaces of the superlattice
square-well potentials by assuming continuity of the entire
wave function and its derivative at the interfaces (25). How-
ever, since the GaAs–AlxGa1�xAs junction is not abrupt, these
relations are averaged over the volume of a crystal unit cell.
After carrying out these averages, the usual connection rules

GaAs AlAs GaAs AlAs GaAs AlAs

L Γ X

L6 1.71

L4,5 –1.22

L6 –1.44
L4,5 –2.04

L6 –2.21

L6 1.79
Γ6 1.42

Γ8 0.0
Γ7 –0.34

Γ8 –0.56
Γ7 –0.83

Γ6 2.46 X7 2.30

X6 1.90
X7 1.95

X6 1.61

X7 –3.00

X6 –3.13

X7 –2.99

X6 –3.13of the continuity of F(z) and [1/m(E)]/(dF(z)/dz) across the in-
terface, where F is the envelope wave function and m(E) is Figure 5. Energy-band offsets at 300 K at each of the symmetry
the energy-dependent mass of a specific band, are recovered. points for a GaAs–AlAs superlattice. The energy levels are calculated

assuming a 65 : 35 �-point band-discontinuity ratio. Each level isHere the z direction is perpendicular to the interface and the
marked with the appropriate double-group-symmetry notation.mass m(E) is given by

For absorption due to excitons, there is a bound �2(�) con-
tribution and a continuum �2(�) contribution. The bound
�2(�) contribution is given by (27,28)

1
m(E)

= 1
m0


1 +

〈
bk

∣∣∣∣ d
dz

∣∣∣∣ bk

〉
ikz(E)


 (19)

where kz(E) is the bulk energy-dependent wave vector, and
�bk� is the bulk cell periodic wave function obtained using the ε2,B(ω) = C f0γ

π[(E − E0)2 + γ 2]
(22)

results of the k � p expressions discussed previously. Thus, the
interface-connection rules are based on the envelope-function f0 = |U (rrr = 000)|2|ε · PPPcv(0)|2 (23)
approximation (26). The advantage of this method is that it
incorporates the nonparabolicity of the band structure while where the bound-exciton peaks is described by a Lorentzian
the simplicity of the square-well potential (Kronig–Penney function with an oscillator strength f 0 and a half-width �, C
picture) is preserved. The drawback is that mixing effects be- is a constant factor, and E0 and U(r) are the ground-state exci-
tween valence-band states as well as between �–X and �–L ton energy and envelope function, respectively (the bound ex-
symmetry states in the conduction band are neglected. The cited states are ignored). Both E0 and U(r) are calculated us-
former is responsible for the fine structure in the absorption ing a variational exciton model of Greene et al. (29). This
coefficient (27) and will be ignored in this approach. exciton model is implemented for periodic superstructures by

By applying the energy-dependent connection rules to a pe- having all of the parameters material- and energy-dependent.
riodic superstructure, the relations are analogous to that of The ground-state exciton binding energies are calculated by
Sai-Halasz et al. (26), except that now the masses that are subtracting from the variational energies the energies re-
energy-dependent are obtained: sulting from Eqs. (20) and (21).

For the continuum contribution, a two-dimensional exciton
cos(Kzd) = cos(kA

z Lz) cos(kB
z LB) − Q sin(kA

z Lz) sin(kB
z LB) (20) model (30,31) yields

Q = 1
2

[
kA

z mB(E)

kB
z mA(E)

+ kB
z mA(E)

kA
z mB(E)

]
(21)

ε2,C(ω) = ε2,F (ω)
eπα

cosh(πα)
(24)

Here LZ and LB are the well and barrier widths of materials
A and B, respectively, d � LZ � LB, and kA

z and kB
z are the α =

[
R

�ω − E0

]1/2

(25)
energy-dependent wave vectors of Eq. (19). In order to evalu-
ate Eqs. (20) and (21), it is necessary to determine the energy-

where �2,F(�) is the value of the free carrier �2(�) without theband offsets at the �, X, and L symmetry points. Figure 5
electron–hole interaction, assuming a constant value forgives the offsets for a GaAs–AlAs interface at 300 K assuming
Pcv(k), and R is the effective exciton Rydberg. The excitona 65 : 35 �-point band discontinuity ratio. The energy levels in
model outlined above is a good approximation for strong po-Fig. 5 are obtained using experimental data, when available;
tential barriers (large barrier width and heights) and smallotherwise, they are estimated from nonlocal pseudopotential

calculations which include spin–orbit effects. well thicknesses (29).
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RESULTS AND DISCUSSION

The absorption coefficient of a GaAs–Al0.5Ga0.5As superlattice
with a well and barrier thickness of 85 Å and 80 Å, respec-
tively, is plotted in Fig. 6. The results are given for light being
polarized parallel to the superlattice layers. The solid and
dotted–dashed lines are the theoretical and experimental (3)
values, respectively. The arrows indicate the quantized �-
point valence-band–conduction-band transitions which pro-
duce the fine structure on the theoretical curve. Since the ex-
perimental data have arbitrary units, the data are multiplied
by a constant factor such that the two second electron–heavy-
hole peaks, E2(e–hh), coincide. The values of � which are used
to fit the five main peaks are �1, 1, 3, 3, and 9 meV, respec-
tively, while the calculated binding energies E0 are �10, 10,
11, 11, and 14 meV, respectively. As can be seen from the
figure, the peak positions agree reasonably well with the ex-
perimental data, with the only discrepancy stemming from
the E2(e–lh) peak (lh denotes light hole). The error results
from the use of bulk masses in the plane parallel to the lay-
ers. Since a different mass would change both the binding
energy and the continuum position, it is difficult to ascertain
qualitatively the overall effect. The sharp rise in the experi-
mental curve for energies greater than �1.75 eV is due to an
experimental artifact (32). Overall, this figure demonstrates
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the flexibility of our dielectric-constant model and shows the
Figure 7. Structure dependence of the �, X, and L region contribu-
tions to the real part of the dielectric constant of a GaAs–AlAs super-
lattice at 	� � 1.5 eV. The mole fraction of AlAs in the structure is
x � LB/LB � LZ � 0.3 and a0 is the lattice constant. Solid line: Electric
field polarization vector parallel to the superlattice layers. Dashed
line: Electric fields polarization vector perpendicular to the superlat-
tice layers. Note that the L-region contribution is isotropic.

accuracy of our interface-connection rule and exciton-binding-
energy models.

Figure 7 gives the contributions of the �, K, and L regions
to the real part of the dielectric constant of a GaAs–AlAs su-
perlattice at 	� � 1.5 eV for the light being polarized parallel
and perpendicular to the superlattice layers (solid and dashed
lines, respectively). Values are presented as a function of the
period d � LB � LZ for a mole fraction x � LB/(LZ � LB) of
AlAs of 0.3. The superlattice quantization axis is in the [100]
direction. Notice the large L contribution with respect to the
� and X contributions. This results from the combined effects
of large densities of states and momentum matrix elements
and small energy gaps present in the L region (9). The largest
contributions come from volumes surrounding the L point and
a special k point at (��, ��, ��). The X valley also has a high den-
sity of states; however, its phase space and matrix elements
are appreciably smaller than those of the L valley (9). The L
contribution is approximately independent of the period be-
cause the superlattice quantization axis is not aligned with
any of the principal axes. Hence, in agreement with the ex-
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perimental findings of Laidig et al. (33), the effect of the su-
Figure 6. Relative absorption of GaAs–Al0.5Ga0.5As superlattice for perstructure is only weakly felt at L. The L contribution is
parallel polarization at 300 K. The solid and dotted–dashed lines are

isotropic since the x, y, and z directions are all equivalent forthe theoretical and experimental values, respectively. The arrows
the [111] direction. Therefore, for a superlattice grown alongmark the positions, relative to the theoretical curve, of the �-valley
the [100] direction, the polarization of the L valleys, as antransitions. e–hh( j) corresponds to a transition between the jth level
average over the three orthogonal directions, vanishes inof the heavy-hole band and jth level of the lowest conduction band.

LZ � 85 Å, LB � 80 Å. analogy to the bulk case.
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Figure 8. Normalized index of refraction of a GaAs–AlAs
superlattice as a function of frequency. The solid and dot-
ted–dashed lines are the theoretical and experimental par-
allel polarization values, respectively, and the dashed curve
give the theoretical perpendicular polarization values. The
arrows mark the positions of the quantized �-valley transi-
tions. e–hh( j) corresponds to a transition between the jth
level of the heavy-hole band and the jth level of the lowest
conduction band. LZ � 62 Å, LB � 27 Å.
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The � and X contributions both increase as a function of tively, and, consequently, x � 0.3. The experimental data only
go up to 	� � 1.8 eV. Because of the restriction to interbandthe period. The superlattice structure influences the dielectric
transitions smaller than 6 eV in the hybrid model, the resultsconstant by determining both the position and miniband
for the bulk GaAs index of refraction are �7% smaller thanwidth of the lowest quantized energy levels. Each are inverse
the experimental values (34). For most optical transitions, thefunctions of LB and LZ. It can be easily determined that the
influence of the higher bands can be accounted for by a con-miniband widths have a negligible effect on the dielectric con-
stant factor. In Figs. 8 and 9, the theoretical and experimen-stant. Therefore, the important factor is the lowering of the

quantized levels which results in an increase in �1 with the
period. The peaks on the parallel �-polarization curve corre-
spond to the first electron–heavy-hole and electron–light-hole
transitions, E1(e–hh) and E1(e–lh), respectively. For the per-
pendicular polarization, only E1(e–lh) is present since the
symmetry of the heavy-hole state precludes momentum ma-
trix elements in the quantization direction. Polarization ef-
fects at � occur because the heavy-hole transitions which are
responsible for the strong coupling between the � conduction
and valence bands are absent for perpendicular polarization.

The X contribution is a weak function of the period because
only the conduction band is quantized (the very small offset
between the two valence bands could be ignored as shown in
Fig. 5), and, in comparison with the �-point conduction-band
mass, both the transverse and longitudinal conduction band
masses are large and, thus, rather insensitive to the con-
finement. Hence, in this case, the dielectric constant assumes
approximately its bulk alloy value. For the X region the opti-
cal matrix elements are also appreciable only for light polar-
ized along the x and y directions—that is, similar to the
e–hh transition. However, two of the valleys have the super-
lattice quantization axis parallel to the z component of the
optical matrix elements while the other four valleys have the
quantization axis aligned along the y component of the matrix
element. Hence, perpendicular polarization (the quantization
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axis is perpendicular to the layers) is favored by four of the
Figure 9. Structure dependence of the normalized index of refractionsix X valleys, which accounts for the reverse polarization
at 1.5 eV for a number of GaAs–AlAs superlattice structures. Thetrend for the X-valley contribution.
solid and dashed lines are for light being polarized parallel and per-In Fig. 8 the theoretical results for the normalized index of
pendicular to the layers, respectively, and a0 is the lattice constant.refraction of a GaAs–AlAs superlattice are compared with the
The arrows on the left-hand side of the figure mark the positions

experimental data of Suzuki and Okamoto (4). The calculated of the normalized experimental alloy values for the indicated mole
data are for parallel and perpendicular polarization (solid and fractions x of Al. The mole fractions given on the right-hand side of
dashed line), respectively, while the experimental data are for the figure belong to the adjacent parallel–polarization curve, whereas
parallel polarization (dotted–dashed line). The superlattice for perpendicular polarization the indicated mole fractions correspond

to the curves in descending order. x � LB/LB � LZ, 300 K.has a well and barrier thickness of 62 Å and 27 Å, respec-
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tal n(�) values given have been renormalized with respect to confinement. Therefore, as the period d increases for con-
stant x, the transition energy decreases (weakening confine-the theoretical and experimental bulk GaAs index of refrac-

tion values at 	� � 1.5 eV, respectively, to account for this ment since LZ increases) and a peak occurs when the energy
crosses the 1.5 eV level. Also, as x increases for a constantconstant contribution. As in Fig. 5, the theoretical parallel

polarization curve is labeled according to the appropriate value of the period, the transition energy increases since LB

is increasing while LB is decreasing (AlAs has a larger bandquantized �-region transitions. The peaks on the theoretical
perpendicular polarization curve are the result of the corre- gap than GaAs). Therefore, larger LZ values (i.e., the shift in

the peaks for increasing x) are required to reduce the transi-sponding light-hole and split-off-hole transitions indicated on
the parallel-polarization curve. As discussed previously, there tion energy to the value of 1.5 eV. This explains why the

curves with the smallest barrier values, x � 0.1 and 0.2, alsoare no heavy-hole transitions for perpendicular polarization
and the dielectric constant is larger for parallel polarization. contain the E2(e–hh) transition, and why the x � 0.6 curve

for perpendicular polarization does not exhibit the E1(e–lh)However, it should be pointed out that the anistropy vanishes
around 2.3 eV due to the falling off of the � contribution and transition.

Another feature of the curves is the strong polarization ef-the isotropy of the L contribution.
The theoretical results compare favorably with the experi- fect which weakens with increasing AlAs content. Parallel po-

larization is favored since the superlattice � contribution ismental data, there being less than a 2% discrepancy between
the two parallel polarization curves. The calculated E1(e–hh) more anisotropic than the X contribution. The reduction in

anisotropy occurs because of the smaller AlAs �-region contri-peak is shifted to higher energies by �8 meV and is slightly
larger. The slight shift may result from the uncertainties in bution, as explained previously.

The most important point to notice in Fig. 9 is the posi-the AlAs band-structure parameters; and in the �-point band-
discontinuity ratio (35), both the E1(e–lh) and E2(e–hh) peaks tions of the alloy index-of-refraction values relative to those

of the superlattices. For parallel polarization it can be seenare absent from the experimental data. The light-hole transi-
tions are barely noticeable on the calculated parallel-polariza- that the difference between the alloy and superlattice index

of refractions increases with x and with LB—that is, with thetion curve, being weak and overshadowed by the neighboring
e–hh transitions. It is not known why the E2(e–hh) peak is period. The latter trend is in agreement with the experimen-

tal findings of Suzuki and Okamoto (4) and confirms the con-absent from the experimental data. However, in general the
experimental data verify the validity of the superlattice jecture of Holonyak et al. (5) about the difference in the index

of refractions of a superlattice and its corresponding alloy.model.
In Fig. 9 we show the normalized index of refraction at 1.5 Figure 9 also shows that this difference is largest at the quan-

tized transition energies and can be as high as �3.5% for spe-eV for a range of GaAs–AlAs superlattices. Again, the solid
and dashed lines are for light being polarized parallel and cific superlattice structures. In calculations, an optimal value

is achieved for a structure characterized by LZ � 79 Å andperpendicular to the superlattice layers, respectively. Also
shown in the figure are the normalized experimental alloy LB � 40 Å. However, because the hybrid model overestimates

n(�) by �1.5% with respect to the experimental superlatticevalues (34) corresponding to four of the five superlattice com-
positions (there are no data for x � 0.6). As in Fig. 8, the main values, a more accurate estimate of the difference between

the index of refractions of the two structures is �2%. Opticalpeaks on the curves correspond to the quantized �-region
transitions. All of the parallel-polarization curves exhibit the wave-guiding can already occur using an index step of

�0.0063 (assuming a symmetric AlGaAs planar wave guideE1(e–hh) peak, while the x � 0.1 and 0.2 curves also show
the E2(e–hh) peak. Again, for perpendicular polarization the with a thickness of 2 �m and 	� � 1.5 eV) (36), whereas here

we show that with certain structures a step of �0.07 (i.e., apeaks are due to the E1(e–lh) transition. The E1(e–lh) transi-
tion also contributes to the parallel curves; however, it is factor of 10 larger) can be obtained. Consequently, the wave-

guiding and reflectance properties of optoelectronic devicesbarely noticeable, being overshadowed by the neighboring
E1(e–hh) peak as in the previous figure. For both polariza- which incorporate superlattices are drastically improved by

tailoring the structure to the chosen optical frequency.tions the peaks become larger and narrower up to x � 0.3,
after which they become smaller. These effects can be ex-
plained by the following mechanisms. For small x values the EXCITON EFFECTS IN THE INDEX OF REFRACTION OF
peaks are broad because a large change in the period is re- QUANTUM WELLS AND SUPERLATTICES
quired to modify the superlattice characteristics which resem-
ble those of bulk GaAs. Additionally, the effects of quantiza- Because of the quasi-two-dimensional character of the exci-
tion are weakly felt for these structures which results in tons in quantum wells exciton resonances are clearly observ-
shallower peaks. For larger x values, the superlattice proper- able at room temperature. For both the bound and continuum
ties are a stronger function of the period which produces contributions to the exciton (see Eqs. 22–25), the polarization
sharper peaks; however, with increasing AlAs content, the of the optical excitation enters into the model via the �� � Pc
�2peaks become shallower because the AlAs �-region contribu- factor. For bulk materials, on account of their isotropy, this
tion is approximately a factor of 7 times smaller than that of factor is equal to
GaAs (9).

A characteristic feature of all of the curves is the shift in
the peak positions for increasing AlAs content. For any mole |εεε · PPPcν |2 = 1

3
( p2

x + p2
y + p2

z ) (26)

fraction x, the energy of an optical transition increases as a
function of the barrier width, but decreases more rapidly with where pi is the i component of Pc
. However, for superlattice

structures, the symmetry is lowered by the superstructurethe well width; consequently, the transition energies are the
largest for small period superlattices because of the strong layering which causes the direction to become preferred over
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the other two. This asymmetry leads to a momentum matrix the e-lh(1) is present. The quantized hh transitions are absent
for perpendicular polarization due to symmetry considera-element factor of the form
tions [see Eq. (27)]. The peaks on the parallel polarization
curves correspond to the quantized e-hh(1) and e-lh(1) transi-
tions, while for perpendicular polarization, only the e-lh(1) is

|εεε · PPPcν |2 = 1
2

(1 − θ )( p2
x + p2

y ) + (θ )p2
z (27)

present. The quantized hh transitions are absent for perpen-
where � is 1 or 0 for the electric field polarization being per- dicular polarization due to symmetry considerations [see Eq.
pendicular (TM) or parallel (TF) to the superlattice layers, re- (27)]. As can be seen from Fig. 10(b), which contains the con-
spectively. tribution of the bound exciton (Eqs. 22–23) the sharp rises in

In Fig. 10 theoretical and experimental values (37) for the the experimental data correspond to bound exciton peaks. By
index of refraction of GaAsAl0.3Ga0.7–As superlattice at 300 K comparing Figs. 10(a) and 10(b), one sees that the bound
for both parallel and perpendicular polarizations at the �- peaks rise more quickly and have a larger magnitude than
point are presented. The superlattice has a well thickness Lz the continuum peaks because excition effects are stronger for
of 70 Å and a barrier thickness LB of 75 Å. In Fig. 10(a) the the bound case. The two figures also show that the bound
results for the hybrid model include only the continuum exci- exciton contribution increases the birefringence and for paral-
ton contribution (see Eqs. 24–25). The peaks on the parallel lel polarization, for example, causes the appearance of four
polarization curves correspond to the quantized e-hh(1) and sets of peaks instead of two, i.e., bound and continuum peaks

for e-h(1) and e-lh(1). Most important, Fig. 10(b) gives supporte-lh(1) transitions, while for perpendicular polarization, only
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Figure 10. Index of refraction of a GaAs–Al0.3Ga0.7As superlattice around Eo. The dashed and
dotted-dashed lines are the experimental results for parallel and perpendicular polarizations,
respectively, while the solid and dotted lines are the results of our current model for parallel and
perpendicular polarizations, respectively. In (a) these lines include only the continuum exciton
contribution and in (b) they include both the continuum and bound exciton contributions.
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