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AIRCRAFT DYNAMICS AND CONTROL

Aircraft dynamics refers to the equations that describe how an aircraft responds to the forces and moments
that act upon it. Aircraft control refers to the ability to move an aircraft along a desired trajectory in three-
dimensional space at some desired speed. The subject is approached here in three parts. First, the equations that
describe the motion of a rigid aircraft in a moving (nonquiescent) air mass are presented and discussed. Second,
the applicability of these equations is demonstrated, and the topic of control synthesis is introduced through
a simple control design example. The example requires only control synthesis techniques covered in a typical
undergraduate engineering course on the subject and represents what has been termed a classical approach
to aircraft control. Implementation of the resulting control system on a digital computer is discussed, and a
simulation of the flight control system is presented. Third, modern control design approaches are discussed
that involve control synthesis techniques more advanced than that of the design example. Pertinent concepts
and definitions are introduced throughout.

Background

Flight control is achieved by application of appropriate forces and moments to the aircraft structure. These
forces and moments can be categorized as (1) gravitational, (2) aerodynamic, and (3) propulsive. Obviously, the
gravitational force in not under direct control and changes in magnitude only as the aircraft’s mass changes, e.g.,
as fuel is expended or loads are added and shed. Aerodynamic forces and moments are created by the passage
of the aircraft through the air mass. The magnitude and directions of the resultants of these latter forces
and moments are modified through the action of control effectors such as elevators and rudders. Propulsive
forces and moments are created by the particular propulsion system associated with the aircraft, for example,
reciprocating, propeller-driven, turbojet-driven. In gliding flight, gravity itself provides the propulsive force.
The magnitude of the propulsive forces and moments are modified by changes in thrust. In some modern
combat aircraft, not only the magnitude but the direction of the propulsive force relative to the aircraft can be
altered by employing what is called thrust-vector control.

Aerodynamic forces are primarily a function of the aircraft’s speed, its altitude, and its orientation and
rate of change of orientation with respect to the relative wind. Relative wind refers to the instantaneous
direction of the air mass that an observer moving with the aircraft would measure, that is, the direction of
the air mass relative to the aircraft. Thus, in a quiescent air mass, one that is not moving with respect to the
earth’s surface, the direction of the relative wind is simply equal and opposite to the direction of the velocity
vector of the aircraft center of gravity.

In order to change the aircraft’s orientation, the aerodynamic control effectors just mentioned are em-
ployed, and the magnitude and possibly the direction of the thrust force created by the propulsive system are
varied. Figure 1 is a representation of the control effectors on a modern aircraft, here chosen as a tailless
fighter. The control effectors in Fig. 1 are essentially devices to create aerodynamic moments about the aircraft
center of gravity. The effect of these moments is to create rotational acceleration about the center of gravity
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Fig. 1. Control effectors on a modern aircraft.

and hence change the orientation of the aircraft with respect to the relative wind. This, in turn, alters the
total aerodynamic forces and moments acting on the aircraft. The changes in aerodynamic forces and moments
created by the change in orientation are typically much larger than those created by the effectors themselves,
and it is the former forces and moments that change the aircraft’s trajectory and speed.

As Fig. 1 indicates, tradition has led to the description of the change in orientation of an aircraft as
pitching, rolling, and yawing motions, each described by a rotation with respect to an axis system fixed in the
vehicle with origin at the center of gravity. The principal aim of aircraft control is to modulate the aerodynamic
and propulsive forces so as to produce the desired motion of the vehicle. In the early days of flight, this was
accomplished solely by the pilot, who determined the desired trajectory and speed and, through training,
moved the control surfaces by means of hand and foot controls (referred to as cockpit inceptors) so as to
produce the desired results. In simplest terms, the pilot commanded the desired aircraft trajectory and speed,
sensed the actual aircraft trajectory, and actuated the control surfaces in response to the differences in these
quantities. This process constitutes the activity of a feedback control system. As shown in Fig. 2, much for the
responsibility for feedback in the case of modern high-performance aircraft has been assumed by inanimate
systems, incorporating accurate sensors and precise, powered actuators to move control effectors in a manner
prescribed by a flight control law typically implemented on an onboard digital computer, frequently referred to
as the flight control computer. Indeed, in most modern high-performance aircraft, the pilot is no longer directly
connected to the control effectors by means of cables, pulleys, etc. Pilot commands are sent directly to the flight
control computer, and the resulting system is referred to as fly-by-wire.

The design and implementation of an aircraft flight control system must begin with an appropriate math-
ematical representation or model of the dynamics of the aircraft, that is, developing the equations that describe
how an aircraft responds to control effector actuation and to atmospheric disturbances such as turbulence.
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Fig. 2. Control-system elements in a modern piloted aircraft.

Mathematical Description Of The Aircraft

Body-Fixed Axis System. Referring to Fig. 1, one sees an xyz axis system consisting of three mutually
perpendicular (orthogonal) axes with origin at the aircraft’s center of gravity. These so-called body-fixed axes
are important in the development of the mathematical model of the aircraft. As the name implies, the body-
fixed axes are fixed in the aircraft body or airframe. The axis system has its origin at the aircraft center of
mass, with the xz axes lying in the aircraft’s plane of symmetry. In the equations to be presented, stability
axes will used, wherein the x axis will be aligned with the relative wind when the aircraft is in equilibrium or
“trimmed” flight.

Earth-Fixed Axis System. In addition to the body-fixed axes just defined, the description of aircraft
motion and, in particular, its motion relative to the earth requires the introduction of an earth-fixed axis system,
x′y′z′, also shown in Fig. 1. Traditionally, this axis system has its z′ axis directed toward the center of the earth,
with the position of its origin and x′ axis direction up to the analyst’s discretion. For example, the origin may
be assumed to lie at a particular geographical location on or above the earth’s surface with the x′ axis pointed
in the direction of magnetic north.

Equations of Motion.
Equations Expressed in Earth-Fixed Coordinates. The equations that follow are similar to those to be

found in any standard text on the subject, for example, Etkin (1), Nelson (2), or Schmidt (3). In deriving these
equations, it is typically assumed that the aircraft is a rigid body, that is, that the linear separation of any
two particles in the aircraft is constant. Like the assumption of symmetry, this one is never actually true. It is
justified in many applications, however. In simplest form, the aircraft equations of motion consist of a pair of
vector equations relating the vector sum of the forces and moments acting on the aircraft and the linear and
angular accelerations which they produce. These equations are
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where
F = vector sum of all the external forces acting on the aircraft with this vector acting through the

aircraft’s center of gravity
m = total mass of the aircraft
vc = instantaneous velocity of the aircraft’s center of gravity
d/dt = derivative evaluated in the earth-fixed axis system
G = vector sum of all the external moments acting on the aircraft
h = vector sum of the instantaneous angular momentum vectors of each particle of the aircraft, with

respect to the aircraft center of mass.

All the quantities just defined are, in general, functions of time. For the purposes of designing aircraft
control systems, however, the mass of the aircraft is usually assumed to be constant.

Equations (1) are vector equations, that is, they describe vectors that are uniquely specified by their
magnitude and direction. There is considerable benefit in expressing the vectors in the body-fixed axis system
that has just been described. As will be seen, one such benefit lies in the simplification of the angular momentum
vector h.

Position and Orientation of the Aircraft. In order to be able to prescribe a desired trajectory for the
aircraft center of mass, it is necessary to determine the position and orientation of the aircraft (or equivalently
its body-fixed axis system) relative to the earth-fixed reference frame or axis system. Accomplishing this
requires the introduction and definition of three angles referred to as the Euler angles. These angles can be
used to uniquely prescribe the orientation of the body-fixed axes relative to the earth-fixed axes through three
ordered rotations as shown in Fig. 3. Note that the order of the rotations �, �, � is essential to the definition
of the Euler angles.

Equations Expressed in Body-Fixed Coordinates. The vectors F, vc, G, and h can be conveniently
expressed as components in the body-fixed xyz axes of Fig. 1 as follows:

where i,j,k represent unit vectors parallel to the x, y, and z body-fixed axes and where X, Y, and Z represent the
components of the aerodynamic and propulsive forces alone, with the contribution of the gravitational forces
now included in such terms as −mg sin �. The scalar quantities L, M, and N are usually referred to as the
rolling moment, pitching moment, and yawing moment, respectively.



AIRCRAFT DYNAMICS AND CONTROL 5

Fig. 3. The Euler angles.

The angular velocity of the aircraft as evaluated in the earth-fixed axis system must also be introduced
and defined. This quantity is also a vector, denoted ω. Expressed in the body-fixed axes, it becomes

The scalar quantities P, Q, and R are typically referred to as the roll rate, pitch rate, and yaw rate,
respectively.

The components of the aircraft’s instantaneous angular velocity defined in Eq. (6) can be related to the
time rate of change of the Euler angles as
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Finally, the scalar components of h can be expressed in terms of fundamental geometric properties of the
aircraft as

where the subscripted I symbols represent moments and products of inertia. The choice of body-fixed axes in
which to express the vectors associated with aircraft motion means that the moments and products of inertia
in Eq. (8) are constants rather than functions of time, a considerable simplification.

With the Euler angles defined, expressions for the velocity components of the aircraft center of gravity
can now be expressed in the earth-fixed axis system as

When integrated over time, the differential equations in Eq. (9) yield the position of the aircraft relative
to the earth-fixed axes, i.e., the aircraft trajectory.

The right-hand sides of Eqs. (1) can be made more tractable by evaluating the derivatives in the body-fixed
axis system:

where [·]body indicates a derivative evaluated in the body-fixed axis system.
Complete Mathematical Model. The complete mathematical model of the aircraft can now be pre-

sented. Some algebraic manipulation has been employed to present the equations in a form in which only first
derivatives are involved and they appear on the left-hand side of the equations, i.e., a state-space description:
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Equations (11) constitute a set of nonlinear ordinary differential equations. Unfortunately, most of the
classical feedback control techniques require the object of control to be described by linear ordinary differential
equations. Thus, Eqs. (11) must be linearized. (This restriction will be removed when modern control synthesis
techniques are discussed.) The linearization will allow the unknown forces and moments on the right-hand
sides of Eqs. (10) to be described in terms of stability derivatives that can be obtained from fundamental
aerodynamic theory, computational aerodynamics, and experiment (e.g., wind-tunnel testing).
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Linearization.
Small-Disturbance Theory. Linearization of the Eqs. (11) begins with the assumption of an equilibrium

condition, or equilibrium point, about which small-disturbance motion of the aircraft is assumed to occur. An
equilibrium condition can be defined as one in which the aircraft exhibits constant linear and angular momen-
tum. Perturbation variables are then introduced. This means that each time-dependent variable appearing in
Eqs. (11) is represented by the sum of its value at the equilibrium condition and a small perturbation value.
The perturbation notation can be summarized as follows:

With these relations, Eqs. (11) can be linearized using small disturbance theory. Finally, the definition of
the body-fixed axis system as a set of stability axes and the definition of the equilibrium flight condition as one
of steady, wings-level flight with vc in the plane of symmetry means that

Linear Air Reactions—Stability Derivatives. To retain the desired linear form of the equations of motion,
the perturbed aerodynamic forces and moments, �X, �L, etc., must be expressed as linear functions of the
remaining perturbation values and their derivatives. This is traditionally accomplished through the assumption
of linear air reactions. For example, the x component of the aerodynamic and propulsive force is expressed as

where the subscript 0 means that the derivative is evaluated at the equilibrium condition. The inclusion of all
perturbation values and derivatives on the right-hand side of Eq. (14) implies an infinite series. Fortunately,
experience has shown that only a few such terms need be retained to accurately describe the aerodynamic force
X.

On substituting expressions such as Eq. (14) into the linearized form of 11, a set of linear ordinary
differential equations results. Mass and moment-of-inertia terms are typically subsumed into the linear air
reaction terms, as, for example,

The quantities Xu and Lp are referred to as mass- and moment-normalized stability derivatives, and
simply as stability derivatives in what follows. The values of the stability derivatives are a function of the
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aircraft configuration and the flight condition, the latter being essentially specified by the Mach number and
altitude where the equilibrium condition is defined.

Separation of the Equations. In reviewing the linearized equations, it becomes apparent that the
equations separate somewhat naturally into two groups, the so-called longitudinal and lateral-directional
equations. The reader should note that these equations have been simplified by ignoring certain stability
derivatives that are typically small. For complete equations see any of the aircraft stability and control texts
in the bibliography.

Longitudinal Equations.

The n appearing in the summations represents the number of aerodynamic control effectors being em-
ployed. Also note that ẋ′ and ż′ are not perturbation quantities, as they represent velocity components of the
aircraft’s center of mass, expressed in earth-fixed axes.

Lateral-Directional Equations.
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Again, ẏ′ does not represent a perturbation quantity. The so-called prime stability derivatives appearing
in Eq. (17) are introduced for notational convenience and are defined as

Atmospheric Disturbances. The most influential of all disturbances acting upon an aircraft are those
due to atmospheric turbulence. Turbulence can be defined as a particular type of nonquiescent atmosphere in
which rapid fluctuations of wind velocity and direction occur. An introductory treatment of this phenomenon
and the manner in which it is modeled is given by Hess (4). For the purposes of this exposition, turbulence
will be modeled in its simplest form. It will be assumed that the aircraft can encounter three one-dimensional
turbulence velocity fields, wherein the air-mass velocity has three components ug, wg, and wg parallel to the
aircraft’s x, y, and z body axes in the equilibrium condition. Figure 4 indicates these three velocity fields. The
amplitude of each component will vary with time, but is assumed invariant over the length of the aircraft and
is equal to the amplitude experienced at the aircraft’s center of gravity.

Equations (16) and (17) can be modified to accommodate this simple turbulence model by realizing that:

(1) The aircraft will see a relative wind with perturbation components u − ug, v − vg, and w − wg.
(2) The effects of this simplified turbulence representation on the dynamics of the aircraft can be approximated

by modifying the aerodynamic (as opposed to the inertial) terms in Eqs. (16) and (17) so that they contain
the factors u − ug, v − vg, and w − wg rather than simply u, v, and w

This has been done in the equations below:
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Fig. 4. Simplified representation of three one-dimensional turbulence fields.
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Both sets of Eqs. (19) and (20a) can be conveniently described in state-space format as

where, for example, in the longitudinal equations,
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Applicability of the Mathematical Model. Although the linearized mathematical model just devel-
oped was introduced in terms of a normally configured, fixed-wing aircraft in wing-borne forward flight, it is
also applicable to other configurations, e.g., helicopters, vertical-take off and - landing aircraft, etc. Examples
of applications to such vehicles can be found in McRuer, Ashkenas, and Graham (5), Heffley et al. (6), and
Tischler (7). The assumptions leading to the development of the linearized aircraft equations of motion would
appear to significantly restrict their utility in control-system design. In particular, the assumption of small
perturbation motion about an equilibrium condition of steady, wings-level flight would, of itself, seem to be
frequently violated in an aircraft’s operational envelope. With the exception of large-amplitude maneuvering,
however, such violations, when they do occur, typically have only a minor effect upon the utility of the equations
for control-system design. One significant reason for this is that feedback itself ameliorates the effects of errors
or changes in the model of the aircraft being controlled.

Aeroelasticity. The mathematical model just developed can be expanded to encompass the phenomenon
of aeroelasticity, i.e., the inclusion of aircraft structural flexibility in the equations of motion. Aeroelasticity
derives its name from the interaction of aerodynamic forces and the flexible structure. For example, structural
flexibility is important in proposed supersonic passenger aircraft, where efficient, low-drag designs dictate
light structures and long, slender fuselage shapes. In situations in which the flexibility of the aircraft cannot
be ignored, the linear equations of motion are augmented with additional states or dependent variables, each
of which is associated with a fundamental or natural structural mode of motion. These oscillatory structural
modes are typically defined using finite-element analysis techniques. The aerodynamic effects of structural
flexibility can be handled in a number of ways, perhaps the simplest being the application of aerodynamic
strip theory. Waszak and Schmidt (8) provide a thorough introductory treatment of this approach, including an
illustrative example. The frequencies of the structural modes are typically well above the bandwidths of the
control loops that define the flight control system.

The Laplace Transform And Transfer Function

The state-space form of the equations of motion, [Eqs. (21)], can be Laplace transformed as

where s denotes the Laplace variable and, for example,

the Laplace transform of the vector x(t). Simple matrix manipulation of Eq. (23) leads to

where G(s) and H(s) denote transfer-function matrices. The element in the ith row and jth column of G(s)
is the transfer function between the ith output variable and the jth input, and the element in the ith row
and jth column of H(s) is the transfer function between the ith output variable and the jth turbulence input.
These transfer-function elements describe the relationship between inputs (or disturbances) and outputs. For
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example, given the state and output descriptions of Eq. (22), we have

where θ is the aircraft pitch attitude (an Euler angle) and �δ1 is a particular control input, perhaps the elevon
input in the aircraft of Fig. 1. The roots of the numerator and denominator polynomials on the right-hand sides
of Eq. (13) are referred to as the zeros and poles of the transfer function, respectively (9). In the absence of
other inputs, the time response θ(t) to the control actuation �δ1(t) can then be obtained as

where L
− 1 represents the inverse Laplace transform. Stability (i.e., bounded responses to bounded inputs)

requires that the poles of the transfer function g11(s) lie in the left half of the complex s plane. There is a
fundamental, or natural, mode of motion associated with each real pole and each pair of complex conjugate
poles of the g11(s). The actual response to a control actuation is a superposition of these fundamental modes.
The zeros of the transfer function determine the extent to which each mode enters into the response of each
output variable.

The elements of the matrices A and B of Eqs. (21) are functions of the stability derivatives and the inertial
properties of the aircraft. Indeed, the name “stability derivatives” derives from the fact that the values of these
parameters determine whether the poles of the aircraft transfer functions lie in the left half of the complex s
plane. The earliest use of feedback in flight control systems was to artificially augment the values of specified
derivatives and in doing so improve the stability of the aircraft. Such systems were referred to as artificial
stability systems or stability augmentation systems (5).

Control-System Architecture

For manual, piloted control, the architecture of the flight control system itself derives from the nature of
the vehicle dynamics and the necessity of the aircraft meeting handling qualities requirements. Handling
qualities can be defined as those qualities or characteristics of an aircraft that govern the ease and precision
with which a pilot is able to perform the tasks required in support of an aircraft role (10). Specifications on
vehicle handling qualities are stated in terms of modal characteristics (e.g., the damping required on specific
longitudinal and lateral modes of motion) and of the characteristics of the Bode plots associated with pilot-
input–vehicle-output response pairs (e.g, Ref. 11, Chap. 4). Thus, the vehicle response variables selected for
feedback and the architecture of the control system are typically chosen to

(1) Provide independent control of vehicle Euler angles �, �, yaw rate r, and speed |vc| via piloted inputs from
cockpit inceptors, all with satisfactory handling qualities

(2) Force the vehicle velocity vector to remain within the xz plane of the aircraft’s body axes

While the prescription just outlined is admittedly an oversimplified generalization, the basic tenets
implied are quite powerful and cover a wide range of flight control applications. The importance of control of �,
and r revolves around the ability of such feedback to improve the absolute and relative stability of the vehicle
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Fig. 5. Guidance- and control-loop structure typical of flight control systems.

motion. Control of the Euler angle � provides the primary means for trajectory modification in the horizontal
plane.

In forcing an aircraft to follow a desired trajectory, outer, guidance loops are employed. The inner loops
providing control of Euler angles and their derivatives and the outer guidance loops providing control of linear
velocity and (sometimes) position are characterized by different bandwidths, as indicated by ωB(·) in the nested
loop structure of Fig. 5. This nested structure is common to most flight control designs. The bandwidth specifies
the maximum frequency of a sinusoidal input that can be expected to be reproduced with reasonable fidelity
at the system output. A more precise definition will be given shortly. As Fig. 5 indicates, inner loops have
higher bandwidths than outer loops. Outer guidance loops with lower bandwidths are then closed about the
inner loops. The sensor requirements in terms of signal-to-noise ratios for the outer guidance loops are less
demanding than those for the inner control loops.

Trajectory Optimization

With a control system like that just outlined in operation, an aircraft can be forced to follow a desired tra-
jectory in three-dimensional space at some desired speed. In terms of mission effectiveness or economy some
trajectories can be considered more desirable than others. For example, consider the fighter aircraft of Fig. 1
in a combat situation. To avoid an adversary the pilot must change heading (Euler angle �) by 180◦ as quickly
as possible. The question is: What trajectory and speed profile will allow this heading change to occur in mini-
mum time? Next consider a large passenger aircraft such as that shown in Fig. 4. To minimize ticket costs it is
necessary to minimize fuel consumption. The question now is: What trajectory and speed profile from depar-
ture point A to destination point B will result in minimum fuel consumption? The answers to these questions
involves the discipline of trajectory optimization. The mathematical tools involved are those of the calculus
of variations. The equations describing the aircraft motion are typically simpler than those just derived. The
aircraft is represented as a point mass, upon which act the gravitational, aerodynamic, and propulsive forces.
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Moment equations are not involved. The aerodynamic forces are considered nonlinear functions of the aircraft’s
orientation with respect to the relative wind. The texts of Bryson and Ho (12) and Stengel (13) provide excellent
treatments of these problems.

Control-System Design—A Classical Approach

As has been mentioned in the preceding discussion, aircraft trajectory control is achieved using feedback either
through the action of a human pilot or through the combination of a human pilot and a feedback control system
or through feedback control alone (an autopilot). An instructive starting point for a discussion of aircraft control
design is the so-called classical approach using fundamental analysis and synthesis tools such as the Laplace
transform and Bode diagram in a process referred to as loop shaping. The Bode diagram is a plot of the following
functions:

where gij(s) denotes any of the transfer functions of Eq. (25). The left-hand side of the first of Eqs. (28) defines
the magnitude in decibels (dB).

An Example. A simple classical design example will now be presented. The vehicle chosen is a jet-
powered transport similar to that shown in Fig. 4. A single flight condition consisting of cruising flight at Mach
0.84 and altitude 33,000 ft has been chosen for study. Only longitudinal motion will be examined, and the
control inputs will be the elevator angle �δe and engine thrust �δT. The synthesis tools to be employed can
be found in any undergraduate text on the subject, for example, Nise (9). Table 1 lists the stability derivatives
for this flight condition. Referring to Eqs. (19), any stability derivatives appearing in the equations but absent
from Table 1 are assumed negligible. The flight control system will be designed for use as an autopilot, that is,
the only pilot inputs allowed will be commanded changes in the reference airspeed and altitude. The resulting
flight control system, referred to as an altitude–airspeed hold system, is an autopilot found in all modern
transport aircraft. Here the altitude variable h(t) is defined as

where z0
′ represents the z′ coordinate of the aircraft center of mass in the equilibrium condition.

The inner- and outer-loop control-system performance requirements are stated in terms of desired closed-
loop bandwidths. Now a more precise definition of bandwidth can be offered. In control-system parlance, the
bandwidth is typically defined as that frequency where the magnitude portion of the Bode plot of a closed-loop
transfer function crosses and remains below the −3 dB line. For this design, the desired bandwidths are:

(1) Pitch-attitude (inner-loop) bandwidth: 2.0 ≤ ωθBW ≤ 4.0 rad/s
(2) Altitude-rate (intermediate-loop) bandwidth: 0.5 ≤ ωhBW ≤ 1.0 rad/s
(3) Altitude (outer-loop) bandwidth: 0.25 ≤ ωhBW ≤ 0.5 rad/s
(4) Airspeed (outer-loop) bandwidth: 0.25 ≤ ωuBW ≤ 0.5 rad/s

Control System Architecture. The flight control architecture is shown in Fig. 6. Of particular interest
here is the nested loop structure mentioned in the preceding. Here, the innermost feedback loop involves
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Fig. 6. Flight control system for the example.

feedback of pitch attitude θ with the elevator serving as the control effector. The error θc − θ serves as an
input to the pitch compensation element Gθ. The pitch-attitude command θc is the output of the altitude-rate
compensation element that receives the error signal ḣc − ḣ as its input. In turn, the altitude-rate command
is the output of the altitude compensation element Gh that receives the error signal hc − h as its input. Finally,
an airspeed loop is incorporated, involving feedback of airspeed perturbation (including turbulence) u − ug
with engine thrust serving as the control effector.

A simple engine model is employed as
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Fig. 7. Attributes of a desirable loop transmission.

The representation of Eq. (30) is included to model the response lag between thrust commands and thrust
output that occurs in a jet engine . Although simple in form, the first-order lag can often suffice for such designs
[see, for example, Stevens and Lewis, (11, Chap. 3)].

Obviously, more complex models can be utilized. The dynamics of the actuation devices that drive the
control effectors have been neglected here for simplicity. Also note that limiters have been placed in the ḣ and u
loops. Such limiters are common in flight control system, to prevent control actuator saturation when large step
changes in outer-loop command values occur. Finally, note that disturbance inputs in the form of turbulence
perturbations ug and wg are included, as provided by Eq. (19). The sensor requirements for the control system
of Fig. 6 are pitch attitude, vertical velocity or altitude rate, altitude, and airspeed, all assumed referenced to
the equilibrium flight condition.

Design Procedure. The design of the flight control system consists in determining the transfer func-
tions of the compensators Gθ, , Gh, and Gu so that the performance specifications given in the preceding
are met. Classical sequential loop-closure and frequency-domain loop shaping (14) will be used to obtain these
compensation elements. This time-honored technique consists in focusing upon one feedback loop at a time,
beginning with the loop with the largest bandwidth requirement. Here, this is the pitch-attitude loop. The
transfer function θ/�δe(s) is obtained from the transfer function matrix G(s) introduced in Eq. (25). The com-
pensation element Gθ is obtained so that the resulting loop-transmission L(jω) = θe/θ, with θe and θ as in Fig. 6,
exhibits the frequency-domain characteristics prescribed by the Bode plot shown in Fig. 7. A loop transmission
exhibiting these characteristics can be shown to exhibit good command-following and disturbance rejection
performance with a closed-loop bandwidth approximately equal to the crossover frequency. The crossover fre-
quency is defined as the frequency ωc where the magnitude of the loop transmission equals 0 dB (14). Table 2
shows the transfer function selected for Gθ. After Gθ has been obtained, the θ loop is closed analytically, and
Fig. 8 results. The θ loop has now been subsumed into a new effective vehicle with θc and �δT serving as inputs.
The expression θ → �δe appearing in Fig. 8 is shorthand notation to indicate that the effective vehicle now
includes a feedback loop in which the pitch attitude θ is being controlled by the elevator input �δe. Modern
computer-aided design tools enable the analyst to perform these loop closures with relative ease.

The loop with the next highest bandwidth requirement is now selected, here corresponding to the ḣ loop.
Once again, loop shaping is employed, with the loop transmission ḣe/ ḣ being forced to resemble the ideal
loop transmission shown in Fig. 7. Table 2 shows the resulting transfer function G ḣ. Figure 9 shows the new
effective vehicle, now with ḣc and �δT serving as inputs.
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Fig. 8. Flight control system for the example, with pitch-attitude loop closed.

Fig. 9. Flight control system for the example, with pitch-attitude and altitude-rate loops closed.

In a similar manner, the final two loops of the control system are closed. Since the bandwidth requirements
for the h and u loops are identical, either may be chosen first. Here, the h loop was selected, with the resulting
Gh shown in Table 2. Figure 10 shows the resulting effective vehicle, with hc and �δT serving as inputs. Finally,
the airspeed loop is closed with the Gu shown in Table 2. The final effective vehicle is shown in Fig. 11, now
with hc and uc serving as inputs.
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As one moves from inner to outer loops, the compensators become simpler in form, as the compensators of
Table 1 indicate. The decreasing complexity in the compensation as one moves from inner to outer loops is an
important result, since the quality (signal-to-noise ratios) of the sensed variables will generally be poorer as
one moves to the outer loops. The decreasing compensator complexity is a direct consequence of the sequential
loop closure procedure.

Digital Implementation of the Control Law. The compensator transfer functions Gθ(s), (s), Gh(s),
and Gu(s) of Table 2 constitute the flight control law for this application. As Fig. 2 indicates, such laws are now
routinely implemented in a digital flight control computer. Thus, the control law must be expressed in a form
suitable for digital implementation. To accomplish this, the nested control architecture of Fig. 6 is redrawn in
an equivalent form where the compensators act in parallel. This can be easily done by referring to Fig. 6 and
writing expression for the control inputs as

Figure 12 shows the resulting control structure. The A/D and D/A blocks refer to analog-to-digital and
digital-to-analog converters, respectively. “Analog” describes a continuous signal, and “digital” describes a
discrete signal, that is, one that is a string of numbers. The sampling rate of the A/D devices is denoted by T,
and the devices are assumed to operate synchronously. The means of accomplishing the continuous-to-discrete
transformation is referred to as an emulation method (15, Chap. 5). In this method, the operation of the
continuous compensators is approximated on the digital flight control computer by the z-transfer functions
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Fig. 10. Flight control system for the example, with pitch-attitude, altitude-rate, and altitude loops closed.

Fig. 11. Flight control system for the example, with all loops closed.

Gi(z). A number of different emulation techniques exist, each dependent upon the type of discrete integration
scheme that the digital computer uses to approximate the Laplace operator 1/ s. The most common of these is the
bilinear (Tustin) transform (15). In this approach, the discrete transfer functions suitable for implementation
on the digital flight control computer are obtained in the z domain. The z transform of a string of discrete
numbers x(kT) is defined as

with the infinite sum on the right-hand side amenable to representation as a ratio of polynomials in z, much
as the integral on the right-hand side of Eq. (24) is amenable to representation as a ratio of polynomials in the
variable s.
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Fig. 12. Digital implementation of flight control law of the example.

The bilinear transformation is defined as

For the emulation method to provide control laws comparable to those obtained in a continuous system,
the sampling frequency ωs = 2 π/T should be at least ten times the highest closed-loop bandwidth in the system
(15). In the case of the flight control system designed here, the largest bandwidth is associated with the pitch-
attitude loop. The bandwidth obtained with Gθ of Table 2 was approximately 2.5 rad/s. This requires that ωs
≥ 10 × 2.5 rad/s = 25 rad/s, or T ≤ 2π/ωs = 0.25 s. This sampling interval is well within the capabilities of
modern flight control computers. In Fig. 12, the elements Gi(z) are defined as

By writing the Gi(z) in Eq. (33) in terms of inverse powers of z, linear difference equations can be formed
between the input and output of each Gi(z). These difference equations can then be programmed in the flight
control computer. The last four rows of Table 2 give the Gi(z) compensators with the sampling interval chosen
as T = 0.25 s.
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Performance Assessment via Simulation. Part of the design cycle of any flight control system in-
volves computer simulation of the completed design with the control law implemented digitally. This simulation
can involve any nonlinearities that may have been neglected in the synthesis procedure itself. In this case, the
two limiters of Fig. 6 were included. To demonstrate the performance of the system just designed, a simula-
tion run was conducted. This involved a commanded 1,000 ft increase in altitude from equilibrium value. In
addition, at the initiation of the run, the aircraft encounters two simultaneous sharp-edge turbulence fields ug
and wg, each of 20 ft/s. The command limiters in Fig. 6 were chosen with the following bounds: In the u loop,
the limiter was selected with limits of ±10 (command units)/(ft/s), while in the loop the limits were ±1000
(command units)/ft. The equilibrium point change involved a relatively minor flight-condition variation, so that
the original aerodynamic model summarized in Table 1 was still valid for simulation purposes. Figures 13 and
14 show the airspeed, altitude, elevator, and thrust perturbation responses to the commands just described.
Since no elevator actuator model was included, the effect of the D/A device is clearly evident in the �δe time
history. As the figures indicate, the equilibrium change was smooth, with no excessive elevator or thrust inputs.

Control-System Design—Modern Approaches

Limitations of Classical Sequential Loop Closure. The design of the previous section was success-
ful, given the single flight condition, the limited number of control inputs considered, the relatively simple
design specifications, the underlying assumption of linearity, and the inherent stability of the basic aircraft.
Even with these assumptions, however, the ability to move from a set of performance specifications to a final
control law is not straightforward and certainly not algorithmic. Success is highly dependent upon the skill
and experience of the analyst.

Some modern flight control problems rarely allow the simplifications just enumerated. Consider the
aircraft shown in Fig. 1. The absence of a vertical tail, dictated by a desire to minimize radar signature (i.e.,
to provide a stealthy design), means that at least one of the lateral directional modes of the vehicle will be
unstable. To maximize maneuverability it is also likely that longitudinal modes will also exhibit instability. In
addition, a wide variety of flight conditions will be contained within the aircraft’s operational envelope. The
use of the linear models in Eqs. (19) and (20) may not be justified in some flight regimes such as those in
large-disturbance maneuvers. A large number of unconventional control effectors are also in evidence. Finally,
in the event of combat damage, the control law may be required to be reconfigurable, that is, able to adapt to
airframe damage by automatically restructuring itself.

These caveats are not meant to imply that sequential loop closure, per se, is not a useful approach
to control system design. When taken as a part of more powerful design techniques, such as the quantitative
feedback theory (QFT) approach to be discussed, sequential loop closure can be a powerful tool (16). Fortunately,
advances in the theory of feedback control provide many synthesis tools that allow the flight control designer
to attack the challenging problems just enumerated. An excellent and thorough summary of such techniques
can be found in Ref. 17. An abbreviated review of a few of these techniques is provided next.

Linear Design Approaches.
Quantitative-Feedback-Theory Controllers. QFT describes a control-system design technique in which

quantitative measures of aircraft stability and performance are guaranteed in the presence of structured un-
certainty in the vehicle dynamic model. Such guaranteed stability and performance is referred to as robustness.
Referring to the transfer function of Eq. (26), structured uncertainty is in evidence if the numerator and de-
nominator coefficients are not known precisely, but can be assumed to lie between specific values. For example,
it might be stated that the numerator coefficient ai is known only to be in the interval 3.25 ≤ ai ≤ 5.3. This
uncertainty may be attributable to errors in stability derivative estimates and/or to the changes in vehicle
transfer functions that occur at different points in the flight envelope.
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Fig. 13. Airspeed and altitude responses for the example.

In QFT, the desired control system performance is typically presented in terms of bounds on the allowable
magnitudes of the Bode plots of system transfer functions across a frequency range of interest. QFT is a
frequency-domain-based design technique. Thus the design is carried out on Nichols charts (9), in which the
magnitude and phase of the system loop transmission are plotted and forced to lie above bounds dependent
upon the desired stability and performance and the amount of uncertainty.

The attractiveness of QFT designs is their ability to handle structured uncertainty and to guarantee per-
formance. In addition, the order of the controller is at the discretion of the designer. The primary disadvantage
is that the technique is not algorithmic and, as yet, is not supported by widely available computer-aided design
packages.

Linear Quadratic Regulator and Linear Quadratic Gaussian Controllers. A considerable number of
control design techniques have been developed that derive from the minimization of scalar norms. Linear
quadratic regulators (LQRs) fall into this category. Such designs seek a feedback control law of the form δ(t) =
− Kx(t), where K is a state feedback gain matrix. K is chosen to minimize a scalar norm or performance index,
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Fig. 14. Elevator and thrust responses for the example.

defined as a weighted sum of mean squared system errors and control inputs (sometime referred to as an L2
norm). For example, one such index might be

Here the system error is defined as the deviation of the state vector x(t) from an equilibrium point. The
solution to the LQR problem typically involves the solution of the matrix Riccati equation. As Eq. (35) indicates,
implementation of such control laws requires measurement of the entire state vector. This requirement can be
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obviated through introduction of a state estimator that provides continuous estimates of the state vector based
upon measurement of a subset or combination of the system state variables.

If the aircraft is assumed to be disturbed by a random signal possessing a Gaussian amplitude distribution
(e.g., random turbulence) and if the output variables are assumed corrupted by additive white noise, also
possessing a Gaussian distribution, then linear quadratic Gaussian (LQG) controllers can be designed. As in
the LQR controllers, the feedback gains for the LQG designs are obtained by solution of matrix Riccati equations.
The state estimators in this designs are also optimal in the sense that a quadratic index of performance in
minimized. The optimal estimators thus obtained are referred to as Kalman filters.

The attractiveness of LQR and LQG designs is their algorithmic nature and the fact that very efficient
computer-aided design packages are available for their solution, e.g., the Matlab Control System Toolbox (18).
Their primary disadvantage is that the designs are regulators and must be modified for use as command
trackers.

H-Infinity Controllers. A system norm referred to as an H-infinity (H∞) norm of a transfer function
matrix G(s) can be defined as

where the right-hand side refers to the least upper bound of the maximum singular value of G(jω) over all
frequencies ω. Singular values (both maximum and minimum) extend the concept of a frequency-dependent
gain from single transfer functions to matrix transfer functions. As in the case of the LQR and LQG controllers,
finding H∞ controllers involves the solution of matrix Riccati equations. One application of H∞ could be the
transport flight control problem considered earlier. By focusing upon the transfer-function matrix between the
outputs θ(t), z0

′ − z′ (t) and the turbulence inputs ug, wg [H(s) in Eq. (25)], one could seek the controller that
minimized ‖H‖∞ and thus provide an efficient gust alleviation system.

As with LQR and LQG designs, the attractiveness in H∞ controllers is the availability of efficient
computer-aided design packages. In addition, the manner in which performance specifications can be couched
in terms directly suitable to H∞ formulations is desirable. The primary disadvantage of this design approach
is that high-order controllers frequently result.

Eigenstructure Assignment. The roots of the denominator polynomials in a system transfer-function
matrix such as G(s) in Eq. (26) are often referred to as system eigenvalues. The eigenvalues associated with
the system before feedback is applied are referred to as open-loop eigenvalues, while those associated with the
system after feedback is applied are referred to as closed-loop eigenvalues. Eigenvectors are column matrices,
the elements of which describe the mode shapes of the vehicle responses. That is, the eigenvectors determine
how each state variable contributes to the vehicle response for each possible mode of motion. Like eigenvalues,
open-loop and closed-loop eigenvectors can be defined.

As a control-system design technique, eigenstructure assignment allows the creation of controllers that
meet mode-based performance specifications. Examples of mode-based specifications are minimum damping,
minimum settling time, and decoupled responses. The last refers to allowing specified system inputs to affect
only certain system outputs. For example, in the case of the fighter aircraft of Fig. 1, it may be desirable to
have the elevons affect only pitching motion, while the spoilers affect only vertical velocity.

One of the attractive features of eigenstructure assignment for the control of piloted aircraft is the
manner in which design criteria for handling qualities can be directly incorporated into the mode-based
controller specifications. In addition, the order of the compensator is at the discretion of the designer. Possible
disadvantages of this approach include the difficulty in determining how to tune an eigenstructure assignment
design (improve its performance) if its performance in simulation or flight is unsatisfactory.

Model-Following Controllers. As the name implies, model-following controllers involve control struc-
tures in which the vehicle’s response is forced to follow that of an ideal or desired model. Model-following
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designs are usually described as either explicit or implicit. In explicit model following, a model of the desirable
vehicle dynamics appears explicitly in a feedforward path. This is sometimes referred to as model-in-the-system
control. Errors between the model response and that of the vehicle are used to create control inputs. In implicit
model following, sometimes referred to as model-in-the-performance-index control, no model appears explicitly.
In one type, the model influences the control strategy through its appearance in a quadratic performance index
like that given in Eq. (35).

Model-following control structures are also used in research aircraft that serve as in-flight simulators.
Here the dynamics of the vehicle being simulated form the model. A historical review of in-flight simulation
can be found in Gowran and Reynolds (19).

Like eigenstructure assignment, model following is an attractive control strategy for piloted aircraft,
since handling-qualities criteria can be used to select the ideal model. Possible disadvantages include large-
bandwidth requirements associated with obtaining high-fidelity model-following characteristics.

Nonlinear Design Approaches.
Nonlinear Dynamic Inversion (Feedback Linearization) Controllers. Nonlinear dynamic inversion or

feedback linearization refers to a control-system design approach in which the aircraft’s nonlinear response
characteristics are dynamically linearized through a state feedback law. The word “dynamically” is used here
to differentiate this approach from the small-disturbance linearization discussed earlier. Like LQR and LQG
approaches, dynamic inversion requires full state feedback or state estimation.

Dynamic inversion is attractive in that it is applicable to flight regimes in which nonlinearities cannot
be ignored or eliminated through small-disturbance theory. More than any competing nonlinear approaches,
these controllers have been successfully flight-tested on a number of aircraft, including helicopters (20).

The primary disadvantages revolve around the aforementioned full-state-feedback requirement and
the fact that systems possessing transmission zeros in the right half of the complex s plane (so-called
non-minimum-phase characteristics) cannot be accommodated without considerable difficulty. Transmission
zeros represent an extension of the concept of zeros of a single transfer functions to those of a transfer function
matrix (14). The solution to the problem of non-minimum-phase transmission zeros often requires the intro-
duction of regulated response variables. An additional disadvantage of course, is that, a detailed model of the
nonlinear vehicle is required.

Sliding Mode Controllers (Variable-Structure Controllers). Sliding mode control is a design tech-
nique that begins with the definition of the n system state variables. Then a sliding surface is defined in the
(n + 1)-dimensional space (time included). The surface is defined so that if the system state trajectory remains
on (slides on) this surface, desirable system behavior such as command tracking occurs. After design of the
surface, a switching controller is constructed. If the trajectory moves off the sliding surface due to disturbances
or tracking errors, the control inputs are created that point the tangents to the state trajectory back toward
the surface. The state-space description of the system need not be linear in this approach.

The control action in sliding mode controllers is discontinuous and ideally requires infinitely fast switching
mechanisms. Since such mechanisms are obviously unattainable, finite switching is employed. This leads to
a phenomenon known as chattering, in which the control switches rapidly from one value to another. In
aircraft control applications, chattering could excite unmodeled aeroelastic modes. To prevent chattering, a
thin boundary layer surrounding the sliding surface is introduced so that when the state trajectory enters the
layer, the control changes are smooth.

Like dynamic inversion, the attractiveness of sliding mode controllers lies in their applicability to non-
linear systems. Unlike dynamic inversion, sliding mode controllers are not limited to systems possessing
minimum-phase transmission zeros. Possible disadvantages include the necessity of specifying the thickness
of the sliding surface boundary layer and the modifications of the control law when the state trajectory enters
the layer.

Neural-Net Controllers. Neural-net controllers utilize artificial neural networks that emulate the low-
level biological functions of the brain to solve difficult control problems. Essentially, neural nets provide a
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means for mapping the input–output characteristics of complex nonlinear systems. As such, they are useful for
nonlinear flight control problems. As opposed to being analytically designed, neural nets are trained to model
vehicle nonlinear dynamics. Once trained, they can then be incorporated into a control system, for example
as part of a nonlinear dynamic inversion controller (e.g., Ref. 21). Given a nonlinear model of the aircraft, the
net is trained to invert the system dynamics for a variety of desired outputs, that is, to determine the control
inputs which provide the desired outputs. The trained net then is used online as a controller. To minimize the
effects of errors in the net operation, other loops are closed around the neural-net dynamic inverter. In Ref. 21
this involved an adaptive system using a second neural-net controller.

The attractiveness of neural-net controllers lies in their ability to serve as nonlinear controllers when
tractable analytical models of system nonlinearities are unavailable. Disadvantages that are often cited include
the need to determine whether the net has been sufficiently trained and to establish the structure of the net
itself.

Adaptive Control. Adaptive control refers to a class of controllers that can alter their parameters
or structures in response to unpredicted changes in the vehicle and/or environment. The term “unpredicted”
distinguishes adaptive control from other forms of controller on-line modification such as that employed in
gain scheduling. The latter refers to designing controllers for known, fixed points (or equilibrium conditions)
and then blending the controller parameters as the equilibrium point changes. Gain scheduling is widely used
in aircraft flight control, where the scheduling is based upon sensed changes in altitude and Mach number.

Adaptive controllers are often referred to as self-tuning, self-optimizing, and self-learning. Model-reference
adaptive control is an approach in which errors between vehicle outputs and those of an ideal model are
employed in online adjustment of controller parameters. In other adaptive algorithms, the process of adaptation
often involves system identification, wherein models of the vehicle are derived online, in real time.

Aircraft applications of adaptive control are challenging in that the adaptation process as a whole must
occur very quickly. For example, one of the most challenging current applications of adaptive control lies in
the area of reconfigurable flight control. Here, the controller is required to adapt to damage to the aircraft
or to subsystem failures. In the case of combat aircraft such as that of Fig. 1, wherein vehicle stability is
dependent upon active feedback control, damage or subsystem failures can easily cause the vehicle to become
uncontrollable by the pilot in a matter of seconds or less. As an example, Bodson and Groszkiewicz (22) offer a
treatment of this problem using model-reference approaches.

The attractiveness of adaptive control is its promise of providing control laws for aircraft applications in
which significant and unpredictable changes in vehicle characteristics may occur. Disadvantages often concern
stability guarantees and the complexity of the controllers themselves.
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