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The close and constant tracking of system load by the sys-
tem generation is a basic requirement in the operation of
power systems. For economically efficient operation and for
effective control, this must be accomplished over a broad spec-
trum of time intervals. STLF is generally defined as forecast-
ing the system load from one hour ahead to one week (168 h)
ahead. The principal objective of the STLF function is to pro-
vide accurate load predictions for basic generation scheduling
tasks, such as economic dispatch, unit commitment, and in-
terchange evaluation, in addition to the important task of sys-
tem security assessment.

The timeliness and accuracy of STLF have significant ef-
fects on power system operation and production costs (1).
Utilities have to make up adequate levels of spinning reserve
and standby reserve in order to have sufficient generation to
satisfy the demand and to have the desired measure of system
security and reliability. Underprediction of load results in a
failure to provide the necessary reserve which, in turn, trans-
lates into higher costs due to the need to use expensive peak-
ing units. Overprediction of load, on the other hand, involves
the start-up of too many units resulting in an unnecessary
increase in reserve and, hence, operating costs. Thus, by re-
ducing the forecasting error, reserve levels may be reducedSHORT-TERM LOAD FORECASTING
while satisfying the demand and maintaining the system se-
curity.This article is intended to provide an overview of the state-of-

the-art methodologies for electric power system short-term The behavior of the system load is directly governed by
the customers’ activity pattern. These include the seasonal,load forecasting (STLF). Three categories of STLF methods

are described in the second section with technical details for weekly, and daily periodicities, legal and religious holiday ef-
fects, which form the inherent properties of the load of a sys-readers who are interested in advanced research in STLF.

Enhanced modeling techniques based on statistical methods tem. Meanwhile, some external factors, such as weather, spe-
cial events, and so forth, greatly affect the individualare presented with simulation results in the third section to

demonstrate how to employ the various existing modeling consumption pattern and, in turn, the load behavior of the
system. Thus, the system load behavior is not only governedtechniques to build a realistic application. This article con-

cludes with the prospective of the development of STLF meth- by a self regressive rule but is explicitly affected by a number
of external factors. This behavior is system and environmentods in the future. An introduction to the STLF problem

follows. dependent, a fact that makes the load forecasting problem
quite complicated. The search for a robust STLF algorithmPower systems are large-scale, nonlinear, and geographi-

cally distributed systems. The objective of power systems op- which is suitable for different systems and different cases has
been a challenging task for the power systems community.erators is to provide high-quality services at a reasonable

price to the individual end users. This objective can be The total load demand of a power system consists of energy
consumption of individual consumers. An individual con-achieved only through efficient planning, scheduling, and

minute-to-minute operation. The availability of sufficient in- sumer may be a residence, a factory, or a shopping mall. The
activities of an individual consumer have to some extent cer-formation about a power system is critical for its efficient op-

eration. The future system demand is a crucial piece of infor- tain regularity. For example, a residential user goes to work
at around 8 AM and comes home at about 5 PM Mondaymation. Much effort has been made in developing

sophisticated methodologies to solve this problem. through Friday, a factory operates 12 h daily seven days a
week, a mall is open from 10 AM to 9 PM five days a weekPower system planning deals with determining the opti-

mal mix and capacity of generation, capacity, and voltage except weekends, and so on. This regularity causes the hourly
load demands to follow some patterns from one day to thelevel of transmission and distribution system additions, and

the type of facilities required in transmission expansion next. Figure 1 shows the plot of hourly loads (in megawatts)
on a power system for two consecutive days in January of aplans, in the long or medium term. Scheduling focuses on

when to start up or shut down generating units, how to coor- given year. It can be seen that there is a daily pattern for
hourly loads of the two days, though differences in magnitudedinate different energy sources (e.g., hydro and thermal en-

ergy), and which equipment to maintain at what time, so that exist. This can be generalized and is called daily periodicity.
Similarly, there are weekly, seasonal, yearly, and other peri-consumers are served reliably and economically. Careful

scheduling is a prerequisite for high-quality service to con- odicities.
In principle, one could determine the load patterns of asumers. It is the minute-to-minute operation, however, that

makes reliable and economic services possible. Without system if each of the individual consumption patterns were
known. However, demand or usage pattern of an individualknowledge of future load demand, none of these three facets

can be achieved. Load forecasting, therefore, plays a very im- load customer is quite random and highly unpredictable. In
addition, there are other factors affecting hourly loads, suchportant role in the planning, scheduling, and operating of

power systems. as temperature, humidity, wind speed, holidays, economic fac-
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The second application of STLF is for predictive assess-
ment of the power system security. System load forecasts are
an essential data requirement for the off-line transmission
system analysis for the detection of future conditions under
which the power system may be vulnerable. This information
permits the operating personnel to prepare the corrective ac-
tions so that the system can be operated securely.

The third application of STLF is to provide system op-
erating personnel with timely information, that is, the most
recent load forecast. They need this information to operate
the system economically and reliably.
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The technical literature displays a wide range of methodol-
ogies and models for STLF. In general, there are three catego-Figure 1. Hourly load demands for two consecutive days.
ries for the existing approaches: (1) statistical methods, (2)
expert systems, and (3) artificial neural networks.

tors, and other random factors. These factors must be taken Statistical approaches generally employ two kinds of mod-
into account for accurate load forecasting. els: static models (1–5) and dynamic models (6–9). Static

Different load forecasting methods were developed for vari- models assume that the load is a linear combination of some
ous purposes. Based on the purpose of application, they can functional elements which describe the variation of weather
be categorized into three categories: variables or the basic characteristics of load behavior. The

model parameters are estimated by using multiple linear re-
1. Very short-term load forecasting (minutes or hours gression or exponential smoothing techniques. These models

ahead) are structurally simple and require relatively low computa-
2. Short-term load forecasting (days to several weeks tional effort. Dynamic models are based on a time series de-

ahead) scription, or its equivalent state space description (10), of the
3. Medium- and long-term load forecasting (months to load behavior. These models treat the load pattern as a time

years) series signal with known seasonal, weekly, and daily periodic-
ities. This gives a rough prediction of the load at the given

Very short-term load forecasting is mainly intended to pro- season, day of the week, and time of the day. The difference
vide load demand information in the very near future so that between the predicted and the actual load is considered as a
automatic generation control functions are appropriately ad- stochastic process. The analysis of this random process leads
justed to follow load fluctuations economically. Short-term to a more accurate prediction. The techniques used for the
load forecasting is necessary for the operational planning of a analysis of this random process include Kalman filtering (6),
power system. Its main objective is to predict the hourly load

the auto-regressive moving average (ARMA) models (9), Box–demands, one day or one week ahead. Medium- or long-term
Jenkins method (11), and the general exponential smoothingload forecasting is essential for scheduling equipment mainte-
(12). ARMA models are the most commonly used dynamicnance, and planning generation, transmission, and distribu-
models which model stationary processes with finite vari-tion of a power system.
ances. Nonstationary processes can be modeled by differenc-The three categories are important. However, this article
ing the original process. The differencing operation produceswill concentrate on the category of short-term load forecast-
an auto-regressive integrated moving average (ARIMA) modeling; that is, daily to weekly load forecasting.
(11). Some dynamic models explicitly include weather infor-The primary application of the STLF function is to drive
mation as input variables (8). Others rely on a more heuristicthe scheduling functions that determine the most economic
approach where the load process is preliminarily corrected forcommitment of generation resources that comply with relia-
weather influences (13).bility requirements, operational constraints, and environmen-

Expert systems-based approaches have emerged as a re-tal constraints. For power systems with hydro energy being
sult of advances in the field of artificial intelligence in the lastthe major generation resources, load forecasts are required to
two decades. An expert system is a computer programdetermine the optimal releases from the reservoirs and gener-
(though not algorithmic) which has the ability to act as anation levels in the power house. For systems of dominant
expert. This program can reason, explain, and have its knowl-thermal generations, the load forecasts are used for generat-
edge base expanded as new information becomes available toing unit commitment to determine the minimal cost hourly
it. In the case of the STLF problem, the forecasting systemstrategies for the start-up and shutdown of units to meet the
emulates the knowledge, experience, and analogical thinkingpredicted loads. For hybrid hydro and thermal systems, the
of experienced system operators. The objective is to identifyload forecasts are used to coordinate hydro and thermal gen-
variables and rules that are used by system operators in esti-eration resources so that production costs are minimized.
mating or forecasting the system load and the criteria for em-These scheduling applications require hourly system load
ploying different rules in different situations. Examples dem-forecasts for the next day or the next week for the determina-
onstrating the application of this approach to STLF problemstion of the least cost operating plans. A closely associated
can be found in various references (14–16). In conjunctionscheduling task is the scheduling and contracting of inter-
with expert systems, fuzzy set theory was proposed as a toolchanges between electric utilities. For this application, the
to handle the uncertainties in load models, weather variables,STLF is useful for calculation of the economic levels of inter-

change. and operators’ heuristic rules (17). Expert system models
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seem to be robust and adaptable to changing conditions than and a random noise �(t). The order of this process depends on
the oldest previous value at which y(t) is regressed on. For another methods.

In recent years, artificial neural network (ANN) tech- AR process of order p, this model can be written as:
niques have been applied to perform STLF (18–23). The
ANNs can extract the implicit nonlinear relationship between y(t) = φ1y(t − 1) + φ2y(t − 2) + · · · + φpy(t − p) + ε(t) (2)
past load or weather variables and forecasted load. They do
not rely on explicit function representation of input variables With the introduction of the back-shift operator B that de-
and the load to be forecast. It also has the capability to adapt fines y(t � 1) � By(t), and consequently y(t � m) � Bmy(t), Eq.
to a changing forecasting environment through the concept of (2) can be re-written in the following form:
self-learning. ANN application in STLF has been an ongoing
research area and promising results have been achieved. φ(B)y(t) = ε(t) (3)

where �(B) � 1 � �1B � �2B2 � . . . �pBp.STLF METHODS
Moving Average Process. In the moving average (MA) pro-

cess, the current value of the time series y(t) is expressed lin-Statistical Methods
early in terms of current and previous values of a white noise

There are many different variations of statistical methods for series �(t), �(t � 1), . . .. This noise series is constructed from
STLF. They can be divided into the following four general the forecast errors or residuals when load observations be-
methodologies: come available. The order of this process depends on the old-

est noise value at which y(t) is regressed on. For a moving
average model of order q, this model can be written as:1. Multiple linear regression

2. Stochastic time series
y(t) = ε(t) − θ1ε(t − 1) − θtε(t − 2) − · · · − θqε(t − q) (4)3. General exponential smoothing

4. State space and Kalman filter
A similar application of the back-shift operator on the white
noise series would allow Eq. (4) to be re-written as:

Multiple Linear Regression. In the multiple linear regression
method, the load is represented in terms of explanatory vari- y(t) = θ(B)ε(t) (5)
ables and weather and non-weather variables that influence
the electrical load. The multiple linear regression model

where �(B) � 1 � �1B � �2B2 � �pBq.STLF can be described in the following form:
Auto-Regressive Moving-Average Process. In the auto-regres-

sive moving-average process, the current value of the timey(t) = a0 + a1x1(t) + · · · + anxn + ε(t) (1)
series y(t) is expressed linearly in terms of its values at pre-
vious periods (y(t � 1), y(t � 2), . . .) and in terms ofwhere y(t) is the electrical load demand to forecast, x1(t), . . .,
current and previous values of a white noise series (�(t),xn(t) are explanatory variables correlated with y(t), �(t) is a
�(t � 1), . . .). The order of the ARMA process is deter-random variable with zero mean and constant variance, and
mined by both the oldest previous value of the series anda0, a1, . . ., an are regression coefficients.
the oldest white noise value at which y(t) is regressed on.The explanatory variables of this model are identified on
For an ARMA process of order p and q, the model is writtenthe basis of correlation analysis on each of these independent
as:variables with the load variable to forecast. The estimation of

the regression coefficients is usually computed with the least-
square estimate technique. Statistical tests, such as the F-
statistic test, are applied to determine the significance of

y(t) = φ1y(t − 1) + · · · + φpy(t − p) + ε(t)

+ θ1ε(t − 1) − θqε(t − q)
(6)

these regression coefficients. The t-ratios resulting from these
By using the back-shift operator previously defined, Eq. (6)tests determine the significance of each of the coefficients, and
can be re-written as follows:correspondingly the significance of the associated variables

with these coefficients.
φ(B)y(t) = θ(B)ε(t) (7)

Stochastic Time Series. Stochastic time series based STLF
methods appear to be the most popular. This method has been Auto-Regressive Integrated Moving Average Process. The time

series that can be defined as an AR, MA, or as an ARMAwidely utilized and is still being used for STLF in electric
power utilities. The theory of stochastic time series is dis- process, is called a stationary process. This means that the

mean of the series and the covariances among its observa-cussed in many text books, and there are many publications
on stochastic time series based STLF methods. With this tions do not change with time. If the process is nonstationary,

transformation of the series to a stationary process needs tomethod, the load series, y(t), is modeled as the output from a
linear filter that has a random series input, �(t), usually be performed to obtain a stationary process. This can be

achieved by differencing operations on the nonstationary pro-called a white noise. Depending on the characteristic of the
linear filter, different models can be classified as follows (11). cess. By introducing the operator �, a differenced time series

of order 1 can be written as �y(t) � (1 � B)y(t) using theAuto-Regressive Process. In the auto-regressive (AR) pro-
cess, the current value of the time series, y(t), is expressed definition of the back-shift operator B. Therefore, an order d

differenced time series is written as �dy(t) � (1 � B)dy(t). Thelinearly in terms of its previous values (y(t � 1), y(t � 2), . . .)
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differenced stationary series can be modeled as an AR, MA, b is response lag time of the independent variable x(t) with
or an ARMA process to yield an ARI, IMA, or ARIMA time respect to y(t), and �(t) is a colored (nonwhite) noise series.
series model. For a series that needs to be differenced d times The series �(t) can be modeled in terms of its past values and
and has orders p and q for the AR and the MA components, a white noise by using any of the techniques discussed pre-
the model can be expressed as follows: viously.

The identification of the time series models can be obtained
by analyzing the raw historical load data. This analysis mayφ(B)∇dy(t) = θ(B)ε(t) (8)
include the use of the range-mean, autocorrelation function,
and partial autocorrelation function plots. This usually leadsSeasonal Processes. As was pointed out in the first section,
to initial guesses of the required data transformation and de-there are daily, weekly, yearly, or other periodicities in load
gree of differencing to obtain a stationary process. The de-demand time series. As a result, a different class of models
grees of the AR and the MA polynomials are initially deter-that can describe this property is designated as seasonal pro-
mined by means of autocorrelation function analysis and thecesses. Seasonal time series could be modeled as an AR, MA,
partial autocorrelation function analysis. For the case of theARMA, or ARIMA seasonal models similar to the nonseasonal
transfer function time series model, the cross-correlationtime series. The general multiplicative mode (p, d, q) �
function plot between the historical load time series, y(t), and(P, D, Q)S for a time series model can be written in the follow-
the independent variable, x(t), is also needed in order to eval-ing form:
uate the response lag time, b, along with the orders of r and
s of the polynomials �(B) and �(B).φ(B)�(BS)∇d∇D

S y(t) = θ(B)�(BS)ε(t) (9)
The estimation of parameters of the identified load fore-

casting model is usually achieved through the use of an effi-where �d, �(B), and �(B) were defined previously. Similar
cient estimation method. For a pure AR model, the applica-definitions for �D

S, �(BS), and �(BS) are given:
tion of the Yule–Walker equation solution gives the estimates
of the parameters of this process (11). Other methods such as∇D

S = (1 − BS)D (10)
the maximum likelihood techniques are capable of being ap-
plied to other models. In the third section, an adaptive�(BS) = 1 − �1BS − �2B2S − · · · − �PBPS (11)

weighted recursive least-square estimate method is described.�(BS) = 1 − �1BS − �2B2S − · · · − �QBQS (12)
Along with the estimation of the load forecasting model, esti-
mation of the standard deviation and correlation of the pa-

The model described in Eq. (9) can be extended to the case rameters of the model with the variances and covariances of
where two seasonalities are accounted. The order of the model the residuals are established for analysis.
is (p, d, q) � (P, D, Q)S � (P�, D�, Q�)S�, and is expressed as fol- The load forecast model obtained can be assumed to be cor-
lows: rect only if the model passes the diagnostic checking test.

This test can be performed simply by checking whether the
φ(B)�(BS)�′(BS′

)∇d∇D
S ∇D′

S′ y(t) = θ(B)�(BS)�(BS′
)ε(t) (13) residual series is a white noise. If not, the inadequacy of the

model needs to be corrected in view of the autocorrelation
where definitions for �D�

S�, ��(BS�), and ��(BS�) are similar to function and partial autocorrelation function.
Eqs. (10), (11), and (12).

An example demonstrating the seasonal time series models
General Exponential Smoothing. With the general exponen-is the model for an hourly load time series. If the daily period-

tial smoothing (GES) method, the load at time t, y(t), can beicity is determined to be included in the model, Eq. (9) can be
modeled by using a fitting function as follows:applied with D � 1 and S � 24. If data analysis shows that

both daily and weekly periodicities should be reflected in the
time series model, Eq. (13) can be used to build an ARIMA y(t) = c(t)T f (t) + ε(t) (17)
model with D � 1, D� � 1, S � 24, and S� � 168.

Transfer Function Method. The previous models permit y(t) where f (t) is the fitting function vector for the process, c(t) is
to be expressed in terms of its history and a white noise. If the coefficient vector, �(t) is a white noise, and T is vector
other variables affect the value of y(t), the effect of these vari-

transpose operator.ables should be accounted for in the model. This can be
The estimates of the coefficients can be found by usingachieved by using the transfer function model. For the case of

weighted mean square error for the recent N sampled inter-one independent variable x(t), such as the temperature, the
vals. This is achieved by minimizing the following function:transfer function model can be written in the following form:

y(t) = ω(B)

σ (B)
x(t − b) + ε(t) (14)

N−1∑
j=0

wj[ y(N − j) − f T (− j)c
]2

0 < w < 1 (18)

where This minimization gives the estimate of the coefficients in
the following form:

ω(B) = ω0 − ω1B − ω2B2 − · · · − ωrBr (15)

ĉ(N) = F−1(N)h(N) (19)σ (B) = 1 − σ1B − σ2B2 − · · · − σsBs (16)
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where At any time tk, there will be an estimate for the process
based on knowledge of the process up to tk�1. This estimate is
called the apriori estimate and is expressed as y(k/k � 1). The
associated error between the actual and the previous esti-

F(N) =
N−1∑
j=0

wjf (− j) f T (− j) (20)

mates of the process is given as follows:

e(k/k − 1) = y(k) − y(k/k − 1) (31)h(N) =
N−1∑
j=0

wj j(− j)y(N − j) (21)

This error vector has an error covariance matrix expressed byThe forecast of the series at lead time l is found as:
Eq. (32):

ŷ(N + l) = f T (l)ĉ(N) (22)
E
[
e(k/k − 1)e(k/k − 1)T ] = P(k/k − 1) (32)

The coefficient estimates and the forecasts can be updated,
The posteriori estimate is obtained as a linear combinationas new observations are available, respectively as follows:

from the apriori estimate and the measurement noise as in
Eq. (33).ĉ(N + 1) = LT ĉ(N) + F−1 f (0)

[
y(N + 1) − ŷ(N)

]
(23)

ŷ(N + 1 + l) = f T (l)ĉ(N + 1) (24) y(k/k) = y(k/k − 1) + K(k)
[
y(k) − H(k)y(k/k − 1)

]
(33)

where F � lim
N��

F(N). The L matrix is called the transition where y(k/k) is the updated estimate and K(k) is the blend-
ing factor.matrix and is constructed on the basis that the model will

The error associated with the actual and the posteriori es-have a fitting function satisfying the following relationship:
timate of the process is:

f (t) = L f (t − 1) (25)
e(k/k) = y(k) − y(k/k) (34)

State Space and Kalman Filter. State space and Kalman filter
The covariance matrix of this error vector is expressed by:is a general forecasting approach. It can include the pre-

viously described methods and more, such as time-varying co-
efficient models. In this method, the load is modeled as a state E

[
e(k/k)e(k/k)T] = P(k/k) (35)

variable by using state space formulation. The state space for-
The blending factor K(k) is computed such that y(k/k) ismulation is designated by two sets of equations.

optimal in some sense such as the minimum mean squares
System state equations: error criterion. This factor is known as Kalman gain and the

procedure for implementing Kalman filter for load prediction
y(k + 1) = �(k)y(k) + W (k) (26) is as follows (24):

Measurement equations: 1. Find the process apriori estimate y(k/k � 1) and the
error covariance matrix associated with it, P(k/k � 1).z(k) = H(k)y(k) + V (k) (27)

2. Compute the Kalman gain
where y(k) is an (n � 1) process state vector at time tk, �(k)
is an (n � n) state transition matrix relating y(k) to y(k � 1)
when no forcing function exists, W(k) is an (n � 1) white noise

K(k) = P(k/k − 1)H(k)T[H(k)P(k/(k − 1))H(k)T − R(k)−1]
(36)

with a known white covariance Q(k), z(k) is an (m � 1) load
3. Compute the updated estimate error covariance matrixmeasurement vector at time tk, H(k) is an (m � n) matrix

relating y(k) to z(k) without noise, and V(k) is an (m � 1) load
measurement error that is a white noise with a know covari- P(k/k) = [

1 − K(k)H(k)
]
P(k/(k − 1)) (37)

ance R(k).
4. Calculate the apriori estimate y(k � 1/k) and the errorThe covariance matrices for vectors W(k) and V(k) have the

covariance matrix P(k � 1/k) associated with itfollowing properties:

y((k + 1)/k) = �(k)y(k/k) (38)
E
[
W (k)W (i)T ] =

{
Q(k) i = k

0 i �= k
(28)

p((k + 1)/k) = �(k)P(k/k)Q(k)T + Q(k) (39)

5. Go to Step 2 moving to the next time step.E
[
V (k)V (i)T ] =

{
R(k) i = k

0 i �= k
(29)

The state space method is very attractive for real-time ap-
The process noise, W(k), and the measurement noise, plications as a result of the recursive nature of the Kalman

V(k), are also assumed uncorrelated. This assumption is de- filter. The optimal forecast is based on the assumed model.
scribed in the following: The model has to be known prior to using the Kalman filter.

Identifying the model is the main task of this method, in addi-
tion to estimation of the noise covariances Q(k) and R(k).E

[
W (k)V (k)]T = 0, for all k and i (30)
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Expert System Based Method nodes in the output layer provide the desired output signal.
The required number of hidden layers and the number of

An expert system based load forecasting model can be built
nodes for each layer are problem dependent. Usually, one or

by using the knowledge about the load forecast domain from
two hidden layers are sufficient for the STLF problem. The

a human expert in the field. The knowledge engineer extracts
number of nodes in the input layer depends on the number

this knowledge from load forecast domain expert by what is
of the identified primary variables that affect load demand

called the acquisition module component of the expert system.
significantly. The number of nodes in the output layer de-

This knowledge is represented as facts and IF-THEN produc-
pends on how the ANN is designed to generate outputs. For

tion rules. This representation is built in what is called the
instance, if an ANN is designed for each hour of a day and it

knowledge base component of the expert system. The search
generates the hourly load forecasting, then one output node

for solution or reasoning about the conclusion drawn by the
is needed. But, if the ANN is designed to provide hourly load

expert system is performed by the inference engine of the ex-
forecasts for each of the 24 h of a day with one put-through

pert system. An expert system has to have the capability to
of the input signal, 24 output neurons are needed. Other vari-

trace its reasoning if asked by the user. This facility can be
ants of the ANN architecture are also possible.

built through an explanatory interface module.
In the feedforward ANN, signals can only be propagated

The main efforts of building an expert system based model
from the input layer to the hidden layers and from the hidden

are acquiring expert knowledge in the STLF domain and or-
layers to the output nodes. Signal propagation between nodes

ganizing the acquired knowledge. Specifically for STLF, vari-
within the same layer or from the input layer directly to the

ables that affect load values need to be identified first. The
output layer is not permitted.

relationship between the identified variables and the load
For each neuron in the input layer, the neuron output is

need also to be constructed. Correlation analysis is useful for
the same as the neuron input. For each neuron in the hidden

variable identification. Relating the variables and the electric
layer or the output layer, the net input is given by:

load is essentially to build the IF-THEN production rules of
the expert system. It should be recognized that the relation-
ship between the variables and the electric is not static, but net j =

∑
i

wi joi (40)

is dynamic. This means that the same magnitude of tempera-
ture changes affect load values to different degrees for differ- where i is a neuron in the preceding layer, oi is the output of
ent day types and seasons. Numerical values are expected node i, and wji is the connection weight from neuron i to neu-
outputs of an expert system based STLF. Therefore, some pro- ron j. The neuron output is given by Eq. (41):
duction rules may be qualitative and others are quantitative.

As was mentioned previously, the expert system based
model is used to emulate the knowledge, experience, and ana- oj = 1

1 + e−(net j +θ j )
= f j (net j, θ j ) (41)

logical thinking of an experienced human expert. An advan-
tage of a human expert is his/her capability to learn from where netj is the input signal to node j and �j is a bias. In the
new cases and to upgrade his/her knowledge and reasoning. training process, �j can be regarded as a connection weight
Therefore, self-learning capability is a desired feature of an between node j and a fictitious node whose output always re-
experts system. mains at unity.

The feedforward network is trained with an error back-
Multilayer Feedforward Artificial propagation learning algorithm via selected sets of input–
Neural Network Based Methods output training patterns. The algorithm begins with as-

signing a set of random numbers to the connection weights.A multilayer feed forward artificial neural network (ANN) as
When a pattern p with target output vector tp � [tp1, tp2, . . .,a computing system consists of nodes or neurons connected
tpM]T is presented, the connection weights can be updated asby links. The nodes are divided into several layers: (1) the
follows:input layer, (2) the output layer, and (3) some hidden layers

in between. A three-layer neural network is shown in Fig. 2.
The nodes in the input layer take the input signal, and the �ω ji(p) = ηδpjopi + α�ωji(p − 1) (42)

where, for the output nodes:

δpj = (tpj − opj)opj(1 − opj) (43)

and for other nodes:

δpj =
(∑

k

δpkωk j

)
opj(1 − opj) (44)

These equations are derived based on the criterion of min-
imizing the following error function:

⋅⋅⋅⋅⋅

⋅⋅⋅⋅⋅

⋅⋅⋅⋅⋅

Output layer

Hidden layer

Input layer

Figure 2. A multilayer feedforward artificial neural network.

Ep = 1
2

M∑
j=1

(tpj − opj)
2 (45)
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where M is the number of output nodes. The method of where y(t) is hourly load at hour t, yb(t) is base load compo-
nent reflecting the daily or weekly regular changing patternssteepest descent is used.

It is noted that the learning rate � and the momentum of the load and independent of weather conditions at hour t,
yt(t) is weather-sensitive load component at hour t, yr(t) isconstant � in Eq. (42) affect the learning speed of an ANN

significantly. Fine-tunings of them are usually needed when random changing load component at hour t, and �(t) is a white
noise with zero mean and constant variance.ANN training is performed, as their optimal values may be

problem dependent. The base load component is dominated mainly by daily and
weekly periodic load changes in normal conditions (exceptAn ANN can make forecasts only on the basis of the way

it is trained. In power systems, numerous previous load and holidays). The GES model is quite suitable for modeling this
component (26,27). Previously reported GES models are builttemperature data can show divergent load patterns and dy-

namic ranges. The selection of training cases from the data through off-line spectral analysis of historical load data and
applied on-line without modification. As load patterns changeavailable can significantly affect the forecasting accuracy.

Methods to select appropriate training cases need to be de- with time, especially during season-changing periods, the pri-
mary harmonics, whose composition reflects the changingvised. For instance, the immediate previous two weeks data

may be used for training and the load is forecasted for the load profile, also change. An adaptive GES modeling approach
is able to adapt to the load pattern changes and is describedpresent week. In this case, the ANN needs to be retrained

each week. The general criterion of selecting training cases is subsequently.
The random load component, yr(t), represents a stochasticthat the ANN trained with cases of high similarity to the case

to be forecasted can produce better forecasting results. process. Its analysis can always result in higher forecasting
accuracy. An adaptive AR modeling method, enhanced by par-
tial autocorrelation analysis, is used. This model is found to

HYBRID STATISTICAL METHODS FOR STLF: AN EXAMPLE be highly effective in modeling the random load component.
Weather conditions have a strong influence on the behav-

Statistical STLF technology has been intensively studied over ior of electric load demand. They are generally presented in a
the past years and is widely used by electric utilities. Physi- nonlinear manner with considerable uncertainty (25). A gen-
cally meaningful models have been developed. They are capa- eral nonlinear weather-sensitive load model is used here and
ble of describing influences due to weather pattern deviations its description of this model is given.
from normal, and random correlation effects using a few ex- In the proposed STLF algorithm, the GES model is identi-
planatory variables. Such models are usually set up via off- fied weekly and the AR models are identified daily. With the
line simulations. This reduces their adaptability and ro- proposed models, the weighted recursive least-square esti-
bustness. mate (WRLSE) algorithm with a variable forgetting factor is

Improved forecasting performance of the statistical-based employed for model parameter estimation. The utilization of
STLF techniques can be obtained by: this algorithm improves model tracking capability and nu-

merical stability (26). This is important since in a real-time
environment, STLF results are updated using the most recent1. Adaptive identification of explanatory variables
load and weather information when situations such as those2. Advanced adaptive modeling methods
of abnormal or abrupt weather changes, unexpected social

3. Adaptive parameter updating schemes events, or even holidays occur. Also, for the purpose of on-line
economic dispatch, interchange transaction evaluations, and

Different adaptive model parameter estimation algorithms network security assessment, updating is required for more
have been devised for STLF (25,26), but models with fixed accurate system analysis. Details of the proposed techniques
structure were used. The models to be described in this sec- follow.
tion focus on developing robust and adaptive modeling tech-

Adaptive Modeling Techniquesniques based on statistical methodologies (30).
The algorithm considers the load to be composed of base Enhanced Adaptive GES Modeling

load, weather-sensitive load, and random load components. Model Description. The base load component, yb(t), is mod-
Hybrid modeling techniques, which include an adaptive GES eled with the GES model, which can be expressed as:
model, a nonlinear weather-sensitive load component model,
and an adaptive AR model, are adopted to model the three yb(t) = c(t)T f (t) (47)
load components. Power spectrum analysis and partial auto-
correlation coefficients are applied to identify explanatory where c(t) is a column vector of estimates of ‘‘n’’ locally con-
variables of the GES and AR models, respectively. The AIC stant coefficients, f (t) is a column vector of ‘‘n’’ linearly inde-
criterion (29) is utilized to determine the optimal order of pendent fitting functions.
both GES and AR models. Equation (47) can be constructed by a finite Fourier series,

as follows:
Description of the Hybrid Models

Based on the properties of the load process, the following sta- yb(t) = a0 +
n∑

i=1

(ai sinωit + bi cos ωit) (48)

tistical-based hybrid models for the STLF are constructed.
The load at hour t can be expressed as follows: where �i � 2�/168 ki, ki is an integer (�84, Nyquist limit).

Also, f (t) � [1 sin�1t cos�1t . . . sin�nt cos�nt]T and c(t) � [a0
y(t) = yb(t) + yt(t) + yr(t) + ε(t) (46) a1 b1 . . . an bn]T.
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A major task in building an appropriate GES model for where the model residual is �w(t) � y(t) � yb(t)�, and �̃W is the
estimated variance of the residuals of the kth order GESSTLF is to identify the primary harmonics to be included in
model. According to AIC criterion, the optimal model orderEq. (48). An adaptive modeling scheme to perform this task
corresponds to the minimum AIC value computed in Eq. (51).was developed. A presentation of this scheme follows.

The order of a GES model is usually high. This makes theAdaptive Identification of Primary Harmonics. A systematic
previously defined modeling procedure computationally inef-approach to adaptively determine the order of the GES model
ficient. To speed up the modeling process, the following gen-via power spectrum analysis is devised. Normalized power
eral heuristic rules are designed: Include in the initial GESspectrums are defined and utilized to build the GES models.
model, those harmonics with Pn(�i) � � (�, a prespecifiedThe power spectrum of the load series �y(t)�, is defined by:
threshold value); and rank the remaining harmonics with
Pn(�i) � � in ascending order in terms of their Pn(�i) and in-
clude them in the initial GES model one by one until Eq. (51)
reaches minimum.

P(ωi) = 1
π


σ 2

Y + 2
Jl∑
j=1

RYY ( j) cos jωi


 (49)

A threshold � � 0.5 is considered to be appropriate. This
choice of � is based on the observation that Pn(�i) � 0.5 indi-

where RYY(k) is the auto-covariance of �y(t)�, �Y is the variance cates that the relative significance of the harmonic in the
of �y(t)�, J1 is determined such that the RYY(J1) calculated us- GES model is above average compared to other harmonics.
ing the available sample data is statistically reliable. Usu-
ally, J1 � N/M with M greater than 10 (M � 13 is found to

Weather-Sensitive Load Component Model. The identifiedbe appropriate for the test case to be presented), and N is the
GES model does not take into account the effect of weathernumber of data used for modeling.
deviations from normal patterns on electric load consumption.The magnitudes of the coefficients (ai and bi) of the GES
Explicit inclusion of weather variables in the forecasting

model are directly proportional to those of power spectrums model is necessary to improve model accuracy.
of the corresponding harmonics (28). As a result, a harmonic Weather factors that are generally considered to signifi-
with a larger power spectrum magnitude has a more signifi- cantly affect load demand are temperature, humidity, wind
cant effect on the GES model representing load change pat- speed, and cloud cover. The relationship between changes in
terns. Inclusion of such harmonics improves the model ac- load and weather is appropriately described by nonlinear
curacy. polynomials (26,27). The following general model for weather-

The normalized power spectrums, instead of the values cal- sensitive load component was applied:
culated using Eq. (49), were utilized because they reveal the
relative significance of the harmonics in the GES model. They
are defined by: yt(t) = c0 +

L1∑
j=l

M j∑
k=l

L2∑
i=0

cijkTj (t − i)k (52)

Pn(ωi) = P(ωi)

Pav
(50)

where L1 is the number of weather variables to be modeled,
Mj is a constant reflecting the nonlinearity of the relationship
between weather variable and the weather-sensitive loadwhere
component, cijk is the coefficient of the kth order of the jth
weather variable at the ith lagging hour, Tj(t) is the value of
the jth weather variable at hour t, and L2 is a constant re-
flecting time delay effect of weather change.

Pav = 1
J2

J2∑
j=1

|P(ω j )|

Inclusion of a weather variable in the weather-sensitive
load component model depends on the following factors:is the average power spectrum value. In general, the upper
strength of dependence of the weather-sensitive load compo-bound for J2 is the Nyquist limit. Simulation tests are usually
nent on this variable; and accuracy of the forecasted value ofneeded to determine a proper value: J2 � 50 is used in the
the weather variable. Use of a weather variable that has veryfollowing forecasting results.
high unpredictability may deteriorate rather than improveThe proposed adaptive GES modeling method calls for add-
the load forecasting accuracy.ing harmonics one by one into Eq. (48) in the ascending order

Based on these considerations, which variables to include
of Pn(�i) until the sum of the squares of the model residuals

in the model may be system dependent and need to be tested
reaches minimum. The model thus obtained can be considered on specific system data. In the following example case, tem-
to possess the optimal forecasting performance. perature is considered to be the most prominent weather vari-

The amount of error reduction evaluated by the sum of the able. Accordingly, a third-order polynomial weather-sensitive
squared residuals may be insignificant and does not justify model is used in the form of Eq. (52).
the additional computational effort due to the increased A hybrid model formed by combining the base load model
model order. In general, a model determined by this manner component in Eq. (48) and the weather-sensitive load compo-
is not parsimonious. Model parsimony can be achieved by us- nent model is constructed to estimate model parameters us-
ing the AIC criterion (29). The AIC for the GES model with k ing the WRLSE algorithm.
harmonics is calculated by Eq. (51):

Enhanced Adaptive AR Modeling. Once the task of building
the base load and the weather-sensitive load components’AIC(k) = N · log

[
σ̃ 2

W (k)
]+ 2(2k + 1) (51)
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models is completed, the random load component, yr(t), can 2. Add the lagging term at the top of the current ranking
to the AR model.be calculated by:

3. Estimate parameters of the current AR model.
4. Compute the sum of the squared model residuals.
5. Evaluate the significance of the decrease of the sum of

the squared residuals using the AIC criterion. The AIC
for the pth order AR model is calculated by Eq. 56:

yr(t) = y(t) − ã0 −
n∑

i=1

(ãi sinωit + b̃i cos ωit)

−
Ll∑
j=l

M j∑
k=l

L2∑
i=l

c̃ijkTj (t − i)k

(53)

AIC(p) = N · log[σ̃ 2
ε ] + 2p (56)

where tilde parameters refer to the estimated values. The
random series, �yr(t)�, can be considered a stationary time se- where �̃� is the estimated variance of the residuals of
ries and can generally be modeled by an ARMA model. the pth order AR model. If AIC(p) � AIC(p � 1), go to

ARMA modeling methods have been used in STLF step 2; otherwise, the optimal parsimonious AR model
(1,9,26,27). It has been shown in (9) that AR models have is obtained.
forecasting quality equivalent to ARMA models. Promising
forecasting was obtained using AR models (26). In addition, WRLSE Algorithm. For a model expressed by:
parameter estimation of AR models is computationally much
less demanding than that of ARMA models. This is an attrac- y(t) = H(t)T X (t) + ε(t) (57)
tive feature for the consideration of developing AR models
with an enhanced modeling algorithm for use in this example. where x(t) is the vector of the known values of the variables,
Based on the assumption that the most recent lagging term H(t) is the column vector of coefficients to be estimated, and
has a larger partial autocorrelation coefficient than the subse- y(t) is the output of the model. The WRLSE algorithm with a
quent term, AR models were identified in (9) by successively variable forgetting factor � can be described by the following
adding the immediate lagging terms into the AR model one set of equations:
by one. This process continues until the sum of squares of
the model residuals reaches minimum. Fixed AR models were
utilized in (26,27). An improved adaptive AR modeling algo- R(t) = R(t − 1)

λ(t − 1)

[
I − x(t)x(t)T R(t − 1)

λ(t − 1) + x(t)T R(t − 1)x(t)

]
(58)

rithm enhanced with partial autocorrelation analysis is de-
scribed later. In addition to being adaptive, this algorithm H(t) = H(t − 1) + R(t)x(t)

[
y(t) − H(t − 1)Tx(t)

]
(59)

recognizes that the most recent lagging term does not neces-
sarily have a larger partial-autocorrelation coefficient than ε̂(t) = y(t) − H(t)T x(t) (60)

the subsequent one. Q(t) = x(t)T R(t)x(t) (61)
According to the enhanced AR modeling algorithm, the

general form of an AR model of order p can be described by: S(t) =
t∑

j=1

λ( j)t− j ε̂( j)2 (62)

θ(B)yr(t) = ε(t) (54)

where �(B) � 1 � �p
i�1 �qi

Bqi, �qi
is coefficient of the AR process,

B is back-shift operator, qi refers to the ith lagging term with
q hours preceding the current hour in the AR(p) model. It is

λ(t) = 1
2


1 − Q(t) − ε̂(t)2

S(t)
+
√

1 − Q(t) − ε̂(t)2

S(t)
+ 4Q(t)



(63)

determined by partial autocorrelation analysis.
An outline of the proposed adaptive AR modeling method Test Results

follows.
The adaptive modeling techniques were implemented. A cubic
temperature-sensitive load model was used in order to evalu-1. Compute the partial autocorrelation coefficients (PACs)
ate the proposed adaptive modeling techniques against theof �yr(t)� to the order J3 as follows:
fixed structure approach. The WRLSE algorithm with the
variable forgetting factor was applied to estimate model pa-
rameters. In this simulation, four-week historical data (N �
672) were used for building the GES and AR models. Identifi-
cation of the GES model was performed weekly; whereas AR
models were identified daily. The error statistics were calcu-

ρYR−YR( j) =

1
N − j − 1

N− j∑
t=1

[
yr(t) − yr

][
yr(t + j) − yr

]
1
N

N∑
t=1

[
yr(t) − yr

]2 (55)

lated with respect to daily peak loads. A threshold error value
of one percent was used to activate the updating algorithm.

where Historical data from two utilities were used. Utility A has
a maximum and a minimum hourly load, respectively, of
32,343 and 11,071 MW. The maximum and minimum hourly
average temperatures were 36.9�C (98.5�F) and 8.4�C (16.9�F).

yr = 1
N

N∑
t=1

[
yr(t)

]
Utility B has a maximum and a minimum hourly load of
2,043 and 633 MW, respectively. The maximum and mini-J3 is determined in the same manner as J1. The PACs

are ranked in ascending order �q1, q2, . . ., qJ3
� in terms mum hourly average temperatures were 33.9�C (93�F) and

30.6�C (�23�F). Utility A is a summer peak system with oneof their magnitudes.
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yearly peak in July. Utility B is a summer and winter peak
system with yearly peaks in August and February. The stan-
dard deviation of daily average temperature of Utility A is
smaller than that of Utility B. Actual recordings of tempera-
ture from the two utilities were used in the following simula-
tion studies.

A fixed modeling technique, which is being used in several
utility systems (26), is utilized as the base to evaluate the
improvement that can be achieved by the enhanced modeling
techniques. The fixed models are described as follows:

Table 2. AME Error Statistics of 7 Day Types, Utility A

Jan.–Mar. April–June July–Sept. Oct.–Dec.

Day AME SDE AME SDE AME SDE AME SDE

Mon. 1.275 1.629 1.266 1.612 1.042 1.305 1.344 1.753
Tue. 1.095 1.403 1.128 1.369 0.979 1.182 1.173 1.621
Wed. 1.054 1.352 1.009 1.345 0.880 1.144 1.089 1.391
Thu. 1.103 1.363 0.977 1.278 0.983 1.235 1.159 1.522
Fri. 1.220 1.497 0.998 1.263 0.864 1.099 1.112 1.452
Sat. 0.894 1.180 1.009 1.293 0.826 1.044 1.144 1.476
Sun. 1.298 1.748 1.197 1.554 0.940 1.217 1.340 1.730

Harmonics in the GES model:

{1,2, 3, 6,7, 8, 13,14,15, 20,21,22, 28,35,49}
racy from the proposed method ranges from 10 to 30% for the
four time periods on average. This is a result of using theNonlinear temperature sensitive model:
proposed adaptive modeling techniques.

Table 2 presents the seasonal error statistics in terms of
day types. Results show that AME and SDE are less thanyt(t) =

3∑
j=1

{c1ljTa(t)
j + c2 jTa(t − 1) j + c3 jTa(t − 2) j}

1.5% and 2%, respectively, for all seven day types. The adap-
tive modeling approaches exhibit very stable performance for

where c1j, c2j, and c3j are model parameters and Ta(t) is all day types. This verifies the designed adaptability and ro-
the average equivalent temperature for two adjacent bustness.
hours. The error statistics of peak load forecasting are given in

The AR model: Table 3. It is noted that errors for the time period from Oct.
to Dec. are larger than those for the other three periods. This

yr(t + 1) = (θ0 + θ1B + θ23B23)yr(t) is because of holidays such as Thanksgiving Day, Christmas
Day, and the New Year Eve. When compared to the fixed

Table 1 shows absolute mean error (AME) and standard modeling approach, the ratios of improvement in accuracy
deviation error (SDE) statistics of 24 h for Utility A by the reach up to 34% on average. Considering the importance of
proposed method. Highly accurate forecasting was achieved peak load forecasting, this improvement is quite significant.
with seasonal average errors less than 1.5%. Compared with By using the proposed adaptive modeling techniques, the
the fixed modeling method, the ratios of improvement in accu- identified models for Utility A in two consecutive weeks of

April follow.
The identified harmonics for the two GES models are

{1,3, 4, 5, 6,7, 8, 9,10, 11,12,13, 14,16,18,19, 21,28,35,49}
{1,2, 3,5, 6, 7, 8,9, 10,11, 12,

13,14, 16,18,19,21, 24,26,28, 35,49}

The harmonics used in the fixed structure model are
�1,2,3,6,7,8,13,14,15,20,21,22,28,35,49�. In addition to most of
these harmonics, other harmonics which vary from one week
to another are also identified for the GES models by the mod-
eling method described previously. Different thresholds were
used to identify the primary harmonics in the GES model and

Table 3. AME Error Statistics of
Peak Load Forecast, Utility A

Jan.–Mar. April–June July–Sept. Oct.–Dec.

Day AME SDE AME SDE AME SDE AME SDE

Mon. 1.148 1.655 1.032 1.340 0.937 1.097 1.990 2.223
Tue. 1.041 1.235 1.635 1.677 0.811 0.863 2.044 1.874
Wed. 1.091 1.553 1.205 1.343 1.298 1.643 1.533 1.824
Thu. 1.413 1.470 0.884 1.191 1.055 1.228 1.579 1.536
Fri. 1.172 1.450 1.096 1.206 1.123 1.333 1.625 1.598
Sat. 1.145 1.610 0.709 0.877 1.088 1.185 1.342 1.771
Sun. 1.730 0.959 0.984 0.969 0.942 1.181 1.250 1.436

Avg. 1.249 N/A 1.078 N/A 1.036 N/A 1.623 N/A

Table 1. AME Error Statistics of 24 Hours, Utility A

Jan.–Mar. April–June July–Sept. Oct.–Dec.

Hour AME SDE AME SDE AME SDE AME SDE

1 0.859 1.068 0.536 0.692 0.526 0.670 0.600 0.751
2 0.805 1.104 0.763 0.966 0.642 0.710 0.819 1.015
3 0.909 1.154 0.860 1.039 0.684 0.861 0.874 1.072
4 1.346 1.562 0.888 1.121 0.588 0.779 1.042 1.290
5 1.053 1.098 0.795 1.065 0.581 0.706 0.864 1.066
6 2.187 2.610 1.531 1.950 1.388 1.532 2.270 2.676
7 1.356 1.692 1.298 1.632 1.117 1.406 1.431 1.819
8 1.725 1.926 1.257 1.559 0.879 1.127 1.759 2.060
9 1.001 1.283 1.099 1.171 0.959 1.232 1.071 1.239

10 1.153 1.398 0.977 1.057 0.956 1.161 0.936 1.227
11 0.923 1.147 0.994 1.119 0.953 1.178 0.776 0.999
12 0.993 1.198 1.094 1.103 0.853 1.060 0.931 1.186
13 0.923 1.199 1.089 1.172 1.036 1.244 1.115 1.403
14 0.955 1.028 1.222 1.312 0.779 0.974 0.903 1.216
15 0.852 1.075 0.940 1.104 1.032 1.239 1.201 1.541
16 0.798 0.994 1.267 1.584 1.063 1.293 1.193 1.484
17 1.398 1.093 1.076 1.293 0.949 1.263 1.227 1.564
18 1.453 1.744 1.330 1.828 1.109 1.366 1.914 1.947
19 1.362 1.577 1.335 1.526 1.120 1.423 1.718 1.989
20 1.467 1.452 1.543 1.949 1.176 1.412 1.434 1.826
21 1.225 1.182 1.385 1.334 1.199 1.489 0.843 1.077
22 0.708 0.904 0.967 1.169 0.746 0.890 0.821 1.019
23 0.826 1.039 0.812 1.034 0.720 0.862 0.588 0.740
24 0.908 1.094 0.651 0.831 0.755 0.967 0.788 1.041

Avg. 1.133 1.468 1.071 1.391 0.909 1.179 1.130 1.532
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a threshold of 0.5 was used as a better tradeoff between com- tions of time series can improve the performance of the
putational effort and modeling accuracy. In particular, this dynamic STLF models to some extent, but they will still have
threshold value generally guarantees that the primary har- the bias of historical data. Static models, such as the multiple
monics are all included in the final GES model. linear regression model, depend on identifying the so-called

The AR models of 7 successive days in the two weeks: explanatory variables via complicated correlation analysis or
even empirical knowledge. The main source of errors for static
models is that functional relationships between explanatory
and dependent variables are not stationary for load forecast-
ing. They change over time. Similarly, various updating tech-
niques can be used to alleviate this error. While each of the
statistical STLF approaches demonstrates considerable suc-
cess in forecasting accuracy, they are all subject to the risk
that the future cannot be fully reflected by history. This is
the risk associated with the fundamental assumption of all
statistical modeling approaches.

In recent years, AI-based approaches have received inten-
sive attention as an alternative method to STLF problems.
Expert systems belong to this class of methods. Expert sys-
tems can employ human experience to validate intuitive in-
sight about a process with a certain degree of success. This

Mon./Tue.: yr(t) =
10∑

i=1

θi yr(t − i) +
23∑

i=21

θi yr(t − i)

Wed.: yr(t) =
9∑

i=1

θi yr(t − i) +
24∑

i=21

θi yr(t − i)

Thu.: yr(t) =
8∑

i=1

θi yr(t − i) +
24∑

i=21

θi yr(t − i)

Fri.: yr(t) =
8∑

i=1

θi yr(t − i) +
23∑

i=21

θi yr(t − i)

Sat.: yr(t) =
5∑

i=1

θi yr(t − i) +
24∑

i=23

θi yr(t − i)

Sun.: yr(t) =
5∑

i=1

θi yr(t − i) +
24∑

i=22

θi yr(t − i)

approach has a high reliance on the existence of an expert
capable of making accurate forecasts, from whom computerSimulations were also performed using one year historical
software can be designed to emulate the expert. An inherenthourly load data of Utility B. Reductions of daily average er-
difficulty with expert opinions, however, is that they may notrors range from 6 to 12%. The reductions of peak load fore-
always be consistent, or the reliability of such opinions maycasting error range from 2 to 11%. This is achieved through
be in question. Similar to maintaining models for statisticalidentifying the appropriate harmonics for GES models and
methods, updating of knowledge base and production rules oflagging terms for AR models, in terms of normalized power
an expert system is very likely to happen relatively frequentlyspectrum and partial autocorrelation analysis, respectively.
to reflect the latest changes in load data and expert opinions.The developed AR modeling approach produced AR models
The main challenges to applications of expert systems tothat are quite different from one day to the next and can bet-
STLF are as follows: (1) The approach is not easily reproduc-ter reflect the load change. This example demonstrates that
ible, that is, an expert system based on selected experts fromimproved forecasting has resulted from the enhanced model-
certain utilities cannot assume an easy portability to othering techniques.
utilities, and (2) the lack of self-learning mechanisms, which
are fundamentally different from a human expert whosePROSPECTIVE OF THE DEVELOPMENT
knowledge continuously evolves.OF THE STLF METHODS

Another category of AI-based methods are ANNs. Neural
networks are a more promising area of artificial intelligenceLoad forecasting is crucial for the expansion planning, relia-
for STLF since they do not rely on human experience, butbility maintenance scheduling, and operational planning of
attempt to draw a link between a set of input data and ob-power systems. STLF is a particularly important function in
served outputs. This approach does not rely on an explicitpower system operations as the principal driving element for
adoption of a functional relationship between past load ordaily and weekly operations scheduling. In the last two de-
weather variables and forecasted load. It has the capabilitycades, various modeling and forecasting techniques have been
to adapt to a changing forecasting environment through self-developed and have advanced the state-of-the-art of STLF
learning. In this sense, the ANN-based methods are very dif-methods dramatically.
ferent from the other methods and demonstrate obvious ad-Of the many models published in the literature and ap-
vantages. However, the way in which an ANN is trained in-plied in power utilities, the time series based (or dynamic)
fluences its performance significantly. If the training data setmodels, like the exemplar STLF modeling method presented
is not thoughtfully chosen, the resulting network is unlikelyin the previous section, are the most popular. Such models
to hold up well. Massaging the set of training data probablyare capable of describing time-correlated random phenomena
demands most of the efforts in building a real-world ANN. Awith relatively few explanatory variables and parameters.
systematic method of preparing the set of training data helpsThis type of model is relatively easily developed and updated,
create a more robust ANN with less effort.with modest computational requirements. However, it should

As was discussed, any individual load forecasting methodbe realized that time series based approaches contain the fun-
has its own merits and defects, and none of them has a deci-damental assumption that from the behavior of the time se-
sive advantage. Therefore, there is always room for improve-ries in the past, its behaviors in the future can be determined.
ment. Hybrid forecasting techniques that blend various typesThis assumption may not always hold, because the system
of techniques for STLF, such as combining statistical and ex-represented by the time series may not be self-explanatory,
pert system based methods incorporating fuzzy logic into thethen this assumption will lead to erroneous predictions. Er-
conventional ANNs and others, represent the trend of the fu-rors will be greater if some abrupt changes in the system oc-

cur, or if a long lead time is chosen. Some adaptive modifica- ture research.
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