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Figure 2. An analog-to-digital (A/D) signal converter converts an an-
alog signal to a digital sequence and is implemented before digital
signal processing.

tion) by factor M. By doing so, the new rate for x(Mn) is 1/M
times of the original rate of x(n).

The resampled signal x(Mn) can be expanded to signal
x̂(n) with the data rate the same as x(n) by inserting M 
 1MULTIRATE FILTERBANKS
zeros between each two samples of x(Mn), which is denoted
by �M and called upsampling (or expansion) by factor MAs the computation speed in modern chip design increases in
shown in Fig. 3(b). A discrete signal x(n) may be converted toan exponential way, our world is turning rapidly from analog
an analog signal x̂a(t) as shown in Fig. 3(a), where f 0 is theto digital mode, such as digital communications, digital
bandwidth of the original analog signal xa(t). This is called aaudios, and digital televisions and videos. This change has
D/A converter. The analog signal x̂a(t) can be mathematicallybeen providing higher quality services than before, making
represented asthe information highway possible, and revolutionizing our liv-

ing standards. In this section, we briefly describe concepts of
analog-to-digital (A/D) and digital-to-analog (D/A) converters,
rate conversion, some applications of multirate filtering, such

x̂a(t) =
∑

n

x(n)
sinπ( fst − n)

π( fst − n)
(2)

as transmultiplexing and multiresolution image analysis and
coding, and finally the outline of this article. which is called the Shannon sampling theorem.

A noninteger (fractional) multiple rate change is shown in
Fig. 4, where the data rate of x̂(n) is N/M times of the dataINTRODUCTION
rate of x(n). For more about rate conversion, see Ref. 1.

There are many applications of multirate filtering. We nextA/D and D/A Converters and Rate Conversion
want to briefly discuss two of them: transmultiplexing and

In A/D transitions, analog signals, such as audio signals and multiresolution image analysis and coding.
video signals, from our physical world are first converted to
digital signals, then these digital signals are processed using

Transmultiplexingdigital signal processing (DSP) techniques, such as filtering,
detection, and compression. Finally the processed digital sig- Multiuser communications play important roles in current
nals are converted back to physical analog signals. This pro- communication systems, where multiple users share a com-
cess is illustrated in Fig. 1. mon channel. Such examples include phone (wireline and

An A/D converter samples an analog signal xa(t) into a dis-
wireless mobile) networks and satellite communications. Increte sequence x(n) � xa(nTs) with a sampling frequency f s �
multiuser communication systems, there are three common1/Ts, where Ts is the sampling period length. It is shown in
multiplexing methods: (1) time division multiple accessFig. 2(a). For the sampled signal x(n) to convey all the infor-
(TDMA), where different users use different time slots; (2) fre-mation that the original analog signal xa(t) has, it is necessary
quency division multiple access (FDMA), where different us-and sufficient for the sampling frequency (or sampling rate)
ers use different frequency slots; and (3) code division multi-f s not to be below the Nyquist frequency, i.e., twice of the
ple access (CDMA), where different users use different codes.bandwidth (Hz) of the analog signal xa(t):
These multiplexing methods are called transmultiplexing. A
general transmultiplexing block diagram with P users isfs ≥ 2 f0 (1)

where f 0 is the bandwidth (Hz) of xa(t). A sampled signal x(n)
may be resampled with a reduced sampling rate 1/M shown
in Fig. 2(b), where M� is called downsampling (or decima-

x (n)

– 
fs
2

fs
2

x̂a (t) x̂ (n)x (Mn)
M

(a)

(b)Analog
signal

Analog
signalAnalog to

digital (A/D)
converter

Digital signal
processing

(DSP)

Digital to 
analog (D/A)

converter
Figure 3. A digital-to-analog (D/A) signal converter, which converts
a digital signal to an analog signal and is implemented after digitalFigure 1. A general signal processing diagram. It is used in current

application systems. signal processing.
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and reconstruction are built upon tree-structured multirate
filterbanks as illustrated in Fig. 7(a), which are used along
the x-axis and the y-axis separately in two-dimensional image

x(n)
MN

x̂ (n)

processing. As an example, an original image is shown in Fig.
Figure 4. Rate conversion changes the data rates of a signal. 8 and its three-level multiresolution decomposition is shown

in Fig. 9. In multiresolution image compression, such as em-
bedded zero-tree wavelet (EZW) coding (4), the correlations

shown in Fig. 5. Each transmitter uses a linear time-invari- between the images at different resolutions are fully taken
ant (LTI) finite impulse response (FIR) filter Fp(z) and each into account. It has been shown that this compression method
receiver uses another LTI FIR filter Hp(z). has better performance than the conventional discrete cosine

The FIR filters in Fig. 5 for TDMA, FDMA, and CDMA transform (DCT) compression method. For more details about
systems have the following features shown in Fig. 6. EZW and the comparisons between EZW and DCT ap-

proaches, one may consult Refs. 4 and 5. By using the EZW
1. In TDMA transmultiplexing, each user occupies one image coding, the original image in Fig. 8 is compressed with

fixed time slot in total M time slots, i.e., Fp(z) � z
p and compression ratio 64, and its decompressed image is shown
Hp(z) � zp for 0 � p � P 
 1 [see Fig. 6(a)]. in Fig. 10.

2. In FDMA transmultiplexing, each user occupies one In many multiresolution image analyses, such as image/
fixed frequency slot in total M frequency slots, i.e., video compression, the perfect reconstruction of the multirate
Fp(z) and Hp(z) are both supported mainly in a fre- filterbank shown in Fig. 7(a) is needed, which is equivalent to
quency band with 1/M of the total bandwidth [see Fig. the perfect reconstruction of the 2-channel multirate fil-
6(b)]. terbank shown in Fig. 7(b). Certain tree-structured multirate

filterbanks also lead to wavelets (6–13).3. In CDMA transmultiplexing, each user uses a pseudo-
random sequence to spread the information sequence,
i.e., Fp(z) � �M
1

n�0 f p(n)z
n with a pseudo-random binary Outline
sequence f p(n) for each p, 0 � p � P 
 1 [see Fig. 6(c)].

From the two multirate filtering applications, one can see the
importance of the perfect reconstruction property of a

Since synchronization for FDMA systems is not as impor-
multirate filterbank. The rest of this article is devoted to de-

tant as the one for TDMA and CDMA systems, in some appli-
veloping a systematic theory of building perfect reconstruc-

cations FDMA is preferred and mixed with other systems,
tion (PR) multirate filterbanks. It should be pointed out that

such as in satellite communications. Because FIR filters can-
the PR property may not be necessary for good performance

not be ideal bandpass filters, it is not obvious that the re-
in some applications. This article is organized as follows. In

ceivers in the FDMA system in Fig. 5 are able to recover the
the second section, we study some necessary properties on

original transmitted information sequences, that is, x̂p(n) �
some basic building blocks for multirate filterbanks. In the

cpxp(n 
 np) for integers np and nonzero constants cp. We will
third section, we study perfect reconstruction multirate fil-

see later that this perfect recovery problem is equivalent to
terbanks. In the fourth section, we develop factorization and

the perfect reconstruction of a multirate filterbank. For more
construction for multirate filterbanks with perfect reconstruc-

about multirate filterbanks and transmultiplexers, see, for ex-
tion. In the fifth section, we study two special kinds of

ample, Refs. 2 and 3. More applications include ADSL, DMT,
multirate filterbanks: discrete Fourier transform (DFT) fil-

etc.
terbanks and cosine modulated multirate filterbanks, which
are related to short-time Fourier transforms and Gabor trans-

Multiresolution Image Analysis and Coding
forms. In the sixth section, we describe some recent develop-
ments on multirate filterbanks. In the last section, we sum-Multiresolution image analysis is an important technique in

digital image processing and has applications in target detec- marize this article. There have been extensive studies on
multirate filterbanks in the past two decades. Due to thetion, image browsing, image/video compression, etc. The basic

idea is to decompose an image into different resolutions and length limitation, this article is by no means a complete sur-
vey on this subject but provides some basics on multirate fil-then process these images with different resolutions ac-

cording to different needs. The multiresolution decomposition terbanks. For more comprehensive descriptions and historical

Figure 5. Transmultiplexer which is used in many
communication systems including multiuser systems.
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Figure 6. Multi-access characteristics having
three common multi-access methods: (a) TDMA; (b)
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(a) (b) (c) FDMA; and (c) CDMA.

events on multirate filterbanks, we refer the reader to Refs. 1 ters, X(z) and Y(z), denote the z-transforms of scalar-valued
sequences; bold-faced lowercase letters, x(n) and y(n), denoteand 8–13.
vector sequences; and bold-faced capital letters, H(z) and
F(z), denote matrices and matrix polynomials. For a se-

NOTATIONS, BASIC BUILDING quence x(n), its z-transform is defined by
BLOCKS, AND THEIR PROPERTIES

Notations X (z) =
∑

n

x(n)z−n

Throughout this article, all lowercase letters, x(n) and y(n),
denote scalar values and scalar-valued sequences; capital let- and X(ej�) is its discrete time Fourier transform (DTFT).

Figure 7. Multiresolution decomposi-
tion and reconstruction, where a signal
is decomposed into different resolutions
and then can be reconstructed from the
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Figure 8. Original image, which is a test image from compression- Figure 10. Decompressed image with compression ratio 64, which is
obtained by using the wavelet-based compression algorithms devel-using wavelets.
oped by Said and Pearlman (5).

Decimator and ExpanderA matrix polynomial H(z) is
An M-fold decimator (or downsampling) and L-fold expander
(or upsampling) are depicted in Fig. 11(a) with an exampleH(z) =

∑
n

Hnz−n

in Fig. 11(b), and Fig. 11(c) with an example in Fig. 11(d),
respectively, where

where Hn are constant matrices with same size. For a square
matrix polynomial H(z), det(H(z)) denotes its determinant. yD(n) = x(Mn)

For a matrix A, matrices AT, A†, and A* denote the transpose,
transpose conjugate, and conjugate, respectively. For a matrix
polynomial H(z), its tilde operation H̃(z) denotes H†(1/z*), that
is,

H̃(z) =
∑

n

H†
nzn, if H(z) =

∑
n

Hnz−n (3)

A matrix polynomial H(z) has FIR inverse if and only if there
exists a matrix polynomial F(z) such that F(z)H(z) � I, where
I is the identity matrix.

The matrix WM denotes the M-point DFT matrix, that is,

WM = (Wmn
M )0≤m,n≤M−1

where Wm �
	

e
j2�/M.
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Figure 11. Decimator and expander. In the decimator, a data rate
Figure 9. Multiresolution decomposition of the original image, which is reduced M times. In the expander, a data rate is increased L times.
is an example of a multiresolution decomposition of the test image in These two operations play important roles in multirate signal pro-
Fig. 8, by using two-channel filterbanks (or wavelets). cessing.
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Figure 12. The frequency domain representation ex-
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(a) (b) (c) amples of the decimator and expander.

and Polyphase Representations

The polyphase representation was first invented by Bellanger
et al. (14) and Vary (15) and first recognized by Vaidyanathan
and Vetterli in the simplifications of multirate filterbank the-

yE (n) =
{

x[n/L], if n is a multiple of L,

0, otherwise.

ory studies. It can be briefly described as follows. For any
In the frequency and z-transform domains (1,9), given integer N, any filter H(z) can be decomposed into

YD(e jω ) =
∑

n
yD(n)e− jωn = 1

M

M−1∑
k=0

X (e j(ω−2πk)/M ) (4) H(z) =
N−1∑
l=0

z−lEl (z
N ) (5)

and
where

YE (z) =
∑

n

yE (n)z−n = X (zL), and YE (e jω ) = X (ejωL)
El (z) =

∑
n

h[Nn + l]z−n

The graphical meaning for the expander is that the DTFT of
and h[n] is the impulse response of H(z). The decomposition,the expanded yE(n) is an L-fold compressed version of the un-
Eq. (5), is called the Type 1 polyphase representation of H(z).compressed X(ej�) shown in Fig. 12(a,b). The graphical mean-
Meanwhile, H(z) can be decomposed intoing for the decimator is the following [shown in Fig. 12(a,c)]:

1. Stretch X(ej�) by a factor M to obtain X(ej�/M);
2. Obtain M 
 1 copies of this stretched version by shifting H(z) =

N−1∑
l=0

z−N+1+lRl (z
N ) (6)

it uniformly in successive amounts of 2�;
3. Add all these shifted and stretched versions to the origi- where Rl(z) � EN
1
l(z), which is called the Type 2 polyphase

nal unshifted and stretched version X(ej�/M), and divide representation of H(z). For l � 0, 1, . . ., N 
 1, El(z) and
by M. Rl(z) are called the lth Type 1 and Type 2 polyphase compo-

nents of H(z), respectively. We will see later that the Type 1
The M 
 1 shifted and stretched versions of X(ej�) in Eq. (4) polyphase representation is for the analysis bank and the
are the aliasing created by the down-sampling. Type 2 polyphase representation is for the synthesis bank in

a multirate filterbank.
Noble Identities

The main purpose for introducing these polyphase repre-
sentations is to move the decimator from the right side of anThe following two Noble identities play important roles in the

multirate filterbank theory. They tell us when the orders of LTI filter to the left side (expander from the left side of an
LTI filter to the right side) by using the Noble identities inthe decimator/expander and an LTI system can be switched.

The two Noble identities are shown in Fig. 13, where y1(n) � Fig. 13. In the Noble identities, the power of the variable z in
an LTI filter needs to rise, which usually does not hold for any2(n) and y3(n) � y4(n).

Figure 13. The Noble identities, the rules of switch-
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Figure 14. A general M-channel multirate filterbank. Figure 16. M-channel maximally decimated multirate filterbank.

Maximally Decimated Multirate Filterbanks: Perfect
Reconstruction and Aliasing Component MatrixLTI filter but does hold for the polyphase representations of

an LTI filter as shown in Eqs. (5) and (6).
An M-channel maximally decimated multirate filterbank is
shown in Fig. 16. By comparing it with the transmultiplexer
in Fig. 5, one can see that, when P � M, the transmitter side

M-CHANNEL MULTIRATE FILTERBANKS in Fig. 5 is the same as the synthesis bank in Fig. 16, and the
receiver side in Fig. 5 is the same as the analysis bank in Fig.

A general M-channel multirate filterbank is depicted in Fig. 16. The multiresolution decomposition filterbank in Fig. 7(b)
14, where the left side is an analysis bank and the right side is a 2-channel maximally decimated filterbank. In both appli-
is a synthesis bank, each of which has M LTI filters. In many cations, it is desired that the output signal x̂(n) is equal to the
applications, such as FDMA, these M LTI filters occupy M input x(n) in some sense of the multirate filterbank in Fig. 16,
different frequency bands as shown in Fig. 15. which is the perfect reconstruction property as follows.

There are several cases for an M-channel multirate fil- A multirate filterbank in Fig. 16 is called perfect recon-
terbank in Fig. 14: struction (PR) if and only if x̂(n) � cx(n 
 n0) for a nonzero

constant c and an integer n0.
The question now becomes how to construct a PR multirate1. when M0 � M1 � � � � � MM
1 � N0 � N1 � � � � �

filterbank, in other words, what conditions on Hm(z) andNM
1 � M, the filterbank is called maximally decimated;
Fm(z) are for the PR. Since in many applications, such as

2. when M0 � M1 � � � � � MM
1 � N0 � N1 � � � � � transmultiplexing and image analysis and coding, FIR filters
NM
1 � M, the filterbank is called nonmaximally deci- are preferred, in what follows we are only interested in FIR
mated; filters Hm(z) and Fm(z) in Fig. 16 In this case, the multirate

3. when M0 � M1 � � � � � MM
1 � N0 � N1 � � � � � filterbank is called FIR. Examples of 2-channel PR filterbanks
NM
1  M, the filterbank is called over decimated; were first obtained by Smith and Barnwell (28) and Mintzer

(29) independently. Some early studies on multirate filter-4. when Mk and Nl are not all equal, the filterbank is
banks can also be found in Refs. 29a–c.called nonuniformally decimated.

In the z-transform domain, the PR property becomes

Although there are increasing discussions on the cases 2–4 X̂ (z) = cz−n0 X (z) (7)
lately, such as applications of nonmaximally decimated
multirate filterbanks in intersymbol interference (ISI) cancel- In terms of an input signal X(z), by using Eq. (4) the output
lation (16–21), and studies of nonuniformally decimated X̂(z) in Fig. 16 can be formulated as follows:
multirate filterbanks (22–27), the first case is the most well
studied and the most important case. In this section, we focus
on the first case, that is, maximally decimated multirate fil-
terbanks.

X̂ (z) = A0(z)X (z) +
M−1∑
l=1

Al (z)X (zWl
M) (8)

Figure 15. M-channel analysis filter frequency
response example.
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where ter Fm(z) in Fig. 16, let Rl,m(z) be its lth Type 2 polyphase
component, for 0 � m, k, l � M 
 1. Let

E(z) = (Em,k(z))0≤m,k≤M−1, and R(z) = (Rl,m(z))0≤l,m≤M−1
Al (z) = 1

M

M−1∑
k=0

Hk(zWl
M )Fk(z), 0 ≤ l ≤ M − 1 (9)

which are called the polyphase matrices of the analysis bankClearly, the second term in the right hand side of Eq. (8) is
and the synthesis bank in Fig. 16, respectively. Then, it is notthe aliasing term. For the PR property Eq. (7), we need
hard to see that

A0(z) = cz−n0 and Al (z) = 0 for 1 ≤ l ≤ M − 1 (10)
h(z) = E(zM )e(z) and f(z) = ẽ(z)R(zM), (13)

We now want to simplify the PR condition Eq. (10). To do so,
where h(z) � (H0(z), . . ., HM
1(z))T, e(z) � (1, z
1, . . .,let
z
M�1)T, f (z) � (F0(z), . . ., FM
1(z))T, and ẽ(z) is the tilde opera-
tion of e(z). Thus, by using the Noble identities, the multirate
filterbank in Fig. 16 is the same as the one shown in Fig.

t(z) = [cz−n0 , 0, . . ., 0]T

f(z) = [F0(z),F1(z), . . ., FM−1(z)]T
17(a), which is called the polyphase representation of the
multirate filterbank in Fig. 16.

and Let P(z) � R(z)E(z), then the multirate filterbank in Fig.
16 is equivalent to the MIMO system in Fig. 17(b) with sys-
tem transform matrix P(z). Clearly, the PR property is equiv-
alent to the invertibility of the polyphase matrix E(z).

Theorem 2. An FIR multirate filterbank in Fig. 16 is perfect

H(z) =




H0(z) . . . HM−1(z)

...
...

...
H0(zWM−1

M ) . . . HM−1(zWM−1
M )


 (11)

reconstruction if and only if the polyphase matrix E(z) has an
Then FIR inverse.

H(z)f(z) = Mt(z) (12) Theorem 1 deals with the AC matrix H(z) while Theorem
2 deals with the polyphase matrix E(z). From Eq. (13), it is

Thus, given an analysis bank, H0(z), . . ., HM
1(z), if the ma- not hard to see the following relationships between these two
trix polynomial H(z) has an FIR inverse, then the synthesis matrices:
bank f (z) can be solved from the Eq. (12). In other words, the
multirate filterbank in Fig. 16 with this synthesis bank is PR. H(z) = W†

MD(z)ET (zM ) and E(zM ) = HT (z)WMD(z−1) (14)
The matrix polynomial H(z) in Eq. (11) is called the aliasing
component (AC) matrix. In conclusion, we have the following
theorem.

Theorem 1. An FIR multirate filterbank in Fig. 16 is perfect
reconstruction if and only if its AC matrix H(z) has FIR in-
verse.

One can see that the AC matrix H(z) is a structured ma-
trix, where its components are not free but related. This lim-
its the study and construction of PR multirate filterbanks. We
next want to use the polyphase representations and Noble
identities introduced in the second section and convert the
AC matrix to the polyphase matrix in which all components
are free.

Maximally Decimated Multirate Filterbanks:
Perfect Reconstruction and Polyphase Matrix

The analysis in the previous subsection is a direct analysis of
the relationship between the input and the output in Fig. 16.
We next want to first simplify the block diagram in Fig. 16 by
using some properties of building blocks studied in the second
section, such as Noble identities and polyphase representa-
tions, and then study the PR property for the simplified sys-
tem. The main idea for the simplification is to switch the or-
ders of decimator/expander and FIR filters, and then convert
the multirate filterbank into a multi-input and multi-output
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For each analysis filter Hm(z) in Fig. 16, let Em,k(z) be its Figure 17. Polyphase representation of M-channel maximally deci-
mated multirate filterbank.kth Type 1 polyphase component, and for each synthesis fil-
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where WN is the DFT matrix and D(z) is the diagonal matrix Factorization of FIR Polyphase Matrices with FIR Inverses
polynomial:

The goal of this subsection is to characterize all FIR causal
M � M matrix polynomials with FIR inverses. Since the de-D(z) = diag(1, z−1, . . ., z−M+1)
terminant of the FIR inverse of an M � M matrix polynomial
is the inverse of its determinant, we have the following

From Eq. (14), it is clear that the FIR invertibilities of the AC lemma.
matrix H(z) and the polyphase matrix E(z) are equivalent.
Unlike matrix H(z), matrix E(z) does not have any relation-
ship between its components, which leads to the systematic Lemma 1. An FIR matrix polynomial has FIR inverse if and
construction and factorization discussed later. only if its determinant is cz
nn for a nonzero constant c and an

In some applications, such as the cross-talk cancellation in integer n0.
transmultiplexers in Fig. 5, PR may not be necessary as long
as the aliasing (cross-talk) is cancelled in a multirate fil-

Let H(z) be an FIR causal matrix polynomial with an FIRterbank, i.e., the second term at the right hand side of Eq. (8)
inverse. If det(H(z)) � cz
�, then � is called its McMillan de-is zero. A necessary and sufficient condition on such fil-
gree, the minimal number of delay elements to implement theterbanks was obtained by Vaidyanathan and Mitra (30),
MIMO system (9). A matrix polynomial H(z) is called unimod-which is stated as follows. A square matrix polynomial P(z)
ular if and only if its McMillan degree is 0, that is, its deter-is called pseudo-circulant if and only if it has the following
minant is a nonzero constant. To introduce the complete fac-form:
torization of FIR matrix polynomials with FIR inverses, let
us first introduce three types of elementary row (column) op-
erations:

Type 1. Interchange two rows (or columns).

Type 2. Multiply a row (or column) with a nonzero con-
stant c.

P(z) =




P0(z) PM−1(z) · · · P1(z)

z−1P1(z) P0(z) · · · z−1P2(z)

...
...

...
...

z−1PM−2(z) z−1PM−3(z) · · · PM−1(z)

z−1PM−1(z) z−1PM−2(z) · · · P0(z)




Type 3. Add a polynomial multiple of a row (or column) to
Notice that when no z
1 appeared on the lower triangular another row (or column).
components in P(z), it would be circulant.

The corresponding matrices of these elementary operationsTheorem 3. An M-channel multirate filterbank in Fig. 16 is
are called elementary matrices, which have the followingaliasing free if and only if the polyphase matrix P(z) �
forms.R(z)E(z) is pseudo-circulant. Under this condition, the fil-

Let ei be the M dimensional vector with its ith entry 1 andterbank output and the input are related by X̂(z) � A0(z)X(z)
other entries 0 for i � 1, 2, . . ., M, i.e.,as in Eq. (8), where

ei = (0 · · · 0 1
i

0 · · · 0)TA0(z) = z−M+1(P0(z
M ) + z−1P1(z

M )

+ · · · + z−M+1PM−1(z
M))

A Type 1 elementary matrix A can be written as

PERFECT RECONSTRUCTION FIR MULTIRATE FILTERBANK
FACTORIZATION AND CONSTRUCTION A = I + (ei − e j )(e j − ei)

†,

From the studies in the previous section, PR FIR M-channel for certain i � j and 1 � i, j � M.
multirate filterbanks are converted to M � M matrix polyno- A Type 2 elementary matrix A can be written as
mials. In this section, we focus on M � M matrix polynomials
E(z) � (Ek,l(z))0�k,l�M
1. Without loss of generality, in what fol-
lows we only consider FIR and causal matrix polynomials, i.e., A = I + ceie

†
i

for certain c � 
1 and a certain i, 1 � i � M.
A Type 3 elementary matrix U(z) can be written as

E(z) =
L∑

n=0

Enz−n, L is a nonnegative integer

As studied in the third section, when the polyphase matrices U(z) = I + α(z)eie
†
jof analysis banks have FIR inverses, the corresponding syn-

thesis banks can be obtained by using the inverses for the PR
where �(z) is a polynomial of z
1 and i � j with 1 � i, j � M.multirate filterbanks, i.e., PR FIR multirate filterbanks are

With these three elementary operations/matrices, anyconstructed. In this section, we first study general E(z) with
M � N matrix polynomial can be diagonalized and the re-FIR inverses and then study paraunitary matrix polynomials
sulted decomposition is called the Smith–McMillan decompo-E(z) that are corresponding to paraunitary multirate fil-

terbanks. sition, which is stated as follows. An M � N matrix polyno-
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mial has the following Smith–McMillan decomposition; see, Theorem 4. A causal FIR M � M matrix polynomial H(z) has
an FIR inverse if and only if H(z) has the following formfor example, Ref. (9):

H(z) = Vρ (z) · · · V1(z)Aσ Uσ (z) · · · A1U1(z) (16)

where � is the McMillan degree of H(z), � is a certain nonneg-
ative integer, Vi(z) � O for i � 1, 2, . . ., �, Ai � A and
Ui(z) � U for i � 1, 2, . . ., �.

Factorization of Paraunitary FIR Matrix Polynomials

In this subsection, we introduce paraunitary matrix polyno-
mials and corresponding multirate filterbanks, which are spe-
cial FIR multirate filterbanks with FIR inverses.

H(z) = W(z)




γ0(z) 0 · · · 0 0 · · · 0
0 γ1(z) · · · 0 0 · · · 0
...

...
...

...
...

...
...

0 0 · · · γp(z) 0 · · · 0
0 0 · · · 0 0 · · · 0
...

...
...

...
...

...
...

0 0 · · · 0 0 · · · 0




U(z)

(15)
An M � N matrix polynomial H(z) is called paraunitary if

and only ifwhere W(z) and U(z) are products of some elementary matrix
polynomials with sizes M � M and N � N, respectively, �i(z)

H̃(z)H(z) = dIN , for all complex values zare polynomials of z
1, �i(z) divides �i�1(z), for i � 0, 1, . . .,
p 
 1, i.e.,

where d is a positive constant and IN is the N � N identity
matrix. When we restrict the complex value z on the unit cir-

γi(z)|γi+1(z), i = 0, 1, . . ., p − 1
cle, i.e., in the Fourier transform domain, it becomes the con-
cept of lossless matrices. An M � N matrix polynomial H(z)

and is called lossless if and only if

H†(e jω )H(e jω ) = dIN , for all real values ω
γi(z) = �i+1(z)

�i(z)
where d is a positive constant. When H(z) is FIR, lossless is
equivalent to paraunitary. When H(z) exists for all z � ej� but

where 	0(z) � 1, 	i(z) for i  0 is the greatest common divisor
not all complex values z, lossless is not equivalent to parauni-

of all the i � i minors of H(z). tary, while paraunitary always implies lossless. Since we are
When H(z) is a square causal matrix polynomial with an interested in FIR H(z), we only consider paraunitary matrix

FIR inverse, the diagonal matrix in the Smith–McMillan de- polynomials in this subsection. An example of paraunitary
composition has the form of diag(c1z
n1, . . ., cMz
nM) with matrix polynomial is:
nm � 0 and cm � 0 for 1 � m � M, and this is a complete
characterization of all square causal matrix polynomials with
FIR inverses. The factorization in Eq. (15) is, however, not
convenient to be incorporated in the optimal design studied

H(z) =
[

z−1 + 1 z−1 − 1
z−1 − 1 z−1 + 1

]

later. We next want to introduce another factorization. For
In this casemore details, see Refs. 31 and 32.

We define three kinds of basic matrices.

Class I.
H̃(z) =

[
z + 1 z − 1
z − 1 z + 1

]

O �
	

	V(z): V(z) � I 
 vv† � z
1vv† where v is an M � 1
constant vector with unit norm
. and H̃(z)H(z) � 4I2. A paraunitary multirate filterbank is

Let V(z) � I 
 vv† � z
1vv† � O . Then, its inverse shown in Fig. 18.
V
1(z) � I 
 vv† � zvv†.

Class II.
U �

	
	U(z): U(z) � I � �z
meie†

j where � is a constant, m is
a nonnegative integer, and i � j with 1 � i, j � M
.

Let U(z) � I � �z
meie†
j � U . Then, its inverse U
1(z) �

I 
 �z
meie†
j .

Class III.
A �

	
	A: A � I � (ei 
 ej)(ej 
 ei)† for certain i � j and 1

� i, j � M or A � I � ceie†
i for certain c � 
1 and a

certain i, 1 � i � M
.
Let A � I � (ei 
 ej)(ej 
 ei)† � A . Then, its inverse

A
1 � A. Let A � I � ceie†
i � A . Then, its inverse A
1 �

I 
 c/(c�1)eie†
i .

+

x (n)

x (n)^

M

M

M M

M

MH0 (z)

H1 (z)

HM–1 (z) HM–1(1/z )* *

H1(1/z )* *

H0(1/z )* *

⋅ ⋅ ⋅

⋅ ⋅ ⋅

⋅ ⋅ ⋅

⋅ ⋅ ⋅

⋅ ⋅ ⋅

Analysis bank Synthesis bank

With these three cases of matrices, we have the following Figure 18. Paraunitary M-channel maximally decimated multirate
filterbank.complete factorization.
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Similar to orthogonal transformations (matrices), the ad-
vantages of paraunitary multirate filterbanks include that
they preserve signal energies in the decompositions (or trans-
formations) and the synthesis banks (or inverse transforma-
tions) are simply the tilde operations of the analysis banks.
In this sense, paraunitary multirate filterbanks are general-
izations of orthogonal transformations, such as DFT, by add-
ing delay variables (or memory) into the transformations. In
the following, we want to present a complete characterization
of all paraunitary matrix polynomials obtained by Vaidyana-
than (9,33–35).

Theorem 5. An M � M causal FIR matrix polynomial H(z)
is paraunitary if and only if it can be factorized as

H(z) = dVρ (z) · · · V1(z)H0 (17)

where d is a positive constant, � is the McMillan degree of

Table 1. Optimized Analysis Filter Impulse Responses of
3-Channel Paraunitary Filterbank

n h0(n) h1(n) h2(n)

0 
0.0429753 
0.0927704 0.0429888
1 0.0000139 0.0000008 
0.0000139
2 0.1489104 0.0087654 
0.1489217
3 0.2971954 0.0000226 0.2972354
4 0.3537539 0.1864025 
0.3537496
5 0.2672266 
0.0000020 0.2672007
6 0.0870758 
0.3543303 
0.0870508
7 
0.0521155 
0.0000363 
0.0520909
8 
0.0875973 0.3564594 0.0875756
9 
0.0427096 
0.0000049 
0.0427067

10 0.0474530 
0.1931082 
0.0474452
11 0.0429618 0.0000230 0.0429677
12 0.0 0.0 0.0
13 
0.0232765 
0.0000026 
0.0232749
14 0.0000022 0.0 0.0000022

H(z), H0 is an M � M unitary constant matrix, Vi(z) � O for
i � 1, 2, . . ., �, and if � � 0 then H(z) � dH0.

Perfect Reconstruction Multirate Filterbank DesignFor a nonsquare paraunitary matrix polynomial, the fol-
lowing similar factorization holds (9,36–38). After the complete characterizations of PR multirate fil-

terbanks, the next important issue is the design of a desired
Theorem 6. An M � N causal FIR matrix polynomial H(z) PR multirate filterbank. In this subsection, we want to briefly
is paraunitary if and only if it can be factorized as describe a method for the design. The goal here is to design

an M-channel PR multirate filterbank such that all analysisH(z) = dVρ (z) · · · V1(z)H0 filters have good filter properties, i.e., with good passband and
stopband attenuation properties. What one can do is to usewhere d is a positive constant, H0 is an M � N unitary con-
the factorizations Eqs. (16) and (17) to parameterize thesestant matrix, Vi(z) � O for i � 1, 2, . . ., �, and if � � 0 then
analysis filters and then formulate the minimization problemH(z) � dH0. for the parameters:

For 2-channel paraunitary matrix polynomials, the above
factorization is simplified as the following lattice representa-
tion (9).

min
M−1∑
m=0

∫
mth stopband

|Hm(e jω )|2dω (18)

Corollary 1. A 2 � 2 causal FIR matrix polynomial H(z) is The following is a design example obtained from Ref. 9.
paraunitary if and only if it can be factorized as Consider a 3-channel causal FIR paraunitary filterbank, that

is, M � 3 in Fig. 17 and Eq. (17). The maximal length of all
analysis filters Hm(z) equals 15. By implementing this minimi-
zation, the optimized 3 analysis filter impulse responses are

H(z) = dRρ	(z) · · · R1	(z)R0

[
1 0
0 ±1

]
listed in Table 1 and their frequency responses are shown in
Fig. 20, where the coefficients in Table 1 are from Ref. 9.where d is a positive constant, � is the McMillan degree of
Since all filter coefficients are real, their Fourier spectra areH(z), and
symmetric about the origin. For more details on the design
issues, see Refs. 9, 12, and 12a.

Ri =
[

cos θi sin θi

− sin θi cos θi

]
, and 	(z) =

[
1 0
0 z−1

]
DFT AND COSINE MODULATED FILTERBANKS

and �i is an angle for i � 0, 1, 2, . . ., �.
In the previous section, we have studied general M-channel
maximally decimated multirate filterbanks, where the Fou-A lattice realization of a 2-channel paraunitary analysis

bank is shown in Fig. 19, where � � �d, ci � cos �i and si � rier spectra of M analysis filters may not necessarily have the
same shape. In many applications, such as FDMA communi-sin �i for i � 0, 1, . . ., �, where � delays are needed.

Figure 19. Lattice realization of 2-channel paraunitary
analysis bank.
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which is shown in Fig. 21 with P(z) � diag(P0(z), P1(z), . . .,
PM
1(z)).

By the study in the third section, it is clear that the DFT
filterbanks are PR if and only if

Pm(z) = cmz−nm , cm �= 0, 0 ≤ m ≤ M − 1,

for some integer nm

or

P(z) =
M−1∑
m=0

cmz−Mnm−l, cm �= 0 (20)

H0(e   )ω
0

–10

–20

–30

–40

–50

–60
0.0 0.1 0.2 0.3 0.4 0.5

Normalized frequency (   /2  )ω π

j H1(e   )ω ωj H2(e   )j

The paraunitariness of this DFT filterbank forces �cm� � c � 0
Figure 20. Frequency responses of 3 analysis filters. (Illustration for all 0 � m � M 
 1, which is basically equivalent to the
courtesy of Prentice-Hall, Englewood Cliffs, NJ  1993 by Prentice- DFT. When Pm(z) � 1/�M for 0 � m � M 
 1, the DFT
Hall.) filterbank is precisely reduced to the DFT as shown in Fig.

22, which is the reason for the name of the DFT filterbanks.
One can see that the condition on the prototype filter P(z)

in Eq. (20) for the PR property is very restrictive and usuallycation systems, it is however quite often that all M analysis
limits their applications. There are three ways to get aroundfilters are derived from a single prototype filter and therefore
this condition. The first one, which is also the most intuitivehave the same shape of their Fourier spectra. The advantage
one, is to design P(z) with excellent lowpass property. Then,of such systems is the implementation simplicity. In this sec-
the DFT filterbank is almost PR because the whole frequencytion, we introduce two kinds of such filterbanks. One is the
band is almost divided with a wall-cut manner by M analysisdiscrete Fourier transform (DFT) filterbank, where analysis
filters. The second way is to use nonmaximally decimatedfilters are single-sided shifts of a prototype filter in the fre-
DFT filterbanks, that is, the decimation factor is less than thequency domain (or exponential modulation). The other is the
number of channels (or users), which corresponds tocosine modulated filterbank, where analysis filters are dou-
oversampled short-time Fourier transforms or discrete Gaborble-sided shifts of a prototype filter.
transforms. For more details, see, for example, Refs. 1, 39–42,
42a. The third way is to use double-sided shifts instead of

DFT Filterbanks the single-sided shifts as in Eq. (20), which leads to cosine
modulated filterbanks as we shall see in the next subsection.DFT filterbanks form a class of the simplest multirate fil-

terbanks, where all analysis filters are shifted from a single
prototype filter in the frequency domain. The question then Cosine Modulated Filterbanks
becomes when DFT filterbanks are PR. To study this ques-

The DFT filterbanks in the previous subsection 5.1 have twotion, let us formulate the analysis filters. Let
disadvantages. One is that analysis filter coefficients are com-
plex-valued and the other is that the PR condition is too re-
strictive. We now want to use double-sided shifts or cosine
modulations to construct M analysis filters with real coeffi-

P(z) =
L−1∑
n=0

p(n)z−n

cients and better filter properties in PR multirate banks.
Let P(z) be a prototype filter with length L as before. Letbe an FIR filter with length L, which is usually a good low-

pass filter. The M analysis filters are
Um(z) = P(zWm+0.5

2M ) and Vm(z) = P(zW−(m+0.5)

2M ),

0 ≤ m ≤ M − 1Hm(z) = P(zWm
M ) =

L−1∑
n=0

p(n)W−mn
M z−n, 0 ≤ m ≤ M − 1 (19)

and for 0 � m � M 
 1,

where their Fourier spectra are illustrated in Fig. 15. Notice
that M analysis filter coefficients hm(n) � W
mn

M p(n) are no
longer real even when the prototype filter coefficients p(n)
are real.

Hm(z) = amUm(z) + a∗
mVm(z)

=
L−1∑
n=0

2 real(amW−(m+0.5)n
2M )p(n)z−n

Let Pl(z), 0 � l � M 
 1, be the Type 1 polyphase compo-
nents of the prototype filter P(z) with total M components.

This tells us that the analysis filter coefficients are all real.Then it is not hard to see that the polyphase matrix of the
Furthermore, letanalysis bank Hm(z), 0 � m � M 
 1, in Eq. (19) is

E(z) = W†
Mdiag(P0(z),P1(z), . . ., PM−1(z)) am = W (m+0.5)(L−1)/2+(−1)mπ/4

2M
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Figure 21. DFT analysis bank, a special multirate fil-
terbank.
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⋅ ⋅ ⋅

⋅ ⋅ ⋅
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Then, the analysis filter coefficients are then condition Eq. (23) is equivalent to

Q̃m(z)Qm(z) = α, m = 0, 1, 2, . . ., M − 1

i.e., all Qm(z) are 2 � 1 paraunitary matrix polynomials. They

hm(n) = 2 cos
[

π

M
(m + 0.5)

(
n − L − 1

2

)
+ (−1)l π

4

]
p(n)

(21)
have been completely characterized in the previous section

The corresponding synthesis filter coefficients are and the factorization in Theorem 6 can be used to construct
optimal cosine modulated filterbanks similar to those studied
in the same section. The following example is from Ref. 12.fm(n) = 2 cos

[
π

M
(m + 0.5)

(
n − L − 1

2

)
− (−1)l π

4

]
p(n) (22)

Figure 23(a) shows the frequency response of an optimized
prototype filter of length 129, and Figure 23(b) shows 8 fre-

From these filters, one can see why they are called cosine quency responses for the 8-channel PR cosine modulated fil-
modulated filterbanks. We now present a necessary and suf- terbank with the prototype filter in Fig. 23(a). One can see
ficient condition for the PR property (9,10,12,43). that their stopband attenuations are about 80dB.

Several updated research results on cosine modulated fil-Theorem 7. Let Pl(z), 0 � l � 2M 
 1, be the Type 1 poly-
terbanks are:phase components of a prototype filter P(z) of length L with

2M total components. If L � 2KM � 1 for some positive inte-
1. Notice that the previous paraunitary cosine modulated

ger K and M analysis filters and synthesis filters are defined
filterbanks require the prototype filters of length 2KM.

in Eqs. (21) and (22), respectively, then the cosine modulated
This requirement is relaxed in Ref. 44.

filterbank is paraunitary if and only if
2. Notice that in the cosine modulated filterbanks, the

analysis filters may not be linear phase although theP̃m(z)Pm(z) + P̃m+M(z)Pm+M(z) = α, 0 ≤ m ≤ M − 1 (23)
prototype filter is. All linear phase analysis and synthe-
sis filters in cosine modulated filterbanks are obtainedfor a constant �  0.
in Ref. 45 by using two prototype filters simultaneously.

3. Two dimensional cosine modulated filterbanks are stud-This theorem suggests the following method to construct
ied and constructed in Refs. 46–48.paraunitary cosine modulated filterbanks. Define

SOME ADDITIONAL AND RECENT RESEARCH TOPICSQm(z) =
[

Pm(z)

Pm+M(z)

]
, m = 0,1, 2, . . ., M − 1

In this section, we want to briefly mention several other top-
ics on multirate filterbank theory and applications.

Linear-Phase Perfect Reconstruction Filterbanks

In some applications, such as image/video processing, it is de-
sired that analysis and synthesis filters have no phase distor-
tion. This has motivated the study of linear-phase FIR PR
multirate filterbank factorization and construction. Linear-
phase multirate filterbanks were first studied independently
by Nguyen and Vaidyanathan (49,50), and Vetterli and Le
Gall (51). For more details, see, for example Refs. 7, 9, 11, 12,
45, 49–54.

Lapped Orthogonal Transforms

x(n)

z–1

z–1

z–1

z–1

z–1

z–1

M M

M

M

M

M +

1
MWM *1

MWM

x(n)^

Analysis bank Synthesis bank

⋅ ⋅ ⋅

⋅ ⋅ ⋅

⋅ ⋅ ⋅

⋅ ⋅ ⋅

Blocked discrete cosine transform (DCT) plays an important
role in the current image/video coding standards, such asFigure 22. DFT (analysis bank) and IDFT (synthesis bank).
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Figure 23. Cosine modulated filterbank prototype and analysis filters (12).

JPEG, MPEG1 and MPEG2, H.261 and H.263 in blocked DCT and 80. For more properties on multidimensional basic build-
ing blocks, such as decimator and expander, delay chain sys-transform coding, one first decomposes an image on a rectan-

gular region into 8 � 8 blocks, and then implement 8 � 8 tems, and constructions, see for example, Refs. 67–85, 85a.
For multidimensional cosine modulated filterbanks, see Refs.DCT on each block. Then, one quantizes the blocked DCT co-

efficients to get compression gain. Due to the truncation of an 46–48. For multidimensional LOT, see Refs. 64, 65, 86, 86a.
image in the block decomposition, the blocking effects degrade
the compression performance at low bit rates. The blocking

Optimal Multirate Filterbanks in Quantizationeffects basically come from a hard truncation between blocks,
which causes discontinuities of sinusoidal bases at the bound- One of the most important applications of multirate filter
aries of these blocks. Based on this observation, overlaps be- banks is data compression, such as speech, image, and video
tween adjacent blocks are used, such that a smooth trunca- compression. In this application, an analysis filter bank is
tion between blocks is achieved while no more coefficients in used to decompose a signal and then a quantization scheme
the transform domain are used and moreover the orthogonal- is used to compress the signal. In the reconstruction, a de-
ity is still maintained. These overlapped blocked DCT are quantization scheme and a corresponding synthesis filter
called lapped orthogonal transforms (LOT) (55–58). LOT can bank are used. This implies that the decomposition and recon-
be thought of as special cases of cosine modulated filterbanks, struction of a filter bank and the quantization should be con-
(9,12,54), and order 1 PR multirate filterbanks, (9,31,32). sidered together to achieve the maximal compression gain.
Time-varying filterbanks and LOT are studied in Refs. 59 and Along this direction, several research works can be found
60. LOT over finite fields are studied in Ref. 61, where a com- (87–93).
plete factorization is given. In the continuous-time domain,
LOT is called Malvar wavelets or local sinusoidal bases. For

Multirate Filterbanks over Finite Fieldsmore details, see Refs. 62 and 63. For multidimensional
Malvar wavelets, see Refs. 64 and 65. What we have studied on multirate filterbanks are all over

the complex field, i.e., all signals and filter coefficients are
Multidimensional Multirate Filterbanks complex values. These values can certainly be in any finite

field. Due to the incompleteness of a finite field, it is impossi-Multirate filterbanks have been used in multidimensional sig-
ble to factorize all FIR PR filterbanks over finite fields. Anal processing, such as image/video processing. One way to
counter example was given in Ref. 94. Although this is theuse multirate filterbanks is to use one-dimensional fil-
case, a completely study on LOT (order one multirate fil-terbanks at each dimension of signals. Another way to use
terbanks) over finite fields was obtained in Ref. 61. It is foundmultirate filterbanks is to use multidimensional filterbanks
that nonmaximally decimated multirate filterbanks over fi-directly to multidimensional signals, which has the potential
nite fields are the same as convolutional codes for the errorto take advantage of multidimensional signals themselves,
control purpose (31,32,61,95). For filterbanks over finitesuch as nonhorizontal or nonvertical lines in image analysis.
fields, see also Refs. 96, 97.This motivates the study of nonseparable multidimensional

multirate filterbanks. It is known that all one-dimensional
paraunitary filterbanks can be decomposed into degree-one

Nonuniformally Decimated Multirate Filterbanks
building blocks, which are very useful in the construction of
optimal paraunitary filterbanks and also their implementa- In the previous sections, we have studied uniformally deci-

mated multirate filterbanks. There have been also some re-tions. This property, however, does not hold for multidimen-
sional paraunitary filterbanks. For more details, see Refs. 66 search works on nonuniformally decimated multirate fil-
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